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Observed Relationship Between BRF
Spectral-Continuum Variance and

Macroscopic Roughness
of Clay Sediments
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Abstract— Spectral data offer a means of estimating the
critical parameters of sediments, including sediment composition,
moisture content, surface roughness, density, and grain-size
distribution. Macroscopic surface roughness in particular has a
substantial impact on the structure of the bidirectional reflectance
factor (BRF) and the angular distribution of scattered light.
In developing the models to invert the properties of the sur-
face beyond just surface composition, roughness must also be
accounted for in order to achieve reliable and repeatable results.
This paper outlines laboratory studies in which the BRF and
surface digital elevation measurements were performed on dry
clay sediments. The results were used to explore the suitability of
various roughness metrics to account for the radiometric effect of
surface roughness. The metrics that are specifically addressed in
this paper include random roughness and sill variance. Relative
accuracy and tradeoffs between these metrics are described.
We find that spectral variability, especially near spectral absorp-
tion features, correlates strongly with the quantified measures
of surface roughness. We also find that spectral variability is
sensitive to the sensor fore-optic size. The results suggest that
roughness parameters might be directly determined from the
spectrum itself. The relationship between spectral variability and
macroscopic surface roughness was particularly strong in some
broad spectral ranges of the visible, near infrared, and shortwave
infrared, including the near-infrared region between 600 and
850 nm.

Index Terms— Bidirectional reflectance factor (BRF), digital
elevation model (DEM), goniometer of the Rochester Institute of
Technology-two (GRIT-T), roughness, sediment.
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I. INTRODUCTION

THE role of macroscopic roughness in the directional
reflectance of a particulate medium is sensitive to scales

ranging from the size of an individual particle to the field
of view of an airborne sensor [1]. While all scales of rough-
ness ultimately play a role in the directional reflectance of
a surface, several studies have shown that the macroscopic
surface roughness on the scale of a single particle to the
scale of a centimeter is considered sufficient to explain the
photometric roughness [2]–[4]. When attempting to retrieve
geophysical parameters from remotely sensed imagery, failing
to account for surface roughness ignores important reflectance
phenomena, such as multiple scattering and shadowing within
surface cavities. For example, Wang et al. [5] employed an
image-based approach which used the bidirectional reflectance
factor (BRF) to analyze the effect of illumination zenith angle
on both the rough and smooth soil surfaces. They found that
the BRF images of clay loam surfaces consisting of large
clods were largely made up of shaded pixels, whereas the BRF
images of smooth soil surfaces were dominated by illuminated
pixels [5]. In another study, Shepard and Helfenstein [3] found
that as surface microstructures of soils were gradually removed
by mechanical compression, reflectance ultimately became
more isotropic and eventually exhibited stronger forward scat-
tering. Other recent studies comparing rough and smooth areas
of beach sediments on the Queensland coast of Australia have
shown the same trend [6].

Given the experimental results mentioned earlier, it is
clearly necessary to account for spectral phenomena due
to centimeter-scale correlations in surface roughness when
examining directional reflectance measurements. Techniques
for correlating surface roughness metrics on a centimeter
scale with directional reflectance measurements have shown
promising results. Croft et al. [7], [8] obtained point laser
data at 2-mm sample spacing for several soil types and
utilized the geostatistical approach of kriging to character-
ize spatially distributed surface roughness. They found that
there was a strong correlation between the ratio of forward-
scattered to backscattered hemispherical conical reflectance
factors (HCRFs) in the principal plane and a metric of
roughness known as sill variance across multiple different
soil types [7], [8]. While these studies show promise for the
use of centimeter-scale digital elevation models (DEMs) in
determining the directional reflectance of sediments, these
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studies did not include a detailed analysis of the relationship
between spectrally dependent BRF measurements and macro-
scopic roughness, particularly in the regions of absorption
features. This paper aims to address this gap by extending the
approaches used in the previous studies and also utilizing novel
metrics of spectral band variance as a function of roughness.

It is well documented that the depths of absorption fea-
tures provide information regarding the relative abundance
of minerals within soils [9]–[11]. While examining the band
depths of absorption features can be a useful tool in remote-
sensing studies, the approach can be complicated by nonlinear
scattering effects that cause uncertainties in both the band
center and the band shape. The absorption band shape can also
change drastically depending on the factors, such as the path
length traveled through a soil medium and the wavelength-
dependent absorption coefficient [10]. Depending on these fac-
tors, the absorption feature can take on three different forms:
a Gaussian shape, a flat-bottomed shape due to saturation, and
a doublet shape with two absorption maxima [10], [12].

The relative orientations of the sensor and illumination
source can also have drastic effects on the manifestation of
spectral absorption features. Hapke [1] noted that the band
depth is highly dependent on the sensor and the illumination
geometry. If the directional reflectance of a material is mea-
sured with the sensor and illumination sources close to nadir,
then multiple scattering will significantly increase the wings of
absorption bands [1]. However, if the reflectance is measured
while either the illumination source or the sensor is oriented
at an oblique angle, then the surface reflectance is dominated
by single scattering which results in a shallower absorption
depth [10]. This conclusion is supported by the evidence from
another study by Huguenin and Jones [12], who noted that
varying the phase angle can result in changes in the extent of
shadowing due to the macroscopic surface roughness, which
produces significant shifts in the apparent centers, widths, and
strengths of absorption bands.

In addition to physical parameters that influence the proper-
ties of absorption bands, sensor limitations can also influence
the statistical analysis of band shapes. Factors such as low
albedo of the sample or shadowing due to roughness can lead
to lower signal-to-noise ratios at certain sensor-illumination
geometries. In the cases with a low signal-to-noise ratio,
it can be difficult to differentiate absorption bands from sensor
noise. This can lead to bands being shifted from their actual
positions, or being overlooked entirely [12]. Increasing the
intensity of the light source and increasing the number of
reflectance measurements sampled at each sensor orientation
are ways to mitigate this, but noise sources, such as the shot
noise, are an inherent limitation when measuring reflectance
using both the spectrometers and imaging sensors [12], [13].

The goals of the experiments described in this paper are
to: 1) analyze spectral phenomena resulting from macroscopic
surface roughness using directional BRF measurements and
2) determine if the observed spectral phenomena have a
dependence on the sensor field-of-view. Understanding these
relationships is important for the retrieval of geophysical
parameters from spectral measurements. Our results could
be useful for describing the empirical relationship between

Fig. 1. (Left) GRIT-T in the laboratory setting with sample in holder. (Right)
GRIT-T in a field setting.

spectral reflection properties and soil physical properties, such
as grain-size distribution and macroscopic roughness. This is
important because typical sediment surfaces exhibit roughness
on multiple scales, meaning that failure to account for rough-
ness can complicate efforts to retrieve geophysical parameters
from soil spectral measurements.

II. METHODS

A. Goniometer of the Rochester Institute of Technology-Two:
Hyperspectral BRF and DEM Measurement Capabilities

A novel goniometer system capable of obtaining very
high accuracy BRF measurements of vegetation and soils
was recently developed in the Chester F. Carlson Center for
Imaging Science, Rochester Institute of Technology [14], [15],
known as the goniometer of the Rochester Institute of
Technology-two (GRIT-T). The GRIT-T provides an important
tool for studying the surface materials, such as sediments
and the impact of their geophysical properties on spectral
BRF. A number of important surface properties, including
surface roughness, grain-size distributions, and fill factor,
are all known to contribute to the observed angular depen-
dence of the spectral BRF [10]. Past studies have included
spectroscopic and BRDF studies of grain size [16]–[19], fill
factor [20], [21], and surface roughness [22], and the prop-
erties, such as grain size, for example, play an important
role in environmental processes, such as desertification [23]
and soil erosion [24]–[26]. Ben-Dor et al. [27] provided a
review of the role of spectroscopy in soil environmental
applications.

The GRIT-T integrates a dual-view design using two ana-
lytical spectral devices (ASDs) FR4 spectroradiometers to
capture target-reflected radiance, as well as downwelling sky
radiance. The two spectroradiometers record spectral radiance
in the spectral range between 350 and 2500 nm, covering
the visible and near infrared (VNIR) as well as shortwave
infrared (SWIR) at 1-nm spectral intervals. The system was
designed to be highly accurate within both field and laboratory
settings.

An onboard laser measurement unit allows the GRIT-T
to determine true distance to the target surface from nadir.
This information can be used in conjunction with a rotating
sensor head to track the same position on the ground, thus
mitigating parallax effects that would ordinarily be present
when the target plane and the surface do not coincide.
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The system is designed using an automatic leveling technology
to obtain BRF measurements on a rough terrain while still
maintaining true angular measurements with respect to the
target within 0.2◦. The GRIT-T also incorporates an onboard
GPS IMU system which provides information about the ori-
entation and position of the system, as well as the knowledge
of the Sun’s position through the GPS timestamp. The system
also features an open frame design, combined with a small-
profile rotating arm, which allows for the device to accurately
measure a target while minimizing self-shading in and near
the principal plane of the light source.

The surface roughness models of the target, in the form of
DEMs, are produced by combining laser range finder measure-
ments with GRIT-T’s precision movement capabilities. The
elevation information provides multiple benefits for the BRF
analysis, including the determination of overall surface slope
and the ability to analyze macroscopic roughness effects on
light scattering. The on-board laser distance unit utilizes trian-
gulation with a 650-nm laser beam in order to measure overall
distance to the target. Laboratory tests showed that the sensor
has an elevation measurement repeatability within 0.5 mm
and an elevation measurement accuracy within 2 mm. It was
shown that the laser sensor has an elliptical beam spot size of
approximately 11 mm × 4.5 mm when operating at a typical
target-to-sensor distance of 600 mm [14], [15].

Due to the fact that the on-board laser sensor obtains only
a single distance measurement at a time, the laser sensor must
be positioned by the goniometer in order to sample elevation
measurements within the target area. A consequence of this
mode of operation is that any errors in mechanical motions will
translate to positioning inaccuracy in the DEM. In addition,
errors in the machining of the optical system of the laser
sensor unit must be compensated for in order to achieve a
reasonable DEM. Postprocessing tools have been developed to
compensate for these errors. Laboratory calibration tests show
that the average error between the center of an alignment laser
aligned with the optical axis and the center of the intended
target is 3.6 mm. Therefore, in order to mitigate positional
errors when producing DEMs, we limit our sampling density
to roughly 1 pt/cm2.

B. Laboratory Measurement Procedure

The sediment samples used in this experiment originally
had high soil moisture content when collected during a field
experiment in northwestern Nevada. Prior to beginning the
experiments, the samples were dried in an oven at 110 ◦C
for at least 24 h in order to remove all moisture contents.
These samples were mechanically pulverized into “clods” of
random shapes and sizes. The dried samples then underwent a
sieve analysis in order to determine the grain-size distribution
of the sample; based on this analysis, it was determined that,
on average, the “clods” were approximately 10 mm in size
when in this initial state. The sample was then placed in
a sample holder with a depth of approximately 3 in and a
diameter of 10 in. This sample holder was then covered and
shaken mechanically for 2 min, with the goal of creating a
random distribution of the constituent grains of the material.

After performing this shaking process, the side of the sample
holder was tapped in order to induce settling of the material,
in such a manner that the orientation of the microfacets would
not change in between BRF measurements.

BRF scans were then performed to obtain the reflectance
of the material as a function of viewing azimuth and zenith
angles for each illumination geometry. A total of four hyper-
spectral BRF scans were performed for each sample and
illumination geometry and for each sensor fore-optic of the
spectrometer used. The chosen fore-optics used in this paper
were 5◦ and 8◦. The experiments were repeated for the illu-
mination zenith angles of 25◦ and 45◦. Hyperspectral BRF
measurements were obtained for viewing the zenith angles
between −65◦ and +65◦ over the full 360◦ azimuthal sam-
pling of GRIT-T [15]. The sampling resolution for the BRF
measurements was 10◦ in zenith and 12◦ in azimuth. In order
to achieve a high signal-to-noise ratio, 80 spectral radiance
measurements were averaged at each position along the scan
pattern. The distance from the fore-optic to the target plane at
nadir was ∼55 cm, which results in a projected FOV on the
surface of ∼18 cm2, when using the narrower 5◦ attachment.
At the most extreme sensor zenith angles of 65◦, the projected
FOV onto the surface takes on an elliptical area of ∼ 42 cm2.
Using an irradiance meter, we verified that the irradiance from
our collimated light source at the edges of this projected FOV
area was constant to within 2%.

A grain-size distribution analysis was performed on all of
the samples in this paper by using mesh sieves and a Humboldt
sieve shaker to mechanically separate the clods and particles
by diameter. The results of performing this analysis on the
roughest samples (the R1 samples) revealed that ∼90% of the
clods of the R1 samples had a diameter that was greater than
0.5 cm. By examining the DEMs developed from the samples
in this paper and the overhead images, we can reasonably
assume that the largest clods are approximately ellipsoidal
with a semiminor diameter of 1 cm and a semimajor diameter
of 1.5 cm. This gives a ground projected area for the largest
clods of 4.7 cm2. Fig. 2 shows that there is very little interclod
separation due to the fact that our samples were randomly
shaken during sample preparation.

Considering the above discussion, we can see that a single
clod would only occupy at most ∼26% of the field of view
when the sensor fore-optic is at nadir and ∼11% of the field
of view when the sensor fore-optic is at an extreme zenith
angle. Because the field-of-view area is so much larger than the
projected area of the largest clods and their typical separation,
we could assume that roughness would be constant across the
varying size of the field-of-view area with the angle.

We note that we use the term BRF to indicate that our
spectral measurements estimate the ratio of the reflected
radiant flux from a uniform surface area to the reflected
radiant flux from an ideal and diffuse surface of the same
area [28]–[30]. The ideal diffuse surface is approximated in
our laboratory measurements by a Spectralon calibration panel.
Other researchers have distinguished between BRF, which
is an idealized concept, and the practical implementation of
BRF estimates, which involve both a sensor field-of-view and
source extent that are finite; the term biconical reflectance
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Fig. 2. Images of the sample within the sample holder for the different
roughness states of the materials. (a)–(c) Sample WA02-03 and (d)–(f) sample
WA04-02 at roughness levels R1, R2, and R3, respectively.

factor (BCRF) is often used to describe this practical imple-
mentation [8], [29]. The term BCRF would also be acceptable
to describe our laboratory measurement scheme; however,
we use the term BRF in this paper with the understanding
that we estimate this idealized quantity with a practical mea-
surement.

In addition to obtaining BRF measurements, digital eleva-
tion measurements of the sample were obtained at a sampling
density of approximately 1 pt/cm2 using the GRIT-T’s laser
distance measuring unit.

After performing a series of scans for a given roughness
level of the sample, the material was pulverized in order to
create a new sample made up of the same sediment, but with
its grain-size distribution shifted toward smaller grain sizes.
For each roughness state, the same series of BRF scans and
DEM measurements were then repeated. This cycle of sample
preparation and radiometric analysis was repeated a total of
three times for each sample, providing a total of three different
roughness levels for each sediment sample in this paper.
In this way, the reflectance of the same material with different
levels of roughness could be compared, and roughness metrics
could be computed for each state from the corresponding
digital elevation measurements. In this paper, we used two
soil samples denoted “WA02-03” and “WA04-02.” We show
the overhead images of these samples in Fig. 2 for the different
roughness states used in this paper. The BRF measurements of

sample WA02-03, obtained when the light source was oriented
at the zenith angles of 25◦ and 45◦ and a 5◦ spectrometer
fore-optic attachment was used, are shown in Fig. 3.

C. Roughnesss Metrics Considered in This Study

1) Semivariogram Modeling: Heterogeneous materials such
as soils are composed of grains of varying size, shapes,
and composition. Because of the heterogeneous nature of a
macroscopically rough surface, it is appropriate to model the
elevation of the surface as a random variable Z(x), where x
is the spatial coordinate of the surface, and Z is the elevation

Z(x) = μ + �(x). (1)

In (1), μ is the mean elevation and �(x) is a stochastic
component of surface elevation. If it is also assumed that the
random variable is an intrinsic random function (IRF), then
the random variable satisfies the following relationships for
the separation or lag, h, between two spatial locations:

m(h) = E [Z(x + h) − Z(x)] (2)

ϒ(h) = 1

2
var [Z(x + h) − Z(x)] (3)

where m(h) is the linear drift, and ϒ is the theoretical semivar-
iogram. According to Chiles and Delfiners [31], the theoretical
semivariogram of the IRF can be related to the covariance
function of the process in the following manner:

ϒ(h) = C(0) − C(h). (4)

In (4), C(0) = σ 2 is the total variance of the random
process, defined formally as the semivariogram sill [31].

A critical tool for examining statistical properties of a
spatial process is the empirical semivariogram. The empirical
semivariogram is defined in (5) [32] as

ϒ̂(h) = 1

2N(h)

∑
(i, j )∈N(h)

|Zi − Z j |2. (5)

In this equation, N(h) denotes the number of pairs of obser-
vations whose spatial coordinates si , s j are separated by
the lag distance, h. The empirical semivariogram is typi-
cally fitted to theoretical semivariograms through least-squares
methods [33].

One type of theoretical semivariogram model that is fre-
quently used for modeling soils is the spherical model [8].
This model takes the following form:

ϒ(h)=
{

C0+C
(

3h
2r − 1

2

( h
r

)3
)

, for 0 ≤ h ≤ r)

C0+C, for h > r

}
(6)

where C0 is the uncorrelated variation at the scale of sampling,
and C is the correlated component representing continuity of
the semivariogram [34]. Note that C0 + C represents the sill
value. The value r represents the sill range or the lag distance
at which the sill is reached. The spherical model is often used
to model soil and sand surfaces due to its ability to encapsulate
abrupt shifts in elevation [35], [36].
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Fig. 3. BRF measurements of the sample within the sample holder for the different roughness states of the materials at 1910 nm. Sample WA02-03 at
roughness levels R1, R2, and R3 with the light source oriented at (a)–(c) 45◦ and (e)–(f) 25◦. All used 5◦ spectrometer fore-optic attachments.

Another theoretical semivariogram model that will be con-
sidered in this paper is the exponential model. This model
takes on the following form [34]:

ϒ(h) =
{

0, for h = 0

C0 + C[1 − e
−h
r ], for h > r

}
. (7)

Several studies have utilized the sill value of the semi-
variogram as a metric for characterizing the roughness of a
randomly distributed soil, since the semivariogram models the
distances over which the soil can be considered to be spatially
correlated [7], [8]. In the experiments that we describe in this
paper, we describe mechanical shaking of the surface prior to
measuring BRF in order to satisfy the assumptions necessary
for an IRF. In Fig. 4, a GRIT-T DEM data set is postprocessed
using interpolation based on ordinary kriging of a soil surface
using a spherical semivariogram model. We chose ordinary
kriging, because it is derived directly from the empirical
semivariogram. This metric is preferable to other interpolation
schemes, because it incorporates the random nature of the
surface in the interpolation result [33].

2) Random Roughness: The random roughness (RR) is a
simple metric that is often used as a baseline measure in many
studies on soil roughness [37]. The metric is defined as

RR =
√√√√ 1

N

N∑
i=1

(Zi − Z̄)2 (8)

where N is the total number of elevation measurements
obtained, Zi is the i th elevation measurement, and Z̄ is the
mean elevation. Some disadvantages of the RR metric are

Fig. 4. GRIT-T DEM after performing interpolation using ordinary kriging.
Units for the x-axis, y-axis, and elevation-axis are given in centimeters.

that it does not take into account horizontal information about
surface roughness, and that it is not derived from any physical
model.

D. Spectral Derivatives

In this paper, we obtained numerical derivatives using
standard finite approximation methods. Central difference for-
mulas are employed, and approximations are made to within
a truncation error of O(�λ2), where �λ is the separation
between adjacent bands. The first derivative of the spectra S
is estimated by

S�(λi ) = S(λi + �λ) − S(λi − �λ)

2�λ
(9)

where λi is the wavelength at which the first derivative
is being estimated. The second derivative can similarly be
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approximated by

S��(λi ) = S(λi + �λ) − 2S(λi ) + S(λi − �λ)

�λ2 . (10)

In order to facilitate visual comparison between different
orders of derivatives as the value �λ increases, higher order
derivatives can be “enhanced” by replacing the denominator
with the value of 2�λ [38]. Because this approach enhances
the spectral detail of the derivatives, we adopt it in this paper.

In the spectral analysis, noise affects the accuracy of numer-
ical derivatives; however, the impact of noise can be mitigated
through the use of smoothing filters. One must use caution
when employing smoothing techniques in order to avoid
suppressing spectral features in the process of smoothing.
For this study, the Savitsky–Golay filter was chosen, since it
can resolve relatively weak spectral absorption features [39].
One limitation of using the Savitsky–Golay filter is that noise
is assumed constant across the spectrum, while in reality,
noise is a function of factors such as signal strength and
frequency [13]. We used visual inspection and simple error
metrics to determine the success of the filter’s noise removal
performance without altering identified spectral features.

A critical step in the use of spectral derivatives is the
selection of suitable values of �λ [38]. Features with widths
that are smaller than the chosen value of �λ will be undetected
by numerical derivatives, while features that are at the scale
of �λ will be magnified. In this way, one can use the average
width of a spectral absorption feature of interest to isolate the
relevant features, while also smoothing over noise that is finer
than the scale of the feature of interest. A downside of using
larger values of �λ is that it will not be possible to calculate
derivatives near the beginning or ending of the spectrum, due
to the fact that central difference formulas are computed at the
middle point of a wavelength range [38].

E. Continuum Removal

Clark and Roush [9] first suggested that the continuum of
a reflectance spectrum could be removed by dividing it into
the reflectance spectrum in order to isolate the absorption
features of interest. The continuum of a reflectance spectrum
can be found by fitting a convex hull over the local max-
ima of the reflectance spectra using straight line segments.
Calculation of the continuum by means of the convex hull
can be performed over the entire reflectance spectrum [40]
or over isolated absorption bands of interest by using pre-
determined wavelengths that straddle the diagnostic feature
[41]. Both of these approaches are utilized in this paper. After
obtaining the continuum line of the spectrum, the continuum-
removed reflectance can be calculated by dividing the original
reflectance values by the corresponding value along the contin-
uum line. This process separates the absorption features from
the background absorption of the spectrum, allowing them to
be more easily compared.

When performing continuum removal on the diagnostic
features of interest by fitting the convex hull between pre-
determined wavelength values, it is straightforward to retrieve
the band depth of each point within the absorption feature

from the simple relationship

D(λ) = 1 − SC R(λ) (11)

where D(λ) is the band depth at a given wavelength and
SC R(λ) is the continuum-removed reflectance spectrum at
a given wavelength [41]. By using this relationship, it is
possible to analyze how the absorption band properties, such
as depths, shapes, and absorption centers, vary with sensor
viewing orientation.

In this paper, we perform continuum removal for the
BRF measurement at each sensor orientation. In this way,
the number of continuum line spectra is equal to the number
of measurement directions in the BRF scan pattern. The scan
patterns were held constant across all the samples to ensure
that the sampling density did not influence the results.

III. ANALYSIS AND RESULTS

A. Roughness Metric Retrieval Results

Two metrics of roughness were computed using post-
processed DEMs of the GRIT-T laser range measurements.
These were the sill value and the random-roughness. In this
section, the results of modeling the macroscopic roughness of
the study samples using these different metrics are compared
and analyzed.

1) Semivariogram Sill Values and Random Roughness:
Shown in Table I are the computed values of random rough-
ness using (8). Note again that an increasing roughness
level is indicative of increasing smoothness of the material
(i.e., the roughness level 1 is the roughest, and the roughness
level 3 is the smoothest).

Before calculating experimental semivariograms, the eleva-
tion measurements of each DEM scan were examined by the
histogram analysis in order to ensure a normal distribution.
All data conformed to the criterion that the skewness of the
distribution be less than 1 [4]. It was further assumed that the
surface was isotropic in slope orientation. As was discussed
in Section II, the two theoretical semivariogram models that
were considered in this paper were the exponential model
and the spherical model. These two models were chosen,
because they accurately model short-scale linear trends that are
the characteristic of soil clods. Experimental semivariograms
were generated, and theoretical semivariogram parameters
were obtained from a least-squares fit [42]. The root mean
squared errors between the theoretical semivariogram and the
experimental semivariogram were computed to determine the
best suited model for a given DEM. Table I shows the derived
values of the best fit semivariogram parameters for the data
sets. In addition, the fitted semivariograms are plotted along
with the experimentally derived semivariograms in Fig. 5.

From these results, one can see that the spherical theoretical
model is a better fit for the smooth surface cases (roughness
level 3), while the exponential model better fits the rougher
surface samples. This is likely due to the fact that the expo-
nential model tends to rise more steeply at short-scale lag
distances, which corresponds well to the randomly distributed
microfacets of the soil clods of our samples.
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Fig. 5. Fitted theoretical semivariograms (blue circles) and experimentally measured semivariograms (red triangles) for the samples explored in this paper.
Samples shown are (a)–(c) WA02-03 and (d)–(f) WA04-02 at roughness levels R1, R2, and R3, respectively.

TABLE I

ROUGHNESS METRICS OBTAINED FROM POSTPROCESSING OF DEM DATA: THE RANDOM ROUGHNESS METRIC AND THE OPTIMAL FITTED

SEMIVARIOGRAM PARAMETERS THAT WERE OBTAINED AS A RESULT OF POSTPROCESSING THE DEM DATA OF THE SAMPLES

We found a linear relationship between the fitted sill vari-
ance (SS) values and the corresponding random roughness
values (SS = 0.836 × RR - 0.117, R2 = 0.9407). This
relationship agrees with the published results that link the
RR metric to sill variance metrics [4]. Both the metrics
correspond to a breakdown in soil clods, as is expected.
The limitation of the random RR metric is that it only
provides information on the vertical component of roughness
variation. Due to this limitation, information about how surface
structure is correlated in the horizontal direction is ignored.
In contrast, the fitted semivariogram model provides a measure
for how both low and high spatial-frequency trends manifest
themselves in the elevation measurements. This is described
by the form of the sill range metric, which is the distance
at which the sill variance is achieved; the value of the sill
range is the spatial distance at which elevation measurements
are no longer correlated with each other [31]. In this manner,
the impact on surface RR calculations of cavities in between
soil clods is partially accounted for by the sill variance metric.

IV. SPECTRAL ANALYSIS

In this section, we outline the routines developed to per-
form a spectral analysis on the clay samples used in this
paper. This section focuses on correlating observed spectral
metrics with the derived roughness metrics for each sample.
We incorporate the 203 different measurement directions for

each sample by calculating the variance in the band depth as
a function of wavelength over all angular positions. In this
sense, the directions outside of the plane are incorporated into
all of the retrieved spectral metrics in this section.

A. Continuum Removal Over Entire Spectral Domain

We performed continuum removal over the reflectance
spectrum of the measurements obtained at each respective
sensor orientation of the BRF scan. We then examined the
continuum-removed spectra as a function of wavelength in
order to determine a qualitative trend between the variance
of the continuum-removed spectra and the sample’s state
of macroscopic roughness. Renderings of the spectral mea-
surements for the BRF measurements obtained for sediment
sample WA04-02 are shown in Figs. 6 and 7.

Our results show that there is a clear decrease in the
variance of the continuum-removed spectra as the sample
becomes progressively smoother. This trend appears to hold
over both oblique illumination conditions with a greater degree
of single scattering, as well as for illumination conditions
close to nadir where there is increased multiple scattering
among or within surface cavities of the soil clods. However,
the trend is far stronger for the BRF scans of the samples
when the light source was oriented at the more oblique
orientation of 45◦ zenith angle. The 45◦ light illumination
configuration is associated with pronounced single scattering
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Fig. 6. Continuum removal performed on the reflectance spectrum of each sensor orientation of the BRF scan for sample WA04-02. (Top row) Spectral
library rendering for each roughness state. (Bottom row) Corresponding output of the continuum-removal procedure. The macroscopic roughness of the sample
of interest decreases from left to right. Renderings are shown for (a) light zenith angle of 25◦ and 5◦ fore-optic and (b) light zenith angle of 25◦ and 8◦
fore-optic.

and increased shadowing in the forward scattering directions
from the sample.

It is also observed that there is a clear dependence on
the sensor fore-optic attachment chosen for directional BRF
measurements. While the relationship between variance in the
continuum-removed spectra and the roughness state of the
sample is still discernible for scans obtained using the 8◦ fore-
optic, the trend is far more evident for scans obtained using the
5◦ fore-optic. This is observed in the measurements obtained
for sample WA04-02 while the light was oriented at a 45◦
zenith angle as shown in Fig. 7.

As the sample was mechanically pulverized into a smoother
state, the variance in the continuum-removed spectra was
observed to decrease across almost all wavelengths. However,

there were several regions of the sampled spectral range
that were more greatly affected than others. In this paper,
absorption features centered at approximately 590, 900, 1400,
and 1910 nm were present in both the samples. Of these diag-
nostic features, the ones that were centered at approximately
900 and 1910 nm were the strongest across all BRF scans, and
the variance of the continuum-removed spectra was strongest
within these regions. We examine this relationship in a more
quantitative manner in Sections IV-B and IV-C using convex
hull calculations performed over the wings of the absorption
feature.

Surprisingly, several spectral regions that were not identified
by diagnostic absorption features also exhibited very strong
variance in the continuum-removed reflectance. One such
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Fig. 7. Continuum removal performed on the reflectance spectrum of each sensor orientation of the BRF measurement for sample WA04-02. (Top row)
Spectral library rendering for each roughness state. (Bottom row) Corresponding output of the continuum-removal procedure. The macroscopic roughness of
the sample of interest decreases from left to right. Renderings are shown for (a) light zenith angle of 45◦ and 5◦ fore-optic and (b) light zenith angle of 45◦
and 8◦ fore-optic.

region occurred in the red to near-infrared region over a broad
range of approximately 250 nm from approximately 600 to
850 nm. To obtain quantitative results, we also performed
continuum removal using convex hull calculations within this
spectral region.

B. Continuum Removal Over Determined Spectral Range

Continuum removal can be performed within spectral
absorption features by selecting two predetermined wave-
lengths on the wings of a known diagnostic absorption feature
and calculating the convex hull between these wavelengths.
The two samples examined in this paper, WA02-03 and

WA04-02, were collected at field sites that were relatively
close geographically. The samples, therefore, had similar
material properties and absorption features. Two absorption
features that are characteristic of silty/clay soils were exam-
ined in this paper, approximately centered at wavelengths
900 and 1910 nm. We chose these regions, because both
the materials exhibited absorption features in these spectral
regions. For the continuum-removal procedure, the wavelength
ranges chosen for convex hull calculations were 850–950 nm
and 1870–2050 nm, respectively. We examined the depth and
shapes of these absorption features across varying sensor
viewing orientations to determine how macroscopic surface
roughness correlated with variance in the spectral regions.
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Fig. 8. Renderings of the band depths of the absorption feature centered
around 1910 nm after performing continuum removal on the spectra shown
in Fig. 6. (a)–(c) Roughness levels R1, R2, and R3, respectively. The color
bar shows the azimuth angle corresponding to each sensor orientation of the
BRF scan. The y-axis indicates the band depth at the respective wavelength.
(d) Wavelength-dependent variance of the band depth plotted for these three
roughness states.

Identifying this trend could provide evidence that deter-
mining roughness parameters within photometric mod-
els can be improved by examining the spectral domain.
These diagnostic features will be discussed individually in
Sections IV-B1 and IV-B2.

1) 1910-nm Absorption Feature: Both the samples exam-
ined in this paper had high concentrations of silt and clay and
exhibited a strong absorption feature in the region of approxi-
mately 1910 nm that indicated the presence of a hydroxyl that
has been adsorbed onto the grains of the soil [43]. We applied
continuum removal across this diagnostic absorption feature
using wavelengths located at 1870 and 2050 nm. The spectral
library renderings of the BRF scans show a significant vari-
ation in both the band depth and the shape. An example of
this appears in Fig. 7(a), which details the reflectance scans
of sample WA04-02 while using a 5◦ fore-optic attachment
and illuminating the sample at a 45◦ zenith angle. A color bar
is included, showing the azimuth orientation of the fore-optic
sensor for each respective measurement of the BRF scan.

By examining the spectral feature located around 1900 nm
in Fig. 7(a), it is clear that there is a trend toward decreasing
the variance of the band shape as the sample is progressively
smoothed. The left wing of the absorption band gradually
becomes less pronounced and eventually becomes symmetric
with the right wing of the absorption band for the smoothest
state of the material. In order to capture this trend quanti-
tatively, we performed continuum removal on the absorption
band for each sensor orientation of the BRF scan. The result
of performing this procedure is shown in Fig. 8.

The band depth renderings shown in Fig. 8 show that,
in general, the slope and magnitude of the right wing of
the absorption feature exhibit a higher variance as the sur-
face becomes progressively rougher. The variance of the left
shoulder also increases but not as dramatically. In order to

capture this trend, the wavelength-dependent variance of the
band depth was calculated for each roughness state of a given
sample, as shown in Fig. 8(d). It is evident that there is an
increase in the variance of the band depth as the macroscopic
roughness of the surface increases.

These results show that there is a clear correlation between
the roughness level of a given sample and the variance in the
wavelength-dependent band depth. In particular, for the curves
shown in Fig. 8, there is a broad spectral range along the right
wing of the absorption feature from approximately 1930 to
2000 nm where the relationship is the strongest. It should
be noted that this trend holds across both the samples for
all the combinations of fore-optic and light zenith angles.
As a metric, we used the total variance within the absorption
feature, calculated by performing numerical integration over
the entire spectral range of the band-depth variance curves.
We then correlated this metric, the total integrated variance,
against the roughness metrics obtained using our elevation
measurement system in this paper.

We carried out this procedure for both the samples that were
used in this series of experiments (WA04-02 and WA02-03)
and for all combinations of fore-optics (5◦ and 8◦) and light
zenith angles (25◦ and 45◦). The fitted R2 values obtained
as a result of following this procedure for each measurement
configuration appear in Table II.

A few observations can be made from Table II. There is
a high correlation for the retrieved random-roughness metrics
for both the samples across all measurement configurations
(R2 ≥ 0.97). The sill variance metric has high correlation
values for sample WA04-02 (R2 = 1.0) but lower correlation
values for sample WA02-03 (R2 ≥ 0.85). The process by
which the theoretical semivariogram parameters are derived
offers a potential explanation for this difference. Chiles and
Delfiners [31] stated that the first few points of the experi-
mental semivariogram are the most important for theoretical
variogram fitting due to the fact that short-range points are
used to model both the nugget variance and the slope at the
origin. In particular, the nugget variance is a combination of
factors, such as measurement noise, short-range trends, and
microstructures, below the scale of the elevation measurement
sampling. The most reliable solution for improving these
estimates is to have a finer scale sampling grid for estimating
the empirical semivariogram at short lag distances. This can
be viewed as a critical next step for modeling the roughness
of grains that vary on a subcentimeter scale.

2) 900-nm Absorption Feature: We applied the same
approach described in Section IV-B1 to a spectral absorption
feature in the region near 900 nm. To determine the convex
hull for this absorption feature, we chose the spectral region
from 850 to 950 nm. This absorption feature was much
shallower than the one present at 1910 nm. An earlier study
found that shallow absorption features can lead to difficulties
in determining band depths accurately [12]. The continuum-
removal analysis showed that the shallow nature of the absorp-
tion feature resulted in a greater noise when measuring both
the samples WA04-02 and WA02-03. Nevertheless, for lighting
conditions where the light was oriented at the 45◦ zenith angle,
we still obtained a good correlation between the integrated
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TABLE II

DERIVED R2 VALUES FOR CORRELATIONS BETWEEN TOTAL INTEGRATED VARIANCE OF THE CONTINUUM REMOVED ABSORPTION

FEATURE CENTERED AT 1910 NM AND THE ROUGHNESS METRICS USED IN THIS PAPER FOR SAMPLES WA02-03 AND WA04-02:
FOR LIGHT ZENITH ANGLES OF 25◦ AND 45◦

Fig. 9. (a) Variance in band depth for an absorption band centered at
900 nm for sample WA02-03 for the different roughness states. The light was
positioned at a 45◦ zenith angle and a 5◦ fore-optic was used. Correlations
between the total integrated variance and the roughness metrics used in this
paper are shown for (b) random roughness and (c) sill variance.

wavelength-dependent variance of the band depth and the
roughness state. For example, Fig. 9(a) shows the results
obtained from the BRF measurements of sample WA02-03
while the light was oriented at a 45◦ zenith angle and a 5◦
fore-optic was used. The total integrated variance of the band
depth and the roughness metrics used in this paper still exhibit
a high degree of correlation as is shown in Fig. 9(b)–(d).

The result shown in Fig. 9 is an example of a case that
is not corrupted by signal-to-noise issues, and often the trend
between the total integrated variance and the roughness metrics
for the absorption band was either not as obvious or somewhat
reduced due to noise. This can potentially be attributed to the
shallow depth of the absorption feature in comparison with
the noise present in the corresponding spectral region. This
is shown in Fig. 10, which shows results for several different
BRF measurements performed in this paper.

C. Continuum Removal Outside of Absorption Bands

When we performed continuum removal over the entire
reflectance spectrum, we observed that the variance within
the spectral regions outside of diagnostic absorption features
exhibited significant dependence on sensor orientation. One
such spectral region was located between absorption features
centered at 575 and 900 nm. Qualitatively, it can be seen that
there is a significant variation of the slopes and convexity of

this region depending on the view orientation of the sensor
throughout the BRF measurement. We examined this spectral
region by applying the same techniques that are outlined in
Section IV-B1, despite the fact that the region was not in a
spectral absorption feature. In order to analyze this spectral
region, we applied continuum removal over the spectral region
from 600 to 840 nm, which was free of spectral absorption
features. Table III details the correlations that were observed
between the total integrated variance of the “band depth”
within this spectral region and the various roughness metrics
that were used in this paper.

The correlation between derived values for the RR metric
and the total integrated variance within the spectral region is
high across all sensor fore-optics and light orientations for
both the samples used in this paper (R2 ≥ 0.91). This would
appear to indicate that even using roughness metrics related
only to the vertical variance of the surface elevation with no
information about the autocorrelation structure of the surface
can be of significant value in the radiometric analysis.

The derived values for the sill variance roughness metric
shows the weakest correlation to the total integrated variance
within the spectral region, but R2 is still relatively high
across all sensor fore-optic measurements and light orienta-
tions (1.00 ≥ R2 ≥ 0.76). As described earlier, the reason
that the sill variance shows that overall weaker correlations
could be related to the limitation of centimeter-scale accuracy
of our current DEMs. It is very possible that incorporating the
subcentimeter surface structure could improve our correlation
results for this metric.

D. Spectral Derivative Analysis of Apparent Absorption
Feature at 575 nm

A spectral absorption feature centered at approximately
575 nm was observed in the reflectance spectra of both the
samples used in this paper. This feature was relatively weak
and had an indeterminate band shape that varied with sensor
orientation. Studies have also shown that noise in relatively
weak absorption features can shift the apparent band centers
significantly from their true position, which can hinder the
ability to reliably determine the wings of a Gaussian-shaped
absorption band [12]. For these reasons, we did not use a
continuum-removal approach to investigate the dependence
of the properties of this absorption on macroscopic surface
roughness. Instead, we used a derivative analysis approach to
investigate how this diagnostic feature behaved as the macro-
scopic roughness of the sample was altered. We observed that
the average width of this spectral absorption feature in the
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Fig. 10. Variance in band depths for 900-nm absorption feature. Scans shown are (a) WA02-03 with the light at 45◦ zenith angle and 8◦ fore-optic and (b)
WA02-03 with the light at 25◦ and 8◦ fore-optic.

TABLE III

DERIVED R2 VALUES FOR CORRELATIONS BETWEEN TOTAL INTEGRATED VARIANCE OF THE CONTINUUM REMOVED SPECTRAL REGION

OF 600–850 NM THAT IS OUTSIDE OF SPECTRAL ABSORPTION FEATURES AND THE ROUGHNESS METRICS USED IN THIS PAPER
FOR SAMPLES WA02-03 AND WA04-02: FOR LIGHT ZENITH ANGLES OF 25◦ AND 45◦

BRF scans was approximately 15–20 nm, depending on the
fore-optic used and the light zenith angle. We tested the band
separation values of 5, 10, 15, and 20 nm to determine which
provided the most reasonable results for the first- and second-
order derivatives. We found that the band separation value
of �λ = 10-nm best mitigated spectral noise in the region
of the absorption band, while at the same time providing an
enhancement in the detection of the absorption feature.

In general, this spectral feature was strongest for rough
surface conditions and illumination configurations with less
diffused multiple scatter in the medium (i.e., at greater illu-
mination zenith angles of the light source). Specifically, while
we could resolve the absorption feature when the light was
positioned close to nadir, the effect was most apparent when
the illumination source was oriented at a zenith angle of 45◦.
The focus of the current discussion will be on cases where the
light was positioned at an illumination zenith angle of 45◦.

For both the samples, using the first- and second-order
derivatives was more successful in detecting the absorption
feature for configurations where the surface was macroscopi-
cally rough as opposed to smooth. The representative example
shown in Fig. 11 illustrates this point. This figure shows the
results obtained for sample WA02-03, while the light was
positioned at a 45◦ zenith angle.

The spectral derivative analysis shows clearly that the ability
to detect the spectral absorption feature centered approxi-
mately in the spectral region at 575 nm improves with the
roughness of the sample (roughness levels #1 and #2). The
first-order spectral derivative shows a local maximum across
almost all sensor orientations in this spectral region; however,
the magnitude of the first-order derivative of the spectral
absorption feature is significantly lower when observing from
sensor orientations which are offset from the principal plane

of the illumination source. The second-order derivative is
a positive band with a local maximum near the center of
the absorption feature. This trend is most prevalent for the
roughest states of the samples but is somewhat obscured by
noise for the smoothest state of the samples (i.e., roughness
level #3). Multiple scattering among and within the cavities of
rough surfaces of the samples increases the time spent within
the sediment clods and offers a plausible explanation for the
enhancement of the second derivative in the rougher states.
The reflectance spectrum of a material is composed of two
major contributions: specular and diffuse. The specular com-
ponent is assumed to consist of light that is primarily reflected
off of particle surfaces without entering into the depths of the
material. The diffuse component consists of light that may
or may not penetrate into the material before being multiple
scattered back into the direction of the sensor. Therefore,
this diffused component contains information regarding the
absorption bands [12]. When the material is smooth, multiple
scattering and time spent in the material diminish, and the
spectrum consists mostly of a specular component.

Interestingly, by examining these features on a smaller scale,
we can also see that there is significant variance in the shape
and center of the absorption band depending on the sensor
view geometry. Fig. 12, which shows a BRF measurement
of roughness level #2 of sample WA04-02 obtained using a
light source orientation of 45◦ zenith angle and a 5◦ sensor
fore-optic, illustrates this point. In this example, for sensor
orientations that are relatively close to the backscattering
lobe, the shape of the spectral band partially resembles a
doublet, while for sensor orientations that are offset from
the principal plane, the band shape more closely resembles
a Gaussian. This could provide evidence that the spectral
absorption band is in the strong surface scattering region for
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Fig. 11. Results obtained for sample WA02-03 while the light was oriented at a 45◦ zenith angle. The state of the material becomes smoother from left to
right (roughness level 1: left-hand column and roughness level 3: right-hand column). (Top row) Spectral library after undergoing Savitsky–Golay smoothing.
(Middle row) First-order spectral derivative. (Bottom row) Second-order spectral derivative. The results are shown for scans where the spectrometer attachment
was a 5◦ fore-optic.

Fig. 12. Enlargement of the spectral region between 450 and 700 nm: results of a BRF scan of sample WA04-02, roughness state #2 obtained when the
illumination source was at a 45◦ zenith angle and a 5◦ fore-optic was used on the spectrometer. From left to right: spectral library of the scan, first-order
derivative, and second-order derivative.

the former case, and the volumetric scattering regime for the
latter case, as is determined by the amount of time spent
in the material [10]. By examining the spread of the local
minimum across sensor orientations, we see that the first-
order derivative exhibits a significant variance in the position
of the band center. The second-order derivative, which conveys

spectral curvature information, provides an evidence that the
band shape is changing with the sensor orientation. A Gaussian
absorption band shape should be reflected through its second-
order derivative by having the appearance of a strongly positive
band surrounded by two smaller negative bands on each side
of it. The second-order derivative plots in Fig. 12 indicate
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the presence of both the Gaussian and doublet band shapes
present, depending on the sensor viewing geometry, and these
shapes also appear in the original spectrum in Fig. 12.

V. CONCLUSION

The key finding of this paper is that the variance of
spectral continuum-removed band depth integrated over rel-
atively broad regions of the VNIR and SWIR portions of the
spectrum can be used to obtain very good estimates of surface
roughness. We found the strongest correlations in spectral
regions that included an absorption feature; however, even
outside of such features, correlations with well-established
metrics of surface roughness were still very strong.

Results of this paper showed that the photometric effect
of macroscopic surface roughness is sensitive to the size of
the sensor field-of-view. We applied a method of continuum
removal over the spectral region from 350 to 2500 nm for
each respective sensor orientation angle of the BRF scan
for each roughness level of the sediment. The result of this
procedure showed that there was a discernible qualitative trend
that the measurements obtained with the 5◦ fore-optic had
considerably more variance in the spectral shape than the mea-
surements obtained using the 8◦ fore-optic. This suggests that
a smaller sensor solid-angle is considerably more sensitive to
the effects of macroscopic surface roughness than larger sensor
footprints. In future studies, we will investigate this trend for
a wider range of sensor solid angles and for hyperspectral
imagery acquired in field settings where a wider range of
roughness scales is available. We performed a separate analysis
of the data using spectral derivatives to investigate an alter-
native method of characterizing the appearance of a spectral
absorption feature centered around 575 nm. We observed that
with increasing roughness surfaces, i.e., when more surface
cavities dominate the surface, the feature became significantly
more well-defined. There was also a clear dependence of
these effects on the sensor fore-optic. These results sug-
gest that sensors possessing a larger field-of-view are less
sensitive to the photometric effects of macroscopic surface
roughness.

Another goal of this paper was to investigate the effect of
macroscopic surface roughness when varying the zenith angle
of the illumination source. In this paper, we contrasted illumi-
nation at a zenith angle close to nadir (25◦), which provides a
greater diffuse scattering, with illumination at an angle which
offers less diffuse scattering (45◦). The continuum-removal
analysis showed that the spectral variance depended strongly
on the illumination source orientation. In particular, this result
was most evident when performing continuum removal within
a spectral absorption band located in the spectral region around
1900 nm. The qualitative analysis showed that the variance in
the band shape for rough samples within this spectral region
was greater for measurements obtained while the light source
was at a 45◦ zenith angle. Illuminating a rough surface from
more oblique angles resulted in a greater single scattering from
the surface, in which light can be reflected randomly by surface
microfacets and may not be directed toward the sensor [10].
In addition, more oblique illumination conditions lead to a
greater shadowing onto the sample in the forward scattering

region of the sample’s surface. On the other hand, nadir illumi-
nation conditions result in increased multiple scattering of light
among and within cavities and consequently more time spent
within the material before being reflected back to the sensor.
This phenomenon could result in a more determinate band
shape and band center due to a greater volume scattering [1].

The primary goal of this paper was to investigate the ability
to correlate macroscopic surface roughness with roughness
metrics derived from a custom laser range measurement sys-
tem on our GRIT-T. Two different roughness metrics that are
frequently utilized in the studies of macroscopic roughness
were examined in this paper: the sill variance and the random
roughness. These roughness metrics were highly correlated
with a metric of variance in the band shape and the integrated
band variance in a spectral region, for a spectral absorption
feature located at 1900 nm. The results showed that for
both the samples and all the configurations of fore-optics
and illumination zenith angles, there were relatively high R2

values across all roughness metrics. For the random roughness
metric, the R2 values for 5◦ and 8◦ fore-optics ranged between
0.91–1.00 and 0.93–1.00, respectively. For the sill variance
metric, R2 values for the 5◦ and 8◦ fore-optics ranged between
0.76–1.00 and 0.85–1.00, respectively. These correlations indi-
cate that centimeter-scale elevation models can be directly
related to variance in the band shape.

In addition to studying view-angle-dependent variance in
the band shape for spectral absorption features, we also inves-
tigated a spectral region where no spectral absorption feature
existed. This spectral region was in the near-infrared spectral
region between 600 and 840 nm. We applied a continuum-
removal procedure over this spectral range in order to obtain an
estimate of the variance in the spectral shape as the roughness
of the sample was varied. The correlation of roughness metrics
with the total integrated variance in the band depth showed a
strong relationship between increasing surface roughness and
increasing spectral variance. For the random roughness metric,
the R2 values for a 5◦ fore-optic and 8◦ fore-optic ranged
between 0.91–0.99 and 0.93–0.99, respectively. For the sill
variance roughness metric, the R2 values of 5◦ and 8◦ fore-
optics ranged between 0.76–1.00 and 0.85–1.00, respectively.
These results indicate that even spectrometers that are only
capable of measuring in the visible and near-infrared spectral
regions can provide insight into surface roughness properties.
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