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Abstract: This paper demonstrates an easily prepared novel material and approach to producing
aligned nickel (Ni) nanowires having unique and customizable structures on a variety of substrates
for electronic and magnetic applications. This is a new approach to producing printed metallic
Ni structures from precursor materials, and it provides a novel technique for nanowire formation
during reduction. This homogeneous solution can be printed in ambient conditions, and it forms
aligned elemental Ni nanowires over large areas upon heating in the presence of a magnetic field.
The use of templates or subsequent purification are not required. This technique is very flexible, and
allows the preparation of unique patterns of nanowires which provides opportunities to produce
structures with enhanced anisotropic electrical and magnetic properties. An example of this is the
unique fabrication of aligned nanowire grids by overlaying layers of nanowires oriented at different
angles with respect to each other. The resistivity of printed and cured films was found to be as low as
560 µΩ·cm. The saturation magnetization was measured to be 30 emu·g−1, which is comparable to
bulk Ni. Magnetic anisotropy was induced with an axis along the direction of the applied magnetic
field, giving soft magnetic properties.

Keywords: functional printing; metal organic decomposition; magnetic alignment; printed nickel

1. Introduction

In functional printing, metallic inks are most commonly used to produce features intended to
conduct electricity (e.g., printed electronics [1]) or heat (e.g., printed heaters [2]). In recent years,
researchers have begun to use a variety of different printing techniques such as Aerosol JetTM,
inkjet, and microextrusion to fabricate functional devices such as antennas [3,4], electrical circuit
components [5,6], and sensors [7–9] using copper and silver metal inks. For magnetic devices, transition
metals such as Fe, Co, and Ni are widely used due to their ferromagnetic properties. Despite the
intense interest in printing metal-containing inks, there have been very few examples of printing
ferromagnetic metals. Among these, Ni is mainly used due to its corrosion resistance, good electrical
conductivity, high magnetic permeability, high thermal coefficient of resistance, and relatively high
saturation magnetization [10,11].

The printable materials are typically formulated as inks or pastes, which require specific rheology
or flow properties tuned for the selected printing process. These metal inks are commonly classified
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as either nanoparticle inks or precursor inks. Nanoparticle metal inks of Cu [12–14], Ni [15], and
Ag [16–18] have been used in printed electronics. The stability of nanoparticle inks is affected by
factors such as agglomeration of the particles and evaporation of the carrier solvent. Nanoparticle
inks are prone to agglomeration over time, which can adversely affect print quality due to clogging
and uneven material deposition. Evaporation of carrier solvent in the nanoparticle-based inks, during
printing with some aerosol-based printing processes, leads to an increase in the ink’s solid loading
content, thus altering the ink’s rheological properties [19].

Precursor inks (which are also known as metal organic decomposition or MOD inks) have received
considerable interest in the research community due to their potential for overcoming some of the
challenges with nanoparticle inks. Precursor inks are formulated by dissolving an organic metal
complex in an appropriate solvent to produce a homogeneous solution. These inks do not contain
metal particles and do not suffer from some of the particle instability issues of particle-based inks.
However, the typical metal content of precursor inks is significantly lower than that of nanoparticle
inks. For instance, Rosen et al. formulated a copper precursor ink with a loading of 5.2 wt % [20].
This is compared with a copper nanoparticle gravure ink formulated by Fan et al. with a loading of
35.15 wt % [21]. Precursor inks of different metals such as Cu [22–25], Au [26] and Ag [27–30] have
been formulated and used in printed electronic applications. During reduction from its complexes, Ni
usually oxidizes upon contact with air. This has made Ni precursor ink formulation challenging in
the past.

Ni nanoparticles and nanowires have been formulated with different techniques, such as
hydrothermal processing [10,31,32], chemical reduction [33–35], and electrochemical deposition [36].
However, the methods to fabricate, deposit, and/or align the nanowires onto desired substrates
typically requires multiple steps, large quantities of electrically or functionally inactive materials
(templates), and extreme conditions. For example, the reduction of Ni to its elemental state can be
achieved in a stainless steel autoclave, and must be followed by washing and drying of the nanowires
in an inert atmosphere to avoid oxidation [10,31,33,35].

Deposited nanowires containing Ni have many applications, including surface-enhanced Raman
spectroscopy (SERS) [37,38], magnetic data storage [39,40] and giant magnetoresistive sensors [41–44].
These magnetic applications exploit the fact that the large shape anisotropy generated from the high
aspect ratio of nanowires provides high intrinsic coercivity. Aligned nanowires on surfaces can
also be useful for optical applications, such as nanowire polarizers [45,46], and for many biological
purposes, for example, “lab on a chip” devices, as well as for the construction of tubular sensors which
exploit geometrically induced circumferential magnetization [47], or for cell guidance using tissue- or
organ-like structures in vitro [48]. There is, therefore, significant interest in developing a method to
directly fabricate nanowires having the desired orientation onto the preferred substrate.

Various printing techniques have been developed to pattern metal inks onto the desired
substrate [49]. Typical examples include flexography, gravure, screen printing, inkjet, and aerosol
printing. Among these processes, inkjet and aerosol printing are capable of on-demand material
printing. They are able to print using very small quantities of ink, and they are non-contact printing
processes. In an Aerosol JetTM system, the ink is either pneumatically or ultrasonically atomized into
an aerosol that is focused in a nozzle, and directed towards the substrate. Larger standoff distances are
possible with aerosol than with inkjet printing. This feature enables printing of the ink on planar as
well as non-planar substrates. Aerosol JetTM printing has been used to fabricate different functional
devices such as transistors [6], sensors [8,9], and strain gauges [9].

In this work, a Ni precursor ink was synthesized in ambient conditions such that the ink can be
thermally reduced to elemental nickel after printing. This homogeneous ink can be formulated for
many different printing and deposition processes. The ink was printed on different substrates using
an aerosol printing technique. The reduction of Ni was observed in the presence and absence of a
magnetic field. Interestingly, reduction in the presence of a magnetic field produced pure, template-free,
aligned Ni nanowires. In this way, large areas of aligned Ni nanowires were produced, using only
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weak magnetic fields. We believe this novel method is the first example of aligned nanowire formation
on a surface by a thermal reduction (curing/sintering) process. Moreover, the reaction is simple and
the byproducts are volatile, leaving quantitatively pure Ni nanowires, without the need for further
purification. The electrical and magnetic properties were enhanced in the direction of the aligned Ni
nanowires. The film morphology can be easily manipulated during the reduction process to produce
a number of different novel structures having unique electronic and magnetic properties. Figure 1
shows the schematic illustration of printing a Ni precursor ink and reducing it in the presence of
homogeneous magnetic field to produce aligned nanowires.
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Figure 1. Schematic illustration of printing a Ni precursor ink and sintering it in presence of
homogeneous magnetic field to reduce the complex to aligned nanowires.

2. Materials and Methods

2.1. Materials

All the chemicals used were analytical grade. Nickel formate (molecular weight (MW): 148.74)
was purchased from Alfa Aesar, Ward Hill, MA, USA, and ethylene diamine was purchased from
Fisher Scientific, Fair Lawn, NJ, USA These chemicals were used without further purification. Glass
microscope slides (Thermo Scientific, Waltham, MA, USA) were used as substrates and were cleaned
with isopropyl alcohol (IPA) before printing.

2.2. Ink Formulation

Ethylenediamine (0.72 mL, 10.77 mmol) was dissolved in 4 mL of distilled water. Nickel formate
(0.8 g, 5.38 mmol) was added to this solvent mixture and stirred at room temperature for 15 min. The ink
was filtered through a 0.2 µm syringe filter. Other additives, such as 1% (w/w) of polyvinylpyrrolidone
(MW: 3500, K12) and 20 µL of BYK 333 surfactant (10% (v/v) solution in distilled water) were added
to the ink.

2.3. Aerosol Printing

To dispense the Ni ink on glass slides, a NanoJet aerosol printer (Integrated Dispensing Solutions,
Inc., Albuquerque, NM, USA) was used. The NanoJet printer uses ultrasonic energy to atomize the
functional ink. A carrier gas delivers the aerosol to a series of aerodynamic focusing lenses that
concentrate the aerosol as it exits the nozzle. The ultrasonic atomizer consists of a planar piezoelectric
transducer which is acoustically coupled with the ink at frequencies in the range of 1 to 2 MHz.
The atomizer produces a polydisperse distribution of droplets with a size distribution in the range of
~0.5 to 5 µm in diameter [50]. Air was used as a carrier gas to transport the aerosol to the focusing lenses.
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Ink passes through the focusing lens and into a tapered luer lock dispensing tip. A sheath gas flow was
used to avoid clogging of the nozzle and to focus the distribution of aerosol droplets onto the substrate.
The sheath gas and aerosol flow rate were kept constant throughout the experiments to maintain
consistency in the printed samples. The printer uses Aerotech PRO 165 mechanical-bearing linear
stages to move the work table in the X and Y directions, and an Aerotech PRO 115 mechanical-bearing
linear stage to move the deposition head in the Z direction. A solid 1 cm × 1 cm square pattern was
printed using a 25 gauge dispensing tip. The distance between the substrate and nozzle tip was kept
constant at 5 mm, and a translational speed of 2 mm/s was used to print the samples. The printed
pattern had a wet film thickness of ~4 µm for a single printed layer.

2.4. Ink Characterization

The surface tension of Ni ink was measured using a contact angle goniometer and tensiometer
(Model 250, ramé-hart, Succasunna, NJ, USA) using the pendant drop method. The viscosity of the
ink was measured using a microVISC viscometer (RheoSense, San Ramon, CA, USA). The surface
tension and viscosity of the ink were 44.01 mN/m and 3.2 cP, respectively. To improve the wettability
of the ink, the substrates were treated with atmospheric plasma (Surfx Atomflo, Redondo Beach,
CA, USA). Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) (Shimadzu
DTG-60, Kyoto, Japan) were performed by heating the sample in an aluminum pan from room
temperature to 400 ◦C at 10 ◦C/min. Surface morphology and elemental analysis of the printed
films were studied using a scanning electron microscope with energy-dispersive X-ray spectroscopy
(EDS) (Jeol, JSM- IT100LA, Peabody, MA, USA). The thickness of the printed films was measured
using an optical profilometer (Nanovea ST400, Irvine, CA, USA) and a stylus profilometer (Tencor P2,
Milpitas, CA, USA). Electrical conductivity was measured using a four-point probe (Jandel RM3000,
Leighton Buzzard, UK). Magnetic properties were studied by obtaining the hysteresis loops using a
Princeton Applied Research (PAR 155) vibrating sample magnetometer (VSM) modified with Lake
Shore Cryotronics 7300 electronics (Westerville, OH, USA).

2.5. Alignment Characterization

In order to quantitatively evaluate the orientation of reduced Ni nanowires, a method used by
Ayres et al. [51] to measure the fiber alignment in electrospun materials was adopted. 2D fast Fourier
transform (FFT) was used to quantify the orientation of nickel nanowires in each image. Each SEM
image was first cropped to a size of 512 × 512 pixels. The cropped images were then converted into
grayscale images. FFT analysis was performed on each grayscale image using the oval profile plug-in
in the ImageJ software package. The plug-in approximates each nanowire in a given image as a long
slender oval using image processing algorithms. The FFT computed by ImageJ maps the orientation of
the major axis of each oval into a nanowire orientation frequency domain. The peak shape and height
in the 2D FFT plot determine the degree of nanowire alignment, while the peak position indicates the
axis of orientation of the nanowires.

3. Results and Discussion

3.1. Ni Ink Characterization

The Ni ink contains nickel formate complexed with ethylenediamine, which undergoes a thermal
reduction process to generate metallic Ni on the desired substrate following printing and curing.
The use of formate counter ions decreases the mass of the organic content of the complex, provides
a relatively low decomposition temperature, and subsequently decreases the residue following
decomposition [52]. Furthermore, the decomposition of nickel formate is accompanied by the release
of carbon oxides and molecular hydrogen [53], which contribute to the reducing atmosphere, thus
preventing the oxidation of Ni. The bidentate ethylenediamine has been used in the formation of the
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metal complex to enhance the reduction efficiency, achieve complex stability, and increase complex
solubility in water [27].

The TGA of the Ni ink shows that the thermal decomposition occurs in two stages (Figure 2,
dashed black line). The first stage includes the solvent (water) evaporation up to 100 ◦C, and the
second stage involves the reduction of Ni to its elemental state at 235 ◦C. The final amount of Ni in the
ink was 5.7% (w/w). According to DTA data (Figure 2, solid red line), the first endothermic peak was
observed around 80 ◦C with the corresponding mass loss indicating solvent evaporation, while the
last endothermic peak was observed around 235 ◦C, indicating the reduction of Ni to its elemental
state. This temperature is the minimum necessary to reduce the ink to metallic Ni. For this reason,
240 ◦C was chosen as the curing temperature for subsequent processing. It is important to clarify that
the metal formation process of these inks is mechanistically very different from that of conventional
(nano)particle conductive inks. The initial step of curing these inks is a chemical (reduction) process,
rather than a physical process (as is observed in particle-based inks). As such, the curing temperature
is chosen based upon careful analysis and characterization of the chemical reduction process of Ni
upon heating.
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The EDS spectrum of reduced Ni ink (Figure 3) shows peaks for Ni at 0.851 and 7.471 keV. A small
amount of carbon and oxygen was also detected in the EDS spectrum, which was either the byproduct
of organic decomposition or contamination.
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3.2. Printing of Ni Ink

To measure the electrical and magnetic performance of the ink, the NanoJet aerosol printer was
used to dispense the Ni ink onto the substrate. Other printing processes, such as inkjet printing, can
also be used to deposit this ink [27]. Glass slides were used as substrates and were cleaned with
isopropyl alcohol before printing. To improve the wettability of the ink, the substrates were treated
with atmospheric plasma. Figure 4 shows the optical profile for the wet and dry film thickness for one
layer. The change in thickness during drying and curing is due to evaporation of the ink carrier liquid.
Based upon the results from the DTA discussed above, the final printed samples were cured at 240 ◦C
for 15 min. Two different cases were explored to study the sintering behavior. In Case 1, the samples
were sintered at 240 ◦C for 15 min in the absence of any magnetic field. In Case 2, the samples were
sintered at 240 ◦C for 15 min in a homogeneous magnetic field of 250 Oe.

1 
 

 

Figure 4. Optical profile for wet film and dry film for a single layer.

3.3. Reduction of Ni Ink

After aerosol printing of the samples, the glass substrate was heated on a benchtop hot plate.
The cured Ni films were characterized by SEM imaging (Figures 5 and 6) to study the morphology
and structure of the reduced Ni. The samples that were processed in the presence of a homogeneous
magnetic field showed nanowires where the nanowire axis was aligned in the direction of the magnetic
field. The SEM shows that each nanowire is composed of individual 100–250 nm nanoparticles that are
fused together, resembling a “string of pearls”. This suggests that the reduction forms nanoparticles
which are aligned in the presence of the magnetic field. Those aligned nanoparticles then sinter
together at the processing temperature. The resulting Ni nanowires follow the pattern of the magnetic
field lines.

In the absence of a magnetic field, the particles are not aligned to form nanowires. Rather, the
samples that were thermally processed in the absence of a magnetic field show the presence of a porous
Ni film with particles ranging from 100 to 250 nm (Figure 6a). Significant necking between Ni particles
was observed. The samples were cured after each printed layer. For printing of the second and third
layers, the Ni ink was printed on top of the previously cured layer. In order to study the isotropy of
the printed Ni, an extra case was investigated where a nanowire grid was printed by reducing the Ni
in the presence of a magnetic field perpendicular to the previous layer (Figure 6c).

The FFT alignment plot for Ni cured in the presence of magnetic field show a fibrous structure
with peaks at 90 and 270◦, while the Ni reduced in absence of magnetic field shows random particulate
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structure. The nanowire grid sample produced using alternating magnetic field orientations shows
peaks at 0, 90, 180, 270, and 360◦. The intensities of the peaks at 0, 180, and 360◦ were higher than that
of 90 and 270◦ because the alignment of the top layer was more prominent in the SEM image than that
of the bottom layer.
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and (c) multilayer printing and heating in presence of homogeneous magnetic field with alternating 0◦

and 90◦ orientations between layers.

3.4. Electrical Characterization

The electrical resistivity for the printed Ni ink was measured using a four-point probe.
A significant difference in the electrical properties was observed for Ni cured in the presence of
a magnetic field compared with that of Ni cured in the absence of a magnetic field. Figure 7 shows
the resistivity values for the different cases. As expected, the resistivity decreased as the number
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of layers increased. The reason for the decrease was that the voids generated during the sintering
of the previous layer were filled with additional Ni during the printing of subsequent layers. The
electrical resistivity of the Ni cured in the presence of the magnetic field was lower (higher conductivity)
than the Ni cured in the absence of a magnetic field. The resistivity was lower in the direction of
the aligned Ni nanowires than perpendicular to the aligned Ni nanowires. For the nanowire grid
samples produced using alternating magnetic field orientations, the resistivity was almost equal in
both directions. The lowest resistivity of 560 µΩ·cm (80X bulk Ni) was observed in the nanowire
grid samples, which is better than previously published studies [54,55]. It should be noted that these
nanowire arrays are not completely dense (there are spaces between nanowires). These resistivities
are calculated assuming uniform coverage of Ni (no pores), so they overestimate the actual resistivity
based upon the amount of Ni actually present in the nanowires.
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(d,e) in grid orientation

3.5. Magnetic Characterization

The magnetic properties of two-layer Ni films reduced in the absence of a magnetic field (Figure 8a)
and films reduced in the presence of a directional magnetic field (Figure 8b) were studied by measuring
the hysteresis loops. The saturation magnetization for all samples was found to be 30 emu·g-1, which
is comparable to the bulk Ni saturation magnetization [56]. Figure 8a shows hysteresis loops obtained
in planar perpendicular directions where soft magnetic properties were observed with remanent
magnetization of 10 emu·g-1 and coercive field of 120 Oe. By exposing the film to a directional
magnetic field during the reduction process, a significant difference was obtained. The induced
anisotropy parallel to the alignment direction showed a remanent magnetization of 20 emu·g−1, while
the perpendicular direction shows a remanent magnetization of 7 emu·g-1. This is due to the obtained
nanowire structure having a shape anisotropy along the axis of the nanowire. By aligning the film
layers in perpendicular directions to form a nanowire grid structure (Figure 8c), higher remanent
magnetization than the unaligned film was obtained in the parallel and perpendicular directions due
to the connected nanowire grid structure. These results show the possibility of tailoring the magnetic
properties of the printed Ni films, which can be exploited for applications such as magnetic data
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storage or magnetoresistive sensors. The nanogrid structure on a wide range of substrates can also be
explored for making skin-attachable loudspeakers and microphones [57].Materials 2019, 12, x FOR PEER REVIEW 9 of 12 
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4. Conclusions

A novel template-free method of producing aligned Ni nanowires in ambient conditions from a
homogeneous solution was presented. A Ni precursor (MOD) ink was synthesized, printed, cured,
and used for electronic and magnetic applications. This was one of the few examples of printing
ferromagnetic inks. The ink can be printed using a variety of processes on different substrates,
including flexible and thermally sensitive materials for applications such as antennas, magnetic
sensors, and optical polarizers. Aerosol printing of the ink on glass substrates was demonstrated in
this study. Inks with different rheological properties can also be easily developed for other functional
printing techniques, such as flexography, inkjet printing, and screen printing. Thermal reduction of
the precursor ink in the presence of a weak magnetic field produced large areas of pure aligned Ni
nanowires, requiring no further processing, which have enhanced anisotropic electrical and magnetic
properties. This was one of the first examples of printed metallic Ni from a precursor, and the first
example of thermally induced nanowire formation on a substrate. The film structure and morphology
can be easily manipulated, enabling the production of a variety of novel patterned structures having
unique electronic and magnetic properties, as well as commercial applications. The lowest electrical
resistivity (highest conductivity) was observed for nanowire grids. Further research is planned to
reduce the electrical resistivity and to study the Ni alignment using other (for example photonic)
sintering techniques.
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