
Evolving Recurrent Neural Networks for Time
Series Data Prediction of Coal Plant Parameters

AbdElRahman ElSaid1, Steven Benson2, Shuchita Patwardhan2, David
Stadem2, and Travis Desell1

1 Rochester Institute of Technology, Rochester, NY 14623, USA
aae8800@rit.edu, tjdvse@rit.edu

2 Microbeam Technologies Inc., Grand Forks, ND 58203
sbenson@microbeam.com,shuchita@microbeam.com,dstadem@microbeam.com

Abstract. This paper presents the Evolutionary eXploration of Aug-
menting LSTM Topologies (EXALT) algorithm and its use in evolving
recurrent neural networks (RNNs) for time series data prediction. It in-
troduces a new open data set from a coal-fired power plant, consisting
of 10 days of per minute sensor recordings from 12 different burners
at the plant. This large scale real world data set involves complex de-
pedencies between sensor parameters and makes for challening data to
predict. EXALT provides interesting new techniques for evolving neural
networks, including epigenetic weight initialization, where child neural
networks re-use parental weights as a starting point to backpropagation,
as well as node-level mutation operations which can improve evolutionary
progress. EXALT has been designed with parallel computation in mind
to further improve performance. Preliminary results were gathered pre-
dicting the Main Flame Intensity data parameter, with EXALT strongly
outperforming five traditional neural network architectures on the best,
average and worst cases across 10 repeated training runs per test case;
and was only slightly behind the best trained Elman recurrent neural
networks while being significantly more reliable (i.e., much better av-
erage and worst case results). Further, EXALT achived these results 2
to 10 times faster than the traditional methods, in part due to its scal-
ability, showing strong potential to beat traditional architectures given
additional runtime.

Keywords: Neuro-Evolution · Recurrent Neural Networks · Time Series
Data Prediction.

1 Introduction

With the advent of deep learning, the use of neural networks has become widely
popular across a variety of domains and problems. However, most of this success
currently has been driven by human architected neural networks, which is time
consuming, error prone and still leaves a major open question: what is the optimal
architecture for a neural network? Further, optimality may have have multiple
aspects and changes from problem to problem, as in one domain it may be better



to have a smaller yet less accurate neural network due to performance concerns,
while in another accuracy may be more important than performance. This can
become problematic as many applications of neural networks are evaluated using
only a few select architectures from the literature, or may simply just pick an
architecture that has shown prior success.

Another issue is that backpropagation is still the de-facto method for training
a neural network. While significant performance benefits for certain types of
neural networks (e.g., Convolutional Neural Networks) can be gained by utilizing
GPUs, other network types, such as recurrent neural netowrks (RNNs), typically
cannot achieve such performance benfits without convolutional components. As
backpropagation is an inherently sequential process, the time to train a single
large neural network, let alone a variety of architectures, can quickly become
prohibitive.

This work introduces a new algorithm, Evolutionary eXploration of Aug-
menting LSTM Topologies (EXALT), which borrows strategies from both NEAT
(NeuroEvolution of Augmenting Topologies [1]) and its sister algorithm, EX-
ACT (Evolutionary eXploration of Augmenting Convolutional Topologies [2, 3])
to evolve recurrent neural networks with long short-term memory (LSTM [4])
components. EXALT has been designed with concurrency in mind, and allows
for multiple RNNs to be trained in a parallel manner using backpropagation
while evolving their structures. EXALT expands on NEAT by having node-level
mutations which can speed up the evolutionary process, and by utilizing back-
propagation instead of an evolutionary strategy to more swiftly train the RNNs.
Child RNNs re-use parental weights in an epigenetic weight initialization strat-
egy, allowing them to continue training where parents left off, which further
improves how quickly the algorithm evolves well performing RNNs.

This work evaluates the performance of EXALT as compared to six tradi-
tional neural network architectures (one layer and two layer feed forward neural
networks; Jordan and Elman RNNs; and one layer and two layer LSTM RNNs)
on a real world dataset collected from a coal-fired power plant. This data set
consists of 10 days worth of per minute recordings across 12 sensors; from 12
different burners. The parameters are non-seasonal and potentially correlated,
resulting in a highly complex set of data to perform predictions on. This dataset
has been made open to encourage validation and reproducbility of these results,
and as a valuable research to the time series data prediction research community.
Having good predictors for these parameters will allow the development of tools
that can be used to forecast and alert plant operators and engineers about poor
boiler conditions which may occur as a result of incoming coal and/or current
power plant parameters.

Preliminary results predicting the Main Flame Intensity parameter of this
dataset with the EXALT algorithm are highly promising. K-fold cross validation
was done, using each burner file as a test case; and 10 runs of each strategy
were repeated for each fold. While the Elman networks were able to be trained
to slightly better performance (within 0.0025 mean squared error), on average
they were not nearly as reliable. EXALT outperformed all the other network



architectures in best, average and worst cases, and while finding more efficient
(i.e., smaller) RNNs than the traditional architectures, and was able to do so
in significantly less time (between 2 to 10 times faster) operating in parallel
across 20 processors. These preliminary results shows the strong potential of
this algorithm in evolving RNNs for time series data prediction.

The remainder of this paper is as follows. Section 2 presents related work.
Section 3 describes the EXALT algorithm in detail. Section 4 introduces the
coal-fired power plant data set, and Section 5 provides initialization settings and
results for the EXALT algorithm and fixed neural networks. The paper ends
with a discussion of conclusions and future work in Section 6.

2 Related Work

2.1 Recurrent Neural Networks (RNNs)

RNNs have an advantage over standard feed forward (FF) neural networks
(NNs), as they can deal with sequential input data, using their internal memory
to process sequences of inputs and use previously stored information to aid in
future predictions. This is done by allowing connections between neurons across
timesteps, which aids them in predicting more complex data [5]. However, this
leads to a more complicated training process as RNNs need to be “unrolled”
over each time step of the data and trained using backpropagation through time
(BPTT) [6].

In an effort to better train RNNs and capture time dependencies in data, long
short-term memory (LSTM) RNNs were first introduced by S. Hochrieter & J.
Schmidhuber [4]. LSTM neurons provide a solution for the exploding/vanishing
gradients problem by utilizing input, forget and output gates in each LSTM cell,
which can control and limit the backward flow of gradients in BPTT [7]. LSTM
RNNs have been used with strong performance in image recognition [8], audio
visual emotion recognition [9], music composition [10] and other areas. Regard-
ing time series prediction, for example, LSTM RNNs have been used for stock
market forecasting [11] and forex market forecasting [12]. Also forecasting wind
speeds [7, 13] for wind energy mills, and even predicting diagnoses for patients
based on health records [14].

2.2 Evolutionary Optimization Methods

The EXALT algorithm presented in this work is in part based its sister algorithm,
Evolutionary eXploration of Augmenting Convolutional Topologies (EXACT),
which has successfully been used to evolve convolutional neural networks (CNNs)
for image prediction tasks [2, 3]. However, where EXACT evolves feature maps
and filters to construct CNNs, EXALT utilizes LSTM and regular neurons along
with feed forward and recurrent connections to evolve RNNs. EXALT also uti-
lizes the epigenetic weight initialization strategy (see Section 3.2 that was shown
by EXACT to improve training performance [3].



Other work by Desell and ElSaid [15–17] has utilized an ant colony optimiza-
tion based approach to select which connections should be utilized in RNNs and
LSTM RNNs for the prediction of flight parameters. In particular, this ACO
approach was shown to reduce the number of trainable connections in half while
providing a significant improvement in predictions of engine vibration [16]. How-
ever, this approach works within a fixed RNN architecture and cannot evolve an
overall RNN structure.

Several other methods for evolving NN topologies along with weights have
been researched and deployed. In [1], NeuroEvolution of Augmenting Topologies
(NEAT) has been developed. It is a genetic algorithm that evolves increasingly
complex neural network topologies, while at the same time evolving the con-
nection weights. Genes are tracked using historical markings with innovation
numbers to perform crossover among different structures and enable efficient
recombination. Innovation is protected through speciation and the population
initially starts small without hidden layers and gradually grows through gener-
ations [18–20]. Experiments have demonstrated that NEAT presents an efficient
way for evolving neural networks for weights and topologies. Its power resides
in its ability to combine all the four main aspects discussed above and expand
to complex solutions. However NEAT still has some limitations when it comes
evolving neural networks with weights or LSTM cells for time series prediction
tasks as described in [15].

Other more recent work by Rawal and Miikkulainen has utilized tree based
encoding [21] and information maximization objectives [22] to evolve RNNs. EX-
ALT differs from this work in a few notable ways, first, the tree-based encoding
strategy uses a genetic programming strategy to evolve connections within recur-
rent neurons, and only utilizes fixed architectures built of layers of evolved node
types. On the other hand, the information maximization strategy utilizes NEAT
with LSTM neurons instead of regular neurons. EXALT allows the evolution
of RNNs with both regular and LSTM neurons, adds new node-level mutation
operations and uses backpropagation to train the evolved RNNs (see Section 3).
Furthermore, it has been developed with large scale concurrency in mind, and
utilizes an asynchronous steady-state approach, which has been shown to allow
scalability to potentially millions of compute nodes [23].

3 Evolutionary Exploration of Augmenting LSTM
Topologies (EXALT)

EXALT has been developed with parallel/concurrent operation in mind. It uti-
lizes a steady state population and generates new RNNs to be evaluated upon
request by workers. When a worker completes training a RNN, it is inserted
into the population if its fitness (mean squared error on the test data) is bet-
ter than the worst in the population, and then the worst in the population is
removed. This strategy is particularly important as the generated RNNs will
have different architectures and will not take the same amount of time to train.
By having a master process control the population, workers can complete the



training of the generated RNNs at whatever speed they can and the process is
naturally load balanced. Further, this allows EXALT to scale to however many
processors are available, while having the population size be independent of
processor availability, unlike synchronous parallel evolutionary strategies. The
EXALT codebase has a multithreaded implementation for multicore CPUs as
well as an MPI (the message passing interface [24]) implementation for use on
high performance computing resources.

3.1 Mutation and Recombination Operations

RNNs are evolved with edge-level operations, as done in NEAT, as well as with
new high level node mutations. Whereas NEAT only requires innovation numbers
for new edges, EXALT requires innovation numbers for both new nodes and
new edges. The master process keeps track of all node, edge and recurrent edge
innovations made, which are required to perform the crossover operation in linear
time without a graph matching algorithm. Figure 1 displays a visual walkthrough
of all the mutation operations used by EXALT. Nodes and edges selected to be
modified are highlighted, and then new elements to the RNN are shown in green.
Edge innovation numbers are not shown for clarity. Enabled edges are in black,
disabled edges are in grey.

Edge Mutations:

Disable Edge This operation randomly selects an enabled edge or recurrent edge
in a RNN genome and disables it so that it is not used. The edge remains in
the genome. As the disable edge operation can potentially make an output node
unreachable, after all mutation operations have been performed to generate a
child RNN genome, if any output node is unreachable that RNN genome is
discarded and a new child is generated by another attempt at mutation.

Enable Edge If there are any disabled edges or recurrent edges in the RNN
genome, this operation selects one at random and enables it.

Split Edge This operation selects an enabled edge at random and disables it. It
creates a new node (creating a new node innovation) and two new edges (creating
two new edge innovations), and connects the input node of the split edge to the
new node, and the new node to the output node of the split edge. The new node
is either a regular neuron or LSTM neuron, selected randomly at 50% each.

Add Edge This operation selects two nodes n1 and n2 within the RNN Genome
at random, such that depthn1

< depthn2
and such that there is not already an

edge between those nodes in this RNN Genome, and then adds an edge from n1
to n2. If an edge between n1 and n2 exists within the master’s innovation list,
that edge innovation is used, otherwise this creates a new edge innovation.



(a) The edge between Input 1 and Out-
put 1 is selected to be split. A new node
with innovation number (IN) 1 is cre-
ated.

(b) Input 3 and Node IN 1 are selected
to have an edge between them added.

(c) The edge between Input 3 and Out-
put 1 is enabled.

(d) A recurrent edge is added between
Output 1 and Node IN 1

(e) The edge between Input 3 and Out-
put 1 is disabled.

(f) A node with IN 2 is added at a
depth between the inputs and Node IN
1. Edges are randomly added to Input 2
and 3, and Node IN 1 and Output 1.

(g) Node IN 1 is split into Nodes IN 3
and 4, which get half the inputs. Both
have an output edge to Output 1, be-
cause there was only one output from
Node IN 1.

(h) Node IN 2 and 3 are selected to be
merged. They are disabled along with
their input/output edges. Node IN 5 is
created with edges between all their in-
puts and outputs.

(i) Node IN 1 is selected to be enabled,
along with all its input and output edges.

(j) Node IN 5 is selected to be disabled,
along with all its input and output edges.

Fig. 1. Edge and node mutation operations.



Add Recurrent Edge This operation selects two nodes n1 and n2 within the RNN
Genome at random and then adds a recurrent edge from n1 to n2. Recurrent
edges can span multiple time steps, with the edge’s recurrent depth selected
uniformly at random between 1 and 10 time steps. If a recurrent edge between n1
and n2 exists within the master’s innovation list with the same recurrent depth,
that recurrent edge innovation is used, otherwise this creates a new recurrent
edge innovation.

Node Mutations:

Disable Node This operation selects a random non-input and non-output node
and disabled it along with all of its incoming and outgoing edges.

Enable Node This operation selects a random disabled node and enables it along
with all of its incoming and outgoing edges.

Add Node This operation selects a random depth between 0 and 1, non-inclusive.
Given that the input node is always depth 0 and the output nodes are always
depth 1, this depth will split the RNN in two. A new node is created, at that
depth, and 1-5 edges are randomly generated to nodes with a lesser depth, and
1-5 edges are randomly generated to nodes with a greater depth. The node size
is set to the average of the maximum input node size and minimum output node
size. The new node will be either a regular or LSTM neuron, selected randomly
at 50% each. Newly created edges are 50% feed forward and 50% recurrent,
selected randomly.

Split Node This operation takes one non-input, non-output node at random and
splits it. This node is disabled (as in the disable node operation) and two new
nodes are created at the same depth as their parent. One input and one output
edge are assigned to each of the new nodes, with the others being assigned
randomly, ensuring that the newly created nodes have both inputs and outputs.
If there is only one input or one output edge to this node, then those edges
are duplicated for the new nodes. The new nodes will be either a regular or
LSTM neuron, selected randomly at 50% each. Newly created edges are 50%
feed forward and 50% recurrent, selected randomly.

Merge Node This operation takes two non-input, non-output nodes at random
and combines them. The selected nodes are disabled (as in the disable node
operation) and a new node is created with a depth equal to average of its parents.
This node is connected to the inputs and outputs of its parents, with input edges
created to those with a lower depth, and output edges created to those with a
deeper depth. The new node will be either a regular or LSTM neuron, selected
randomly at 50% each. Newly created edges are 50% feed forward and 50%
recurrent, selected randomly.

Other Operations:



Crossover utilizes two hyperparameters, the more fit crossover rate and the less
fit crossover rate. Two parent RNN genomes are selected, and the child RNN
genome is generated from every edge that appears in both parents. Edges that
only appear in the more fit parent are added randomly at the more fit crossover
rate, and edges that only appear in the less fit parent are added randomly at
the less fit crossover rate. Edges not added by either parent are also carried over
into the child RNN genome, however they are set to disabled. Nodes are then
added for each input and output of an edge. If the more fit parent has a node
with the same innovation number, it is added from the more fit parent.

Clone creates a copy of the parent genome, initialized to the same weights. This
allows a particular genome to continue training in cases where further training
may be more beneficial than performing a mutation or crossover.

3.2 Epigenetic Weight Initialization

For RNNs generated during population initialization, the weights are initialized
uniformly at random between -0.5 and 0.5. Biases and weights for new nodes and
edges are initialized randomly with a normal distribution based on the average,
µ and variance, σ2 of the parent’s weights. However, RNNs generated through
mutation or crossover re-use the weights of their parents, allowing the RNNs to
train from where the parents are left off, i.e., “epigenetic” weight initialization
– these weights are a modification of how the genome is expressed as opposed
to a modification of the genome itself.

Additionally, for crossover in the case of where an edge or node exists in both
parents, the child weights are generated by recombining the parents weights.
Given a random number −0.5 <= r <= 1.5, a child’s weight wc is set to wc =
r(wp2−wp1) +wp1, where wp1 is the weight from the more fit parent, and wp2 is
the weight from the less fit parent. This allows the child weights to be set along
a gradient calculated from the weights of the two parents.

4 Open Data and Reproducibility

The dataset examined in this work is time series data gathered from a coal-fired
power plant. The data consists of 10 days of per-minute data readings extracted
from 12 of the plant’s burners. The data has 12 parameters of time series data:

1. Conditioner Inlet Temp
2. Conditioner Outlet Temp
3. Coal Feeder Rate
4. Primary Air Flow
5. Primary Air Split
6. System Secondary Air Flow Total

7. Secondary Air Flow
8. Secondary Air Split
9. Tertiary Air Split

10. Total Combined Air Flow
11. Supplementary Oil Flow
12. Main Flame Intensity

In order to protect the confidentiality of the power plant which provided
the data, along with any sensitive data elements, all identifying data has been



scrubbed from the data sets (such as dates, times, locations and facility names).
Further, the data has been pre-normalized between 0 and 1 as a further precau-
tion. So while the data cannot be reverse engineered to identify the originating
power plant or actual parameter values – it still is an extremely valuable test
data set for times series data prediction as it consists of real world data from a
highly complex system with interdependent data streams.

In this work, one of the parameters was of key interest for time series data
prediction, Main Flame Intensity, and was used as the parameter for prediction
while gathering the results. In order to further reproducibility of these results
and provide this important data set to the time series data prediction research
community, it has been made available as part of the EXACT/EXALT GitHub
repository, along with instructions on how to use the EXALT code base to recre-
ate these results3.

5 Results

Two sets of results were gathered predicting Main Flame Intensity from the coal
plant data set. Six common fixed neural network architectures for time series data
prediction were investigated: 1) a one layer feed forward (FF), neural network
(NN) 2) a two layer FF NN, 3) an Jordan recurrent neural network (RNN), 4)
an Elman RNN, 5) a one layer long short-term memory (LSTM) RNN and 6) a
two layer LSTM RNN. K-fold cross validation was performed with 12 folds (i.e.,
each of the 12 burner data sets was left out to be tested on after training using
the other 11 burner data sets). Each NN was trained 10 times for each output
data file, resulting in 120 NNs being trained for each NN type. Similarly, EXALT
was run 10 times per fold, using each of the 12 burner data sets as testing data,
for a total of 120 runs.

Results were gathered using university research computing systems. Compute
nodes utilized ranged between 10 core 2.3 GHz Intel R©Xeon R©CPU E5-2650 v3,
32 core 2.6 GHz AMD OpteronTMProcessor 6282 SE and 48 core 2.5 GHz AMD
OpteronTMProcessor 6180 SEs, which was unavoidable due to cluster scheduling
policies. All compute nodes ran RedHat Enterprise Linux 6.10. This did result in
some variation in performance, however discrepancies in timing were overcome
by averaging over multiple runs in aggregate. The 720 fixed architecture runs
were performed in parallel across 60 compute nodes and took approximately
1,500 compute hours in total. The 120 EXALT runs were performed with each
run utilizing 20 processors in parallel, and required 50 compute hours in total.

All neural networks were trained with stochastic backpropagation using the
same hyperparameters. Backpropagation was run with a learning rate η = 0.001,
utilizing Nesterov momentum with mu = 0.9 and without dropout, as dropout
has been shown in other work to reduce performance when training RNNs for
time series prediction [16]. To prevent exploding gradients, gradient clipping (as
described by Pascanu et al. [25]) was used when the norm of the gradient was

3 URL removed due to the double blind review process.



above a threshold of 1.0. To improve performance for vanishing gradients, gradi-
ent boosting (the opposite of clipping) was used when the norm of the gradient
was below a threshold of 0.05. Initial network weights were randomly initialized
uniformly at random between -0.5 and 0.5, however the forget gate bias of the
LSTM neurons had 1.0 added to it as this has shown significant improvements
to training time by Jozefowicz et al. [26]. The fixed NN architectures were
trained for 1000 epochs, and EXALT trained 2000 RNNs, with each trained for
10 epochs. As this was in total 20,000 epochs performed in parallel over 20 pro-
cessors it was seen to be somewhat equivalent to training a single NN For 1000
epochs.

Each EXALT run was done with a population size of 20, and new RNNs
were generated via crossover 25% of the time, and by mutation 75% of the time.
Mutation operations were performed at the following rates:

1. clone: 1/17
2. add edge: 1/17
3. add recurrent edge: 3/17
4. enable edge: 1/17
5. disable edge: 3/17
6. split edge: 1/17

7. add node: 1/17

8. enable node: 1/17

9. disable node: 3/17

10. split node: 1/17

11. merge node: 1/17

Mutation rates were chosen in a manner to give mostly equal weighting to each
mutation operation. Add recurrent edge was given some extra preference as it
could be potentially adding recurrent edges with recurrent depths between 1 and
10, which provides a lot of potential options. Disable edge and disable node were
also given extra preference to counteract the RNNs growing quickly, as the other
options would put more weight on increasing the RNN size.

Figure 2 shows the minimum, maximum and average progress of the six fixed
neural network architectures for each fold, along with the minimum, average
and maximum progress of for each EXALT run on each fold. EXALT shows
dramatic improvements in reliability and performance over training multiple
fixed architecture neural networks. Table 1 presents the aggregrate results across
each of the folds as well as in total. Two major observations can be made from
this, first, the EXALT runs were shown to be much more reliable than training
multiple fixed NN architectures, and second, the EXALT runs completed in
significantly less time (which was unexpected).

While it was expected that having EXALT evaluate 2000 RNNs each for 10
epochs across 20 nodes in parallel would result in a relatively similar amount of
time to training a fixed architectures for 1000 epochs; EXALT runs on average
completed more than twice as fast as even the simplest architecture evaluated
(a one layer FF NN). Table 2 shows the number of nodes, edges, recurrent edges
and trainable connections (weights) for each neural network type, as well as
the average counts of these across the best evolved RNNs by EXALT. Overall,
EXALT found well performing RNNs that were much smaller than the fixed
network sizes. Figure 3 presents some of the best evolved RNNs. These RNNs
dropped out some inputs and were more sparsely connected. Interestingly, they
were able to perform very well (better than most of the larger fixed architectures)
with only a few hidden nodes and sparse connections.



(a) (b) (c)

(d) (e) (f)

(g)

Fig. 2. These plots present the minimum, average, and maximum mean squared errors
across each of the 12 folds used by K-fold cross validation by the one layer feed forward
NN (2a), two layer feed forward NN (2b), Jordan RNN (2c), Elman RNN (2d), one
layer LSTM RNN (2e), two layer LSTM RNN (2f), and by EXALT (2g).



one layer ff
Min Avg Max Time

Fold 0 0.031809 0.044369 0.072142 3658
Fold 1 0.024417 0.031502 0.040341 4040
Fold 2 0.020960 0.024908 0.033439 4033
Fold 3 0.033071 0.044107 0.056134 4027
Fold 4 0.030796 0.049311 0.085186 4079
Fold 5 0.033532 0.039205 0.047536 3967
Fold 6 0.010756 0.016743 0.023700 3633
Fold 7 0.030178 0.054017 0.075785 3943
Fold 8 0.019893 0.033458 0.047565 3938
Fold 9 0.016084 0.019077 0.023716 3958
Fold 10 0.023736 0.032435 0.040408 4029
Fold 11 0.041660 0.074404 0.100530 3781

Average 0.026408 0.038628 0.053874 3924

two layer ff
Min Avg Max Time

Fold 0 0.026313 0.042009 0.073753 6670
Fold 1 0.026775 0.033963 0.046181 7542
Fold 2 0.019418 0.028966 0.046257 7480
Fold 3 0.029042 0.051393 0.073627 7615
Fold 4 0.023416 0.037335 0.051478 7639
Fold 5 0.031064 0.039306 0.046585 7616
Fold 6 0.014612 0.016611 0.019820 6345
Fold 7 0.028875 0.045736 0.077376 7222
Fold 8 0.016406 0.031521 0.046914 7547
Fold 9 0.016174 0.018498 0.021877 7683
Fold 10 0.025587 0.033352 0.038321 7609
Fold 11 0.036185 0.065018 0.121369 7460

Average 0.024489 0.036976 0.055296 7369

jordan
Min Avg Max Time

Fold 0 0.035064 0.050483 0.097150 3793
Fold 1 0.033920 0.039394 0.043391 3663
Fold 2 0.029067 0.036748 0.046604 3696
Fold 3 0.022927 0.028984 0.034974 3821
Fold 4 0.038322 0.063602 0.098186 3715
Fold 5 0.034472 0.038310 0.043646 3735
Fold 6 0.013130 0.016467 0.020744 3895
Fold 7 0.038538 0.054139 0.090888 3684
Fold 8 0.020665 0.033360 0.043029 3395
Fold 9 0.016776 0.018601 0.020237 3439
Fold 10 0.025305 0.028733 0.032498 3423
Fold 11 0.055703 0.082065 0.097041 3507

Average 0.030324 0.040907 0.055699 3647

exalt
Min Avg Max Time

Fold 0 0.025360 0.028749 0.030883 1675
Fold 1 0.029976 0.031769 0.033015 1864
Fold 2 0.021359 0.023095 0.024838 2137
Fold 3 0.018214 0.019229 0.020563 1911
Fold 4 0.020932 0.023170 0.025770 1701
Fold 5 0.030464 0.036091 0.042542 1812
Fold 6 0.011974 0.012879 0.013904 1763
Fold 7 0.016564 0.019358 0.020220 1847
Fold 8 0.015867 0.018151 0.020786 1885
Fold 9 0.016922 0.019475 0.021441 1751
Fold 10 0.020945 0.030016 0.032662 1741
Fold 11 0.026530 0.031207 0.035073 1573

Average 0.021259 0.024432 0.026808 1805

elman
Min Avg Max Time

Fold 0 0.030173 0.047723 0.073134 6306
Fold 1 0.014476 0.035610 0.060415 6225
Fold 2 0.017132 0.027319 0.044997 5996
Fold 3 0.016477 0.027119 0.033858 5572
Fold 4 0.017084 0.029284 0.040682 5848
Fold 5 0.022649 0.031657 0.045849 5700
Fold 6 0.008368 0.012861 0.014999 5531
Fold 7 0.018732 0.045840 0.059511 5893
Fold 8 0.012740 0.027437 0.043608 6135
Fold 9 0.013751 0.018502 0.025968 5957
Fold 10 0.017572 0.028322 0.038500 6208
Fold 11 0.024479 0.053423 0.094839 5717

Average 0.017803 0.032092 0.048030 5924

one layer lstm
Min Avg Max Time

Fold 0 0.017438 0.052460 0.085376 8221
Fold 1 0.019471 0.037559 0.058379 8552
Fold 2 0.025880 0.039290 0.050615 8837
Fold 3 0.018254 0.025687 0.045868 8118
Fold 4 0.020927 102.586834 512.731000 7887
Fold 5 0.033102 0.043610 0.048107 7943
Fold 6 0.014528 37.755357 188.717000 7764
Fold 7 0.019844 0.034766 0.054353 7860
Fold 8 0.013022 0.098911 0.412826 8039
Fold 9 0.017950 0.035914 0.052342 8069
Fold 10 0.031792 0.035349 0.037908 8038
Fold 11 0.051159 0.076199 0.112534 7998

Average 0.023614 11.735161 58.533859 8110

two layer lstm
Min Avg Max Time

Fold 0 0.057165 0.135696 0.227263 16948
Fold 1 0.020384 0.049007 0.063610 19768
Fold 2 0.026154 0.037273 0.056096 19958
Fold 3 0.020337 0.059560 0.095907 20989
Fold 4 0.038711 0.044041 0.055016 22132
Fold 5 0.024799 0.043924 0.050945 21701
Fold 6 0.014154 0.014464 0.015441 16330
Fold 7 0.026489 0.085277 0.103150 17456
Fold 8 0.022628 0.050065 0.076219 20140
Fold 9 0.026221 0.042297 0.050324 21682
Fold 10 0.028380 0.035213 0.038571 22923
Fold 11 0.052778 0.069439 0.100021 22923

Average 0.029850 0.055521 0.077714 20336

Table 1. K-fold cross validation statistics for EXALT and the 6 fixed neural network
architectures, presenting the mean squared error and runtime over the 10 repeated
trainings. Best results for each fold are shown in bold.



Nodes Edges Rec. Edges Weights

One Layer FF 25 156 0 181

Two Layer FF 37 300 0 337

Jordan RNN 25 156 12 193

Elman RNN 25 156 144 325

One Layer LSTM 25 156 0 311

Two Layer LSTM 37 300 0 587

EXALT Best Avg. 14.7 26.2 14.6 81.5

Table 2. Number of nodes, edges, recurrent edges and trainable connections (weights)
in each evaluated network type, and the average values for the best evolved RNNs by
EXALT.
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Fig. 3. Two examples of the best RNNs evolved by EXALT. Orange nodes are LSTM
neurons, while black ndoes are regular neurons. Dotted lines represet recurrent connec-
tions, while solid lines represent feed forward connections. Colors of the lines represent
the magnitude of the weights weights (-1.0 is the most blue to 1.0 being the most red).



So while the Elman network were sometimes able to find the best predictions
for some folds, in aggregate these were much more unreliable than utilizing
EXALT, which came quite close to these results in the best case. Further, the
EXALT runs typically completed in under a third of the time. We expect that
running EXALT for a similar length of time will be even closer or outperform
these networks.

6 Discussion

Preliminary results for EXALT on this coal fired power plant dataset are very
promising. EXALT is quickly able to evolve RNNs that are more efficient (i.e.,
fewer nodes and trainable connections) than standard RNN architectures, with
comparable results. EXALT’s best found RNNs outperformed one and two layer
feed forward and LSTM neural networks, and had much better average and worst
case results than all tested architectures. While Elman networks did find some
networks with better results (within a small margin of 0.0025 mean squared
error), on average it performed quite a bit worse, and these networks also took
over 3 times longer to train - future results providing more time for EXALT to
evolve its networks should provide even better results.

This work also introduces a valuable time series dataset gathered from a
coal fired power plant, presenting 10 days worth of per minute readings from 12
different burners across 12 different sensors. Having this open large scale real
world time series data set of this nature will be very useful for researchers in the
field of time series data prediction, and to the authors’ knowledge there is not a
similar data set available.

There is also potential for significant future work. While the Main Flame
Intensity parameter was the focus of this work, as having a good predictor for
this parameter can help improve plant performance; there are a number of other
paramters which can be predicted as well. Further, predictions were only made
one time step (i.e., one minute) in the future. Investigating more parameters
further in the future along with other data sets will help further demonstrate
the effectiveness of the EXALT algorithm.

Using these trained RNNs, the project team aims to develop an advanced
tool for coal-fired power plants to actively monitor and manage coal quality and
overall boiler conditions that will provide a means to maximize availability and
maintain generating capacity while reducing cost. The tool will be used to fore-
cast and alert plant operators and engineers about poor boiler conditions which
may occur as a result of incoming coal and/or current power plant parameters.

A more detailed look into how effective the various EXALT mutations are can
further improve performance, as well as co-evolution of hyperparameters, which
has shown to provide benefits when evolving convolutional neural networks with
EXALT’s sister algorithm EXACT [2, 3]. Additionally, as EXALT converged
fairly quickly to a solution in this work, there is potential that methods for
increasing speciation may help find better results. One approach would be to
utilize mutliple islands evolving in parallel with occasional data transfer, which



has been shown by Alba et al. to provide significant performane benefits for
parallel evolutionary algorithms [27]. Additionally, EXALT was run only utilizing
20 processors and an investigation of its scalability will be interesting.

Overall these preliminary results for EXALT are quite exciting as it provides
a parallel algorithm to both train and evolve the structure of RNNs. It can
perform parameter selection by dropping out input connections and for the data
set tested it generated smaller more accurate RNNs in a shorter amount of time
than traditional architectures and backpropagation alone. Further, as it in part
utilizes backpropagation, it can be used in conjunction with and stands to benefit
from other RNN training methodologies which the machine learning community
may develop.
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