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Abstract—Homomorphic Encryption (HE) allows for en-
crypted data to be sent to, stored, and operated on by untrusted
parties without the risk of privacy compromise. The benefits
and applications of HE are far reaching, especially in regard
to cloud computing. However, current HE solutions require a
large number of resource intensive arithmetic operations such as
high precision, high degree polynomial multiplication. This work
aims to accelerate the multi-precision arithmetic operations used
in HE with specific focus on an implementation of the Schönhage-
Strassen Fast Fourier Transform (FFT)-based multiplication al-
gorithm. It is planned to be incorporated into a larger HE library
of arithmetic functions tuned for High-Level Synthesis (HLS)
that enables flexible solutions for hardware/software systems
on reconfigurable cloud resources. The developed FFT based
polynomial multiplier exhibits flexibility in the selection of HE
security parameters facilitating its use in a wide range of schemes
and applications. The design yields substantial speedup over the
polynomial multiplication functions implemented in the Number
Theory Library (NTL) utilized by software based HE solutions.

Index Terms—HE, HLS, FPGA, cloud computing.

I. INTRODUCTION

As cloud computing grows in popularity, solutions like
Amazon Web Services (AWS) [1] are becoming more desir-
able as an affordable means by which to utilize computing
resources. Though cloud resources offer many benefits, the off-
loading of private data to third party systems for computation
introduces new risks. Conventional cryptographic solutions do
not solve this problem as protected data requires decryption
to allow for operation on these shared computing resources.
A potential solution to this problem is Homomorphic Encryp-
tion (HE) which allows for operations to be performed on
encrypted data without exposing the underlying plaintext to
untrusted parties. This removes the necessity of decrypting
data before operation and retains the privacy of the data even
when evaluated on cloud resources. HE schemes do exist,
but they require a large number of complex arithmetic op-
erations making current solutions computationally expensive
and resource intensive. This work accelerates the resource
intensive arithmetic operations heavily relied upon in many HE
schemes. This is achieved through the continued development
of a library containing arithmetic functions accelerated through

HLS to allow for the flexible design of hardware/software sys-
tems on reconfigurable cloud resources. The development flow
of an application utilizing this library is shown in Figure 1.
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Fig. 1. Design flow of an HE application utilizing an HLS library

This diagram shows the design flow of an HE application in
which the computationally intensive operations are partitioned
for hardware acceleration through the HLS accelerated math
library. These operations are then designated for execution on
a hardware co-processor that is synthesized for the available
target reconfigurable resources. Integration is performed by es-
tablishing communication between the main program running
on a conventional CPU and the reconfigurable resources, and
the full system is deployed within a cloud environment. This
work focuses explicitly on the design and development of a
flexible FFT based polynomial multiplier through HLS to offer
improved performance over software solutions.

The organization of this paper is as follows: Related works
are presented in Section II. Section III discusses the back-
ground of HE and FFT based polynomial multiplication.
The HLS design of the FFT based polynomial multiplier is
explored in Section IV. The results are analyzed in Section V,
and Section VI presents the conclusions.



II. RELATED WORK

The hardware design of large-scale FFT multipliers for
HE has been explored in various papers such as [2], [3],
[4]. Each of these works designed custom hardware tar-
geting either Application Specific Integrated Circuit (ASIC)
or Field-Programmable Gate Array (FPGA) platforms using
conventional Hardware Description Language (HDL) design
techniques. The work presented in [5] developed a flexible
Karatsuba multiplier with Vivado HLS achieving a theoretical
speedup up to 136 times over the Fast Library for Number
Theory (FLINT) arithmetic software library. A similar accel-
erator for HE was created using the Karatsuba multiplica-
tion algorithm through the application of hardware/software
co-design techniques in [6], specifically targeting the Fan-
Vercauteren (FV) HE scheme introduced in [7]. A hardware
accelerated FFT algorithm for HE was designed in [8] with
Vivado HLS achieving a speedup of 6.9 times the same algo-
rithm run on an Intel Core i7-5600U CPU at 2.6GHz. Mkhinini
et. al designed a flexible residue number system (RNS) based
large polynomial multiplier through HLS for HE and achieved
significant speedup over software implementations [9], [10],
[11].

III. BACKGROUND

Homomorphic Encryption: HE cryptographic schemes al-
low for operations to be performed on encrypted data. Though
Somewhat Homomorphic Encryption (SHE) schemes allowing
for a limited number of operations on encrypted data have ex-
isted for a long time, the first Fully Homomorphic Encryption
(FHE) scheme eliminating this constraint was introduced by
Gentry in 2009 [12]. This breakthrough was achieved through
a scheme based on bootstrapping, the principle by which
an encryption scheme evaluates its own decryption circuit.
Gentry later assisted in the development of a more efficient
FHE scheme called Brakerski-Gentry-Vaikuntanathan (BGV)
by utilizing a novel modulus switching technique [13], [14].
The BGV scheme is more efficient than previous schemes and
can operate securely based on the Learning with Errors (LWE)
or Ring Learning with Errors (RLWE) hardness assumptions.

Ring Learning with Errors: The RLWE problem is an
extension of the LWE problem over algebraic rings first
introduced in [15]. A basic definition of the RLWE problem is
presented here for simplicity. Select a dimension n ≥ 1 where
n is a power of 2, a prime modulus q ≥ 2 such that 1 = q
mod 2n, and f(x) = xn + 1 ∈ Z[x]. Let R = Z[x]/〈f(x)〉,
Rq = Zq[x]/〈f(x)〉, and χ be an error distribution. Establish
a uniformly random secret polynomial s = s(x) ∈ Rq .
Choose a polynomial a = a(x) ∈ Rq uniformly at random,
generate e = e(x) ∈ Rq based on the error distribution χ,
and output(a,a · s+ e). The RLWE problem is that given an
arbitrary number of samples of the form (a,a · s + e), it is
computationally infeasible to determine s [16], [15].

Security: The security of RLWE is currently an area of
research. It is heavily dependent upon the noise e added to
the coefficients along with the selection of n and the prime
modulus q. An ongoing effort is being made to standardize

HE schemes based on RLWE for designated cyclotomic rings.

TABLE I
PARAMETERS FOR RLWE-BASED HE SCHEMES

n λ log q Size (bits)

1,024 256 19 19,456
1,024 192 22 22,528
1,024 128 31 31,744

2,048 256 33 67,584
2,048 192 42 86,016
2,048 128 58 118,784

4,096 256 62 253,952
4,096 192 80 327,680
4,096 128 113 462,848

8,192 256 123 1,007,616
8,192 192 157 1,286,144
8,192 128 223 1,826,816

16,384 256 243 3,981,312
16,384 192 310 5,079,040
16,384 128 443 7,258,112

32,768 256 481 15,761,408
32,768 192 616 20,185,088
32,768 128 886 29,032,448

The analysis in [17] presents recommended parameters n
and q for various levels of the security parameter λ. In this
work we adopt a selection of these parameters as shown in
Table I. These recommendations are made based on the LWE-
estimator tool introduced in [18] which determines parameters
for a given λ based on the estimated complexities of currently
known attacks on RLWE. The typical plaintext is composed
of n bits with a single bit encoded within each coefficient, but
other packing techniques may be used.

FFT Modular Polynomial Multiplication: The Schönhage-
Strassen algorithm first introduced multiplication of n-bit
integers using the FFT with complexity of O(n log n log log n)
[19], [20]. The heart of the algorithm recursively per-
forms modular polynomial arithmetic on decomposed integers
through an application of negative wrapped convolution, which
is equivalent to polynomial multiplication modulo xn+1 [21].
Let ω be a primitive n-th root of unity and θ2 = ω, then with

â = (a0, θa1, . . . , θ
n−1an−1),

b̂ = (b0, θb1, . . . , θ
n−1bn−1),

the negative wrapped convolution can be computed as

c = IFFT−1(FFT (â) · FFT (b̂)).

Polynomial multiplication is performed with coefficients mod-
ulo a prime q of the form q = 1 mod 2n by selecting θ
such that θ2 = ω mod q. This method to perform polynomial
multiplication with the coefficients modulo q and the result
modulo xn + 1 is shown in Algorithm 1. In theory, the
Schönhage-Strassen algorithm is applied recursively at each



multiplication to a depth such that the operands become
small enough in size for a simpler multiplication algorithm
to become more efficient. In this work, only the top layer of
the algorithm was necessary so the multiplication performed
in line 8 is not decomposed any further.

Algorithm 1 Schönhage-Strassen Polynomial Multiplication
Input: Polynomials a(x) and b(x) of maximum degree n with

coefficients ai, bi ∈ Zq for i = 0, 1, . . . , n− 1
Output: c(x) = a(x) · b(x) mod (xn + 1)

1: Precalculate all powers of θ, ω, θ−1, and ω−1 modulo q
2: weight coeff : for i ← 0 to n− 1 do
3: ai ← ai · θi mod q
4: bi ← bi · θi mod q

5: a← FFT(a, ω)
6: b← FFT(b, ω)
7: mult coeff : for i ← 0 to n− 1 do
8: ci ← ai · bi mod q

9: c← IFFT(c, ω−1)
10: unweight coeff : for i ← 0 to n− 1 do
11: ci ← ci · θ−i mod q

IV. HLS DESIGN

The modular polynomial multiplication algorithm outlined
in Algorithm 1 was implemented in C++ targeting Xilinx
FPGAs through Vivado HLS. High-level block diagram of
the target circuit is shown in Figure 2. This image shows
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Fig. 2. Block diagram of the FFT circuit obtained from Algorithm 1

the storage of the input polynomials a and b into Block
RAMs (BRAMs) and the operations necessary to produce the
resulting product polynomial c. As the primitive n-th root of
unity ω and the weighting parameter θ are not guaranteed to
be powers of two, modular reduction of the coefficients was
performed through Barrett’s reduction algorithm. Furthermore,
because the algorithm requires consecutive powers of ω and θ,
and their inverses ω−1 and θ−1, all modulo q, BRAMs were
loaded with all precalculated powers of these values to prevent
the expensive task of computing them in real time. These
additional memories provided further benefits as the Inverse

Fast Fourier Transform (IFFT) typically requires an additional
step in which each of the vector elements is multiplied by n−1

mod q. An optimization was performed to remove this step by
precalculating the multiplicative inverse of n modulo q and
multiplying each consecutive power of θ−1 by this value. The
reduction of each resulting value modulo q was then stored in
the BRAM and used in the unweighting step to perform both
operations concurrently and retrieve the final result.

HLS Pipelining: To allow pipelining of the FFT component,
a “ping-pong” buffer was introduced such that the operating
memory was not both read from and written to within a single
cycle. This was achieved through the addition of two memories
to the FFT. The basic operation of the FFT with the “ping-
pong” buffer is shown in Figure 3.
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Fig. 3. Basic block diagram of the FFT with “ping-pong” memory buffer

The block diagram shows read from one memory and write
to the other, swapping in functionality each stage, ensuring
that all read and write operations were scheduled without
contention. This pattern continues until the last stage of the
FFT at which point the last memory to have been written was
read and the results stored back into the input memory for
further operation. The C++ source was modified so that the
HLS tool would generate this desired hardware as outlined in
Algorithm 2. The FFT functions were updated to include the
“ping-pong” memory buffer through the addition of a 2D array.
By default, HLS does not recognize these as two independent
memories because they are declared under the same array
structure. To ensure that each memory was implemented as
its own BRAM, the HLS ARRAY PARTITION directive was
applied. The first iteration of the fft stage was unrolled with
the data read from the input array and the result stored
in the first memory. The main fft stage loop was modified
to negate the address bit of the “ping-pong” array to swap
the role of each memory between iterations. The final stage
was also unrolled to read the data from the last written
memory and write the result to the input array. The HLS
PIPELINE directive was added to the fft stage 1, fft group,
and fft stage log n loops with a target Initiation Interval (II)
of 1. To avoid data dependencies between stages, an HLS



Algorithm 2 FFT with “Ping-Pong” Memory Buffer
Input: Polynomial a(x) of degree n with coefficients ai ∈ Zq

for i = 0, 1, . . . , n− 1
Output: Transformed polynomial a(x)

1: m = n/2; j = log n− 1; addr = 0
2: fft stage 1 : for k ← 0 to n/2− 1 do
3: i← k; b← k
4: Maddr,i ← ai + ai+m

5: Maddr,i+m ← ωb(ai − ai+m)

6: m← m/2; j ← j − 1
7: fft stage : for s ← 1 to log n− 1 do
8: fft group : for k ← 0 to n/2− 1 do
9: i← k + bk/2jc · 2j

10: b← k · 2s
11: M¬addr,i ←Maddr,i +Maddr,i+m

12: M¬addr,i+m ← ωb(Maddr,i −Maddr,i+m)

13: m← m/2; j ← j − 1; addr ← ¬addr
14: fft stage log n : for k ← 0 to n/2− 1 do
15: i← k · 2
16: ai ←Maddr,i +Maddr,i+m

17: ai+m ←Maddr,i −Maddr,i+m

UNROLL directive was applied to the fft stage loop to ensure
that the HLS tool would pipeline each iteration of the fft group
loop independently.

HLS Loop Unrolling: The inner loop operations within the
multiplier performed computations between elements of the
array in place and could potentially be performed fully in
parallel. However, there is an inherent trade-off between loop
unrolling and the area of the design. Though the latency of the
loop is divided by the factor it is unrolled, this also multiplies
the number of operations by the same factor resulting in an
increase in the number of required hardware primitives. The
fft group loop was the primary target for loop unrolling as it
was a nested loop with log n − 2 occurrences. However, the
memories within this loop contained two concurrent read and
write operations per iteration making it impossible to unroll
without array partitioning as the BRAM resources on the
FPGA support a maximum of two read/write ports. Because
each iteration of the fft group loop operates between an
element with an odd index and an element with an even index,
it was possible to cyclically partition the input array into two.
This enabled them to be individually indexed between loop
iterations and implemented as separate dual port memories.
The fft group loop was manually unrolled by a factor of
two with the FFT butterfly operation implemented with a
C++ function template to ensure that each iteration of the
fft stage loop statically selected from which of the “ping-
pong” memories to read and write. This was necessary because
the HLS tool cannot resolve dependencies between function
calls within a loop that operate on the same array and will
always schedule the operations sequentially.

V. RESULTS

The polynomial multiplier design developed in this work
was synthesized with Vivado HLS 2018.3 using the default
settings targeting the Zynq UltraScale+ MPSoC ZCU102
Evaluation Kit (xczu9eg-ffvb1156-2-i-es2) with a clock period
of 4 ns for each of the configurations outlined in Table I.
The synthesized design was benchmarked and verified against
NTL [22], which is utilized within software HE solutions
such as HElib [23]. The NTL library is built on top of
the popular GNU Multiple Precision (GMP) library [24] and
contains accelerated algorithms for common number theory
operations. The average computation time required for the FFT
polynomial multiplication function within the NTL software
library was measured on a 4-core/4-thread 3.7 GHz AMD
A10-7850k CPU with 16 GB of RAM. The timing results
of the synthesized design and calculated speedup over NTL
are shown in Table II.

TABLE II
TIMING RESULTS OF THE SYNTHESIZED DESIGN

n log q Latency FPGA (µs) NTL (µs) Speedup

1,024 19 7,390 30 1,231 42
1,024 22 7,390 30 1,211 41
1,024 31 7,399 30 1,211 41

2,048 33 15,614 62 2,486 40
2,048 42 15,686 63 2,337 37
2,048 58 15,686 63 3,248 52

4,096 62 33,184 133 7,301 55
4,096 80 33,199 133 10,436 79
4,096 113 33,210 133 14,582 110

8,192 123 70,120 280 25,367 90
8,192 157 70,120 280 30,280 108
8,192 223 70,150 281 40,644 145

16,384 243 148,011 592 98,995 167
16,384 310 148,011 592 121,281 205
16,384 443 148,041 592 228,205 385

32,768 481 311,920 1,248 470,785 377
32,768 616 311,978 1,248 570,413 457
32,768 886 311,948 1,248 901,426 722

TABLE III
AVAILABLE RESOURCES FOR PART XCZU9EG-FFVB1156-2-I-ES2

BRAM 18K DSP48E FF LUT

1,824 2,520 548,160 274,080

This estimated speedup is in the range 37-722. The syn-
thesized polynomial multiplier design was exported and im-
plemented for a subset of the 256-bit security configurations
outlined in Table I. The implementation results are presented in
Table IV. The utilization percentage of each resource required
by the implemented design refer to all resources available on
target device as presented in Table III. The maximum achieved
clock frequency for each configuration was calculated based
on the Worst Negative Slack (WNS) resulting from place
and route of the design on the target device. A maximum



TABLE IV
RESULTS OF THE IMPLEMENTED DESIGN FOR 256-BIT SECURITY CONFIGURATIONS TARGETING PART XCZU9EG-FFVB1156-2-I-ES2

n log q BRAM 18K DSP48E FF LUT fmax (MHz) Latency FPGA (µs) NTL (µs) Speedup

1,024 19 3% 1% 2% 7% 299 7,390 25 1,231 50
2,048 33 4% 4% 3% 8% 272 15,614 58 2,486 43
4,096 62 11% 15% 6% 13% 256 33,184 129 7,301 56
8,192 123 41% 48% 8% 11% 200 70,120 350 25,367 72

clock frequency of 299 MHz was achieved for n = 1024
and log q = 19 resulting in a speedup of 50 versus the HLS
estimated speedup of 42. As the synthesis speedup results were
based on a 250 MHz clock, the actual speedup that can be
achieved is greater once implemented on the target device.
Conversely, a minimum clock frequency of 200 MHz was
achieved for n = 8192 and log q = 123 resulting in a speedup
of 72, lower than the speedup of 90 achieved by the synthesis
estimation.

VI. CONCLUSIONS

The security benefits of HE are significant, especially in
regards to cloud computing, as encrypted data can be operated
on without revealing the underlying plaintext to untrusted
parties. The acceleration of the computationally intensive
high-precision high-degree polynomial arithmetic operations
within FHE schemes is of the utmost importance to enable
their widespread use. Our design achieved significant speedup
over the polynomial multiplication operations performed by
the NTL software library for various security configurations.
Although the design does not exceed the performance of
dedicated hardware solutions, the multiplier exhibits flexibility
in the selection of both the polynomial degree and coefficient
size allowing for it to be configured for the security level
and target device. Our approach differs markedly from typical
hardware acceleration approaches since we focus on the seam-
less HE application development from software perspective
rather than focus on the hardware acceleration. Very few
software developers clearly understand the intricacies of de-
veloping effective hardware-software co-design on large scale
heterogeneous cloud.
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