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Abstract. Neuro-evolution and neural architecture search algorithms
have gained significant interest due to the challenges of designing opti-
mal artificial neural networks (ANNs). While these algorithms possess
the potential to outperform the best human crafted architectures, a less
common use of them is as a tool for analysis of ANN topologies and
structural components. By performing these techniques while varying
the allowable components, the best performing architectures for those
components can be found and compared to best performing architectures
for other components, allowing for a best case comparison of component
capabilities – a more rigorous examination than simply applying those
components in some standard fixed topologies. In this work, we utilize the
Evolutionary eXploration of Augmenting Memory Models (EXAMM) al-
gorithm to perform a rigorous examination and comparison of recurrent
neural networks (RNNs) applied to time series prediction. Specifically,
EXAMM is used to investigate the capabilities of recurrent memory cells
as well as various complex recurrent connectivity patterns that span one
or more steps in time, i.e., deep recurrent connections. Over 10.56 mil-
lion RNNs were evolved and trained in 5, 280 repeated experiments with
varying components. Many modern hand-crafted RNNs rely on com-
plex memory cells (which have internal recurrent connections that only
span a single time step) operating under the assumption that these suf-
ficiently latch information and handle long term dependencies. However,
our results show that networks evolved with deep recurrent connections
perform significantly better than those without. More importantly, in
some cases, the best performing RNNs consisted of only simple neurons
and deep time skip connections, without any memory cells. These results
strongly suggest that utilizing deep time skip connections in RNNs for
time series data prediction not only deserves further, dedicated study,
but also demonstrate the potential of neuro-evolution as a means to bet-
ter study, understand, and train effective RNNs.

Keywords: Neuro-Evolution · Recurrent Neural Networks · Time Series
Data Prediction · Aviation · Power Systems.

1 Introduction

Neural architecture search poses a challenging problem since the possible search
space for finding optimal or quasi-optimal architectures is massive. For the case



of recurrent neural networks (RNNs), this problem is further confounded by
the fact that every node in its architecture can be potentially connected to
any other node via a recurrent connection which passes information stored in
a vector history to the current time step. Complexity is further increased when
one considers that recurrent connections could explicitly connect information
from any time step < t in the history of the sequence processed so far to step
t, improving memory retention through time delays. Figure 1 illustrates this
challenge, showing the different types of potential recurrent connections that
can exist even within a simple network with one input, two hidden and one
output node, allowing connections with a time skip up to 3.

Fig. 1. RNNs can have a wide variety of connections. Most RNNs consist of feed
forward, self recurrent, and backward recurrent connections with a single time step;
however it is also possible to also have forward recurrent connections and recurrent
connections which span/skip multiple time steps.

Most modern-day RNNs simplify the recurrent connectivity structure and
instead improve retention by utilizing memory cells such as ∆-RNN units [1],
gated recurrent units (GRUs) [2], long short-term memory cells (LSTMs) [3],



minimal gated units (MGUs) [4], and update gate RNN cells (UGRNNs) [5].
The use of memory cells, as opposed to investigating the use of denser tempo-
ral/recurrent connectivity structures, is popular largely due to the assumption
that while the recurrent synapses that define a cell only explicitly connect t−1 to
t, their latch-like behavior is sufficient for capturing enough information about
the sequence observed so far when making predictions of what will come next.
Nonetheless, RNNs still struggle to effectively learn long-term dependencies in
temporal data [6–9, 1, 10].

There also exists a body of literature that suggests that recurrent connections
which skip more than a single time step, which we will coin as deep recurrent
connections, can play an important role in allowing an RNN to more effectively
capture long-term temporal dependencies. This research dates back to Lin et al.
’s development of NARX (Nonlinear AutoRegressive eXogenous Model) neural
networks with increasing embedded memory orders (EMOs) or time windows [11,
12], which involved adding recurrent connections up to a specified number time
skips. Further work went on to show that the order of a NARX network is cru-
cial in determining how well it will perform – when the EMO of a NARX model
matches the order of an unknown target recursive system strong and robust gen-
eralization is achieved [13, 14]. Diaconescu later utilized these EMO-based NARX
networks to predict chaotic time series data, with best results found in the EMO
ranges of 12 to 30, which are significantly large time skips [15]. More generally,
it has been expressed in classical literature that skip connections can substan-
tially express the computational abilities of artificial neural networks (ANNs)
[16]. Yet, modern popular ANNs have only taken advantage of feedforward skip
connections [17], including RNNs [18, 19], with a few notable exceptions [20].

Findings for RNNs with deep recurrent connections are also not limited to
Lin et al. ’s EMO NARX networks. Chen and Chaudhari developed a segmented-
memory recurrent neural network (SMRNN) [21], which utilizes a two layer re-
current structure which first passes input symbols to a symbol layer, and then
connects the symbol layers to a segmentation layer. This work showed that inter-
vals 10 <= d <= 50 provided the best results on this data, as a lower d required
more computation each iteration (the segmentation was used too frequently)
slowing convergence, and at higher values of d it approximated a conventional
RNN (that did not use a segmentation layer). The segment interval d operates
similarly to a deep recurrent connection; it passes information from past states
further forward along the unrolled network. It was shown that SMRNN outper-
formed both LSTM and Elman RNNs on the latching problem. ElSaid et al. later
utilized time-windowed LSTM RNNs to predict engine vibration in time series
data gathered from aircraft flight data recorders [22, 23]. This work investigated
a number of architectures and found that a two-level system with an EMO/time
window of order 10 provided good predictions of engine vibration up to 20 sec-
onds in the future. This was a challenging problem due to the spiking nature of
engine vibration, yet this architecture significantly outperformed time-windowed
NARX models, Nonlinear Output Error (NOE), and the Nonlinear Box–Jenkins
(NBJ) models.



In this work, we further investigate the power of deep recurrent connections
in comparison to memory cells by taking a rather unconventional approach to the
analysis, using an neuro-evolutionary algorithm we call EXAMM (Evolutionary
eXploration of Augmenting Memory Models) [24]. Instead of simply testing a
few hand-crafted RNNs with and without deep recurrent connections composed
of different kinds of memory cells, neuro-evolution was used to select and mix the
architectural components as well as decide the depth and density of the connec-
tivity patterns, facilitating an exploration of the expansive, combinatorial search
space when accounting for the many different components and dimensions one
could explore – yielding a more rigorous, comprehensive yet automated exam-
ination. A variety of experiments were performed evolving RNNs consisting of
simple neurons or memory cells, e.g., LSTM, GRU, MGU, UGRNN, ∆-RNN
cells, as well as exploring the option of using deep recurrent connections or not,
of varying degree and instensity. RNNs were evolved with EXAMM to perform
time series data prediction on four real world benchmark problems. In total,
10.56 million RNNs were trained to collect the results we report in this study.

The findings of our EXAMM-driven experimentation uncovered that net-
works evolved with deep recurrent connections perform significantly better than
those without, and, notably, in some cases, the best performing RNNs con-
sisted of only simple neurons with deep recurrent connections (i.e., no memory
cells). These results strongly suggest that utilizing deep recurrent connections in
RNNs for time series data prediction not only warrants further study, but also
demonstrates that neuro-evolution is a potentially powerful tool for studying,
understanding, and training effective RNNs.

2 Evolving Recurrent Neural Networks

Neuro-evolution, or the use of artificial evolutionary processes (such as genetic
algorithms [25]) to automate the design of artificial neural networks (ANNs), has
been well applied to feed forward ANNs for tasks involving static inputs, includ-
ing convolutional variants [26–31]. However, significantly less effort has been put
into exploring the evolution of recurrent memory structures that operate with
complex sequences of data points.

Despite the current lack of focus on RNNs, several neuro-evolution methods
have been proposed evolving RNN topologies (along with weight values them-
selves) with NeuroEvolution of Augmenting Topologies (NEAT) [30] perhaps
being the most well-known. Recent work by Rawal and Miikkulainen investi-
gated an information maximization objective [32] strategy for evolving RNNs,
which essentially operates similarly to NEAT except with LSTM cells being used
instead of simple (traditional) neurons. Research centered around this line of
NEAT-based approaches has also explored the use of a tree-based encoding [33]
to evolve recurrent cellular structures within fixed architectures composed of
multiple layers of the evolved cell types. More recently, work by Camero et al.
has shown that a Mean Absolute Error (MAE) random sampling strategy can
provide good estimates of RNN performance [34], successfully incorporating it



into an LSTM-RNN neuro-evolution strategy [35]. However, none of this prior
work has investigated the evolution deep recurrent connectivity structures nor
focused on using a powerful evolutionary strategy such as EXAMM as an em-
pirical analysis tool for RNNs.

With respect to other nature-inspired metaheuristic approaches for evolving
RNNs, ant colony optimization (ACO) has also been investigated [36] as a way
to select which connections should be used but only for single time-step Elman
RNNs. ACO has also been used to reduce the number of trainable connections in
a fixed time-windowed LSTM architecture by half while providing significantly
improved prediction of engine vibration [37].

For this study, EXAMM was selected as the RNN analysis algorithm for a
number of reasons. First, this procedure progressively grows larger ANNs in a
manner similar to NEAT which stands in contrast to current ACO-based ap-
proaches, which have been often restricted to operating within a fixed neural
topology. Furthermore, in contrast to the well-known NEAT, EXAMM utilizes
higher order node-level mutation operations, Lamarckian weight initialization
(or the reuse of parental weights), and back-propagation of errors (backprop)
[38] to conduct local search, the combination of which has been shown to speed
up both ANN training as well as the overall evolutionary process. Unlike the
work by Rawal and Miikkulainen, EXAMM operates with an easily-extensible
suite of memory cells, including LSTM, GRU, MGU, UGRNN, ∆-RNN cells
and, more importantly, has the natural ability to evolve deep recurrent connec-
tions over large, variable time lags. In prior work it has also been shown to more
quickly and reliably evolve RNNs in parallel than training traditional layered
RNNs sequentially [39]. For detailed EXAMM implementation details we refer
the reader to [24].

3 Experimental Data

This experimental study utilized two open-access real-world data sets as bench-
mark problems for evolving RNNs that can predict four different time series
parameters. The first dataset comes from a selection of 10 flights worth of
data taken from the National General Aviation Flight Information Database
(NGAFID) and the other comes from data collected from 12 burners of a coal-
fired power plant. Both datasets are multivariate (with 26 and 12 parameters,
respectively), non-seasonal, and the parameter recordings are not independent.
Furthermore, the underlying temporal sequences are quite long – the aviation
time series range from 1 to 3 hours worth of per-second data while the power
plant data consists of 10 days worth of per-minute readings. To the authors’
knowledge, other real world time series data sets of this size and at this scale are
not freely available. These datasets are freely provided in the EXAMM github
repository.



3.1 Aviation Flight Recorder Data

Each of the 10 flight data files last over an hour and consist of per-second data
recordings from 26 parameters, including engine parameters such as engine cylin-
der head temperatures, gasket temperatures, oil temperature and pressure, and
rotations per minute (RPM); flight parameters such as altitude above ground
level, indicated air speed, lateral and normal acceleration, pitch, and roll; and
environmental parameters such as outside air temperature and wind speed. The
data is provided raw and without any normalization applied.

Fig. 2. Example parameters pitch (top) and RPM (bottom) of Flight 8 from the
NGAFID dataset.

RPM and pitch were selected as prediction parameters from the aviation data
since RPM is a product of engine activity, with other engine-related parameters
being correlated. Pitch itself is directly influenced by pilot controls. As a result,
both of these target variables are particularly challenging to predict. Figure 2
provides an example of the RPM and pitch time series from Flight 8 of this
dataset. In addition, the pitch parameter represents how many degrees above
or below horizontal the aircraft is angled. As a result, the parameter typically
remains steady around a value of 0, however, it increases or decreases depending
on whether or not the aircraft is angled to fly upward or downward, based on
pilot controls and external conditions. On the other hand, RPM will mostly vary
between an idling speed, i.e., if the plane is on the ground, and a flight speed,
with some variation between takeoff and landing. Since the majority of the flights
in NGAFID (and, by extension, all of the flights in the provided sample) are
student training flights, multiple practice takeoffs and landings can be found.
This results in two different types of time series, both of which are dependent
on the other flight parameters but each with highly different characteristics –
creating excellent time series benchmarks for RNNs.



3.2 Coal-fired Power Plant Data

This dataset consists of 10 days of per-minute data readings extracted from 12
out of a coal plant’s set of burners. Each of these 12 data files contains 12 pa-
rameters of time series data: Conditioner Inlet Temp, Conditioner Outlet Temp,
Coal Feeder Rate, Primary Air Flow, Primary Air Split, System Secondary Air
Flow Total, Secondary Air Flow, Secondary Air Split, Tertiary Air Split, To-
tal Combined Air Flow, Supplementary Fuel Flow, and Main Flame Intensity.
This data was normalized to the range [0, 1], which serves furthermore as a data
anonymization step.

Fig. 3. Example parameters for Burner #2 from the coal plant dataset: flame intensity
(top) and fuel flow (bottom).

For the coal plant data, main flame intensity and supplementary fuel flow
were selected as parameters of interest. Figure 3 provides examples of these two
parameters from Burner # 2 found in the dataset. Main flame intensity is mostly
a product of conditions within the burner and parameters related to coal quality
which causes it to vary over time. However sometimes planned outages occur or
conditions in the burner deteriorate so badly that it is temporarily shut down. In
these cases, sharp spikes occur during the shutdown, which last for an unspecified
period of time before the burner turns back on again and the parameter (value)
sharply increases. The burners can also potentially operate at different output
levels, depending on power generation needs. As a result, step-wise behavior is
observed.

On the other hand, supplementary fuel flow remains fairly constant. Nonethe-
less, it yields sudden and drastic spikes in response to decisions made by plant
operators. When conditions in the burners become poor due to coal quality or
other effects, the operator may need to provide supplementary fuel to prevent
the burner from going into shutdown. Of particular interest is if an RNN can
successfully detect these spikes given the conditions of the other parameters.
Similar the key parameters (RPM and pitch) selected in the NGAFID data,



main flame intensity is mostly a product of conditions within the (coal) burner
while supplementary fuel flow is more directly controlled by human operators.
Despite these similarities, however, the characteristics of these time series are
different from each other as well as from the NGAFID flight data, providing
additional, unique benchmark prediction challenges.

4 Results

4.1 Experiments

The first set of (5) experiments only permitted the use of a single memory cell
type, i.e., exclusively ∆-RNN, GRU, LSTM, MGU, or UGRNN (one experiment
per type), and no simple neurons. All of these experiments only allowed the
generation of feedforward connections between cells (these experiments were
denoted as delta, gru, lstm, mgu or ugrnn). The second set of (2) experiments
were conducted where the first one only permitted the use of simple neurons
and feedforward connections (denoted as simple) while the second permitted
EXAMM to make use of feedforward connections and simple neurons as well as
the choice of any memory cell type (denoted as all). The next set of experiments
(5) were identical to the first set with the key exception that EXAMM could
choose either between simple neurons and one specified specific memory cell type
(these experiments are appended with a +simple, i.e., lstm+simple). The final
set of (12) experiments consisted of taking the setting of each of the prior 12
(5 + 2 + 5) runs and re-ran them but with the modification that EXAMM was
permitted to generate deep recurrent connections of varying time delays (these
runs are appended with a +rec).

This full set of (24) experiments was conducted for each of the four prediction
parameters, i.e., RPM, pitch, main flame intensity, and supplementary fuel flow.
K-fold cross validation was carried out for each prediction parameter, with a fold
size of 2. This resulted in 5 folds for the NGAFID data (as it had 10 flight data
files), and 6 folds for the coal plant data (as it has 12 burner data files). Each fold
and EXAMM experiment was repeated 10 times. In total, each of the 24 EXAMM
experiments were conducted 220 times (50 times each for the NGAFID parameter
k-fold validation and 60 times each for the coal data parameter k-fold validation),
for a grand total of 5, 280 separate EXAMM experiments/simulations.

4.2 EXAMM and Backpropagation Hyperparameters

All RNNs were locally trained with backpropagation through time (BPTT) [40]
and stochastic gradient descent (SGD) using the same hyperparameters. SGD
was run with a learning rate of η = 0.001, utilizing Nesterov momentum with
mu = 0.9. No dropout regularization was used since, in prior work, it has been
shown to reduce performance when training RNNs for time series prediction [37].
For the LSTM cells that EXAMM could make use of, the forget gate bias had a
value of 1.0 added to it, as [41] has shown that doing so improves training time



significantly. Otherwise, RNN weights were initialized by EXAMM’s Lamarck-
ian strategy. To prevent exploding gradients, gradient clipping (as described by
Pascanu et al. [9]) was used when the norm of the gradient was above a thresh-
old of 1.0. To improve performance on vanishing gradients, gradient boosting
(the opposite of clipping) was used when the norm of the gradient was below a
threshold of 0.05.

Each EXAMM neuro-evolution run consisted of 10 islands, each with a pop-
ulation size of 5. New RNNs were generated via intra-island crossover (at a rate
of 20%), mutation at a rate 70%, and inter-island crossover at 10% rate. All of
EXAMM’s mutation operations (except for split edge) were utilized, each chosen
with a uniform 10% chance. The experiments labeled all were able to select any
type of memory cell or Elman neurons at random, each with an equal proba-
bility. Each EXAMM run generated 2000 RNNs, with each RNN being trained
locally (using the BPTT settings above) for 10 epochs. Recurrent connections
that could span a time skip between 1 and 10 could be chosen (uniformly at
random). These runs were performed utilizing 20 processors in parallel, and, on
average, required approximately 0.5 compute hours. In total, the results we re-
port come from training 10, 560, 000 RNNs which required ˜52, 800 CPU hours
of compute time.

4.3 Experimental Results

Figure 4 shows the range of the fitness values of the best found neural networks
across all of the EXAMM experiments, sorted by their average case performance.
This combines the results from all folds and all trial repeats – each box in the box
plots represent 110 different fitness values. The box plots are ordered according
to mean fitness (calculated as mean absolute error, or MAE) of the RNNs for
that experiment/setting (across all folds), with the top being the highest average
MAE, i.e., the worst performing simulation setting, and the bottom containing
the lowest average MAE, i.e., the best performing setting. Means are represented
by green triangles and medians by orange bars. Run type names with deep
recurrent connections are highlighted in red.

How well the different experiments performed was also analyzed by calcu-
lating the mean and standard deviation of all best evolved fitness scores from
each repeated experiment across each fold. This was done since each fold of the
test data had a different range of potential best results. It was then possible
to rank/order the experiments/simulations in terms of their deviation from the
mean (providing a less biased metric of improvement). Table 1 presents how well
each experiment performed as an average of how many standard deviations they
were from the mean in their best case performance. Search types which utilized
deep recurrent connections (+rec) are highlighted in bold.

4.4 Effects of Deep Recurrent Connections

Table 2 provides measurements for how the addition of deep recurrent changed
the performance of the varying memory cell types, as well as the all and simple



Fig. 4. Consolidated range of fitness (mean absolute error) of the best found RNNs for
the two datasets’ (flame intensity and fuel flow for the coal plant dataset, and pitch
and RPM for the aviation datset) target prediction parameters. Results are for the 24
experiments across all 6 folds, with 10 repeats per fold. Run types are ordered top-down
by mean.



Type Devs from Mean
gru+simple -1.02844
mgu+rec -1.15701
ugrnn+simple -1.21079
mgu -1.24655
mgu+simple -1.26880
gru -1.29390
simple -1.30901
lstm+simple -1.35475
lstm -1.35496
delta+simple -1.37473
ugrnn+rec -1.42362
ugrnn -1.43371
delta -1.48912
mgu+simple+rec -1.55717
gru+simple+rec -1.58618
lstm+simple+rec -1.63655
all+rec -1.64301
all -1.66893
lstm+rec -1.70057
ugrnn+simple+rec -1.71172
gru+rec -1.73098
delta+rec -1.95685
simple+rec -1.97756
delta+simple+rec -2.08205

(a) σFlame: Best MAE

Type Devs from Mean
gru+rec -1.10116
ugrnn+simple -1.18567
lstm+simple -1.18625
mgu+rec -1.18778
lstm+simple+rec -1.21500
mgu+simple -1.21509
all -1.22138
gru+simple -1.27796
gru+simple+rec -1.29070
simple+rec -1.29699
simple -1.30479
ugrnn -1.30559
ugrnn+simple+rec -1.31366
delta -1.33034
delta+rec -1.35481
all+rec -1.37338
lstm -1.38003
delta+simple -1.38368
lstm+rec -1.38510
ugrnn+rec -1.42369
mgu -1.45259
mgu+simple+rec -1.50962
gru -1.53812
delta+simple+rec -1.54667

(b) σFuelF low: Best MAE

Type Devs from Mean
ugrnn+simple -0.99073
gru -1.01889
lstm+simple -1.09707
gru+simple -1.10143
delta -1.19651
lstm -1.24966
all -1.25872
delta+rec -1.42943
mgu+simple -1.48976
all+rec -1.55755
ugrnn+rec -1.58235
mgu+rec -1.60397
lstm+rec -1.63888
ugrnn+simple+rec -1.64192
mgu -1.67690
ugrnn -1.70299
delta+simple+rec -1.77567
delta+simple -1.78042
gru+rec -1.81352
lstm+simple+rec -1.89858
simple -2.05128
mgu+simple+rec -2.09451
gru+simple+rec -2.09545
simple+rec -2.24764

(c) σPitch: Best MAE

Type Devs from Mean
gru -0.94516
simple -0.99991
gru+simple -1.08121
mgu -1.17371
ugrnn+simple -1.19714
all+rec -1.34347
ugrnn -1.36917
ugrnn+simple+rec -1.44366
gru+simple+rec -1.49508
mgu+simple -1.49991
lstm -1.50167
delta+simple+rec -1.51271
delta+simple -1.51795
mgu+rec -1.52494
delta -1.57259
lstm+simple -1.64965
all -1.69526
lstm+simple+rec -1.71450
ugrnn+rec -1.72680
lstm+rec -1.74024
simple+rec -1.74335
gru+rec -1.88070
mgu+simple+rec -1.89718
delta+rec -2.05063

(d) σRPM : Best MAE

Table 1. Best fitness performance values reported for each EXAMM experimental
setting. Experimental settings are ranked by their number of standard deviations from
the mean of all experiments. Lower values had better performance.



runs. In it, we show how many standard deviations from the mean the average
case moved when averaging the differences of a run type to the version of that
run type with +rec over all four prediction parameters. For example, mgu to
mgu+rec and mgu+simple to mgu+simple+rec in the mgu row. Adding the
+rec setting showed significant differences, improving deviations from the mean
by −0.2 overall. In addition, for each of the prediction parameters, the best found
RNN utilized deep recurent connections. Looking at the top 3 best and top 3
average case RNNs, 11 out of 12 utilized deep recurrent connections. Similarly,
in the bottom 3 best, +rec occurs twice and does not appear at all in the bottom
3 average case run types. For the Flame and RPM parameters, on the average
case, even the worst performing run type with +rec performs better than any
experiments without it.

5 Discussion

Type Dev for Avg Dev for Best
all -0.09113 -0.01828
simple -0.27842 -0.40014
delta -0.25571 -0.30079
gru -0.31534 -0.43257
lstm -0.14463 -0.24462
mgu -0.11507 0.01901
ugrnn -0.19291 -0.08625
overall -0.19903 -0.20909

Table 2. Performance improvement
(in std. devs from the mean) for result-
ing from adding deep recurrent connec-
tions.

The results presented in this work con-
tribute some significant and interesting
insights for RNN-based time series data
prediction. Deep recurrent connections
yielded the most significant improvements
in RNN generalization, and, in some
cases, were more important than the use
of memory cells, with the simple+rec ex-
periments performing quite strongly. For
all four benchmark datasets, the best
found RNNs utilized deep recurrent connections. As a whole, adding deep re-
current connections to the evolutionary process resulted in large shifts of im-
provement in the standard deviations from mean measurement. These results
are particularly significant given that the commonly accepted practice is that
one should primarily use LSTM or other gated neural structures in order to stand
a chance at capturing long term time dependencies in temporal data (despite the
fact that internal connections only explicitly traverse a single time step) when
classically it has been known that time delays and temporal skip connections
can vastly improve generalization over sequences.

Another very interesting finding was that only using simple neurons and deep
recurrent connections, without any memory cells, (the simple+rec experiment)
led to quite good performance. This found the best RNN with respect to the
Pitch prediction problem (aviation), the second best on the Flame prediction
problem dataset (coal), and the fourth best on the RPM prediction problem
(aviation). This shows that, in some cases, it may be more important to have
deep recurrent connections than more complicated memory cells.

We also found that the newer ∆-RNN memory cell did consistently stand out
as one of the better-performing memory cells. In three out of the four datasets,
EXAMM found it to be the best performing RNN cell-of-choice, and for the
average case performance, the ∆-RNN made it into the top 3 experiments for all



four datasets. Furthermore, unlike the other memory cell experiments ∆-RNN
did not appear in the bottom 3 for any of the experiments, either in the average
or best cases. The only other experiment setting/configuration to boast top 3
best performance and no bottom 3 performance was the simple+rec experiment.
However this did not perform as well in the average case, only appearing in
the top 3 twice. Our results showing that the ∆-RNN consistently outperforms
more complex cells such as the LSTM corroborates the findings of [1], which
presented early findings in the domain of language modeling. While a newer
memory cell, our results indicate that, while deep recurrence and time delay are
critical for robustly modeling sequences, simpler gated cells like the ∆-RNN cell
should also be strongly considered when designing RNNs, especially for time
series forecasting.

6 Future Work

The choice of selecting time skip depths uniformly at random between the hyper-
parameter range [1, 10] was a somewhat arbitrary choice. We hypothesize that
an adaptive approach to selecting the depth skip (or length of the time delay)
based on previously well-performing configurations/model candidates might pro-
vide better accuracy and remove the need for choosing the bounds of time delay
range. Perhaps the most interesting direction to pursue is to develop memory
cells that efficiently and effectively use recurrent connections that explicitly span
more than one step in time, i.e., perhaps more intelligent/powerful gating mech-
anisms could be design to properly mix together the information that flows from
multiple time delays. In addition, perhaps EXAMM can be used to aumatically
incorporate or design better variations of highway connections as well, given the
potential expressive power that recurrent highway networks [20] offer.

The strong performance of the simple+rec experiment might also suggest
that generating and training RNNs using an evolutionary process with Lamar-
ckian weight initialization may make training RNNs with non-gated recurrent
connections easier. This naturally happens since neuro-evolution process such as
EXAMM will discard poor RNN solutions that occur in the search space, i.e.,
poor minima/regions that result from exploding or vanishing gradients when
using backpropagation through time (BPTT), and not add them to its candi-
date solution population, preventing the generation of at least offspring that
generalize too poorly. As a result, the evolutionary process will tend to preserve
RNNs which have been training well (or at least, when trained with BPTT, have
well-behaved gradients). Future investigation can explore if this is truly the case
by by retraining the best found architectures from scratch and comparing their
performance across various sequence modeling settings.

7 Conclusion

While most work in the field of neuro-evolution focuses on the evolution of neu-
ral architectures that can potentially outperform hand-crafted designs, this work



showcases the potential of neuro-evolution for a different use: a robust analysis
and investigation of the performance and capabilities of different artificial neu-
ral network components. Specifically, we demonstrate EXAMM as powerful tool
for analyzing/designing recurrent networks, focused on the choice of internal
memory cells and the density and complexity of recurrent connectivity patterns.
Rigorously investigating a new neural processing component can be quite chal-
lenging given that, often, its performance is tied to the overall architecture it
is used within. For most work, new architectural components or strategies are
typically only investigated within a few select architectures which may not nec-
essarily represent how well the processing mechanism would perform given a
much wider range of potential architectures it could be integrated into. Neuro-
evolution helps alleviate this problem by allowing the the structural components
themselves to play a key role in determining the architecture/systems they will
most likely work well within. This facilitates a far more fair comparison of their
capabilities and, perhaps, allows us to draw more general insights in our quest
to construct robust neural models that generalize well.
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