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a b s t r a c t

We develop a new parsimonious model of residential solar diffusion that, with only two regression
parameters and one independent variable, reasonably explains empirical observations. Additional solar
customers resulting from an increase in Net Present Value (NPV) are modeled as a normal distribution.
This leads to adoption as a function of NPV being the integral of the Gaussian, producing the error
function, which demonstrates S-curve behavior commonly seen in technology diffusion. Empirical
analysis for five regions (three U.S. states: Arizona, California, and Massachusetts; and two countries:
Germany and Japan) from 2005 to 2016 shows a consistent relationship between annual adoption per
million households and NPV. Non-linear regression indicates good agreement between data and the
error function model, the adoption rate peaking at an NPV of $7100/kW with standard deviation of
$4110/kW. Consumer purchases of rooftop solar across multiple regions are explained with a single
variable, making this model simpler than traditional diffusion approaches. A novel implication of the
model is that the subsidy cost to stimulate additional solar adoption increases as the technology becomes
cheaper. This is because the same subsidy is paid to all consumers, including those who would have
purchased solar without subsidy.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

With the expectation that solar photovoltaic (PV) power will
play a key role in mitigating climate change and improving en-
ergy security, governments around the world continue to invest
in policies to promote adoption. Policies include tax credits, re-
bates, feed-in tariffs, net metering mandates and Renewable
Portfolio Standards (RPS). These efforts have contributed to
dramatic price reductions in PV systems. The global average
module price has dropped substantially in the last several de-
cades: from $29/Watt (2018US$) in 1981 to $0.42/Watt (2018US$)
in 2018 [1]. Installed system costs vary by region, but have also
fallen substantially, e.g. the average installation cost of residen-
tial solar in the U.S. went from $11.50/Watt (2017US$) in 2000 to
$3.7/Watt in 2017 (2017US$) [2].
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While progress has been encouraging, the installed costs of PV
systems must fall further to enable widespread adoption without
undue increase in energy prices. State and federal policymakers
need straightforward answers to the question of what rates of solar
adoption can be expected with a given set of policy incentives.

There is a substantial history of modeling to understand re-
lationships between PV adoption, policy choices and consumer
behavior. Broadly speaking, the models aim to predict an aspect
of solar diffusion such as adoption rate or purchase decision of a
consumer as a function of explanatory variables, including time,
economic costs/benefits, and demographics (including environ-
mental attitudes, and location of consumers). A variety of
modeling frameworks have been used, including Bass diffusion,
discrete choice, fuzzy logic, agent-based and generic multivari-
able functions. Bass and related diffusion models describe
penetration rates as following a S-curve relationship over time
e.g. Refs. [3,4]. Discrete choice models typically construct a
probability of purchase from a mathematical representation of
utility [5,6]. Fuzzy logic simulates the solar purchase decision as
a set of rules to combine fuzzy set representations of decision
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variables [7]. Multivariable regression models have been used to
analyze the impacts of local environmental, social, economic and
political variables on the adoption of residential solar PV [8,9], to
identify demographic characteristics that enable the adoption of
residential solar PV through third-party ownership [10], and
spatial adoption patterns [11]. System dynamics models have
been developed for residential solar diffusion and represent the
problem as a network of algebraic relationships for interactions
between influencing factors [12e14]. Recent years have seen the
development of agent-based models of household residential PV
adoption, which often aim to simulate spatially-resolved PV
diffusion with explanatory variables such as socio-economic
demographics, behavioral motivations, and/or technical ad-
vancements, e.g. Refs. [15e19].

The above trends in solar diffusion modeling reflect how de-
velopments in Information and Communications Technologies
(ICTs) are enhancing and enabling data collection and manipu-
lation, and the complexity of descriptive models. While the po-
wer of ICTs should be utilized to continue to understand the
nuances of consumer adoption, it is also important to search for
parsimonious models that can explain general trends and re-
lationships. We propose that a good parsimonious model of a
system satisfies the following criteria: 1. It explains the most
empirical data with fewest free parameters, 2. It is reducible to
logical assumptions about fundamental system interactions and
3. All parameters should have straightforward interpretations in
terms of the system’s dynamics.

Here we pursue the hypothesis that a parsimonious model with
few explanatory variables can reasonably describe residential PV
adoption across multiple regions with different policy regimes and
consumer cultures. We start with a model with one explanatory
variable, Net Present Value (NPV) as experienced by residents in a
particular region, to explain the rate of residential PV adoption.
While economics is obviously an important factor in any consumer
decision, note that describing solar panel purchases purely as a
function of net economic value is in contrast with recent literature
emphasizing additional factors such as type of purchase (lease vs.
loan), adoption by neighbors, and environmental attitudes.

Annual data is collected for five regions to build the model:
three U.S. states (Arizona, California, Massachusetts) and two
countries (Germany, Japan). The choice of these regions was
driven by data availability and because they are several of the
most important regions in the world for residential PV adoption.
Each region is treated as a geographic aggregate, using regional
average data for all variables except solar insolation, which is
taken from a central location. To enable comparison of adoption
in different regions, we transform annual residential solar in-
stallations to an intrinsic variable by normalizing to the number
of available detached homes in the region. Net Present Value is
estimated based on installed system cost, electricity price, sub-
sidies (feed-in tariff or otherwise), real interest rates and region-
aggregated output of a solar system.

This model contributes to the theory and practice of modeling
solar diffusion by proposing a simple but effective method for
predicting the adoption of rooftop solar photovoltaics. It is the
first model to reasonably reproduce solar diffusion in three
countries with only one explanatory variable (Net Present Value)
and two regression constants common to all regions. This is in
contrast with previous models, which have more explanatory
variables (often many more) and/or apply only to a single region
[5e9,15e20]. Empirical validation for many prior models is
complicated by a large number of explanatory variables pre-
dicting a limited data set, and may require even more variables to
increase the resolution of adoption in a particular region.
Furthermore, there is value in a baseline prediction that only
depends on Net Present Value. First, this model supports plan-
ning of subsidy policy through direct prediction of adoption as
function of support, an analysis that can be completed quickly
and easily without advanced training. We apply the model in
sections 5 and 6 to derive new results on relationships between
subsidy level, technology price and local economic conditions.
Second, the model is simple enough to be easily incorporated
into national and international energy system models such as the
National Energy Modeling System from the U.S. Energy Infor-
mation Administration [21] and the World Energy Model (WEM)
from the International Energy Agency [22] or applied with little
modification to any research or analysis seeking to predict resi-
dential solar adoption.
2. Data and methods

2.1. Net Present Value

The explanatory variable used is average Net Present Value
(NPV) as experienced by a resident in a given region in a given year.
NPV combines a number of economic and policy variables such as
system cost, electricity price and subsidies into one value. A general
equation for the NPV of a subsidized residential PV system is:

NPV ð$Þ¼ ð �Ctotal þ SÞþ
XN
i¼1

TE � SC � RP � ð1þ infÞi
ð1þ intÞi

þ
XM
i¼1

TE � ð1� SCÞ � FIT Price

ð1þ intÞi
(1)

Where:

Ctotal : capital cost of the PV system ($)
S: capital cost subsidy ($)
TE: total electricity produced by the PV produced in one year
(kWh)
SC: self-consumption share (%)
RP: retail price of electricity ($/kWh)
inf: inflation rate (%)
int: lending rate (%)
FIT Price: fixed feed-in-tariff price ($/kWh)
i: year
N: lifetime of solar system (years)
M: term length of FIT Price (years)

Ctotal is the investment cost of the PV system, S is an initial capital
cost subsidy, e.g. the 30% federal tax rebate in the U.S. TE is the total
energy produced in one year by the solar panel system, determined
using the PVWATTS model from the National Renewable Energy
Laboratory [23]. All installed solar in a region is assumed to have
the output of a system placed in a latitudinally central city. Feed-in-
tariff (FIT) subsidies, such as in Germany and Japan, pay consumers
a fixed price for electricity supplied to the grid, i.e. energy after self-
consumption in the home. The share of self-consumed electricity,
SC, has been estimated to be 33% in Germany [24] and 45% in Japan
[25]. The FIT electricity price, FIT Price, is typically fixed for a given
time period, 20 years in Germany and 10 years in Japan.M refers to
the term of the FIT policy, N is the total lifetime of a solar system,
taken as 20 years. The retail price of electricity is denoted by RP,
which is assumed to increase every year with inflation rate inf
assumed as a continuation of a historical average [26]. For a system
in a net metering regime, such as many U.S. states, all electricity
generated garners the retail price - in the formula this corresponds
to SC ¼ 100%. In FIT regions, income is divided into a part from self-



Table 1
Data sources for residential solar system price, electricity prices, and subsidies. Details of data used for each region and year are available in the Electronic Annex. FIT¼ Feed-in-
tariff.

Region PV price Electricity price Subsidies Residential adoption Detached Households

Arizona
2011e2016

[35] [36] State: [33],
Federal: [32]

[35] 2013e2016 [37]

California
2005e2016

[35] [36] State: [34],
Federal: [32]

[38] 2013e2016 [37]

Germany
2005e2016

[39] [40] FIT: [39] Interest rate:
2005 [30],
2006e2008 [31]

[39] 2005e2016 [41]

Japan
2005e2016

[29] þ previous years [42] FIT:
2009e2010 [43],
2011e2016 [44]

Capital: [29] þ previous years [45] þ previous years 2013, 2008 [46]

Massachusetts
2011e2016

[35] [36] State: [33],
Federal: [32]

[35] 2013e2016 [37]

E. Williams et al. / Renewable Energy 150 (2020) 570e577572
consumption that gets the retail price (which increases with
inflation) and a part from FIT income (which does not increase with
inflation). The interest rate, int, is the average annual lending rate in
a region that year [27]. Note that this is a purely financial measure
of discount rate and that solar specific issues such as perception of
risk and benefits are implicitly accounted for in the model devel-
oped below (Equation (4)).

This multi-year international analysis necessitates choices
regarding the treatment of currencies, inflation and interest rates.
Our method is as follows: NPV is first calculated in local, nominal
currency for a region in a given year. NPV is thenmoved to real 2016
values in a nation’s currency using the Consumer Price Index for
each nation [26]. For Germany and Japan, local currencies are then
converted to US dollars using the 2016 average exchange rate [28].

Data sources used to calculate NPV in the different countries are
Adoption
�

MW
million houses

�
¼ Annual residential adoption ðMWÞ

Number of free detached houses ðmillionÞ (3)
listed in Table 1. Constrained by availability of data, treatment years
are 2005e2016 for Germany, Japan and California and 2011e2016
for Arizona and Massachusetts. Annual averages are used in all
cases except for Japan in 2009, when a new FIT policy dramatically
spurred adoption when it was introduced mid-year. Given the
availability of quarterly data for Japan, we split 2009 into two half
years and calculate adoption and NPV for each half year period.
There are capital subsidies in Japan in addition to FIT support, and
we use typical numbers reported by the International Energy
Agency (IEA) [29]. The German government has guaranteed favor-
able interest rates for loans to purchase solar panels, and infor-
mation from the IEA suggests these rates were 3.6%e4.15% in 2005
[30] and 4.5% for 2006e2008 [31]. Since 2006, the U.S. offered a
federal tax incentive of 30% of PV system capital cost, initially
capped at $2000 but later removed in 2009 [32]. In addition, Cali-
fornia, Arizona and Massachusetts have state-level subsidies
[33,34].
2.2. Adoption rates

There are several important details involved in developing an
appropriate measure of adoption rate. First, in order to compare
different regions, PV adoption must be normalized to derive an
intrinsic quantity that is independent of the population of the re-
gion. We do this by dividing residential adoption by the number of
detached houses in the region. This is a proxy for the number of
potential residential adopters, neglecting inappropriately sited
houses, community and multi-family installations.

Second, the number of houses available for new solar in-
stallations falls with increasing penetration of the technology. We
thus define the “number of free detached houses” in a given year as:

Number of free detached houses ¼ Stock of detached houses

� total houses with PV system already installed

(2)

Annual adoption is thus measured as
Data sources uses to quantify adoption in each region for each
year are detailed in Table 1. Note that the number of detached
houses was not available for every year, so we extrapolated/inter-
polated missing years using a linear fit.
2.3. Model for annual adoption as function of Net Present Value

The model to be tested starts from a simple hypothesis: the
number of additional customers purchasing a PV system given an
increase in NPV follows a normal distribution. In qualitative
terms, this follows the standard “diffusion of innovation” logic
but now linked with NPV, where new adoption is lower at the
start and end of the distribution and fastest in the middle [47]. In
this model, few customers will purchase residential solar when it
has strongly negative NPV (the left side of a normal distribution),
but more and more will become interested in adopting as the
NPV improves, up to some peak level. After this point, im-
provements in NPV continue to drive more adoption, but at a
declining rate. On the right side of the curve, very high NPV
levels do not drive much new adoption because most customers
were already willing to adopt at some lower NPV. For a given
NPV, the number of consumers who will purchase is the integral



Fig. 1. Annual residential PV installations versus Net Present Value for homeowners in
five regions (Germany, Japan, California, Massachusetts, Arizona). Each data point re-
flects an annual figure for the region, years treated are 2005e2016 for Germany, Japan
and California, 2011e2016 for Massachusetts and Arizona. The dotted line is the fit
from the error function model, Equation (4).
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of a normal distribution,

Annual adoption
�

MW
million houses

�
ðNPVÞ ¼ a

ðNPV

�∞

dx e
�
�

x�m
s

�2

¼ K
�
1þ erf

�
NPV � m

s

�1A

(4)

whereerf (x) is the error function, a is an arbitrary constant, later
combined with integration constants to yield K . K is one-half
maximum annual adoption, thus can be fixed at 2000 MW/
million households (hh), corresponding to every single homeowner
in a region buying a 4 kW system that year. m is the NPV that results
in maximum new customer acquisition and s is the spread in this
value, both to be determined empirically.

While non-economic factors relating to solar adoption are not
modeled explicitly, this model implicitly includes those factors
through the empirically-derived distribution. A perfectly uniform
preference for PV would result in a delta-function in additional
customers (s / 0), leading to a step function for adoption as a
function of NPV (i.e. If NPV is below some threshold, no one
adopts. If NPV is above it, everyone adopts). Perhaps the simplest
possible model would suggest that all consumers adopt if and
only if their NPV >0, which is the result achieved when both
m ¼ 0 and s / 0. However, the empirical data shows that this is a
poor fit to empirical data (Fig. 1). m values larger than 0 corre-
spond to consumers on average expecting more than economic
breakeven. Non-zero s reflects the observed diversity in con-
sumer preferences. Note that if s is of reasonable size compared
to m, adoption will be positive even with negative NPV. This
realistic outcome represents consumers that buy PV for non-
economic reasons such as concern for the environment.
3. Results: Adoption model

Fig. 1 shows 47 data points for observed annual residential PV
adoption versus Net Present Value (NPV) in five regions for
different years. Notably, despite some noise, all regions appear to
fall on a common curve without location-specific tuning of any
sort. Apart from which model used to describe it, the empirical
trend shown in the data in Fig. 1 is new and important: it shows
that PV adoption in different regions and years fall on a similar
curve. Given the many variables that could influence PV adoption
rates, we find the explanatory power of NPV over multiple re-
gions surprising and useful.

Numerical non-linear least squares regression yields
m ¼ $7100/kW and s ¼ $4110/kW, with a total square error (TSE)
of 13,770. The root-mean standard-deviation normalizes square
error for the size of the data set (47 data points) to indicate
average prediction error. The resulting root-mean standard-de-
viation is 17 MW/million households. Equation (4) using these
values is plotted on Fig. 1, indicating a good empirical fit.
Assessing the fit is complicated by non-linearity, leading to dif-
ficulties in using methods based on the assumptions of random
effects, e.g. r-squared [48] or fixed effects [49]. We steer clear of
perilous methodological waters here, noting that linear and
exponential fits yield TSE of 22,186 and 13,893 respectively. In
addition to having lower TSE, the error function model is
preferred for three reasons. First, it is based on a logical funda-
mental assumption (normal distribution for additional solar
customers). Second, the function has a maximum value bounded
by the theoretical limit of 100% adoption. Third, the error func-
tion model has regression parameters m and s that are directly
interpretable in terms of solar purchasing preferences.
4. Model application: Subsidy payments per stimulated
adoption

One particularly useful application for this model is prediction
of PV adoption induced by policies that affect the financial
benefits of rooftop solar, relevant to policy makers designing any
form of consumer-facing adoption policy or seeking to meet
adoption targets. Subsidies (or other subsidy-equivalent policies
such as feed-in tariffs) are intended to induce adoption, but their
actual effect lies between two extremes. At one end of the
spectrum, if government subsidizes a product that consumers
would have bought anyway, the subsidy spends public money
with no benefit. At the other extreme, all adoption can be
attributed to the subsidy, implicitly assuming that no consumer
would have bought an unsubsidized product. Reality lies be-
tween these two unrealistic assumptions, and the model in
Equation (4) enables quantification of induced adoption as
follows:

Subsidy induced adoption
�

MW
million hh

�

¼ Adoption ðNPV w= subsidyÞ � Adoption ðNPV no subsidyÞ
(5)

The public cost of a subsidy, at least as they are typically
implemented, depends on total adoption, i.e. the subsidy is paid
to both consumers who would have purchased without the
subsidy and those who wouldn’t have. For example, with a flat



Fig. 2. Government subsidy expenditure per stimulated adoption (US$/Watt) for a flat
subsidy of residential solar at three different values. Stimulating new adoption occurs
at lowest public cost when the technology is new and expensive. As the technology
becomes cheaper, the subsidy is increasingly paid to “free riders” who would have
purchased without a subsidy.
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capital cost subsidy ($/W), total expenditures on subsidies are
given by:
Subsidy expenditure
� $

million hh

�
¼Adoption ðNPV w = subsidyÞ

�
MW

million hh

�
� Subsidy

� $

W

�
� 106 (6)
The ratio of equations (6) and (5) yields “subsidy expenditure
per stimulated adoption”, an indicator of the economic effective-
ness of a subsidy. This is plotted in Fig. 2 for three values of flat
subsidy. The central result is that the public expenditures to induce
a certain amount of adoption are lowest when the technology is
new and increase as the technology becomes more economically
attractive. This is because the subsidy is paid to all consumers,
including free riders (Equation (6)), and the cost to the government
grows faster than the stimulated adoption from the subsidy
(Equation (5)).
5. Model application: Optimal solar subsidy

Equations (4)e(6) can also be used to estimate the “optimal”
subsidy level that maximizes net social benefits. The public benefits
of a subsidy, e.g. emissions reductions, scale according to the sub-
sidy-induced adoption. The costs are the expenditures in Equation
(6), which scale with total adoption. Considering a flat capital cost
subsidy for solar ($/W), this leads to the following expression for
the net benefits of a subsidy when CO2 reduction is assumed to be
the social benefit:
Table 2
Input parameter values and select model outputs for benefit-cost analysis of capital cost

Residential solar price
(2016 US$/W)

Electricity Price (2016
US$/kWh)

Solar resource
(kWh/kW)

Resid
(2016

Germany 1.65 .32 900 2400
Japan 3.2 .22 1150 1380
California 4.3 .17 1550 240
Net benefits
�
$

�
¼ Subsidy induced adoption ðMWÞ

� Lifetime CO2 reduction
�
ton CO2

MW

�

� Social Cost of Carbon
�

$

ton CO2

�

� Total adoption ðWÞ � Subsidy
� $

W

�

(7)

Given a set of economic and physical conditions that determine
NPV, i.e. system and electricity prices, solar resources and the social
cost of carbon, Equation (7) quantifies the net benefits as a function
of the subsidy, allowing determination of the optimal level.

We undertake a limited analysis of this type for a single year
(2016) of up-front capital cost subsidy in Germany, Japan and Cal-
ifornia. Germany and Japan currently rely on FIT policies, so this
analysis considers these regions enacting retail net metering and an
up-front capital cost subsidy ($/W) similar to the U.S. This is not to
suggest that the up-front subsidy is preferable. Rather, our idea is to
explore how a similar policy framework would play out in regions
with different economic and resource contexts. Furthermore, direct
capital cost subsidy and feed-in tariff can be converted into one
another using financial measures such as NPV, but we show them
in the same format for comparison. We consider a decision to
determine the optimal subsidy level in 2016 using solar system and
electricity prices in that year and local solar resources. We follow
the common practice of assuming that solar displaces the regional
average carbon emissions per kWh [50], with data for regional
average carbons emission intensities (for 2013) from Ref. [51]. Data
and select model outputs for Germany, Japan and California are
shown in Table 2.

The results of the analysis are shown in Fig. 3. It was found that a
relatively high threshold of social cost of carbonwas needed for the
subsidy to realize net benefits, $71, $94 and $159/ton in California,
Japan and Germany respectively. This is partly because this calcu-
lation neglects other important social benefits of rooftop solar,
criteria pollution displacement for example, and partly because all
three regions are expected to see substantial solar adoption
without any subsidy whatsoever. Because of this, the social cost of
carbonmust be high to balance out subsidy payments to free riders.
German solar requires a higher social cost of carbon to justify a
subsidy, due to the lower solar resource in that region. The optimal
solar subsidy in Germany, Japan and California. NPV ¼ Net Present Value.

ential solar NPV
$/kW)

Carbon intensity of grid
(g/kWh)

Subsidy expenditure per adoption
(0.5$/W subsidy)

486 1.70
572 1.55
489 1.38



Fig. 3. “Optimal” single year subsidy for residential solar that maximizes net societal
benefits (displaced CO2 minus subsidy expenditure) in Germany, Japan and California
as a function of the social cost of carbon (2016US $/ton) The optimum is determined by
mapping a test subsidy level to adoption by residents and estimating carbon
displacement benefits. Note that while this analysis indicates a high social cost of
carbon is needed to justify solar subsidies in Japan and Germany, only the direct
benefits of adoption on carbon emissions are included here, and technological progress
and other emissions benefits are neglected.
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subsidy increases linearly with increasing social cost of carbon
values, with slightly different slopes between the three regions.

It is important to emphasize that this limited analysis only ac-
counts for the direct benefits of a subsidy: the lowered carbon
emissions from solar panels adopted in a given year. Subsidies for
solar and other evolving technologies also induce indirect benefits
by stimulating demand, which in turn contributes to lowering
future costs of the technology through experience and technolog-
ical progress. A host of experience curve analyses show that, at least
retrospectively, lower solar prices and increased adoption have
gone in hand-in-hand following a regular pattern [52]. Market
development is indeed a large part of the motivation behind many
technology subsidies and it is possible, at least in principle, for a
subsidy to stimulate cost reductions leading to competitiveness of a
technology [53]. While it is useful to understand the direct benefits
of a subsidy, ultimately a larger analysis is needed that also includes
indirect effects on technological progress andmarket development.
We do not undertake this here, but note that significant indirect
benefits are needed to justify solar subsidies for lower values of
social cost of carbon.

6. Discussion

The contribution of this work is development of a new model
of residential PV diffusion that describes adoption across multi-
ple regions with only one explanatory variable. The model fits
empirical data well and is attractive from a theoretical perspec-
tive because its mathematical form (error function) can be
derived from a single plausible assumption: a normal distribu-
tion for additional customers as NPV increases. To compare and
contrast our model with prior work, the only model of simpler
mathematical form is the original Bass model, which fits adop-
tion share directly to time series data [3]. The original Bass model
however does not account for interventions (e.g. a subsidy) and
needs to be calibrated separately to each region. Van Benthem
and collaborators use a simple Logit model with NPV as an
explanatory variable to describe solar diffusion in California [20].
Our error function model has easily interpretable regression
parameters and far better empirical fit within and across regions.
More complex multivariable regressions and agent-based models
can explain how diffusion is influenced by other variables, e.g.
education level [5]) or behavior of neighbors [18]. There are
valuable applications of more complex models, but our simple
(yet empirically compelling) model enables new analyses such as
subsidy expenditure per induced adoption (Section 4) and
optimal subsidy (Section 5). In addition, the compactness of our
model facilitates its integration into larger energy systems
models such as the National Energy Modeling System (NEMS)
from the U.S. Energy Information Administration [21] and the
World Energy Model (WEM) from the International Energy
Agency [22]. These models are computationally intensive,
covering large geographical areas and accounting for multiple
interactions between energy technologies and the economy and
can benefit from empirically-justified but computationally sim-
ple models.

Clearly, most consumers do not perform or even necessarily
understand a Net Present Value calculation, as in Equation (1). How,
then, could NPV be the basis for a model describing consumer
choice? Solar installers do some form of calculation akin to NPV in
presenting the value proposition to consumers. They may show the
results in a different form (e.g. payback period or cash flow) but
some form of similar measure is shown to consumers to inform
their purchase decision. And while each consumer makes choices
based on their particular circumstances and preferences, making
individual prediction difficult, their aggregate behavior is easier to
model.

While there is compelling empirical justification for the model
we present, there are differences between predicted and actual
diffusion. One reason for gaps between prediction and outcome
arise from data limitations constraining implementation of the
modeling concept. Region-aggregated variables (state, nation) were
used despite intra-regional differences in electricity prices, subsidy
levels and solar insolation. For example, electricity production of
solar panels in California is estimated using a site roughly in the
middle of the state (1550 kWh/kW annually), but varies from
1340e1720 kWh/kW in different parts of the state. Model fit could
be improved by collecting data to implement the model for smaller
regions (e.g. by county in California). Also, the number of detached
houses is used a measure of potential adopters, but clearly not all
houses are suitable for solar. The estimation of Net Present Value
does not include factors such as house tenure, roof angle and di-
rection, resale value and maintenance costs [54,55].

The second origin of differences between model and data is use
of a single explanatory variable (Net Present Value) to explain a
complicated outcome (residential PV diffusion). There are factors
contributing to PV adoption not explicitly accounted for, including
perception of environmental issues [56], degree of adoption by
neighbors [11], financial risk (e.g. loan versus lease) [57], and con-
cerns over maintenance [7]. There are many possible extensions of
this model that would account for more factors, as well as potential
simplifications of prior complex diffusion models. Model
complexity usually comes at the price of higher data requirements
and more free parameters. Additional free parameters complicate
understanding even when explanatory power is actually gained.
Tradeoffs between adding variables and explanatory power are
reasonably well understood for multivariable linear regression, less
so for non-linear regression, agent-based, fuzzy logic and system
dynamics models.

The potential to improve our model should not distract the
reader from the central point: an aggregated and relatively simple
model provides a reasonably robust explanation of diffusion of
residential PV in a variety of regions with different consumers and
policy approaches. This simpler description enables quantification
of how much a given subsidy contributes to adoption, which is
needed for sound policy design.
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