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Abstract 
 
With the proliferation of autonomous vehicles in warehouse applications, there are several challenges that face 
researchers including precision indoor localization, navigation, obstacle avoidance, path planning, and task selection 
decisions. This paper addresses the issue of task selection decision. Specifically, we develop a deep learning 
methodology for task selection for fleet of autonomous vehicles in a warehouse environment. The autonomous 
vehicles select a task from a list of tasks, considering current vehicle traffic, potential travel paths, and the task 
potential task locations. We implement a highway deep neural network (DNN) for the task selection process. To 
evaluate the methodology, we conducted a simulation-based experiment to generate various scenarios and test the 
capabilities of the DNN. The results of the simulation-based experiment show that our deep learning method performs 
well under the given conditions. 
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1. Introduction 
In recent years, a growing use of autonomous vehicles has been observed. Specifically, the application of autonomous 
vehicles for warehouse operations has increased due to their flexibility and efficiency, the reduction of ergonomic 
issues, and recent successes of the autonomous driving technology. Although the autonomous vehicle brings together 
a new set of technological upgrades, there are a host of complex challenges that need to be addressed including 
navigation, path planning, obstacle avoidance, localization, sensory systems, and task selection under a multi-vehicle 
environment. This paper focuses on the task selection problem in a warehouse environment where a fleet of vehicles 
is given a set of tasks that needs to be completed. When a vehicle become available, the vehicle determines the next 
task that it will perform in light of the current warehouse situation (such as, task locations and priorities, locations and 
status of other vehicles, and alternative available travels path). To address this problem, we have developed a deep 
learning-based task selection methodology for autonomous vehicles in a warehouse. We present this methodology and 
conduct a simulation study to demonstrate the capabilities and limitations. 
 
Despite the considerable amount of recent research on autonomous vehicle navigation and path planning, few 
researchers have focused on the task assignment problem. Euchi et al. (2010) & Drexl (2012) consider the task 
selection problem as a routing problem and introduce various optimization methods. In addition, Fauadi et al. (2013) 
address the task selection problem in the multi-agent environment through an intelligent combinatorial auction 
methodology. Further, reinforcement learning based methods have been applied to task selection for use in 
applications such as container terminals (Jeon et al., 2011) and warehouses (Estanjini et al., 2011, Li et al., 2018). 
Estanjini et al. (2011) uses a localization engine based on a wireless network and an actor-critic-type policy 
optimization for forklift dispatching. The current direction of our research is similar in focus but employs a deep 
learning-based methodology.  
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2. Methodology 
To address the task selection problem for a fleet of autonomous vehicles in a warehouse, we develop a deep learning 
based decision-making framework where these decisions are based on the current state of a dynamic environment. 
Figure 1 represents an example of a portion (two aisles) of a warehouse, where pallet storage locations make up the 
set of potential task locations for storage or retrieval of a pallet. Autonomous vehicles will operate in the aisles of the 
warehouse to select a task involving picking up and then dropping off a pallet. As with delivery, dropping off a pallet 
must always follow picking up a pallet from a storage location, the task selection problem is narrowed down to which 
pallet to pick up next when the autonomous vehicle becomes available. 
 

 
Figure 1: Warehouse layout and potential task locations 

 
The framework of our deep learning methodology is shown in Figure 2. The state inputs are images representing the 
current condition of the warehouse. The pixels of the image are translated into grid (matrix) of values indicating the 
vehicle locations, task locations, obstacles, and empty space that a vehicle can occupy. At the time that a vehicle needs 
to select a task to perform, the current state input image is sent to the deep learning model. The deep learning model 
determines the task that the vehicle should be assigned. The dispatching system monitors and executes the assignment 
decisions. To train the deep learning algorithm a hierarchical search algorithm is used to generate the “best” task 
assignment. A set of state input images are utilized to train the deep learning model to produce good task selection 
decisions. 
 
 

 
Figure 2: Deep learning based decision-making framework 

 
The deep learning model implemented in this research is based on the highway deep neural network (DNN) model 
introduced by Srivastava et al. (2015). A highway architecture is chosen based on its potential to improve learning 
performance on a large data. The DNN approach proposed solves the task selection problem as a multi-class 
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classification problem, where each potential task location is considered a class and the score for each class is computed 
on a single forward propagation of input data making the task decision problem independent of the search space. The 
network architecture used is shown in Figure 3. The deep learning model architecture consists of five highway network 
modules, a 3x3x128 convolution layer, two fully connected layers with 2048 nodes each, and an output layer with 64 
nodes. The highway network module consists of two parts. First, the five 3x3x64 dimensional convolutional layers 
extract the important features from the image, such as task locations, shelves, and aisles. The next part of the highway 
net module is a 3x3x64 dimensional convolutional layer that performs a spatial reduction process. Then, the fully 
connected layers are used to determine the final task selection decision. The 64 nodes in the output layer correspond 
to the 64 potential task locations. The output of each class is interpreted as the score of the corresponding task. The 
model chooses the task that has the largest score.  
 
 

 
 

Figure 2: Highway deep neural network architecture 
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The highway network layer output can be mathematical expressed as (Srivastava et al., 2015): 
 

𝒚𝒚� = 𝑯𝑯(𝒙𝒙,𝑾𝑾𝑯𝑯 ) ∙ 𝑻𝑻(𝒙𝒙,𝑾𝑾𝑻𝑻 ) + 𝒙𝒙 ∙ 𝑪𝑪(𝒙𝒙,𝑾𝑾𝒄𝒄)                                                      (1) 
 
where 𝒚𝒚�  is the layer output, H (‧) is the non-linear activation function parameterized by x (input) & 𝑾𝑾𝑯𝑯 (weights). 
The transformation gate, T (‧), expresses how much of output is produced by transforming the input. The carry gate, 
C (‧), indicates how much output should be carried to the next layer. In our case, the carry gate is 
 

𝑪𝑪(∙)  =  𝟏𝟏 −  𝑻𝑻(�). 
 
To train the DNN, a hierarchical search algorithm computes the optimal decision (ground truth) for a state input. The 
algorithm considers the travel distance from the vehicle to the task as well as the traffic condition in the aisle. A deep 
learning model estimates the optimal decision and compares it to the ground truth. The error from ground truth and 
estimation are used for model training. The weights of the DNN are then updated based on a backward propagation 
process. 
 
The loss function used for our network training is the hinge loss function,  
 

𝐿𝐿(𝒚𝒚) = max(0,𝟏𝟏 − 𝒚𝒚� ∗ 𝒚𝒚)                                                                  (2) 

 
where 𝒚𝒚 is a Boolean variable indicating whether the corresponding class is selected by the hierarchical search 
algorithm. This function directly penalizes the actual output value of the predicted class rather than the index value as 
is the case of a traditional support vector machine. 
 
The novel contribution to this approach stems from the fact that the determination of our high traffic aisles is purely 
based on task location and their status and not on any other sensory inputs. This provides the leverage to scale up the 
system without increasing data transfer or computational loads. Further, the framework expands beyond the traditional 
static deep learning framework encompassing the feasibility of a feedback learning approach based on prediction 
confidence. This enables the model to continue training and update the existing model. The adaptation of the model 
to new layout configurations involves a self-training process where different scenarios are auto-generated for model 
training. The only information required to accommodate the change to a new environment is the image of the new 
layout configuration and potential task locations with corresponding aisle identification. 
 
3. Simulation Experiments 
The performance of the proposed deep learning framework is evaluated through simulation experiments. A pre-trained 
deep learning model is used to dispatch multiple autonomous vehicle in a warehouse environment. The warehouse 
layout is generated based on a cost map using SLAM algorithm and LiDAR equipped on a robot. Figure 1 
demonstrates the layout of the warehouse as well as the potential task locations. At this stage, we only consider two 
aisles of the warehouse. At the beginning of a trial, the model randomly generates a specified number of tasks from 
the potential locations. The initial location of a vehicle is randomly selected within the operating area.  
 
Figure 4 provides two sample input images for the DNN. Sample 1 represents a system with 2 vehicles and 3 pending 
tasks. The vehicle that needs to make a decision is highlighted in blue. The other vehicle’s location is not demonstrated 
in the input, but its current destination is marked in light gray. This is because our goal is to avoid dispatching too 
many vehicles to the tasks in the same aisle so that other vehicles’ locations are less relevant to make a decision. A 
hierarchical dispatching algorithm that considers both traffic condition and travel distance is implemented to generate 
the “ground truth” class for training purposes. The algorithm first finds the aisle(s) having the smallest number of 
pickup tasks assigned to other vehicles, and then select the task that is closest to the vehicle in that aisle.  
 
For the current study, we have taken 2 different test cases: 3 pending tasks and 5 pending tasks with 4 vehicles (refer 
to Table 1). The study assumes high task volumes thereby justifying a larger than usual vehicle quantities to cater the 
lead times. 
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Figure 4. Two samples showing vehicle location (blue), pending tasks (dark gray), other vehicles’ destinations (light 

gray), obstacles (white), and available space (black) when having 3 (Sample 1) and 5 (Sample 2) pending tasks. 
 

Table 1. Simulation experiment 
Scenario Parameters  

Number of 
vehicles 

Number of 
Pending Tasks 

 

1 4 3  
2 4 5  

 
4. Results 
Table 2 summarizes training and testing accuracy of the DNN model. The DNN is trained for 50 epochs for Scenario 
1 and 25 epochs for Scenario 2 with a batch size of 10 based on 32,000 training samples. In each epoch, the entire 
training dataset is passed through the DNN model. The difference in training epochs is due to a difference in training 
saturation monitored through loss value. After each epoch, the trained model is then tested on 50,000 randomly 
generated samples. Such a training and testing procedure avoid the overfitting issue. The accuracy is measured by the 
frequency of DNN making the same decision as the hierarchical dispatching rule. Figure 5 shows the training accuracy 
for Scenario 2 is close to 100% after 18 epochs and the testing accuracy goes above 90% after 18 epochs. The high 
testing accuracy indicates that the deep learning model can make the same decision as the hierarchical algorithm in 
most cases. The final training accuracies in both scenarios are both close to 100%. The testing accuracy in scenario 1 
is slightly higher than scenario 2. 
 

Table 2. Training and testing accuracy for four scenarios 
Scenario Parameters  Performance Measure 

Number of 
vehicles 

Number of 
Pending Tasks 

 Training 
Accuracy 

Testing 
Accuracy 

1 4 3  99.9 94.0 
2 4 5  100.0 93.1 

 
 

 
Figure 5: Average Training vs. Testing Accuracy for Scenario 2 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
cc

ur
ac

y

Training Epochs (32,000 Trials)

Average Training Accuracy Average Testing Accuracy



Sankaran, Li, Kuhl, Ptucha, Ganguly, and Kwasinski 

 
Further, we compare the performances of the DNN model and a Shortest Travel Distance (STD) rule in terms of 
dispatching the vehicle to a lower traffic aisle. Table 2 summarizes the results. The performance is measured by the 
number of vehicles (traffic intensity) in the selected aisle after dispatching the vehicle to the aisle. The DNN model 
outperforms STD rule in both scenarios. As the STD rule always dispatch the vehicle to the closest pickup location, 
there are, on average, 2.48 vehicles in the selected aisle. In contrast, the DNN model dispatch the vehicle to the aisle 
with less traffic intensity. The most significant improvement is that DNN model reduces TISA from 2.48 to 1.80 in 
scenario 2.  
 

Table 2. Average traffic intensity in selected aisle (TISA) for DNN model and STD rule 
 
 
Scenario 

 Parameters  TISA 
 Number of 

vehicles 
Number of 

Pending Tasks 
 DNN Model STD Rule 

1  4 3  1.93 2.48 
2  4 5  1.80 2.48 

 
5. Conclusion 
In conclusion, we have presented a deep learning methodology for task selection by an autonomous vehicle in a 
warehouse environment. The results of the simulation-based experiment indicate that the method can consistently 
select the closest task in a low traffic aisle given a random set of task location at a high level of performance. This 
illustrates the capability of the DNN approach to cater multiple attribute decision making: shortest travel distance and 
traffic. During the study it was observed that the highway network architecture used aided in improving the model 
training, and the computation time is independent of the search space as expected which is believed to make a 
difference in a larger and more complex scenario. It is to be noted that the performance of the proposed DNN method 
like any supervised learning approach is dependent on the availability of good labeled training data and model 
selection, and training procedure. Our future work includes extending the study to include more complex layouts, 
decision attributes and lastly, apply the methodology to a physical warehouse system for validation.   
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