
Exploring the Application of Homomorphic
Encryption to a Cross Domain Solution
Cody Tinker

Department of Computer Engineering
Rochester Institute of Technology

cwt9976@rit.edu

Michael Kurdziel
Harris Corporation

mkurdzie@harris.com

Kevin Millar
Department of Computer Engineering

Rochester Institute of Technology
kdm8162@rit.edu

Marcin Lukowiak
Department of Computer Engineering

Rochester Institute of Technology
mxleec@rit.edu

Alan Kaminsky
Department of Computer Science
Rochester Institute of Technology

ark@cs.rit.edu

Stanisław Radziszowski
Department of Computer Science
Rochester Institute of Technology

spr@cs.rit.edu

Abstract—A Cross Domain Solution (CDS) is a means of
secure information exchange that provides the ability to access
or transfer digital data between varying security domains. Most
existing CDS methods focus on risk management policies that rely
on using protected or trusted parties to process the information
in order to solve this problem. A CDS that is able to function in
the presence of untrusted parties is a challenge.

We apply the concepts of homomorphic encryption (HE)
to explore a new solution to the CDS problem. We built a
practical software case study application using the Yet Another
Somewhat Homomorphic Encryption Scheme (YASHE) around
the specific challenge of evaluating the gateway bypass condition
on encrypted data. We assess the feasibility of such an application
through performance and memory profiling in order to find a pa-
rameter selection that ensures proper homomorphic evaluation.
The correctness of the application was assured for 64-, 72-, 96-,
and 128-bit security parameter selections of YASHE resulting in
high latency performance. The computing time required by our
proof-of-concept implementation may be high but this approach
allows the manual process employed in current systems to be
eliminated.

Index Terms—Homomorphic Encryption, Cross Domain Solu-
tion

I. INTRODUCTION

The Cross Domain Solution (CDS) problem is concerned
with the ability to access or transfer information between
multiple but different security domains [1]. An application is
said to be a CDS if it solves this problem with regard to the
transfer or access of the information. Most current solutions
are based on a system of risk management that usually relies
on protected party members. However, there still exists an
unsolved problem of how to create an autonomous system that
transfers highly classified data through a lower or untrusted
classified network without revealing any information about the
data to the intermediate parties. This task is difficult because
of the lack of solutions that allow an untrusted or semi-trusted
party to operate on the encrypted data to determine its routing
endpoint without first decrypting the data. Homomorphic
encryption (HE) schemes provide a potential solution to the
CDS problem as they allow computations to be performed on

encrypted data without the need to decrypt it. For example, as
shown in Figure 1, if a party wants to perform an operation
with two plaintext operands, the homomorphic version of the
operation can be calculated using encrypted operands. The
homomorphic operation will return an encrypted output. The
decryption of this output is the same as the output which would
have been received if the normal operations were performed
on the unencrypted operands.

The objective of this work was to explore and assess the vi-
ability of using homomorphic encryption to create a CDS that
ensures security while transferring information across different
security domains. The Yet Another Somewhat Homomorphic
Encryption Scheme (YASHE) [2] is used as an encryption
scheme basis for building a proof-of-concept application that
determines routing endpoints for several pieces of encrypted
data based on a hierarchy of data attributes. The application
was profiled and analyzed to evaluate potential problems that
come with using homomorphic encryption as a solution, as
well as to identify methods to improve upon these issues.
The correctness of the application was assured for 64-, 72-,
96- and 128-bit security parameter selections of YASHE with
the lightweight block cipher SIMON [3], [4]. Note that this
resulted in high latency performance. SIMON was selected due
to its hardware implementation simplicity relative to the AES.
The homomorphic computation times, as reported in Section
VI, may be high, but this approach allows the manual process
often employed in the current systems to be eliminated. Using
the most popular block cipher AES instead of SIMON would
increase the cost of homomorphic processing by YASHE
significantly.

This paper is organized as follows: The CDS problem is
reviewed in Section II. Related work to the CDS problem is
presented in Section III. An overview and the rationale for
selecting YASHE and SIMON as cryptographic schemes used
in our experimentation are briefly described in Section IV.
In the same section, computation and security costs resulting
from the selection of the HE parameters are also discussed.
The case study describing the framework for achieving a CDS



Fig. 1. The process flow for using homomorphic encryption. ”PT” represents plaintext, and ”CT” represents ciphertext. The ”Encrypt,” ”Evaluation,” and
”Decrypt” operations are all defined by the homomorphic encryption scheme being used. Key management is not included in this diagram.

solution using HE is established in Section V. The implemen-
tation of the case study and the experimentation results are
provided and analyzed in Section VI. The conclusions of our
work are presented in Section VII.

II. THE CROSS DOMAIN PROBLEM

Multiple data producers exist that want to relay information
of varying classifications to specific endpoints. The data they
relay is broadcasted on an untrusted network where the data
will be received by all parties who act as network gateways.
The purpose of the gateways is to only relay information
whose classification matches that of the network at its end-
point. These gateways must be treated as untrusted parties.
They must not learn anything about the type of data they relay
or the actual classification of its endpoint. Once a gateway
has processed the data and confirmed the access level it has
observed, it will relay the data to its endpoint. The system
can include multiple types of classifications, such as: Top
Secret, Secret, Confidential, Restricted, Official, Unclassified.
An endpoint network may have one or more associated users.
A figure that represents the concept of the problem is shown
in Fig. 2.

Fig. 2. The Cross Domain Network Case Study

The gateway will not learn anything about the classification
of the data. It only produces an encrypted result which is
decrypted and used by the corresponding router (for simplicity
the routers are not shown in the diagram). As such, the gateway
learns nothing about the data, or its intended destination. This

prevents a rogue gateway and network from searching for
specific information and gathering data not intended for its
endpoint. The summary of desired properties for CDS is as
follows:

• Payload data must remain encrypted at all times,
• The Payload must have associated attribute data,
• Required network bandwidth should be minimized,
• The Gateway must be treated as an untrusted party, i.e. it

must not be able to decrypt homomorphically encrypted
data,

• The Router can be semi-trusted at most.

III. RELATED WORK

The difficulty of CDS is that, in order to operate on the
plaintext data, any party on the network must be protected and
trusted [1]. The National Institute of Standards and Technology
(NIST) provides a large catalog of security frameworks. These
include a number of non-mutually exclusive scenarios for
CDS, in the information flow enforcement section, from which
one can select to fulfill their requirements [5]. However,
the methods and policies used are primarily determined by
the implementing organization. Most CDS related definitions
focus on security policy and risk management using protected
domains with authorized human personnel to manually eval-
uate and control the flow of information. Therefore, a system
that is able to automatically use information while maintaining
security inside an untrusted domain is a challenging problem.
The use of homomorphic encryption to achieve this objective
is a mostly unexplored research area and could provide an
interesting alternative solution.

Homomorphic encryption refers to a type of encryption,
which allows a user to operate on the encrypted data, and
can theoretically allow untrusted parties to operate on the data
while maintaining security. The concept of a homomorphic
encryption scheme was introduced by Rivest, Adleman, and
Dertouzous in 1978 [6]. However, the first construction of a
fully homomorphic encryption (FHE) scheme was not pro-
posed until 2009 in Craig Gentry’s PhD dissertation [7]. An
FHE scheme is one that allows an arbitrary set of operations
to be evaluated on encrypted data for an unlimited number
of times. This is in contrast to other systems that were
previously developed, which only permitted a limited number
of operations.

After 2009, several FHE schemes have been explored.
These include systems based on the Learning With Errors
(LWE) and Ring-Learning With Errors (R-LWE) [8], [9]



problems. The Brakerski-Gentry-Vaikuntanathan (BGV) [10]
proposed a novel leveled fully homomorphic scheme with
large improvements in performance. The BGV scheme focuses
on reducing the per-gate computation of the homomorphic
operations. BGV builds on the techniques introduced by the
BV scheme [11], such as avoiding the squashing method and
by effective managing the noise of the ciphertext in terms by
improving the modulus switching technique.

The Brakerski/Fan-Vercauteren (BFV) scheme [12], also
commonly abbreviated as FV, is a part of the scale-invariant
B12 scheme by Brakerski [13]. This scheme is based on
the LWE and R-LWE. FV also proposes two methods for
relinearization that are more efficient than the technique used
in B12. In addition, despite the avoidance of the technique
in [13], FV introduces modulus switching from [11] as an
optimization just as in the BGV scheme for bootstrapping
purposes. Like BGV and a few others, FV avoids the use for
the squashing technique.

IV. YASHE AND SIMON

YASHE is a leveled FHE scheme developed by Bos et. al [2]
of the Microsoft Research Team, and it is based on the Stehlé
and Steinfeld [14] and López-Alt et al. [15] encryption algo-
rithms. It was chosen over other popular schemes like BGV
and BFV because of its relative simplicity and performance.
YASHE’s security is based on the R-LWE hardness assumption
[8]. This approach has been gaining acceptance in the cryp-
tographic community due to its promising performance and
security properties. The R-LWE schemes offer an optimization
technique to perform a key switching operation after multipli-
cation to transform the ciphertext to one encrypted with the
original key, and to prevent the need to expand the ciphertext
size after the multiplicative operations are performed [2].

A high-level simplified description of the YASHE scheme
is as follows. A security parameter λ that determines a ring R
of polynomials with modular arithmetic. There exists public
parameters h and γ and a secret parameter f . Parameters h and
f are single ring elements and γ is an array of ring elements.
Encryption of a message m ∈ R/tR to ciphertext c ∈ R
follows c = [b q

t c[m]t + e + hs]q ∈ R where s, e are ring
elements sampled from a random distribution, and t and q are
the plaintext and ciphertext coefficient moduli, respectively.
Decryption of a ciphertext c ∈ R to message m ∈ R/tR
follows m = [b t

q [fc]qe]t ∈ R. Homomorphic addition of
two ciphertexts, c1 and c2, follows cadd = [c1 + c2]q . Homo-
morphic multiplication of two ciphertexts, c1 and c2, follows
cmult = KeySwitch(c̃mult, γ), where c̃mult = [b t

q c1c2e]q and
KeySwitch(c̃mult, γ) refreshes the ciphertext to one with lower
noise.

The parameters chosen for the implementation of an HE
scheme have an effect on security, ciphertext size, perfor-
mance, bound on the circuit evaluation depth, and the plaintext
space. The main choices that influence overall performance of
the system are the polynomial ring degree n and the coefficient
modulus q, which are defined by the HE schemes, in particular
such as YASHE. Table I presents a selection of parameters for

TABLE I
R-LWE BASED FHE PARAMETERS FOR VARYING SECURITY LEVELS

n log2(q)
Security

(bits)
Ring Element

Size (kB) L

16384 885 64 1,770 28
770 72 1,540 24
570 96 1,140 17
440 128 880 13

32768 1,770 64 7,080 53
1,540 72 6,160 46
1,139 96 4,556 34

880 128 3,520 26

65536 3570 64 28,560 106
3130 72 25,040 90
2310 96 18,480 66
1760 128 14,080 50

n and the maximum size of q, in bits log2(q), that achieve 64-,
72-, 96-, and 128-bit overall system security. Other parameters,
like the number of rounds in SIMON, were chosen to minimize
computations achieving given security level [2], [3], [4]. The
last two columns show the amount of memory required to store
a ring element and the expected maximum circuit evaluation
depth L.

SIMON, which is a symmetric key block cipher, has a
lightweight architecture and was publicly released by the Na-
tional Security Agency (NSA) in 2013 [3], [4]. The cipher con-
sists of a balanced Feistel network [16] with a round operation
that includes a mix of three simple, bitwise operations: shift,
XOR, and AND. This makes the algorithm better suited to
homomorphic implementations [17], [18]. Furthermore, when
compared to other block ciphers such as the AES, SIMON’s
structure is much simpler, and provides tweaking parameters
such as block size, number of rounds and security level.

V. CASE STUDY

Our case study focused on the ability to route data from
sources to proper endpoints without revealing any information
about the data or its routing path over an untrusted network.
The proof-of-concept application was implemented using the
YASHE homomorphic encryption scheme and the SIMON
block cipher. Since computational performance and memory
usage are the main concerns with HE systems, the best
approach is to work with small but descriptive metadata
that is sufficient to determine the type of payload that is
encrypted and its destination. In our case study the metadata
was restricted to be a 32-bit random value. This allowed only
one ring R element to store the encrypted metadata. The
assigned values of each classification in the context of the
application are represented in Table II.

As a proof-of-concept, our application used only a single
data producer, gateway, and router. A top level design of
data flow is shown in Fig. 3. The producer gathers data
and builds metadata describing collected data and its des-
tination constraints. Both data and metadata are encrypted
(using different schemes, see Fig. 4). The gateway evaluates



TABLE II
ASSIGNED METADATA CLASSIFICAION VALUES

Description Hex Value

Top Secret 0xE7191C86
Secret 0x72CCDDC8
Confidential 0xC989E663
Restricted 0x636C6E0C
Official 0x99BB94C7
Unclassified 0xCCCCE185

Fig. 3. Top Level Flow

encrypted metadata homomorphically and then forwards to the
router encrypted routing constraint. The router decrypts it and
according to the outcome, either forwards the payload, which
remains encrypted, or drops it.

Details of the top-level data flow in Fig. 3 are presented in
Fig. 4. All keys are shown as generated by the Key Distribution
Center (KDC). However in particular scenarios, keys such as
the symmetric key AESsk for the AES payload encryption,
may be pre-placed at the producer and the destination domain
and not use the KDC. Three distinct encryption schemes
are color coded as follows. Red: AES is used to encrypt a
(large) payload from each producer (only one shown) using
AESsk. Yellow: the lightweight scheme SIMON, using the
SIMONsk key, is first used to encrypt (small) metadata clas-
sification values which define the destination domains. Then,
the SIMON algorithm and keys are used by YASHE within
the homomorphic operations. Blue: a homomorphic scheme
implemented by YASHE, using a public/private key pair
Ypk/Ysk, supports gateways and router functionalities (only
one gateway and router shown). First, using homomorphic
evaluation with the key Yevk, the gateway produces inputs for
homomorphic comparison of metadata to routing conditions.
Second, the YASHE comparison result, encrypted with public
key Ypk, is passed on to the router (only one shown). The
router extracts the routing flag, using the secret key Ysk and
determines whether to forward or drop the AES encrypted
payload.

TABLE III
MAIN PARAMETER SELECTION FOR CONFIGURATIONS ACHIEVING

CORRECTNESS FOR CHOSEN SECURITY LEVEL

YASHE
configura-

tion

Security
(bits) n log2(q)

SIMON
(#rounds)

α 64 16384 885 32
β 72 32768 1139 36
γ 96 32768 1139 36
δ 128 65536 1760 44

VI. RESULTS

We performed the experiments using a software application
implemented in C++. Lepoint and Naehrig [18] provided
a preliminary open source implementation of the YASHE
scheme. Their implementation offers an easy to follow class
architecture for YASHE which includes parameter set up, key
generation, encryption, decryption, and ciphertext addition and
multiplication operations. This implementation also provides
homomorphic evaluation of SIMON. Our application is based
on [18] and uses the Fast Library for Number Theory (FLINT)
[19] and the GNU Multiple Precision (GMP) [20] arithmetic
libraries. These libraries are optimized for large data structures
such as the ones used in the YASHE scheme. Our application
utilizes multithreading for YASHE and homomorphic SIMON
operations. The application was compiled using gcc 7.2.1 and
executed on an AMD Opteron 6272 running at 2.1GHz with
128GB of RAM, for all experiments.

A small collection of parameter configurations were estab-
lished that supports a variety of requirements. Each config-
uration was established using the smallest parameters (n, q)
that allowed correct homomorphic evaluation of SIMON by
YASHE, for standard values of the number of rounds of
SIMON and overall system security of 64–128 bits. The
parameter selection for the configurations α, β, γ, and δ are
represented in Table III. The memory profiling results for each
configuration are presented in Table IV and the performance
profiling results for each configuration are presented in Table
V.

VII. CONCLUSIONS

This work demonstrated that, provided the application pro-
cess is kept lightweight and simple, a CDS can be achieved us-
ing homomorphic encryption. We demonstrated that a practical
application that securely transfers cross domain information
across an untrusted network can be achieved under a parameter
selection that ensures 64-bit security under both the YASHE
and SIMON. These configurations require an execution time
of about one hour and no more than a 220 MB of total
processing memory. Both are easily achievable using modern
computing systems. Our method exhibits high latency due to
the homomorphic evaluation of the SIMON decryption circuit.
However, the method permits the required user to gateway
network bandwidth to remain low.

The performance of current fully homomorphic encryption
schemes, especially for large parameters, can still be improved



Fig. 4. Application Design Details. Three distinct encryption schemes are color coded as follows. Red: the AES is used to encrypt (large) payload of
each producer (only one shown). Yellow: the lightweight scheme SIMON is first used to encrypt (small) metadata classification values which define routing
constraints, and then used by YASHE within homomorphic operations. Blue: a homomorphic scheme implemented by YASHE which aids gateways and
routers functionalities (only one gateway and router shown). First, using homomorphic evaluation the gateway produces inputs to homomorphic comparison
of metadata to routing conditions. Second, YASHE encrypted comparison result is passed on to the router (only one shown) which has capacity to extract the
final result determining whether to forward or drop the AES encrypted payload.



TABLE IV
MEMORY PROFILE RESULTS OF CDS APPLICATION

YASHE
configuration

secret key
Ysk (kB)

public key
Ypk (kB)

evaluation key
Yevk (kB)

encrypted
SIMONsk (kB)

encrypted
metadata (kB)

encrypted
result (kB)

α 1,792 1,792 50,176 114,688 57,344 1,792
β 4,608 4,608 165,888 331,776 221,184 4,608
γ 4,608 4,608 165,888 442,368 221,184 4,608
δ 14,336 14,336 802,816 1,835,010 917,504 14,336

TABLE V
AVERAGE PERFORMANCE PROFILE RESULTS OF CDS APPLICATION

YASHE
configuration

encrypt
SIMON key (s)

SIMON key
expansion (s)

encrypt
metadata (s)

homomorphic
SIMON

decryption (s)

homomorphic
metadata

evaluation (s)

decrypt
result (s)

α 5.4 112.8 3.2 2433.0 612.0 1.0
β 19.0 419.4 13.3 12149.1 1966.0 3.0
γ 21.4 514.3 13.3 12150.6 1971.2 3.0
δ 78.6 1958.7 48.2 64367.6 8079.1 8.9

upon. Hardware acceleration has been explored previously in
research [21]–[23]. The next step would be to explore and
apply these optimizations to this work.

REFERENCES

[1] Committee on National Security Systems. Committee on National
Security Systems (CNSS) Glossary. (4009):160, 2015.

[2] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Im-
proved security for a ring-based fully homomorphic encryption scheme.
Cryptology ePrint Archive, Report 2013/075, 2013. https://eprint.iacr.
org/2013/075.

[3] Ray Beaulieu, Douglas Shors, Jason Smith, and Stefan Treatman-
clark. The SIMON and SPECK families of lightweight block ciphers.
Cryptology ePrint Archive, Report 2013/404, 2013. https://eprint.iacr.
org/2013/404.

[4] Hoda A. Alkhzaimi and Martin M. Lauridsen. Cryptanalysis of the
SIMON family of block ciphers. Cryptology ePrint Archive, Report
2013/543, 2013. https://eprint.iacr.org/2013/543.

[5] NIST. Security and Privacy Controls for Federal Information Systems
and Organizations Security and Privacy Controls for Federal Information
Systems and Organizations. Sp-800-53Ar4, pages 400+, 2014.

[6] Ronald L Rivest and Michael L Dertouzos. On Data Banks and Privacy
Homomorphisms. 1978.

[7] Craig Gentry and Dan Boneh. A Fully Homomorphic Encryption
Scheme, volume 20. Stanford University Stanford, 2009.

[8] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 1–
23. Springer, 2010.

[9] Oded Regev. The learning with errors problem. Invited survey in CCC,
7, 2010.

[10] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled)
fully homomorphic encryption without bootstrapping. In Proceedings
of the 3rd Innovations in Theoretical Computer Science Conference,
ITCS ’12, pages 309–325, New York, NY, USA, 2012. ACM.

[11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomor-
phic encryption from (standard) LWE. SIAM Journal on Computing,
43(2):831–871, 2014.

[12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully
homomorphic encryption. Cryptology ePrint Archive, Report 2012/144,
2012. https://eprint.iacr.org/2012/144.

[13] Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical GapSVP. In Advances in cryptology–crypto
2012, pages 868–886. Springer, 2012.

[14] Damien Stehlé and Ron Steinfeld. Making NTRUEncrypt and
NTRUSign as Secure as Standard Worst-Case Problems over Ideal
Lattices. Eurocrypt, 6632:27–47, 2011.

[15] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly
multiparty computation on the cloud via multikey fully homomorphic
encryption. In Proceedings of the Forty-fourth Annual ACM Symposium
on Theory of Computing, STOC ’12, pages 1219–1234, New York, NY,
USA, 2012. ACM.

[16] Jonathan Katz, Alfred J Menezes, Paul C Van Oorschot, and Scott A
Vanstone. Handbook of applied cryptography. CRC press, 1996.

[17] Craig Gentry and Nigel P Smart. Homomorphic Evaluation of the AES
Circuit. 2015.

[18] Tancrede Lepoint and Michael Naehrig. A comparison of the homomor-
phic encryption schemes FV and YASHE. In International Conference
on Cryptology in Africa, pages 318–335. Springer, 2014.

[19] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number
Theory, 2013. Version 2.4.0, http://flintlib.org.

[20] The GNU Multiple Precision Arithmetic Library, 2016. Version 6.1.2,
http://gmplib.org.

[21] Michael J Foster. Accelerating Homomorphic Encryption in the Cloud
Environment through High-Level Synthesis and Reconfigurable Re-
sources. 2017.

[22] Wei Dai, Yarkın Doröz, and Berk Sunar. Accelerating NTRU based
homomorphic encryption using GPUs. In High Performance Extreme
Computing Conference (HPEC), 2014 IEEE, pages 1–6. IEEE, 2014.

[23] Erdinç Öztürk, Yarkin Doröz, Berk Sunar, and Erkay Savas. Accelerating
somewhat homomorphic evaluation using fpgas. IACR Cryptology ePrint
Archive, 2015:294, 2015.


