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Abstract
Inventory management and handling in warehouse environ-

ments have transformed large retail fulfillment centers. Often
hundreds of autonomous agents scurry about fetching and deliver-
ing products to fulfill customer orders. Repetitive movements such
as these are ideal for a robotic platform to perform. One of the
major hurdles for an autonomous system in a warehouse is accu-
rate robot localization in a dynamic industrial environment. Pre-
vious LiDAR-based localization schemes such as adaptive Monte
Carlo localization (AMCL) are effective in indoor environments
and can be initialized in new environments with relative ease.
However, AMCL can be influenced negatively by accumulated
odometry drift, and is also reliant primarily on a single modal-
ity for scene understanding which limits the localization perfor-
mance. We propose a robust localization system which combines
multiple sensor sources and deep neural networks for accurate
real-time localization in warehouses. Our system employs a novel
deep neural network architecture consisting of multiple heteroge-
neous deep neural networks. The overall architecture employs a
single multi-stream framework to aggregate the sensor informa-
tion into a final robot location probability distribution. Ideally,
the integration of multiple sensors will produce a robust system
even when one sensor fails to produce reliable scene information.

Introduction
Warehouse material handling robots are transforming fulfill-

ment warehouses, offering unprecedented speed efficiencies and
cost reductions. Many of these types of autonomous agents are
constrained to fixed paths, both for scheduling ease, as well as
limitations in robot localization and object detection. Automated
warehouses rely on metallic tracks in the floor or the addition of
artificial landmarks in the environment. These tracked or wire-
guided systems can be expensive to install. Landmark systems
such as visual or QR identification tags inserted at known loca-
tions need to be precisely placed. These landmarks can be prone
to failure in poor lighting conditions, occlusions, dust, or other
debris which impact the ability to recognize landmarks. Such sys-
tems typically utilize fixed paths of orthogonal grid lines through-
out the warehouse. Although these paths are simple for schedul-
ing algorithms, they do not allow robots to follow shortest path
routes and can impart prolonged wait periods if a path is ob-
structed.

We propose a system which will allow autonomous robots to
roam freely in a warehouse, making overall operations more ef-
ficient. Accurate robot localization is important for maintaining
robust path planning and avoiding static and dynamic obstacles.
Using LiDAR and odometry sensor data with statistical inference
methods such as particle filters are less robust to dynamic environ-
ment changes. These methods have a narrow scope and have less
room for improvement in terms of localization accuracy. Deep

learning approaches have shown promising results in image re-
trieval and localization tasks which can be applied to autonomous
agents. We introduce several independent deep learning frame-
works using multiple data modalities for robust robot localization.
In addition to the independent frameworks, a single multi-stream
framework was designed to aggregate features from all available
modalities.

To provide accurate robot localization which is robust to ac-
tive warehouse environments, data from multiple sensors with dif-
ferent strengths is used to create a robust super sensor. This su-
per sensor accumulates sensor readings from multiple modalities
with the goal of producing not only higher confidence localization
information, but also emphasizing the strengths of each modal-
ity. For example, in low light conditions, a radio-frequency based
localization system would be more effective than a vision based
system.

A prototype of the robot platform that we are using for ex-
perimentation is shown in Figure 1.

Figure 1. The experimental robot platform used to evaluate the proposed

localization techniques. At the top is a Kodak PixPro sp360 4K omnidirec-

tional camera placed on top of a Velodyne VLP-16 3D LiDAR. A TPLink Talon

AD7200 60 GHz millimeter wave router is located on the top shelf. A De-

cawave DW1000 UWB transceiver is mounted on the top shelf visible under-

neath the VLP-16. An Alienware 15 r4 laptop handles localization inference

and navigation.
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Related Work
Ultra-Wide Bandwidth (UWB), Bluetooth, and Radio Fre-

quency Identification (RFID) beacons are the most widely used
technologies for wireless localization in indoor environments
[1, 2]. RFID beacons, although accurate and precise, involve
costly installation process and costly hardware due to a short de-
tection range of around a few decimeters [1]. In contrast, UWB
and Bluetooth beacons are low cost, easy to deploy, and pro-
vide a long detection range and omnidirectional coverage [2, 3].
These properties ensure a high degree of coverage in a dynamic
warehouse environment. Alarifi et al. [3] provides an extensive
comparative analysis of UWB technology for indoor position-
ing. UWB provides high multipath resolution and better obstacle
transmittance as compared to other technologies [3]. Tiemann et
al. [4] provides a proof of concept for UWB indoor positioning
using a global navigation satellite simulation system.

WiFi based indoor localization has been extensively studied
in literature [5, 6]. Recent techniques have used machine learn-
ing based approaches. Zhang et al. [7] use a Deep Neural Net-
work (DNN) with Hidden Markov Model (HMM) to further fine
tune the location prediction. Lemic et al. [8] evaluate the perfor-
mance of millimeter-wave wireless systems for localization and
have shown that the same techniques that have been used with
standard WiFi can be used in millimeter-wave systems. The re-
sults were simulation based, and the hardware changes required
to generate the necessary signals for different localization tech-
niques were not discussed. Bielsa et al. [9] use off the shelf 60
GHz hardware for a location estimation system using particle fil-
ters with linear programming and Fourier analysis to achieve sub
meter accuracy. Although accurate, their methodology used 400
measurements per location which could be time consuming for a
large scale deployment.

Recent work has shown improved localization accuracy with
60 GHz wireless technology, but most of these works are based
on the simulation modeling of the wireless channel and then using
trilateration (distance-based) or triangulation (angle-based) local-
ization techniques [8, 10]. These techniques either require cor-
rect estimation of the channel model or custom design of wireless
sensors. Accurate channel state information in the 60 GHz band
is challenging to estimate due to variability caused by shadowing
effects in a dynamic environment such as a warehouse. Custom
60 GHz sensors are also expensive and may become prohibitive
when necessary for hundreds of autonomous material handling
agents. Therefore, mechanisms to estimate location which are
more resilient to statistical variation in the channel model such
as machine learning techniques can be potentially applicable.
Due to these reasons, in our work, we explore localization with
consumer-grade Access Points (APs) in the form of 60 GHz wire-
less routers using machine learning.

Multimodal Sensors
In this section, we will discuss the sensors that we have used

to design our proposed multimodal localization system. Our sys-
tem consists of vision and Radio Frequency (RF) based sensors.
For vision, we utilize an omnidirectional camera oriented towards
the ceiling for maximum scene coverage. For the RF based wire-
less sensors we utilize UWB beacons and 60 GHz wireless routers
as millimeter wave (mm-wave) based sensors.

Omnidirectional Camera
The millions of pixels in a camera frame offer feature-rich

detailed information about the environment. Natural landmarks
such as wire conduits and lights in the ceiling, as well as door-
ways and variation in aisle layout provide a unique signature for
each location. There are also many features that may not be desir-
able for generating these fingerprints such as temporary obstacles
or shelf inventory in a warehouse. It is important to distinguish
between the static features relevant to each location in an envi-
ronment and the dynamic features that may not be present in the
future. We utilize an omnidirectional Kodak PixPro sp360 4K
camera which provides a wide image of the surrounding environ-
ment. The camera is oriented upwards such that each acquired
image captures the ceiling above and features all around the plat-
form (see Figure 2.)

Figure 2. Omnidirectional camera frame captured by a Kodak PixPro sp360

4K camera inside a warehouse environment.

Ultra-Wideband Sensor
Radio wave based positioning technology varies widely de-

pending on the environment in which they are deployed. Factors
such as density of objects, dynamic movements, surface reflec-
tions, and proximity to landmarks can affect performance. UWB
indoor localization technology has been proven to give better per-
formance in industrial environments [3]. We chose to use the
MDEK10001 UWB Development kit by Decawave as it shows
superior performance compared to other commercially available
UWB systems [11]. Decawave also provides an open source soft-
ware stack for developing scalable RTLS solution. Tags are the
mobile terminals mounted on the autonomous agent and anchors
are the fixed terminals with known location in the environment.

Indoor radio localization systems typically involve two steps:
first retrieve the distance values from a tag to at least three an-
chors whose locations are known, then calculate the x,y coordi-
nate estimate of tag using geometrical algorithms [3]. The first
step can use Time Of Flight (TOF), Time Difference Of Arrival
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(TDOA), Phase Difference Of Arrival (PDOA), or Received Sig-
nal Strength Indicator (RSSI) models. Given these distances, ge-
ometrical algorithms for estimating the location coordinates in-
clude trilateration, linear least square method, or triangulation.
MDEK1001 UWB uses two way-TOF for calculating the distance
between a tag and each anchor and then uses trilateration for es-
timating the location coordinates of the tag. The UWB tag con-
nects and estimates distance to the nearest four anchors using the
two way-TOF algorithm. These four distances are fed into both
the Decawave trilateration algorithm as well as our Multi-Layer
Perceptron (MLP) neural network. Although it might be possible
to estimate location from more than the four nearest anchors, the
Decawave’s RTLS firmware only reports the nearest four anchor
distances. Further, a two wavelength based RF indoor localization
(mmWave and UWB) can provide a consistent location estimates
even in noisy environments.

60 GHz Wireless Sensor
There have been many recent advancements in high fre-

quency mm-wave wireless technology that ranges between 30
GHz to 300 GHz. In particular, for the unlicensed 60 GHz spec-
trum, efforts have been made for design of tri-band wireless APs
capable of operating at 2.4 GHz, 5 GHz and 60 GHz. The 60
GHz carrier allows higher data rates of multi-gigabit-per-second
making it suitable in many applications that require high speed
wireless data rates such as smart cities. The signal propagation at
60 GHz can cause large signal attenuation through concrete mate-
rials, hence 60 GHz based localization systems are more suitable
for the indoor environments. In our work we have used TPLink
Talon AD7200 wireless router as 60 GHz wireless sensor.

Utilizing 60 GHz wireless routers, we capture the Received
Signal Strength (RSS) signals at the client from all available APs.
We set up the 60 GHz routers in client and the APs mode by us-
ing the firmware provided by Bielsa et al. [9]. The RSS signals
captured by the client at different locations are used as the input
features by the learning model and the different locations at which
the features are captured are the corresponding ground truth (GT)
labels. For each GT label we will have 1×N input features, where
N is the number of APs. The data collected using the 60 GHz
sensors at different GT positions represents a radio map. Where a
point in the radio map gives the RSS signal information seen by
the client from all available APs.

Architecture of the Multimodal Localization
System

Warehouses have very dynamic environments. For exam-
ple, the amount of stock on the shelves constantly changes, man-
ually operated forklifts and employees pass by at unpredictable
instances, and inventory stockpiles come and go on the warehouse
floor. We propose a multimodal localization strategy which em-
phasizes the strengths of individual modalities, together making a
more powerful sensory system.

Omnidirectional Camera Model
The structure of the omnidirectional camera model is shown

in Figure 3. Omnidirectional camera frames are used as input for
a 50-layer ResNetv1 [12, 13] deep neural network architecture.
Discrete locations in the environment are mapped to individual
class assignments from the network. An additional classification

Figure 3. Omnidirectional camera position and orientation classification

network based on a 50-layer ResNetv1 CNN. Two classification heads pro-

duce predictions for both position and orientation.

head allows for orientation classification. For a single warehouse
aisle in the testing environment, there are 438 unique cataloged
locations from which the images originate. There are 36 different
orientation classes which correspond to increments of 10 degrees
of rotation.

UWB Model

The RF based localization exhibits non-linear behavior due
to environment density (proximity to walls, variability in stocked
shelves) and surface reflections. Linear approaches such as trilat-
eration fail to model these complexities. A MLP neural network
was implemented for mapping the tag to anchor distances to tag
x,y coordinates. For this research, the MLP inputs consist of 28
tag to anchor distances and output x,y coordinates of the agent in
the form of a class label.

Two MLP models were used for RF localization. A three
layer MLP classification model shown in Figure 4, and a five
layer MLP regression model shown in Figure 5. The classifica-
tion model had 438 discrete locations using two hidden layers,
each with 64 neurons. The regression model reported floating
point x and y values and used four hidden layers, each with 64
neurons.

60 GHz Model

The collected RSS signal dataset represents a radio map of
the environment. Figure 6 shows the MLP based classification
model consisting of two hidden layers, each with 64 hidden neu-
rons. The input to the MLP are the RSS signals from the 10 APs
and the output layer consists of 438 nodes representing the 438
GT labels.
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Figure 4. Three layer MLP classification model implemented for UWB sen-

sor.

Figure 5. Five layer MLP regression model implemented for UWB sensor.

Figure 6. Three layer MLP classification model implemented for 60 GHz

wireless sensor.

Combined Multimodal Model
Figure 7 shows a single localization model incorporating all

of the previous sensor models. This combined super sensor model
implements three parallel streams: a three-layer MLP for the 60
GHz information, a three-layer MLP for the UWB information,
and a 50-layer ResNetv1 for the omnidirectional camera frames.
The previously described independent implementations of these
networks include one or more classification head layers as the
final component of the networks. For the combined implemen-
tation, these independent classification heads were removed leav-
ing only the feature vectors extracted from the raw sensor data.
These feature vectors were then concatenated together and passed
into a final position classification head. This allows the final posi-
tion classification layer to draw features from all available sensors
simultaneously.

Data Collection and Experimental Setup
The robot platform used for experimentation (see Figure 1)

is based on a differential-drive RoboSavvy Self-balancing Plat-

Figure 7. Multimodal position classification network. Two MLP networks

operate on the 60 GHz RSS and UWB distance values. A 50-layer ResNetv1

CNN generates features from the omnidirectional camera frame. All features

are concatenated into a single vector and passed into a final position classi-

fication head.

form with two swivel caster wheels for passive platform stabil-
ity. An Alienware 15 R4 laptop with an Intel i7 8750H, 32GB of
DDR4 memory, and an NVIDIA GTX 1060 runs Ubuntu 16.04
with Robot Operating System (ROS) Kinetic to handle navigation
and communication. A Velodyne VLP-16 3D LiDAR and a Ko-
dak PixPro sp360 4K omnidirectional camera are positioned at the
top of the robot platform for maximum scene coverage. Two radio
frequency based ranging sensors are used, a Decawave DW1000
UWB transceiver and a TPLink Talon AD7200 60 GHz millime-
ter wave router. UWB transceivers calculate distance from TOF
using a Two Way Ranging (TWR) algorithm. 60 GHz wireless
routers are used to generate a radio map by feeding the received
signal strengths into an MLP.

The scope of this research includes an area of approximately
2.74 meters (9 feet) by 20.11 meters (66 feet) encompassing a
single aisle inside an operating warehouse (see Figure 8). The
aisle was divided into multiple coordinate locations, where a mesh
grid intersection within the aisle represents the location at which
we collect the GT signals for model training. Each of the locations
are carefully marked in a grid pattern using measuring tape and
lasers for precise alignment. The separation between the marked
locations along the horizontal axis (x-axis) is 0.3048 meters (1
foot) and in the vertical axis (y-axis) is 1.8288 meters (6 feet).
From the edge of the aisle we have kept the separation of 0.6096
meters (2 feet). An additional 1.8288 meters past the end of the
aisle was also marked and recorded for experimentation. The total
coverage with the included extension is 1.8288 meters (6 feet) by
21.95 meters (72 feet.)

The topology of the space used for experimentation is shown
in Figure 9. We configured a 60 GHz router in a client mode using
the firmware provided by Bielsa et al. [9]. The client then runs our
in-house scripts that continuously scan for APs and records the
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Figure 8. Coordinate layout of localization evaluation environment. Six

horizontally spanning intersection points are positioned 0.3048 meters apart.

The vertically spanning intersection points are spaced 1.828 meters apart.

An additional buffer region is placed between the recorded coordinates and

the aisle shelves.

Figure 9. UWB and 60 GHz wireless sensor topology for a single ware-

house aisle.

RSS signals along with the MAC address. The APs are mounted
on the warehouse ceiling along the aisle in a zig-zag arrangement.
This arrangement is used to maximize the coverage of the RSS
signals received by the client. The routers on the ceiling are con-
figured in AP mode. Inside the warehouse we have mounted ten
APs on the ceiling with five APs per aisle. In our analysis, we

have collected the data in one of the aisles and performed local-
ization in that particular aisle only.

For UWB, 28 DWM1001 DEV modules were installed on
the ceiling of the warehouse. The anchors were installed in two
aisles of the warehouse to achieve a more consistent Line Of Sight
(LOS) between UWB modules at all locations and aisle end caps.
A DWM1001 DEV module (in tag mode) is installed on the robot.
The four best anchors within its proximity are selected at regular
intervals as the robot moves around.

A total of 10 complete position datasets were collected with
the omnidirectional camera and 60 GHz RSS values. Seven of
these runs contained UWB distance range values.

Experimental Analysis
Two different approaches were investigated: independent

sensor models and a single multimodal sensor model. For each
of the models, two of the available position datasets were held
out during training for evaluation. One of the held out evaluation
datasets was captured with an offset of about eight centimeters
purposely introduced to evaluate the ability for each of the mod-
els to generalize well. A summary of the localization performance
results is shown in Table 1.

Table I: Localization performance results for each of the pro-
posed localization networks. Accuracy is determined from
correct classification of test data labels.

Sensor Training Sets Position Accuracy Orientation Accuracy
Camera 8 92.63% 99.99%

UWB 5 59.00% N/A
60 GHz 8 24.67% N/A

Combined 8 90.71% N/A

The omnidirectional camera model was trained utilizing
eight of the available warehouse aisle datasets and evaluated us-
ing the two held out datasets. The accuracy for the held out
datasets converged to 92.63% for position classification. An ori-
entation classification accuracy of 99.99% was quickly achieved
for the omnidirectional camera model as shown in Figure 10. Af-
ter 22,000 training iterations the orientation classifier head was
able to achieve an accuracy upwards of 99.9% on the held out
evaluation datasets. The position classification head evaluation
accuracy converged to 92.2% after training 180,000 iterations.
These results validate the ability to accurately localize within the
warehouse environment utilizing omnidirectional image features.

The MLP classification model for the UWB sensor was
trained on five datasets and evaluated on the two held out datasets.
The classification model produced an accuracy of 59% on the test
dataset. We use Root Mean Square Error (RMSE) as a metric to
measure the performance of the MLP regression model. The MLP
regression model has a RMSE of 0.21 meters while the RMSE
with trilateration is 1.415 meters. This demonstrates improved
performance with the MLP regression model over the standard
trilateration approach The experimental results also showed the
MLP based approaches perform better in situations when there
is lack of line of sight from tag to anchor in comparison to the
trilateration approach alone.

The implemented MLP for the 60 GHz sensor is trained on
eight datasets and evaluated on the two held out datasets. The
MLP classification model gives an accuracy of 24.67% on the test
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Figure 10. Evaluation set accuracy for omnidirectional camera localization

model.

dataset. The low accuracy of the MLP can be explained due to
the similar or same RSS signal values from the APs at multiple
adjacent positions. This similarity of the RSS features is mainly
due to the beamforming technique used by the wireless routers,
during which the APs and the client tries to maintain the RSS
between them to enable better communication coverage.

The combined sensor model consisting of two independent
MLP networks for both radio frequency based sensors and a
ResNetv1 CNN was trained utilizing all available training datasets
with valid readings for all three sensors. The evaluation datasets
were consistent with the evaluation sets for the individual sensor
architectures. An evaluation accuracy of 90.71% was achieved on
the held out datasets.

Conclusion
Several different localization network topologies were de-

signed and evaluated for different sensors in the scope of this
work. The individual omnidirectional camera localization model
performed well for determining both the position and the orienta-
tion of the agent within the warehouse aisle. The UWB regression
localization model demonstrated the ability of a machine learn-
ing model to improve upon the standard trilateration localization
approach. The usage of 60 GHz for agent localization is in its
infancy, but specialized RSS protocols which can improve per-
formance are currently under investigation. The combined multi-
modal super sensor was challenged as the omnidirectional camera
was in isolation much greater than the other modalities.
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