

MARLi - Molly Alternate Realities Language
interactive: A New XML Markup Language for

Defining Virtual and Augmented Reality

Ronald P. Vullo, Ph.D.
Department of Information
Sciences and Technologies

Rochester Institute of
Technology

Rochester, New York 14623
rpv@mail.rit.edu

Christopher A. Egert, Ph.D.
School of Interactive Games and

Media
Rochester Institute of

Technology
Rochester, New York 14623

caeics@rit.edu

Andrew Phelps, M.S.
College of Art & Design

Rochester Institute of
Technology

Rochester, New York 14623
amp5315@rit.edu

Abstract— Over the last few years, virtual reality and related

technologies have seen a resurgence with the advent of easily
accessible headsets and adapters for PC, mobile devices, and
tablets. However, developers and content creators have struggled
with the means of authoring for these systems for mass-
consumption and web deployment. This paper examines the
historical state of web authoring frameworks for VR and describes
the authors' approach to the problem.

Keywords— Virtual Reality, Web Virtual Reality, Web
Multimedia Content

I. INTRODUCTION
Virtual Reality/Augmented Reality/Mixed Reality

(heretofore abbreviated as VR) has once again made a
reappearance on the consumer front. Readily available headsets
and adapters for mobile devices have lowered the bar for
consumer entry and has re-sparked the imagination for the
potential of this technology. However, in order to harness the
power of VR, authoring tools must allow easy entry for
developers while still allowing reasonable complexity in an VR
application. This is apparent in the current state of VR for the
web, where potential solutions try to balance the ease of HTML
markup approaches with the need for scripting access to control
interactivity and dynamic state management within scenes and
virtual worlds. This is not unusual in the natural evolution of
new technologies, but also not unusual is the subsequent
development of authoring tools and approaches that abstract the
complexity and so speed the further development and adoption
of those technologies. The authors' background in web
development led us develop an elegant yet powerful VR markup
language to allow us to take advantage of the rapidly improving
hardware. Together, the authors combined experience includes
web XML parsing engine development, game engine
development, game development, and VR development going
back over two decades. Thus the decision was made to move
forward with the development of a VR markup-based language
syntax, server-side parsing engine, and client-side rendering
engine. This paper introduces the first of these three components
- the new VR language.

II. BACKGROUND
Before beginning to develop our new VR language, we

decided to look back at the language we all first used to build
VR scenes: Virtual Reality Markup Language (VRML) [1]-[2].
As we dusted off and began paging through our twenty year old
VRML books, we realized that it would be valuable to explore
the domain of VR markup languages for web delivery. What we
found was admittedly limited, but proved instructive in our
decision to move forward. What follows is a brief summary of
the key features of the various languages that have been
developed over the years.

A. Summary of Previous VR Languages
1) VRML

 Virtual Reality Markup Language [1]-[3] was the first
attempt at creating a dedicated VR development language back
in the early days of the web and Hypertext Markup Language
(HTML). Despite its name being similar to (likely derivative of)
HTML, VRML bears no similarity to what we have come to
consider markup languages to be. It does not share HTML's
original SGML ancestry, or modern XML incarnations. It is
more of a "bare metal" programming language-like node
specification syntax employing braces for blocks instead of
traditional markup language tags. As the language evolved and
attempts were made to build VR environments with VRML,
content creators increasingly relied upon IndexedFaceSet
objects rather than geometric primitives to create their scenes,
thus reducing the readability of the markup. To those reading
VRML code, these index sets read as long lists of numbers
which quickly became impenetrable when coding. While some
WYSIWYG authoring environments were available [4] and so
made VRML essentially dependent on the use of a WYSIWYG
authoring tool. This is the antithesis of a "markup language" and,
we believe, eventually led to its failure as a functional standard
for building VR. In the end, it just felt more complex than it
needed to be.

Fig. 1. Sample VRML Syntax [5]

2) xVRML
In 2003 a former colleague of ours began a project to re-

implement VRML using an XML-based notation and a schema-

Fig. 2. Fig. 2 Sample xVRML Syntax [7] (See: Examples > Prowl the vrmLab
> Coffeetable_vrc.xwrl)

based definition. The resulting work was named xVRML [6]
and the approach attempted to address the concerns that content
developers expressed when using VRML. However, there was
no attempt at re-engineering the underlying structure and
assumptions of VRML, merely to develop an XML compliant
syntax that would be synonymous with web markup standards.
Work seems to have focused primarily on formalization of the
schema, not the functionality of the language itself and
development stalled more-or-less permanently in mid 2006 at
the beginning of the "demonstration implementation" (in Java)
phase of the project.

3) X3D/X3DOM
X3D [8] is a royalty-free ISO standard for declaratively

representing 3D computer graphics and is sometimes noted to
be the official successor to VRML [9]. That said, it doesn't really
feel to us like a complete VR language, but more a syntax/tool
for embedding 3D objects in regular web pages. The syntax of
X3D requires several layers of nested tags to display even the
simplest scene, making it verbose and less than intuitive.
Although the JavaScript runtime script for implementing X3D
was last updated in 2016, it still functions at the time this paper
was authored.

Fig. 3. Sample X3D Syntax [10]

4) 3DMLW
3D Markup Language for Web (3DMLW) [11] is described

as an open-source XML-based Markup Language for
representing interactive 3D and 2D content on the World Wide
Web. While this project had potential, it seems its creators
transitioned the project into an authoring application around
2012 and it appears to have been abandoned in 2015. From the
minimal examples we found it seems to have been a reasonable
start at a syntax, but the lack of available documentation makes
it difficult to make a definitive determination.

#VRML V2.0 utf8
#Color example: a pyramid
Shape {
 appearance Appearance {
 material Material { }
 }
 geometry IndexedFaceSet {
 coord Coordinate {
 point [
 # bottom
 -1.0 -1.0 1.0, #vertex 0
 1.0 -1.0 1.0, #vertex 1
 1.0 -1.0 -1.0, #vertex 2
 -1.0 -1.0 -1.0, #vertex 3
 # top
 0.0 1.0 0.0 #vertex 4
]
 }
 colorPerVertex FALSE #so each face will have one of the colors
 color Color {
 color [
 1.0 0.0 0.0,#color 0
 0.0 1.0 0.0,#color 1
 0.0 0.0 1.0,#color 2
 1.0 1.0 0.0,#color 3
 0.0 1.0 1.0,#color 4
]
 }
 colorIndex [2 3 4 0 0] #the first face will have color 2, the 2nd color3...
 coordIndex [
 #bottom square
 0, 3, 2, 1, 0, -1,
 #side1
 0, 1, 4, -1,
 #side2
 1, 2, 4, -1,
 #side3
 2, 3, 4, -1,
 #side1
 3, 0, 4, -1,
]

 }

}

<?xml version="1.0" encoding="UTF-8"?>
<World xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.xvrml.net/schemas/core"
xsi:schemaLocation="http://www.xvrml.net/schemas/core
http://www.xvrml.net/schemas/xVRML.xsd" name="" >
 <WorldInfo name="" >
 <title>Coffeetable</title>
 <info>Converted by Michael Dana Murphy</info>
 </WorldInfo>
 <children>
 <Viewpoint rotation="0 0 -1 0" description="Default" position="0 1 10"
name="Default" />
 <Transform rotation="0.0 0.0 -1.0 0.0" scale="0.1 0.1 0.1" translation="0.0 -
1.93787e-08 0.0" >
 <children>
 <Shape>
 <appearance>
 <Material ambientIntensity="0.0" name="mat1" >
 <diffuseColor alpha="1.0" red="0.13725" blue="0.18431"
green="0.13725" />
 </Material>
 </appearance>
 <geometry>
 <IndexedFaceSet ccw="false" creaseAngle="3.14" >
 <coord>-28.8 13.7999 20.8312 -28.8 13.8014 -36.7687 28.8 13.8014 -
36.7687 28.8 13.7999 20.8312 28.8 14.4014 -36.7687 -28.8 14.4014 -36.7687 -28.8
14.3999 20.8312 28.8 14.3999 20.8312 24.2122 13.8 15.819 -23.7878 13.8013 -32.181
-24.2121 13.8013 -31.7567 23.7879 13.8 16.2433 24.2122 1.02074e-05 15.8186 23.7879
1.93787e-07 16.243 -24.2121 0.00127001 -31.757 -23.7878 0.00127001 -32.1814
24.2121 13.8013 -31.7567 23.7878 13.8013 -32.181 -24.2122 13.8 15.819 -23.7879
13.8 16.2433 24.2121 0.00127001 -31.757 -23.7879 1.93787e-07 16.243 -24.2122
1.02074e-05 15.8186 23.7878 0.00127001 -32.1814</coord>
 <coordIndex>2 1 0 -1 3 2 0 -1 6 5 4 -1 7 6 4 -1 6 0 1 -1 5 6 1 -1 1
2 4 -1 5 1 4 -1 2 3 7 -1 4 2 7 -1 3 0 6 -1 7 3 6 -1 10 9 8 -1 11 10 8 -1 14 13 12
-1 15 14 12 -1 14 15 9 -1 10 14 9 -1 10 11 13 -1 14 10 13 -1 8 12 13 -1 11 8 13 -1
9 15 12 -1 8 9 12 -1 18 17 16 -1 19 18 16 -1 22 21 20 -1 23 22 20 -1 21 19 16 -1
20 21 16 -1 17 23 20 -1 16 17 20 -1 22 23 17 -1 18 22 17 -1 21 22 18 -1 19 21 18 -
1</coordIndex>
 </IndexedFaceSet>
 </geometry>
 </Shape>
 </children>
 </Transform>
 <DirectionalLight name="aDirectionalLight" />
 </children>

</World>

<html>
 <head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>
 <title>My first X3DOM page</title>
 <script type='text/javascript' src='https://www.x3dom.org/download/x3dom.js'>
</script>
 <link rel='stylesheet' type='text/css'
href='https://www.x3dom.org/download/x3dom.css'></link>
 </head>
 <body>
 <h1>Hello, X3DOM!</h1>
 <p>
 This is my first html page with some 3d objects.
 </p>
 <x3d width='500px' height='400px'>
 <scene>
 <shape>
 <appearance>
 <material diffuseColor='1 0 0'></material>
 </appearance>
 <box></box>
 </shape>
 <transform translation='-3 0 0'>
 <shape>
 <appearance>
 <material diffuseColor='0 1 0'></material>
 </appearance>
 <cone></cone>
 </shape>
 </transform>
 <transform translation='3 0 0'>
 <shape>
 <appearance>
 <material diffuseColor='0 0 1'></material>
 </appearance>
 <sphere></sphere>
 </shape>
 </transform>
 </scene>
 </x3d>
 </body>
</html>

Fig. 4. Sample 3DMLW Syntax [12]

5) A-Frame
Originally developed by Mozilla A-Frame [13] is now

maintained by its co-creators under the auspices of
Supermedium (https://supermedium.com). We were excited
early on by A-Frame as they seemed to be headed in the right
direction - which is to say, developing a tag language from
content authors' perspective. However, A-Frame has been

Fig. 5. Sample A-Frame Syntax [14]

undergoing revisions that seem to be moving toward a scripting
focus, placing most of the functionality for interaction and
events in the code rather than in the markup. A-Frame has the
distinct advantages of being designed for modern VR hardware
and web browsers and is actively developed. It also provides
some of the modern amenities of lower level web graphics
programming APIs while maintaining a reasonable level of
abstraction. However, A-Frame does present a challenge with
its continuing evolving specification that sometimes breaks
backwards compatibility along with its name, which presents a
challenge when trying to search for examples and tutorials
within modern search engines.

6) VR Languages In General
All of the languages reviewed seem to share a similar trait.

They each have fallen into the trap of having their syntaxes
optimized for the back-end programmer, more than the content
creator (be that a human or a script). None of the XML (or
XMLish) systems seem to have properly used XML namespaces
to avoid tag name collisions. Strangely, the most modern of the
languages, A-Frame, prefixes the names of all their tags with "a-
" as a pseudo namespace, rather than declaring an actual XML
namespace. Other than A-Frame, none of the languages are
implemented for modern VR use with headsets and phone
accessories. Rather, they create 3D environments for display
and interaction for 2D viewing. This is not entirely surprising
as they all were essentially abandoned before the advent of
modern VR headsets just a few years ago.

Because of these shortcomings, the authors felt that a fresh
attempt at exploring a language from the vantage of the HTML
markup author was warranted. The authors wanted to focus on
the core of what was important - an easy to understand tagging
language, clear operational semantics, and mechanisms to
support commonly used interactive engagements with 3D
content while not limiting advanced content authors.

B. Molly, MAML, MAGE, and MARLi
Molly [15] is a general purpose web development

framework, the core of which is a system for parsing XML and
generating web pages dynamically based on that XML. Molly,
initiated by Vullo in December, 2000, is an ongoing research
project at the Rochester Institute Technology, designed to
simplify the process of creating dynamic web sites. Molly is an
open source system and architecture that allows web site
developers to build dynamic web sites using HTML and MAML
(Molly Active Markup Language) tags. MAML tags provide the
web author with components that can be used to build
sophisticated server-side functionality without programming.
Molly has been used together with A-Frame [16] to build
dynamic web-based VR environments.

Using Molly with A-Frame was not the first time the system
was used to generate graphical content instead of HTML.
Molly's architecture early on allowed the deployment of the
optional MAGE (pronounced "Maggie") module which
implements the Molly Automated Graphics Engine tags that
create SVG-based charts using MAML tags to incorporate data
from databases.

<?xml version='1.0' standalone='no'?>
<document>
 <content2d>
 <area width='200' height='100' color='#C0C0C0FF'
texture='flower.png' />
 </content2d>
 <content3d id='content' camera='{#cam}'>
 <camera id='cam' class='cam_rotation' y='10' z='40'
viewy='10'/>
 <box name='ground' width='100' height='2' depth='100'
color='green' class='ground' />
 <box name='dynamic' y='20' width='10' height='10' depth='10'
color='blue' />
 </content3d>
</document>

<!DOCTYPE html>
<html>
 <head>
 <title>Dynamic Lights - A-Frame</title>
 <meta name="description" content="Dynamic Lights - A-Frame">
 <script src="../../../dist/aframe-master.js"></script>
 <script src="https://unpkg.com/aframe-randomizer-components@3.0.2/dist/aframe-
randomizer-components.min.js"></script>
 <script src="https://unpkg.com/aframe-entity-generator-
component@3.0.1/dist/aframe-entity-generator-component.min.js"></script>
 <script>
 AFRAME.registerComponent('random-material', {
 init: function () {
 this.el.setAttribute('material', {
 color: this.getRandomColor(),
 metalness: Math.random(),
 roughness: Math.random()
 });
 },
 getRandomColor: function () {
 var letters = '0123456789ABCDEF'.split('');
 var color = '#';
 for (var i = 0; i < 6; i++) {
 color += letters[Math.floor(Math.random() * 16)];
 }
 return color;
 }
 });
 AFRAME.registerComponent('random-torus-knot', {
 init: function () {
 this.el.setAttribute('geometry', {
 primitive: 'torusKnot',
 radius: Math.random() * 10,
 radiusTubular: Math.random() * .75,
 p: Math.round(Math.random() * 10),
 q: Math.round(Math.random() * 10)
 });
 }
 });
 </script>
 </head>
 <body>
 <a-scene background="color: #111">
 <a-assets>
 <a-mixin id="light"
 geometry="primitive: sphere; radius: 1.5"
 material="color: #FFF; shader: flat"
 light="color: #DDDDFF; distance: 120; intensity: 2; type:
point"></a-mixin>
 <a-mixin id="torusKnot"
 random-torus-knot
 random-material
 random-position="min: -60 -60 -80; max: 60 60 40"></a-mixin>
 </a-assets>

 <!-- Use entity-generator component to generate 120 entities with the
torusKnot mixin. -->
 <a-entity entity-generator="mixin: torusKnot; num: 120"></a-entity>

 <!-- Lights. -->
 <a-entity animation="property: rotation; to: 0 0 360; dur: 4000; easing:
linear; loop: true">
 <a-entity mixin="light" position="30 0 0"></a-entity>
 </a-entity>

 <a-entity animation="property: rotation; to: 360 0 0; dur: 4000; easing:
linear; loop: true">
 <a-entity mixin="light" position="0 0 40"></a-entity>
 </a-entity>
 </a-scene>
 </body>

</html>

We have now embarked on the development of the MARLi
module to implement the Molly Alternate Realities Language
interactive tags described in this paper.

III. APPROACH
The Molly Alternative Realities Language interactive

(MARLi) is based upon the premise that web-based VR markup
should be simple and approachable to the content creator while
still being powerful and flexible enough to accommodate for
advanced world creators. The development of the MARLi
language was guided by a number of design principles.

The first principle is that MARLi should embrace strong web
standards and abide by modern markup techniques and best
practices that are currently available. As such, MARLi properly
utilizes namespaces and supports syntactical validation in its
design. The design embraces proper separation of tags and
attributes to differentiate between instances in a 3D world and
modifications to those objects. References such as ids, nesting
of elements, as well as modularity and reuse of components was
well thought out in advance of creating the tagging language.
Reasonable defaults were also chosen to ensure immediate
viewability and interaction when authors introduce new and
unfamiliar markup into a 3D world.

Second, MARLi is also designed to be human readable and
human editable at its core, providing a lower barrier to entry for
new developers. Tag and attribute names were chosen to mirror
the languages familiar to 3D content creators. The authors tried
to avoid names that are often associated with the inner workings
of graphics API so as to reduce the syntactic barrier to entry. It
should be noted while the naming conventions do not exclude
notations that speak more to the graphics API, it is the authors'
hope that by using such naming conventions, those who are
interested in extending the language will employ similar
techniques.

Third, MARLi is not dependent upon scripting to perform
common interactions within a 3D environment. The authors had
as a goal that typical content creators should not have to employ
JavaScript or other client-side scripting language constructs to
create interactivity. Simple triggers such as selection,
proximity, timing, collision, and property change can all be
modeled within the tagging system. As MARLi is distributed
across client and server, transformations of the tagging system
can be presented to the client in an appropriate scripting format
as needed. When scripting is present, it should augment the
tagging system such that interactions and behaviors can be built
upon and interact with the default tags in a seamless manner.

Fourth, MARLi is designed to be adaptable as content
creators’ needs change. While flexible and easy to understand
out of the box, MARLi is adaptable to complex scenes and
interactions while still maintaining ease of readability. MARLi
is also adaptable to automation, as its formatting lends itself to
database and generated markup that still can remain readable
and adaptable. MARLi can also be adapted for use with
WYSIWYG and/or visual programming environments if and
when necessary.

 Finally, MARLi is designed to be modular in nature. Too
often, systems allow for the construction of content, but do not
address reuse and connection to create interconnected

experiences. MARLi can provide for seamlessness in both the
client and the server to maximize reuse and recontextualization
of experiences. This is meaningful in that it allows users to
quickly learn from existing and relevant content while still
providing ease of access. As a Molly module, MARLi is
completely integrated with tag-based database access as well.

IV. EXAMPLE

Fig. 6. Sample MARLi Syntax

V. CONCLUSION
 With the heightened interested in hardware to provide
consumer level VR experiences, it is increasingly important to
present content creators access to languages and frameworks
that support the rapid deployment of 3D worlds and scenes. The
authors' work with MARLi provides an approach that attempts
to adhere to the ideals of web-based markup languages. As we
continue to work with MARLi and the underlying Molly
technologies, we will explore the boundaries between
responsibilities of the content author and the systems that
support the deployment of web VR content. By employing such
an approach, the authors hope to return to content primacy
instead of focusing upon the language technology that drive such
experiences.

REFERENCES

[1] R. Carey and G. Bell. The Annotated VRML 2.0 Reference Manual.
Essex, UK: Addison-Wesley Longman Ltd., 1997

[2] J. Hartman and J. Wernecke. The VRML 2.0 Handbook: Building Moving
Worlds on the Web. Redwood City, CA: Addison Wesley Longman
Publishing, 1996.

[3] "The Virtual Reality Modeling Language Specification." Internet:
http://www.graphics.stanford.edu/courses/cs248-98-
fall/Assignments/Assignment3/VRML2_Specification/, Aug. 4, 1996
[Apr. 24, 2019].

[4] M. Lawton. "How to be a Virtual God: Constructing Worlds in VRML
2.0 on a PC." Internet:
https://www.developer.com/tech/article.php/602251/How-to-be-a-
virtual-god-constructing-worlds-in-VRML-20-on-a-PC.htm, Mar. 5,
1998 [Apr. 24, 2019].

[5] S-M Zoltan. "Creating Complex Geometry." Internet:
http://www.c3.hu/cryptogram/vrmltut/part5.html, Aug. 27, 1997 [Apr.
24, 2019].

<marli:world radius="6" color="#ECECEC"
 xml:lang="en"
 xmlns="http://www.w3.org/1999/xhtml"
 xmlns:maml="http://interpersonalnet.com/maml/"
 xmlns:marli="http://mollyar.org/marli/">

 <marli:viewpoint position="0, 1.6, 0" interocular="6" field_of_view="80"
direction="0,0" current="true" />

 <marli:override category="units" attribute="light" value="percent" />
 <marli:light intensity="100" type="ambient" color="#bbbbbb" shadow="100"
shadowcolor="#000000" />
 <marli:light intensity="60" type="directional" position="-0.5 1 1"
rotation="0,0,0" color="#ffffff" shadow="100" shadowcolor="#000000" />

 <marli:cube width="1" height="1" depth="1" color="#4CC3D9" position="-1
0.5 -3" rotation="0 45 0" shine="0" />

 <marli:sphere radius="1.25" color="#EF2D5E" position="0 1.25 -5"
rotation="0, 0, 0" shine="0" />

 <marli:cone color="#FFC65D" radius=".5" tradius=".5" height="1.5"
position="1 0.75 -3" rotation="0, 0, 0" />

 <marli:plane position="0 0 -4" rotation="-90 0 0" width="4" height="4"
style="color: #7BC8A4;" />

</marli:world>

[6] J. Sonstein. "XML-based 3D: Content Creators, the Web, and xVRML
Are Ready for Each Other." in Proceedings of E-Learn 2005-World
Conference on E-Learning in Corporate, Government, Healthcare, and
Higher Education, 2005, pp. 154-159.

[7] J. Sonstein. "xVRML Web Site (archive)." Internet:
https://web.archive.org/web/20090727082021/http://www.xvrml.net/,
Jul. 27, 2009 [Apr. 24, 2019].

[8] "x3dom - Instant 3D the HTML Way!." Internet:
https://www.x3dom.org/, [Apr. 24, 2019].

[9] P. Festa and J. Borland. "Is a 3D Web More Than Just Empty Promises?"
Internet:
http://news.zdnet.co.uk/internet/0,1000000097,39199121,00.htm, [May
19, 2005 [Apr. 24, 2019].

[10] "Hello, X3DOM!" Internet:
https://doc.x3dom.org/tutorials/basics/hello/HelloX3DOM.html, [Apr.
24, 2019].

[11] "3DMLW.com (archive)." Internet:
https://web.archive.org/web/20080731010934/http://www.3dmlw.com/,
Jul. 31, 2008 [Apr. 24, 2019].

[12] Wikipedia. "3DMLW: 3DMLW File Format." Internet:
https://en.wikipedia.org/wiki/3DMLW, [Apr. 24, 2019].

[13] A-Frame - Make WebVR." Internet: https://aframe.io, [Apr. 24, 2019].
[14] "A-Frame Dynamic Lights Example.", Internet:

https://github.com/aframevr/aframe/blob/master/examples/showcase/dyn
amic-lights/index.html, Sep. 4, 2018 [Apr. 24, 2019].

[15] R. Vullo. "About Molly." Internet: https://molly.rit.edu/, [Apr. 24, 2019].
[16] R. Vullo and M. Catalfamo. "Dynamically Generating Virtual Reality

Scenes Using Molly and A-Frame." in International Conference on
Internet Computing and Internet of Things, 2017, pp. 21-24.

