
Flexible HLS-Based Implementation of the Karatsuba Multiplier
Targeting Homomorphic Encryption Schemes

Michael J. Foster, Marcin Łukowiak, Stanisław Radziszowski
Rochester Institute of Technology, Rochester, NY
{mf1656,mxlecc}@rit.edu, spr@cs.rit.edu

Abstract—Custom accelerators for high-precision integer arith-
metic are increasingly used in compute-intensive applications, in
particular homomorphic encryption schemes. This work seeks to
advance a strategy for faster deployment of these accelerators
using the process of high-level synthesis (HLS). Insights from
existing number theory software libraries and custom hardware
accelerators are used to develop a scalable implementation of
Karatsuba modular polynomial multiplication. The accelerator
generated from this implementation by the high-level synthesis
tool Vivado HLS achieves significant speedup over the implemen-
tations available in the highly-optimized FLINT software library.
This is an important first step towards a larger goal of enabling
HLS-based homomorphic encryption in the cloud.

Index Terms—High-Level Synthesis, Karatsuba Multiplier,
FPGA.

I. INTRODUCTION

The recent surge in cloud services is revolutionizing the way
that data is stored and processed. Providers such as Nimbix
[1], IBM [2], and Amazon [3] are now giving anyone with
an Internet connection access to massive amounts of storage
and computational resources. Of course, this access comes at
a cost. Although some cloud storage services offer end-to-end
data encryption [4], cloud computing services require that the
user’s data be given to the service provider’s computers in an
unencrypted form. As a result, users are required to trust the
integrity of the service provider and the security of its data
centers. This may not be a barrier for some users, but for
others who wish to work with personal data such as medical
records, or to run proprietary algorithms, the risk is significant.

Homomorphic Encryption (HE) schemes can offer a solu-
tion to this dilemma, as they allow computations to be per-
formed on encrypted data. For example, as shown in Figure 1,
if a user wants to perform an operation with two plaintext
operands, the homomorphic version of the operation can be
performed using only the encrypted versions of the operands.
The homomorphic operation will return an encrypted output.
The decryption of this output is equivalent to the output
which would have been received if the normal operations
were performed on the unencrypted operands. This type of
encryption would enable users to utilize a cloud computing
service without ever giving the service provider access to the
unencrypted inputs or outputs.

The main obstacle in progress on the above is high compute-
cost of multiple-precision integer and polynomial multipli-
cation. Recent work on the acceleration of such algorithms
using GPUs has produced some promising results [5]. Field-
programmable gate arrays (FPGAs) are another family of com-

puting devices which may compete with GPUs or complement
them, offering a higher degree of datapath programmability
while also enabling rapid execution of highly-parallel compu-
tational loads [6][7][8][9][10].

If hardware acceleration of HE with field-programmable
field arrays (FPGA) is to be widely used in the cloud,
the hardware implementation process must be cost-effective
and accessible to both application and system developers
[2][11]. Circuit design for FPGAs has traditionally been a
time-intensive process which required specialized training in
digital circuit design and hardware description languages. A
layer of abstraction needs to be added in order to make it
more accessible to application software developers and to
accelerate the circuit design process in general. This can
be accomplished by making use of state-of-the-art high-level
synthesis (HLS) tools, which take software descriptions of
algorithms (usually written in C or C++) and convert them
into hardware accelerators. This is not a new idea. This type
of tools has been around for the last 30 years, but previous
generations were much more difficult to use, and the results
were often not satisfactory [12]. As the third generation of
HLS tools evolves, their performance is becoming much more
promising.

In this paper, we begin by presenting previous work which
has been done in the development of optimized software
libraries and HE hardware accelerators. Then, we describe
the details of our approach of mapping the classical recursive
Karatsuba multiplication algorithm into a flexible HLS-based
FPGA hardware implementation. We also discuss synthesis
results in the context of performance and computing resource
usage for sizes up to a threshold suitable for use in HE
systems.

II. RELATED WORK

A. Software Libraries

Many software implementations of HE are built upon sev-
eral layers of libraries. At the lowest level, mathematical
libraries, such as GMP [13] and MPIR [14], are used to
perform core mathematical operations. The functions in these
core libraries are individually optimized for specific CPU
architectures, often at the level of assembly code. The core
libraries are then used inside number theory libraries, such
as NTL [15] and FLINT [16], as building blocks for poly-
nomial multiplication and other more elaborate mathematical
operations. At the top layer, HE software implementations like



Fig. 1. The process flow for using homomorphic encryption with a cloud service. ”PT” represents plaintext, and ”CT” represents ciphertext. The ”Encrypt,”
”Evaluation,” and ”Decrypt” operations are all defined by the homomorphic encryption scheme being used. Key management is not included in this diagram.

HElib [17], Scarab [18], and other projects [19] use the number
theory library functions to implement specific HE schemes.

B. Hardware Accelerators

Since initial work on fully homomorphic encryption
was published [20], researchers have been developing cus-
tom hardware accelerators for different proposed schemes
[6][7][8][9][10] in order to try to boost their performance.
Much of this work focused on developing modular designs for
the acceleration of the especially expensive operations, such
as modular multiplication of very high degree polynomials.
There has also been recent works on using HLS tools in
the design process of hardware-software HE schemes and
Karatsuba multiplication [21][22]. It is not possible, however,
to compare them with our results as [21] focuses solely on
acceleration of complete HE encryptions, and [22] is targeting
polynomials with 32-bit coefficients only.

III. PROPOSED METHODOLOGY

Recent case studies have shown that currently available HLS
tools are getting close to being competitive with handwritten
Hardware Description Language (HDL) models optimized at
Register Transfer Level (RTL) [23][24]. These competitive
HLS implementations, however, must be developed with an
understanding of the desired final circuit and be carefully
optimized with synthesis directives. This notable difference
between software written for a CPU and software written for
HLS requires creation of HLS-optimized versions of exist-
ing software algorithms. This fact has been well understood
throughout the history of HLS tool development [25][26].

To support deployment of HE applications (as hardware-
software systems where hardware components are imple-
mented on FPGA devices), we are aiming at creating a library
of high-level mathematical functions similar to those that are
found in software libraries, but tuned for the use with HLS.
Once this library is created, the design flow shown in Figure 2
can be used to generate hardware accelerator(s) for hardware-
software implementation of the system. The process would
simply replace functions which are optimized for CPUs, with
functionally equivalent components from our new library.

Fig. 2. The HE accelerator design flow proposed by this work.

As significant portion of the custom hardware accelerator
work mentioned earlier has focused on the large size multipli-
cation operations, we decided to make Karatsuba polynomial
multiplication the first algorithm for our proof-of-concept
library. The biggest challenge here was in mapping a recursive
algorithm to hardware.

IV. KARATSUBA MULTIPLICATION AND HLS

In low-level software libraries, such as GMP [13] and MPIR
[14], several multiplication algorithms are implemented. When
the high-level, generic multiplication function is called, one
of these algorithms is selected based upon the size of the
operands. Table I shows the operand bit-length thresholds used
by MPIR to determine which algorithm should be used for

TABLE I
OPERAND SIZE THRESHOLDS FOR MULTIPLICATION USING MPIR FOR

CPU ARCHITECTURES [27].

Algorithm

Threshold for a Threshold for
Generic Architecture x86 64 Haswell

with 32-bit Limbs with 64-bit Limbs
(bits) (bits)

Schoolbook N/A N/A
Karatsuba 1024 1024

Toom-3 4096 6720
Toom-4 9600 15744

Toom-8.5 12832 19392
FFT 128320 249856



Fig. 3. Top layers of tree structure created by the Karatsuba algorithm with depth m = log2 n and 3m leaves. Three branches evaluate AHBH , ALBH +
AHBL and ALBL, respectively.

integer multiplication. A similar set of algorithms is used
by higher-level libraries for polynomial multiplication. The
algorithms and thresholds shown in Table I were selected for
CPU architectures. These selections may not be the same for
much different devices, such as field-programmable gate array
(FPGA). This work specifically focuses on implementing the
Karatsuba polynomial multiplication algorithm. This algorithm
was selected because of some promising Field-programmable
gate array (FPGA) implementation results presented in [28].

A. Karatsuba Multiplication Algorithm

The Karatsuba algorithm [29] offers an approach for polyno-
mial multiplication that allows it to outperform the schoolbook
method for sufficiently large operands. Let A and B be two
polynomials of degree n − 1 with integer coefficients, where
n = 2m. The first step in the algorithm is to divide A and B
into polynomials half their size referred to as AH , AL, BH ,
and BL, respectively. The operands can therefore be written
as:

A = AL +AHxn/2, B = BL +BHxn/2.

When multiplied out, they produce:

A×B = AHBHxn + (ALBH +AHBL)x
n/2 +ALBL.

Notice that the term (ALBH +AHBL) requires two multipli-
cations and one addition. With some rearranging we have

ALBH+AHBL = (AL+AH)(BH+BL)−ALBL−AHBH .

One multiplication has been removed (since multiplications
ALBL and AHBH once computed can be reused), but one
addition and two subtractions have been added. When the
operands are large enough that one addition and two sub-
tractions are faster to execute than one multiplication. This
is a better choice than the schoolbook method. In terms of
complexity, Karatsuba algorithm is of the order O(n1.58) [29].
In the remainder of this paper we consider a commonly studied
case of polynomials A,B in Zq[x], where all coefficients are
reduced modulo q.

B. Karatsuba Tree and Recursion

As shown in Figure 3, the structure of the Karatsuba
equation creates a ternary tree of products. The left, mid-
dle, and right branches in the figure represent the AHBH ,
(AL + AH)(BL + BH), and ALBL products, respectively.
Each product in the tree is further broken down into three
sub-products until the leaf nodes of the tree contain integer
products of coefficients instead of polynomial products.

C. Karatsuba Tree Evaluation

A C-language implementation was written to follow Karat-
suba trees. Software implementations of Karatsuba included
in libraries such as FLINT [16] evaluate the tree recursively.
Since Vivado HLS does not support recursive implementa-
tions, a non-recursive implementation was needed. The process
of converting a recursive function into a non-recursive function
is straightforward in software when high-level data structures,
such as stacks, are readily available, but this process is more
complex when the software is being prepared for HLS.

Recursion was replaced by a tree evaluation strategy which
simply started at the leaf nodes and worked up the tree
computing all of the intermediate products that shared the
same level before moving further up the tree. In software,
this was implemented using ’for’ loops iterating across the
width of the tree for each level. By default, each loop was
synthesized into its own state machine. Each loop could be
unrolled using the UNROLL synthesis directive in order to
create parallel instances of the loop logic. This approach was
used in order to leverage an FPGA’s capabilities by computing
intermediate products in parallel.

In most cases pipelining proved to be more effective in
boosting performance than loop unrolling. Each ’for’ loop was
given its own memory structure (array in C) and was pipelined
using PIPELINE synthesis directives. This synthesized to
several consecutive high-throughput independent processors.
DATAFLOW directives were used to place FIFOs between
each of these processors. This configuration allowed the series
of loop level processors to act as a pipeline at the system level.
The throughput of the system is equal to the lowest throughput
of any loop level processor in the pipeline. The result was a
Karatsuba accelerator with a large latency but high throughput.



The throughput and resource usage of the accelerator can be
adjusted by choosing the number of memory ports in each loop
level processor’s memory structure and changing the number
of operations which are performed per loop. The throughput
of a level loop processor is often related to the number of
iterations of the ’for’ loop from which it was derived. If
the operations performed in a ’for’ loop can be divided into
multiple consecutive ’for’ loops with fewer iterations than the
original loop, the result in hardware would likely have a higher
throughput at the expense of a higher latency.

D. Karatsuba Processor Structure

The final Karatsuba processor design, shown in Figure 4,
breaks the lower levels of the Karatsuba tree into nine subtrees
and evaluates these subtrees in parallel to maximize through-
put. In this figure, the parameter n represents the maximum
number of coefficients that can be in each multiplicand, and c
is the maximum bit width of each coefficient. The parameter
k is the number of subtrees which are evaluated in parallel.
In the final design, k was equal to 9. The final Subproduct
Combine function performed the product combination steps
(i.e. additions and subtractions) for the last few levels of the
tree and produced the final product.

Figure 5 shows the internal structure of the Karatsuba
Tree Evaluation processor. Each step was performed in a
’for’ loop which could be unrolled or pipelined via synthesis
directives. The best balance between performance and resource
use was achieved by pipelining all loops, parallelizing the
memory structures with ARRAY PARTITION directives, and
minimizing the use of loop unrolling.

As shown in Figure 5, this implementation of Karatsuba
included modulo q reduction of intermediate results leading
to c-bit coefficients, q < 2c. Barrett reduction [30][31] was
used for the leaf products. For the rest of the circuit, reduction
was performed using circuit which would check if a value was
above the modulus and, if it was, subtract the modulus from
the value. This logic proved to be more resource efficient than
implementing a full Barrett reduction circuit for each step. The
number of checks and subtractions performed was varying,
dependent upon the amount by which the value of interest
could have increased beyond the modulus.

E. Results

Execution times of the Karatsuba modular polynomial mul-
tiplication function from a highly-optimized software library
FLINT were captured on a computer with quad-core AMD
A10-7850K running at a 3.7 GHz clock frequency. The
computer was running Red Hat Enterprise Linux operating
system with 14.5 GB of RAM. The FPGA execution times
were taken from the Vivado HLS 2017.2 for a Xilinx Virtex
UltraScale xcvu190-flgb2104-3-e device running at the maxi-
mum clock frequency of 200MHz. Figure 6 shows the speedup
of the HLS Karatsuba implementation running on an FPGA
over the FLINT library’s Karatsuba polynomial multiplication
function running on a CPU. The FPGA hardware results
don’t include potential overheads associated with data transfers

between FPGA fabric and top-level system. On the other hand,
those could be minimized in a complete system performing
streamlined calculations. For 64-bit coefficients, the achieved
speedup is in the range from 4 to 9, for 128-bit coefficients
from 48 to 74, and for 192-bit coefficients from 81 to 137.

TABLE II
RESOURCE AVAILABLE ON TARGET FPGA DEVICE.

Xilinx Virtex UltraScale
xcvu190-flgb2104-3-e device resources

BRAM (36Kb) DSP48E FF LUT
3780 1800 2148480 1074240

Since the HLS Karatsuba implementation stores the inter-
mediate products on the FPGA fabric, its ability to scale is
strictly reliant upon the amount of available memory resources
i.e. BRAMs. Table II presents a summary of major hardware
resources available on our target device. The full FPGA
resource requirements for each operand size are given in Table
III.

The bit width c of the coefficients had no effect on the
overall throughput of the system. As the coefficient bit width
was increased, wider cascades of DSP48’s were synthesized
on the FPGA. As shown in Figure 7, these cascades consisted
of several groups of parallel DSP48’s placed in consecutive
layers. The intermediate products calculated by each DSP48
were combined into a final product. The increase in depth of
these cascades as the width c was increased was minimal. For
example, the latency of the module responsible for the calcula-
tion of the leaf products increased by only 2 clock cycles (from
19 to 21 cycles) when the coefficient bit width was changed
from 32 bits to 64 bits. The interval of the module stayed
constant at 18 clock cycles. This constant throughput despite

TABLE III
RESOURCE USAGE FOR KARATSUBA FPGA IMPLEMENTATIONS. *MORE

FPGA BRAMS REQUIRED THAN SUPPORTED BY TARGET DEVICE.

Coeff. Coeff. Resource Usage [%]per Width
Operand (bits) BRAM DSP48E FF LUT

32 64 9 24 5 7
128 23 72 8 13
192 32 72 13 19

64 64 19 24 7 10
128 37 72 18 25
192 52 72 18 25

128 64 24 24 9 13
128 49 72 15 21
192 67 72 23 31

256 64 30 24 11 15
128 60 72 19 26
192 83 72 28 37

512 64 36 24 13 18
128 72 72 22 30
192 99 72 33 43

1024 64 122* 24 15 21
128 223* 72 26 35
192 344* 72 38 49

2048 64 299* 24 17 24
128 576* 72 30 39
192 875* 72 43 55



Fig. 4. Top-level block diagram of the Karatsuba circuit.

Fig. 5. Block diagram for the Karatsuba tree evaluation circuit.

32 64 128 256 512 1024 2048

Number of Operand Coefficients

0

20

40

60

80

100

120

140

S
p

e
e

d
u

p

Speedup of FPGA over FLINT

64-bit Coefficients

128-bit Coefficients

192-bit Coefficients

Fig. 6. Speedup results for HLS Karatsuba accelerator.

an increase in coefficient bit width contributed significantly to
speedups shown for the larger coefficient sizes in Figure 6.

V. CONCLUSION AND FUTURE WORK

HLS is becoming a powerful tool in the world of hardware
acceleration. Our results show that, if used with care, current
HLS tools can provide significant speedups for computation-
ally demanding operations. HLS tools have come a long way
in recent years and will likely be an important part of hardware
acceleration in the future.

The potential of our HLS Karatsuba implementation to
scale is strictly reliant upon the amount of on-chip memory
resources i.e. BRAMs. Our future work will explore modi-
fications to current solution to incorporate off-chip memory
instead of BRAMs. Another next step after this work is to use
the insights gained from the development of the Karatsuba
accelerator for the development of a library of functions that
will support a full set of homomorphic operations.

REFERENCES

[1] Nimbix Inc., “Nimbix: High Performance Computing (HPC) Cloud.”



Fig. 7. DSP48 cascade used to calculate intermediate products on polynomial coefficients.

[Online]. Available: https://www.nimbix.net/
[2] S. E. Gianelli, “Xilinx and IBM to Enable FPGA-Based Acceleration

within SuperVessel OpenPOWER Development Cloud,” Apr 2016.
[3] Amazon Web Services, “Amazon Web Services (AWS) - Cloud

Computing Services.” [Online]. Available: https://aws.amazon.com/
[4] A. Henry, “The Best Cloud Storage Services that Pro-

tect Your Privacy.” [Online]. Available: https://lifehacker.com/
the-best-cloud-storage-services-that-protect-your-priva-729639300

[5] W. Dai, Y. Doröz, and B. Sunar, “Accelerating NTRU based homomor-
phic encryption using GPUs,” in 2014 IEEE High Performance Extreme
Computing Conference (HPEC), Sept 2014, pp. 1–6.

[6] Y. Doröz, E. Öztürk, and B. Sunar, “Accelerating fully homomorphic
encryption in hardware,” IEEE Transactions on Computers, vol. 64,
no. 6, pp. 1509–1521, June 2015.

[7] D. B. Cousins, J. Golusky, K. Rohloff, and D. Sumorok, “An FPGA co-
processor implementation of homomorphic encryption,” in 2014 IEEE
High Performance Extreme Computing Conference (HPEC), Sept 2014,
pp. 1–6.

[8] D. Cousins, K. Rohloff, and D. Sumorok, “Designing an FPGA-
accelerated homomorphic encryption co-processor,” IEEE Transactions
on Emerging Topics in Computing, 2016.

[9] T. Pöppelmann, M. Naehrig, A. Putnam, and A. Macias, “Accelerating
homomorphic evaluation on reconfigurable hardware,” Cryptology ePrint
Archive, Report 2015/631, 2015, http://eprint.iacr.org/2015/631.

[10] S. S. Roy, K. Järvinen, F. Vercauteren, V. Dimitrov, and I. Verbauwhede,
“Modular hardware architecture for somewhat homomorphic function
evaluation,” Cryptology ePrint Archive, Report 2015/337, 2015, http:
//eprint.iacr.org/2015/337.

[11] Amazon Web Services Inc., “Amazon EC2 F1 Instances.” [Online].
Available: https://aws.amazon.com/ec2/instance-types/f1/

[12] F. Hannig, A Quick Tour of High-Level Synthesis Solutions for FPGAs.
Cham: Springer International Publishing, 2016, pp. 49–59. [Online].
Available: https://doi.org/10.1007/978-3-319-26408-0 3

[13] “The GNU Multiple Precision Arithmetic Library.” [Online]. Available:
https://gmplib.org/

[14] “Multiple Precision Integers and Rationals.” [Online]. Available:
http://mpir.org/

[15] V. Shoup, “Ntl: A library for doing number theory.” [Online]. Available:
http://www.shoup.net/ntl/

[16] W. Hart, F. Johansson, and S. Pancratz, “FLINT: Fast Library for
Number Theory,” 2013, version 2.4.0, http://flintlib.org.

[17] “An implementation of homomorphic encryption.” [Online]. Available:
https://github.com/shaih/HElib

[18] “Homomorphic encryption implementation – Scarab library.” [Online].
Available: http://shapecpu.de/scarab-library/

[19] T. Lepoint and M. Naehrig, A Comparison of the Homomorphic
Encryption Schemes FV and YASHE. Cham: Springer International
Publishing, 2014, pp. 318–335. [Online]. Available: http://dx.doi.org/
10.1007/978-3-319-06734-6 20

[20] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, 2009.

[21] V. Migliore, C. Seguin, M. M. Real, V. Lapotre, A. Tisserand,
C. Fontaine, G. Gogniat, and R. Tessier, “A high-speed accelerator for
homomorphic encryption using the Karatsuba algorithm,” ACM Trans.
Embed. Comput. Syst., vol. 16, no. 5s, pp. 138:1–138:17, Sep. 2017.
[Online]. Available: http://doi.acm.org/10.1145/3126558

[22] A. Mkhinini, P. Maistri, R. Leveugle, and R. Tourki, “HLS design of
a hardware accelerator for homomorphic encryption,” in 2017 IEEE
20th International Symposium on Design and Diagnostics of Electronic
Circuits Systems (DDECS), April 2017, pp. 178–183.

[23] E. Homsirikamol and K. Gaj, “Can high-level synthesis compete against
a hand-written code in the cryptographic domain? a case study,” in 2014
International Conference on ReConFigurable Computing and FPGAs
(ReConFig14), Dec 2014, pp. 1–8.

[24] S. Skalicky, C. Wood, M. Łukowiak, and M. Ryan, “High level synthe-
sis: Where are we? a case study on matrix multiplication,” in 2013
International Conference on Reconfigurable Computing and FPGAs
(ReConFig), Dec 2013, pp. 1–7.

[25] M. Fingeroff, High-level synthesis: blue book. Xlibris Corporation,
2010.

[26] D. Koch, F. Hannig, and D. Ziener, FPGAs for Software Programmers.
Springer, 2016.

[27] W. Hart, MPIR Team, T. Granlund, and the GMP development team,
MPIR: The Multiple Precision Integers and Rationals Library, 2nd ed.,
2015. [Online]. Available: {http://mpir.org/}

[28] V. Migliore, M. M. Real, V. Lapotre, A. Tisserand, C. Fontaine, and
G. Gogniat, “Exploration of polynomial multiplication algorithms for
homomorphic encryption schemes,” in 2015 International Conference
on ReConFigurable Computing and FPGAs (ReConFig), Dec 2015, pp.
1–6.

[29] A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers by
automatic computers,” Doklady Akad. Nauk SSSR, v. 145, pp. 293-294,
1962, in Russian.

[30] P. Barrett, “Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor,” in Con-
ference on the Theory and Application of Cryptographic Techniques.
Springer, 1986, pp. 311–323.

[31] ——, “Communications authentication and security using public key
encryption : a design for implementation,” Master’s thesis, University
of Oxford, 1984.


