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Abstract

Let R(k1, · · · , kr) denote the classical r-color Ramsey number for inte-
gers ki ≥ 2. The Diagonal Conjecture (DC) for classical Ramsey numbers
poses that if k1, · · · , kr are integers no smaller than 3 and kr−1 ≤ kr, then
R(k1, · · · , kr−2, kr−1 − 1, kr + 1) ≤ R(k1, · · · , kr). We obtain some im-
plications of this conjecture, present evidence for its validity, and discuss
related problems.

Let Rr(k) stand for the r-color Ramsey number R(k, · · · , k). It is
known that limr→∞Rr(3)1/r exists, either finite or infinite, the latter con-
jectured by Erdős. This limit is related to the Shannon capacity of comple-
ments of K3-free graphs. We prove that if DC holds, and limr→∞Rr(3)1/r

is finite, then limr→∞Rr(k)1/r is finite for every integer k ≥ 3.

Keywords: Ramsey number, Shannon capacity
AMS classification subjects: 05C55, 05C35



1 Introduction

Denote byKn the complete graph on n vertices. The classical multicolor Ramsey
number R(k1, · · · , kr) is the smallest positive integer n such that if we color the
edges of Kn with r colors, then in this coloring there must be a monochromatic
Kki

whose all edges are in color i, for some i ∈ {1, . . . , r}. In the diagonal case
k = k1 = · · · = kr we will use the simpler notation Rr(k) = R(k1, · · · , kr).

Wang Rui [11] in a 2008 paper claimed to prove that in the two-color case it
holds that R(s, t) > R(s−1, t+1) for s ≤ t. Or, equivalently, one of his theorems
states that as we move away from the diagonal of the table with Ramsey numbers
R(s, t), while preserving s + t, the values decrease. Known values and bounds
for Ramsey numbers [10] do not contradict this claim, and actually, it seems
very plausible to be true. Unfortunately, it is rather evident that its proof in
[11] is not correct. The problems with this paper are numerous, starting with a
strange alternate definition of Ramsey numbers, followed by unfounded circular
arguments between the alternate definitions. Wang in his paper is addressing
almost exclusively two-color cases, but towards the end he also makes some
claims for more colors, though again without what can be considered rigorous
proofs.

We summarize the above in the following conjecture for general multicolor
Ramsey numbers, where two colors are a special case.

Diagonal Conjecture (DC).
If k1, · · · , kr are integers no smaller than 3, r ≥ 2, and kr−1 ≤ kr, then

R(k1, · · · , kr−2, kr−1 − 1, kr + 1) ≤ R(k1, · · · , kr).

If DC holds, then for the last two colors (and thus also for any two fixed
colors) as we move away from the diagonal, while preserving kr−1 + kr, the
corresponding Ramsey number cannot increase. We believe that a stronger
version of DC with < instead of ≤ also holds. Still, even the weaker version can
be very hard to prove.

In 1983, Chung and Grinstead [6] showed that limr→∞Rr(3)1/r exists, though
it is not known whether this limit is finite or infinite. The same argument can
be used to show that limr→∞Rr(k)1/r also exists for all k > 3, again finite or
infinite. Erdős was inclined to think that limr→∞Rr(3)1/r = ∞ (cf. [9, 13]).
This limit is also closely related to the Shannon capacity of complements of
K3-free graphs (i.e. graphs with independence number equal to 2), which was
discussed in an earlier paper by the second and third authors [12].

Let Lk = limr→∞Rr(k)1/r. By monotonicity of Ramsey numbers, we can
easily see that Lk+1 ≥ Lk for all k ≥ 3, including the propagation of infinity
to larger indices. In this paper we obtain some consequences of the assumption
that the DC holds, we present evidence for its validity, and discuss related
problems. In particular, we prove that if DC holds and limr→∞Rr(3)1/r is
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finite, then limr→∞Rr(k)1/r is finite for any integer k ≥ 3. We also discuss
other relationships between DC and the sequence of Lk’s.

2 Some Consequences of DC

Lemma 1. If DC holds, then for every integer k ≥ 3 we have

R2r(k)− 1 ≥ (Rr(k − 1)− 1)(Rr(k + 1)− 1).

Proof. An old result obtained by Abbott [1], also presented in [16] (Theorem 2,
page 7), states that if kj ≥ 2 for 1 ≤ j ≤ r, then for all 1 < i < r we have

R(k1, · · · , kr) > (R(k1, · · · , ki)− 1)(R(ki+1, · · · , kr)− 1). (1)

If DC holds, then we can apply it r times to R2r(k) to obtain

R2r(k)− 1 ≥ R(k − 1, · · · , k − 1, k + 1, · · · , k + 1)− 1.

Now, we can complete the proof using inequality (1).

Theorem 2. If DC holds and limr→∞Rr(3)
1
r is finite, then limr→∞Rr(k)

1
r is

finite too, for every integer k ≥ 3.

Proof. For every integer k ≥ 3, using Lemma 1 with DC, we have

(R2r(k)− 1)1/r ≥ (Rr(k − 1)− 1)1/r(Rr(k + 1)− 1)1/r,

and thus

(R2r(k)− 1)
1
2r

(Rr(k − 1)− 1)1/r
≥ (Rr(k + 1)− 1)1/r

(R2r(k)− 1)
1
2r

. (2)

Clearly, limr→∞Rr(i)1/r = limr→∞(Rr(i) − 1)1/r for i ∈ {k − 1, k, k + 1}.
Taking it into account in inequality (2) leads to

lim
r→∞

Rr(k)
1
r

Rr(k − 1)
1
r

≥ lim
r→∞

Rr(k + 1)
1
r

Rr(k)
1
r

. (3)

Note that Rr(2) = 2. Finally, we can prove the claim of the theorem
by induction on k. The base case is for k = 3, which is the finiteness of
limr→∞Rr(3)

1
r . The inductive step follows from the inequality (3).
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By Theorem 2, we can see that if DC holds, then either limr→∞Rr(3)
1
r =

∞, or limr→∞Rr(k)
1
r is finite for every k ≥ 3. Or, equivalently, DC and

limr→∞Rr(k)
1
r = ∞ for any k ≥ 3 implies that limr→∞Rr(3)

1
r = ∞. On the

other hand, if limr→∞Rr(3)
1
r were finite, then it would support our intuition

that the best known lower bounds for Rr(3) are much closer to the exact values
than the currently best known upper bounds.

Table 1 presents the best known lower and upper bounds on Rr(3) for r ≤
10. The exact values for r = 2, 3 are known, and it was conjectured that
R4(3) = 51, i.e. that the current lower bound for r = 4 is equal to the exact
value [13]. Lower bounds for higher r in Table 1 are implied by sum-free set
constructions and related Schur numbers (cf. [16, 13]), in particular they imply

that limr→∞Rr(3)
1
r ≥ 1073

1
6 ≈ 3.1996.

For the upper bound, a simple reasoning yields Rr(3) ≤ 3r!, while the best
known general upper is just a little better, namely, the third author et al. proved
that for r ≥ 4 we have the bound Rr(3) ≤ (e − 1

6 )r! + 1 ≈ 2.55r! [15]. The
latter was proved based on the bound R4(3) ≤ 62, which in turn was obtained
with the help of significant computations. This is the only case where we know
of an upper bound for a Ramsey number of this form that is better than one
obtained by simple steps using smaller cases. Complete references to lower and
upper bounds and other general results on Rr(k) can be found in the dynamic
survey paper by the second author [10].

If our perspective above that the lower bounds in Table 1 are much closer
to Rr(k) than the upper bounds is correct, it would add weight to the case of

limr→∞Rr(3)
1
r being finite, and thus by DC and Theorem 2 also that all limits

limr→∞Rr(k)
1
r are finite.

r lower bound upper bound
2 6 6
3 17 17
4 51 62
5 162 307
6 538 1838
7 1682 12861
8 5204 102882
9 16146 925931
10 51202 9259302

Table 1. Known bounds on Rr(3) for r ≤ 10.

We can prove the following Theorem 3 about the growth of the limits
limr→∞Rr(k)

1
r with increasing k, only assuming that DC holds. However,

we feel strongly that it also holds unconditionally.
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Theorem 3. If DC holds, then for every integer k ≥ 3, we have

lim
r→∞

Rr(k)
1
r

Rr(k − 1)
1
r

> 1.

Proof. Consider a general constructive lower bound for multicolor Ramsey num-
bers Rr(st+ 1) > (Rr(s+ 1)− 1)(Rr(t+ 1)− 1), which can be obtained from a
standard graph product construction as described in [16] (inequality (5) on page
4 there). Using s = k−1 and t = 2, it gives Rr(2k−1) > (Rr(3)−1)(Rr(k)−1).
We know that asymptotically Rr(3) grows at least as fast as 3.19r, but one can
also easily observe that Rr(3) > 2r holds for all r. Thus

Rr(2k − 1)− 1

Rr(k)− 1
≥ Rr(3)− 1 ≥ 2r,

and hence

lim
r→∞

Rr(2k)
1
r

Rr(k)
1
r

≥ 2. (4)

Assume that DC holds, and for contradiction suppose that for some a ≥ 3
we have limr→∞Rr(a)

1
r /Rr(a− 1)

1
r = 1. Note that the inequality (3) in the

proof of Theorem 2 is a consequence of just DC, and it is valid for any a ≥ 3.
Consequently, using (3) we can conclude that

lim
r→∞

Rr(k)
1
r

Rr(k − 1)
1
r

= 1

for any integer k ≥ a. This, however, leads to

lim
r→∞

Rr(2a)
1
r

Rr(a)
1
r

= lim
r→∞

2a∏
k=a+1

Rr(k)
1
r

Rr(k − 1)
1
r

= 1,

which contradicts (4). This completes the proof of the theorem.

Corollary 4. For k ≥ 3, let Lk = limr→∞Rr(k)1/r, and assume that DC holds.
Then it is true that:

(a) all Lk’s are finite or all of them are infinite, and
(b) if L3 is finite then Lk < Lk+1 for all k ≥ 3.

Proof. As discussed in the Introduction, all the limits Lk exist and they satisfy
Lk ≤ Lk+1, regardless of whether DC holds or not. Thus, the claim (a) follows
from Theorem 2 and claim (b) follows from Theorem 3.
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We wish to note that clearly limk→∞ Lk is infinite, even without assuming
validity of DC. This can be seen using an easy bound Rr(k) > (k− 1)r implied
by results obtained by Abbott [1] (cf. (7) and (4) in [16]).

Observe an obvious equivalence that R(s, t) ≥ R(s − 1, t + 1) if and only if
R(s, t)−R(s−1, t) ≥ R(s−1, t+1)−R(s−1, t), which for 3 ≤ s ≤ t can be seen
as just another way of looking at the DC. It might seem that the analysis of how
R(s, t)−R(s−1, t) relates to R(s−1, t+1)−R(s−1, t) should be simpler, but it
apparently resists to be so. Some related discussion can be found in [5, 14, 17].

3 Current Evidence for DC

This section presents some additional observations which make us believe that
DC holds. We note that Wang Rui [11] did not provide much intuition behind
the conjecture itself, perhaps because he thought that he had proved it as a
theorem. If so, then more discussion would not be required.

Below, we split our comments into two cases: of two colors and of more colors.
Only just a few exact values of Ramsey numbers are known, hence not many
absolute instances confirming the DC can be pointed to. On the other hand, for
a large number of open cases, say such as R(s, t) for specific s and t, it seems
that the best known lower bound is much closer to the exact value than known
upper bound. Historically (see the past revisions of [10]), the lower bounds
often slowly improve over some time then stabilize, while the upper bounds are
improved rarely and most of the time only with a large computational effort.
Or, in other words, known upper bounds are far from being tight because we
know very little about how to improve them. Thus, similarly as in the previous
section when arguing for the finiteness of limr→∞Rr(3)

1
r , our evidence will rely

greatly on what we know about lower bounds.

Two Colors

Let DC(s, t) stand for the validity of R(s, t) ≥ R(s− 1, t+ 1). We will consider
various DC(s, t) statements for special values of the parameters s and t, but
always satisfying 3 ≤ s ≤ t.

(a) DC(3, t) is true, since easily R(3, t) > R(2, t+ 1) = t+ 1 for all t ≥ 3.

(b) DC(4, t) is true, since we have R(4, t) ≥ R(3, t) + 2t− 3 ([5], see also [17])
but easily R(3, t+ 1) ≤ R(3, t) + t+ 1 for all t ≥ 4.

(c) DC(5, 5) is true, since it is known that R(5, 5) ≥ 43 and R(4, 6) ≤ 41 (cf.
[10]). Angeltveit and McKay in a recent unpublished project [8] obtained
the upper bounds R(4, 7) ≤ 58 and R(4, 8) ≤ 79, which confirm the valid-
ity of DC(5, 6) and DC(5, 7) by using previously published lower bounds
R(5, 6) ≥ 58 and R(5, 7) ≥ 80 (cf. [10]).
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(d) The above establishes the validity of DC(s, t) for all s < 5 and all cases with
s + t ≤ 12, except DC(6, 6). For the latter it is known that R(6, 6) ≥ 102
and R(5, 7) ≤ 143, though recall our previous comments, and especially in
this case we feel that the lower bound is strong but the upper bound very
weak.

In one larger case, namely that of DC(8, 10), the best known lower bounds
R(8, 10) ≥ 343 and R(7, 11) ≥ 405 (cf. [10]) do not ”follow” the DC (but
do not contradict it either). We believe that this is because of a rather
special construction establishing the bound for R(7, 11), while the bound
for R(8, 10) was obtained by a heuristic search restricted to only circular
graphs. This suggests that it should be feasible to significantly improve the
current lower bound for R(8, 10).

We also note that known bounds for R(s, t) collected in [10] do not contra-
dict DC(s, t) for any 3 ≤ s ≤ t.

(e) The further we go from the diagonal of DC, the easier it seems to corroborate
it. We anticipate this problem to be the hardest on the diagonal itself, i.e.
proving that R(t, t) ≥ R(t− 1, t+ 1) for any t ≥ 6.

(f) In 2010, Bohman and Keevash [4] proved that for fixed s ≥ 5 and t → ∞
we have the following lower bound

R(s, t) = Ω(t
s+1
2 (log s)

1
s−2−

s+1
2 ).

This result does not resolve any concrete DC(s, t) instances, yet, again
using our perspective on lower bounds, builds up evidence for the validity
of DC(s, t) for fixed s and large t.

More Colors

In the multicolor cases, almost all evidence we have for DC is based on lower
bounds, even more so than in the case of two colors. Table 2 lists 11 pairs of
parameters (P1, P2) together with the corresponding best known lower bounds
(LB1, LB2) listed in [10] for R(k1, · · · , kr−2, kr−1−1, kr +1) and R(k1, · · · , kr),
with 4 ≤ kr−1 ≤ kr. This includes essentially all evidence of this type we have
for kr−1 ≥ 4.
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P1 LB1 LB2 P2

3,3,5 45 55 3,4,4
3,3,6 61 89 3,4,5
3,3,7 85 117 3,4,6
3,3,8 103 152 3,4,7
3,3,9 129 193 3,4,8
3,3,10 150 242 3,4,9
3,4,6 117 139 3,5,5
3,4,7 152 181 3,5,6
3,4,8 193 241 3,5,7
4,3,5 89 128 4,4,4

3,3,3,5 162 171 3,3,4,4

Table 2. The best known lower bounds LB1 and LB2 on Ramsey numbers
R(k1, · · · , kr−2, kr−1− 1, kr + 1) and R(k1, · · · , kr), for some DC-adjacent pairs

(P1, P2), where P1 = (k1, · · · , kr−2, kr−1 − 1, kr + 1) and P2 = (k1, · · · , kr).

We can say a little more beyond Table 2 for some combinations of parameters
in P2 involving kr−1 = 3. For example, we clearly have R(5, k) = R(k, 2, 5), and
by inspection of bounds reported in [10], we can see that R(k, 3, 4) ≥ R(k, 2, 5)
holds for 2 ≤ k ≤ 7.

The lower bounds in columns LB1 and LB2 do get occasional improvements,
though not often and not by much. For a particular P1 to contradict DC, the
corresponding lower bound LB1 would have to exceed not only LB2, but also
its associated upper bound.

4 Some Problems Related to DC and Rr(k)

(1) For connected graphs G1, · · · , Gr, the generalized multicolor Ramsey num-
ber R(G1, · · · , Gr) is defined as the smallest integer n such that in any r-coloring
of the edges of Kn there must be a monochromatic Gi in color i, for some
1 ≤ i ≤ r. We pose the following question generalizing DC. For Gr−1 = Ks,
Gr = Kt with s ≤ t, is it true that

R(G1, G2, · · · ,Ks−1,Kt+1) ≤ R(G1, G2, · · · ,Ks,Kt)?

We think that it is true, but stop here and do not make it another conjecture.

(2) Let r ≥ 3, ki ≥ 3, and kr−1 ≤ kr. Suppose that C is a coloring of the edges
of Kn witnessing the lower bound n < R(k1, · · · , kr−2, kr−1 − 1, kr + 1). Define
the graph G to consist of the edges of C in colors r − 1 and r. Is it true that
G 6→ (kr−1, kr)e, i.e. that there exists a 2-coloring of the edges of G without
any monochromatic Kkr−1 in the first color and Kkr in the second color? We
think that the answer is YES, but less strongly than in (1).
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(3) The Shannon capacity of a noisy channel modeled by graph G, often referred
to as the Shannon capacity of G, is defined as the limit

c(G) = lim
r→∞

α(Gr)
1
r ,

where α(Gr) is the independence number of the strong r-th power of G. The
capacity c(G) measures the efficiency of the best possible strategy when sending
long words over a noisy channel modeled by G. It was studied extensively in
information theory by many authors, including [2, 3]. In a very short 1971 paper,
Erdős et al. [7] proved that for each k there exists a graph G with α(G) = k such
that α(Gr) + 1 = Rr(k + 1). This provides an implicit link between Shannon
capacity and Ramsey numbers, and in particular to the problem of finiteness of
the limit limr→∞Rr(k)1/r. We explored it further in [12], where we proved that
limn→∞Rr(3)1/r is the supremum of the Shannon capacity of complements of
K3-free graphs but it cannot be achieved by any finite graph power. In general,
for any fixed integer k ≥ 3, we have that limr→∞Rr(k)1/r is equal to the
supremum of the Shannon capacity c(G) over all graphs G with independence
number k−1, but this supremum cannot be achieved by any finite graph power
either.
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