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ABSTRACT
Over the course of a long-duration aging of helicopter drivetrain bearings to examine the consumption of grease life,
both vibration and acoustic emission sensing was used to monitor the bearing response as the grease life was consumed
through this aging. Acoustic emission is evaluated against vibration in terms of signal trends over the course of the
experiment. Common signal metrics are calculated to yield condition indicators, and machine learning techniques are
applied to the vibration and acoustic emission data. For the 862 hour duration test run equivalent to over 6700 hours
on wing, features of these signals trend with increased degree of aging. Autoencoders were used to enrich existing
set of traditional condition indicators and principle component analysis was effectively used for feature fusion. This
measured trending shows promise for future onboard Health and Usage Monitoring Systems which may adopt new
sensing and data analysis modalities to trend the condition of mechanical systems.

INTRODUCTION

Vibration monitoring has become ubiquitous on modern he-
licopter mechanical systems following several decades of
study into the dynamics and signal processing of vibration
from components containing damage including spalls result-
ing from rolling contact fatigue (Refs. 1–4). Despite enduring
interest in prognostic methods for developing accurate esti-
mates of remaining useful life of components, achievement of
this goal has remained elusive for some failure modes. The
consumption of grease life in bearings has been studied and
grease life models factor in to the determination of required
inspections and other airworthiness and maintenance consid-
erations. However, no studies in the open literature show
clear trends of diagnostic features in vibration signals over
long periods of time associated with the gradual consump-
tion of grease life in otherwise healthy bearings. This paper
advances this capability by examining next generation diag-
nostic techniques including (1) acoustic emission sensing and
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(2) application of machine learning techniques to improve the
diagnostic capabilities in Future Vertical Lift aircraft.
Conventional vibration measurements on wing have not been
demonstrated to give a reliable quantitative measure of the
grease condition, although corrosion and fatigue damage may
be more readily measured. However, the application of deep
learning techniques to data recorded over long periods holds
promise to better classify the grease age than conventional
mechanical diagnostics relying on a small number of en-
gineered signal features. Furthermore, features of acoustic
emission signals have demonstrated potentially higher sensi-
tivity to lubrication condition due to increase AE generation
through asperity contact, than can be measured in structural
vibration signals (Refs. 5, 6).
Acoustic emission techniques have been well established for
structural components and are increasingly being considered
for dynamic mechanical systems (Refs. 7, 8). Signal char-
acteristics for the latter are quite different and features have
not been well developed for dynamic components operating
in noisy systems. In this work, acoustic emission signals are
recorded near a test bearing operating in a complex mechan-
ical assembly over a period of several hundred hours. Signal
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Fig. 1: Bearing Test Rig showing Four Test Stations

snapshots are recorded from both an acoustic emission sensor
and a conventional accelerometer as the bearing and lubricant
are subjected to an accelerated aging environment. Model
order reduction techniques are applied to both the acoustic
emission signal as well as the acceleration signal to assess
and compare their diagnostic sensitivity and accuracy.

Autoencoders are unsupervised artificial neural network used
to learn efficient representations of the input data by attempt-
ing to recreate the input. In doing so, a much lower rep-
resentation is expressed at the inner layers. Autoencoder
topologies, trained on data that corresponds to normal op-
eration, have been demonstrated as effective anomaly detec-
tors (Ref. 9). The recent revolution in representation learning
furthered the usefulness of this machine learning. An early
successful demonstration of autoencoder neural network as
an anomaly detector using vibration data provided is given
in (Ref. 10). In the meantime, there has been a revolution
in training deep neural networks, which facilitated training of
deeper, more expressive neural network models and demon-
strated its performance on many important machine learn-
ing tasks (Ref. 11). The significant advantage of deep learn-
ing approach in HUMS is that it can be trained on abun-
dantly available normal data (Ref. 12), whereas classical ma-
chine learning model require a more statistically large data
sets (Ref. 13), with significant number of instances of failure
which are expensive to collect.

METHODS

Experimental Test Stand and Specimens

These experiments were conducted in conjunction with a test
program aimed at aging grease lubricated bearings from a US
Army utility helicopter for 862 hours at its nominal operating
speed of 4115 rpm, axial load of 25 lbf, and an elevated tem-
perature of 250 ◦F to accelerate the consumption of grease
life. A total of eight test bearings were aged in this manner,
distributed across four test chambers with each pair of bear-
ings loaded against one other to ensure equal loading. A sin-
gle electric motor drove all test chambers through a series of
gearboxes and shafts, as shown in Figure 1

The test bearing is a deep groove ball bearing with an inner
diameter of 1.97 in. (50 mm) and an outer diameter of 3.54 in.

Fig. 2: Test Bearings Mounted on Shaft with Inner Race
Spacer

(90 mm), ball diameter of 0.5 in (12.7 mm) and 10 balls. The
DN is 288,000 which is considered a moderate speed. The
test bearing is shown in Figure 2. It is grease lubricated with
Chevron SRI grease, containing a polyurea thickener. The
bearing has a two piece, stamped and riveted cage. For this
testing, the bearings were degreased and a reduced charge of
3.5 cc grease was reintroduced in order to reduce the amount
of base oil available to lubricate the bearings. This reduced
fill compares with a nominal charge of approximately 30% of
the free volume in the bearing or 17 cc, so the grease volume
is reduced by roughly 80% for these experiments (Ref. 14).
Operation for long periods at elevated temperatures results in
a slow consumption of the lubricant and increased asperity
contact between bearing components, which has been shown
to result in increased acoustic emission activity (Ref. 15).

In order to estimate the life acceleration factor introduced by
elevated temperature operation in the laboratory, two models
are employed. The first adopts tabular data from the SKF cat-
alog (Ref. 16) and the second is an empirical model given by
Booser and Khonsari (Refs. 17,18). Using an appropriate em-
pirical factor, the model for grease life given by Booser and
Khonsari is given in Equation 1

log L̄ =−2.40− 2540
273+Tc

−Sg log2

−.26
DN

(DN)L
− .18

DNW
C2

(1)

where:
L̄ Life (Hours)
Tc Temperature (oC)
Sg Half life subtraction factor = .3 (unitless)
N Shaft Speed (RPM)

DN
(DN)L

Speed penalty (unitless)
D Averge Bearing Diameter (mm)
W Radial load (lbs.)
C Specific dynamic capacity (lbs.)

The acceleration factor is given as AF = L̄70
L̄ where L̄70 is the

life at the operating temperature of 70◦. The bearings are ex-
posed to a range of temperatures on wing under operation, but
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Fig. 3: Dependence of Grease Life Acceleration Factor on
Temperature

speeds and loads are reasonably constant. The life reduction
factor is shown graphically versus temperature in Figure 3.
These models suggest that the acceleration factor for the 250
◦F outer race temperature is on the order of 8, and the 842
hours of operation in these experiments would translate into
approximately 6,700 hours of operation on wing. The reduc-
tion in grease charge compounds this acceleration factor by
reducing the available reservoir of mobile oil.

Data snapshots were sampled from an accelerometer, acoustic
emission sensor and a tachometer sensor at two-minute inter-
vals over the entire experiment at 1 MHz. Figure 4 shows the
date plotted against run-time. The breaks in the line represent
times for which the stand was operating but high speed data
was not collected. The test was divided into four periods: (1)
break-in, 0-40 hours; (2) Baseline, 40-307 hours; (3) Aged 1,
307-591 hours; (4) Aged 2, 591-862 hours. During break-in
the bearing experiences initial wear and grease redistribution.
The duration of this process is inexact but is given as 8-10
hours by a major bearing manufacturer (Ref. 16) and 50 hours
in the Army Aeronautical Design Standard 79E (Ref. 19). For
the purposes of data analysis here, an intermediate value of
40 hours is chosen, with the remaining periods being approx-
imately 275 hours each. The Baseline period represents an
early period in the bearing/grease life, while Aged 1 and Aged
2 represent progressively more aging of the bearings although
these conditions are relative to the initial condition. The bear-
ing did not fail prior to the pre-determined test duration so the
final data points do not necessarily represent the end of grease
life.

Only a single bearing was instrumented for this experiment
due to limited instrumentation and data acquisition equipment
on hand although future test campaigns can increase this num-
ber of instrumented bearings to establish repeatability of the
diagnostic results across different test specimens. The bear-
ings were labeled such that the bearing closest to the load
cylinder was designated as 1 and the bearing closest to the in-
put shaft was designated 2. The instrumented bearing B22 was

Fig. 4: Data Summary showing Test Phases over Time

Fig. 5: Bearing test chamber with instrumentation on the
right-side bearing

in test chamber #2 on the input shaft side. The instrumented
bearing is shown installed in the test chamber in Figure 5.

The two sensors used are a PCB 3224A1 accelerometer and
Mistras Nano30 AE Sensor. Both sensors have temperature
ranges up to 350 ◦F . The accelerometer has a frequency range
of 20 kHz frequency and the frequency range of the AE sensor
is 125-750 kHz. The acoustic emission sensor was adhered
to the bearing block using a silicone adhesive and the stud
mounted accelerometer was mounted to a nut attached to the
bearing block using a high temperature two part epoxy.

SIGNAL PROCESSING AND CONDITION
INDICATORS

Common signal processing techniques were first applied to
acoustic emission and vibration data to generate Condition
Indicators (CIs) including statistical characteristics, spectral
methods and characteristics of the envelope spectrum includ-
ing bearing fault frequencies. A total of 38 condition indi-
cators were calculated for acoustic emission and 35 condi-
tion indicators for the vibration signal. Most were similarly
defined with some targeting different bands of the frequency
spectrum. A full list of the condition indicators considered is
included in Table 4 in the Appendix.
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Fig. 6: Contents of a typical data file: tachometer (top), acous-
tic emission, vibration (bottom)

Fig. 7: AE and vibration signals over one revolution of the
shaft.

Pre-processing

Figure 6 shows the input waveforms of a sample file:
tachometer, acoustic emission, and vibration, with one million
samples over the course of one second of operation. Figure 7
zooms into time and illustrates data variation on the order of
one revolution of the shaft.

The frequency-domain information of acoustic emission and
vibration is shown in the same normalized graph of Figure 8.
The two normalized spectra, shown in the same plot, had
very little overlap. The acoustic emission signal shows much
higher frequency content associated with the range of the sen-
sor and amplifier filter, in the range of 100-450 kHz. This
measurement of Rayleigh stress waves at the surface shows
continuous mode emissions resulting from the large amount
of generation in dynamic mechanical systems.

Over the course of the experiment, a time varying DC com-
ponent of AE was noted. This non-physical artifact in the
data acquisition implementation drifted over time occasion-

Fig. 8: Acoustic emission and vibration spectra

Fig. 9: DC Component of AE Signal, removed for analysis

Fig. 10: Three data sets are uniformly distributed across the
baseline

ally dropping back to lower values as shown in Figure 9.
Because the variation in DC component was an artifact of
instrumentation/data-acquisition channel and not a real, phys-
ical characteristic of the signal, and it was removed from the
data files prior to analysis. As a consequence, the calculated
root mean square of the signal is mathematically identical to
the variance.

Three pre-processing steps were performed per 1 second data
record 1) Because the means, or DC component of accelera-
tion and acoustic emission do not carry relevant information
on health but can be affected by the instrumentation drift, the
means were subtracted from the signal. 2) the samples be-
fore the first falling edge and after the last falling edge of the
tachometer signal were removed 3) Data associated with files
where the RPM < 2000 RPM was excluded from training the
models. 4) All data was normalized using min-max. Machine
learning algorithms do not perform well when the input nu-
merical attributes have very different scales. This scaling is
used to compress the range of the data from 0 to 1. (Ref. 20)

The models were trained, validated, and tested on the baseline
data segment and later evaluated on the remaining segments.
Before the modeling started, 15% of the baseline data was
randomly selected from the baseline data set and set aside for
testing. The remaining 85% was used for building models
(training and validation). Of the 85% of the data used for
modeling, 80% was used for training and 20 for validation,
with all three dataset being uniformly distributed across the
baseline dataset, as illustrated in Figure 10.

MACHINE LEARNING MODELS

The autoencoder implementation was based on fully-
connected, dense layers. In this type of layers each of the
inputs is connected to each of the output through the matrix
of weights as conceptually depicted in Figure 11. Because
the input neurons are full-connected to the output neurons,
the output vector of the ith layer φ̄ (i) is obtained as a nonlinear
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Fig. 11: Autoencoder Topology Applied to Test Data

transformation of an affine transformation of the output vector
of the preceding layer φ̄ (i−1):

φ̄
(i) = f( ¯̄W (i−1)

φ̄
(i−1)+ b̄(i−1)) (2)

where ¯̄W (i−1) and b̄(i−1), and f are the associated matrix of
weights, offset vector, and the nonlinear transformation, re-
spectively. Traditionally, the activation function f() of choice
in neural network was a sigmoid, defined as

f(z) = σ(z) =
1

1+ e−z . (3)

Modern implementation prefer simpler activation functions,
such as the rectifier function f(z) =ReLU(z) =max(0,z). Our
implementation started with ReLU(z) activation function, but
obtained better performance with ELU(z) defined as

f(z) = ELU(z) =

{
z, z > 0
ez −1, z < 0

(4)

The number of layers and the number of neurons per layer
are hyperparameters that are varied. For example, the topol-
ogy in Figure 11 depicts the starting topology for accelera-
tion data which first encodes a 1024-component input vector
to a 64-component encoding vector via two layers with 256-
and 128-outputs respectively and then decodes it back to 1024
components via 128- and 256-output output layers.

Sampling Concept

The number of parameters needed to train an autoencoder is
dependent on the number of inputs, hidden layers, and neu-
rons per layer. An input size of 1024 features was chosen due
to the author’s experience in training neural networks of this
size. The challenge then is to determine ways to compress the
1 million data points per record into the pre-determined in-
put size. Three methods were investigated: 1) A collection of
decimated samples of the data and 2) Representations of the
spectrogram images 3) Calculated condition indicators.

Input Type 1: Signal Decimation To efficiently capture
multiple frequency ranges of the input data, the input vec-
tor of length n consists of multi-scale sub-vectors of length L
obtained by decimating the signals sampled at 1 MHz.

In the proposed scheme the input vector s̄ consisted of sub-
vectors at different time scales s̄:k. For example

s̄ =
[
s̄T

:20 s̄T
:21 · · · s̄T

:2M

]T
(5)

where s̄:1 denotes a sub-vector of consecutive samples of the
input data, s̄:2 denotes a sub-vector that takes every other point
of the input data, and s̄:2M is a sub-vector decimated by 2M

where M = n/L

For acoustic emission, where frequency of interest is in the
100 ≤ f ≤ 300 kHz range (see Figure 8), the initial configu-
ration employs L = 512 element long sub-vectors, starting by
sampling every other sample and ending by sampling every
4th sample.

For vibration data, where most energy was below 30 kHz (see
Figure 8), four decimation levels were used: 32, 128, 512,
2048, as shown in Figure 11.

Each sub-vector probed into a specific time scale starts at the
same random location within the data record. Up to 1000 in-
put vectors of this construction were randomly drawn from a
single file. The files contained one million points per signal
and the length of the vector per signal was 1024.

Referring again to Figures 6 and 7, it also compares the data
extraction lengths and the tach signal to get a sense of the
fraction of the rotation that is being captured. For vibration,
all except the 1/212th sample captures at least one shaft cycle
of dynamics. The AE sensor’s samples corresponds to rota-
tion on the order of the tachometer target painted on the shaft.
During training, 1000 random samples are taken from each
dataset resulting in 3,879,400 training examples so it is felt
that dynamics associated with each shaft angle is accounted
for in the training. Evaluation employed the same process,
except fewer samples - typically about 40 - were drawn per
file and a statistical function was applied to the distribution of
predictions vectors.

Input Type 2: Spectrograms A 2D Convolutional Neural
Network (CNN) autoencoder was used to assess the perfor-
mance of using spectrogram images as input. These images
serves as a form of data compression as 22,499 points repre-
sented by pixel values are used instead of the 1 million sam-
ple points. CNNs emerged from the study of the brains visual
cortex in which many neurons react only to a visual stimuli
located in a limited region of the visual field. This motivated
an architecture in which the neurons are not fully connected.
These networks determine optimal filter parameters to extract
features from the image and then feeds those features into an
an autoencoder. For each convolution layer, a filter kernel is
convolved with the image to produce a reduced order repre-
sentation.

The AE signal spectrograms were generated by applying the
STFT, with a Hann window of length 300 and overlap of 100
points, on randomly sampled 30k point sequences from the
22,871 data records. Ten of such sequences were sampled
from each record, resulting in a total of 228,710 images of size
149 x 151. The vibration signals were processed in a largely
similar way. However, due to the signal energy residing in
a lower frequency range, each data record was decimated by
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Fig. 12: Trend of AE Root Mean Square throughout Test

3, keeping the first 30k points. The spectrograms were then
generated using the downsampled signals to create a total of
22,871 images of size 149 x 151.

Input Type 3: CIs Analyzed Using an Autoencoder

As mentioned earlier, autoencoder is a data reduction strat-
egy that reduces redundancies. For this reason, the calculated
CIs were also processed by an autoencoder and the codings
analyzed for comparison.

RESULTS

Vibration and acoustic emission data were recorded for the
duration of the 862 hour experiment, with only occasional in-
terruptions in the acquired data due to computer shutdowns
or operator interruption for routine intervention and data han-
dling. A total of 22,871 vibration and acoustic emission snap-
shots were sampled at 1 MHz. A subset of 4,564 data records,
representing every 10 minutes, was used for the current anal-
ysis of input types 1 and 3. Input type 2 used the full data-set.

Representative Condition Indicators

One of the easiest and most common current approaches to
reporting acoustic emission for mechanical systems with con-
tinuous mode emissions is the root means square of the sig-
nal. Examining the rms of each snapshot of acoustic emission,
Figure 12 shows a clear upward trend throughout the exper-
iment with some early scatter during a period of break-in of
the grease within the bearing. This represents an improvement
over vibration which often trends up and down, and is influ-
enced heavily by other aspects of the dynamic system (Figure
13). The gaps are due to times when the rig was operating but
the high speed data acquisition system was not recording. Vi-
bration RMS did not show a clear trend. However, vibration
kurtosis suggested potentially different degradation mecha-
nism compared to the one suggested by AE RMS. While AE
RMS trend is monotonic, almost linear, vibration kurtosis sug-
gest onset of degredation at the end of Aged 2. In particular,
while some values of vibration kurtosis were large even dur-
ing the baseline portion of the test the trend of the second part
of Aged 2 are different.

There are 38 CIs computed for the AE sensor and 35 com-
puted for the accelerometer. A Principle Component Analysis
(PCA) is conducted on the CIs to avoid comparing every CI to

Fig. 13: Trend of Acceleration Kurtosis throughout Test

Fig. 14: AE: CI Cross-Correlation Coefficients > .9

those determined by the autoencoder. Since many of the sig-
nals have a high degree of correlation, the number of CIs are
down-selected prior to the PCA. This is done by producing
a cross-correlation matrix and isolating the CI combinations
with cross correlations greater that .9 Plots of the cross cor-
relation coefficients are give in Figures 14 and 15. The index
values along the x and y axis correspond to Table 4 in the
Appendix.

For AE, the following CIs were used: 8, 10, 11:12, 14, 20:35,

Fig. 15: Vibration: CI Cross-Correlation Coefficients > .9
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Fig. 16: CIs Projected onto PC1 vs Runtime

Fig. 17: CIs Projected onto PC1 and PC2 AE:Top Vib:Bottom

39, 40. For acceleration, the following CIs were used: 8, 10,
11, 13:14, 16, 20:35.

For each data record, the corresponding subset of CIs are
weighted and summed into a single value. The weights are
obtained from the values in the 1st eigenvector obtained from
the PCA. The results are shown in Figure 16 where each val-
ues is plotted vs run-time.

The two plots show similar information. Both trend upward
with apparent activity at around 175 hours and 750 hours.

Another visualization is to project the select CI values onto
the first 2 principle axes. This is shown in Figure 17. Dis-
tinct clusters associated with age are apparent for the acoustic
emission signal but there is considerable overlap. The vibra-
tion signal does not have as much spread and has a higher
degree of overlap than the AE signal.

Image Type 1: Decimated Signals

Two separate encoders were trained: one based on the acous-
tic emission signal and the other based on the vibration signal.
The results are discussed in turn.

A TensorFlow/Keras (Refs. 21,22) implementation is depicted
in the model summary given in Table 1. It shows that seven
layers (including the input) were used, progressing from 1024
to 64 and back to 1024 outputs requiring 608,064 parameters
trained. Consistent dropout rate of 10% was applied to each
layer. Dropout is method for preventing overfitting, based on

Table 1: The summary of autoencoder model by layers used
for AE and vibration.

Layer Number of neurons Number of params Activation

fully-connected 0 (input) 1024 0 None
fully-connected 1 256 262400 ELU
fully-connected 2 128 32896 ELU
fully-connected 3 64 8256 ELU
fully-connected 4 128 8320 ELU
fully-connected 5 256 33024 ELU
fully-connected 6 (output) 1024 263168 Linear

Total params 608,064

Dropout: 10% for all layers

Fig. 18: Cross-correlation matrix of AE encodings

excluding a subset of nodes randomly during the training pro-
cess (Ref. 23). 100 epochs were used to get a loss of 0.02.
The model for AE was similar but, due to the limited number
of decimations available, started with 512 and compressed to
8 and back to 512. There were 140,616 parameters trained to
a loss of 0.02.

The AE encodings were strongly correlated as shown in Fig-
ure 18, which plots the image of the correlation coefficient
matrix computed on all sixty four encodings. The black diag-
onal corresponds the self-correlation coefficient equal to unity
(ρ = 1). The color bar on the bottom of the plot shows that
most coefficients are about 85%.

A few representative encodings, viz. 0, 6, 26, 34, and 64, are
shown in Figure 19. The overall trend resembles that of AE
RMS, shown in Figure 12.

The same training process was applied to vibration signals.
While the AE input vector consisted of two sub-vectors of
lengths L = 512, the vibration input vector consisted of four
sub-vectors of lengths L = 256. Although the experimenta-
tion varied the widths of the layers independently for vibra-
tion and acoustic emission, the configuration of Table 1 was
found the yield the smallest error for both AE and vibration.
It is important to note that this was preliminary modeling ef-
fort and that more accurate topologies of neural networks will
likely be found in the future work. The cross-correlations of
the encodings of the vibration-based autoencoder are shown
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Fig. 19: Encodings: Acoustic Emission

Fig. 20: Cross-correlation matrix of VIB encodings

in Figure 20.

Figure 21 shows a few representative encodings of the
vibration-based autoencoder. These encodings did not indi-
cate a notable trend.

Input Type 2: Spectrograms

Three examples of generated spectrograms (top row) as well
as the corresponding autoencoder reconstructions (bottom
row) are shown in Figures 22 and 23. In these figures, the
x and y axes are time and log-frequency respectively with low
frequencies at the top of the image.

The CNN stage produced a feature vector of size 5,776. More
details about the CNN can be found in (Ref. 24). This feature
vector is followed by a fully connected layer of size 512 and
finally the encoding layer of 128 points.

Fig. 21: Encodings: vibration

Figures 24 and 25 show the results from the 2D CNN autoen-
coder analysis of the spectrograms. The codings were not ana-
lyzed vs time as was the case in Figure 19 and 21 but instead,
a PCA was performed and the values were compressed to a
2D plot along the first two principle coordinates. The colors
indicate the age of the bearings as indicated from each file’s
time stamp.

The AE result in Figure 24 also forms clusters and there is a
definite trend with grease age. In addition, there is less overlap
than that obtained using PCA on the calculated CIs. The ac-
celeration result in Figure 25 also have trending clusters with
age but appears to also rotate within this PC1, PC2 plane.

Fig. 22: Example spectrogram of AE signal
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Fig. 23: Example spectrogram of acceleration signal

Input Type 3: Codings of the Condition Indicators

The computed CIs were also processed through the autoen-
coder to compress the information and compare with the other
results. The configuration of the autoencoder is that of Fig-
ure 11, with the weights summarized in Table 2.

The set of CIs for each data record was processed through the
trained autoencoder and the encodings from center layer are
all plotted vs run-time.

Figures 26 and 27 show the results using all of the CIs.

These signals combined represent a reduced order represen-
tation of the data. The scatter plot of Figure 27 shows low
correlations coefficients for each encoding indicating inde-
pendence. Encodings 0 and 5 show a slight trend with age

Fig. 24: PCA Plot: 2D CNN on Acoustic Emission

Fig. 25: PCA Plot: 2D CNN on Vibration

Table 2: The summary of autoencoder model by layers used
to encode AE-based CIs.

Layer Number of neurons Number of params Activation

fully-connected 0 (input) 37 0 None
fully-connected 1 32 1216 ELU
fully-connected 2 16 528 ELU
fully-connected 3 8 136 ELU
fully-connected 4 16 144 ELU
fully-connected 5 32 544 ELU
fully-connected 6 (output) 37 1221 Linear

Total params 3,789

Dropout: 10% for all layers

Fig. 26: Autoencoder encodings based upon AE-based CIs

9



Fig. 27: Scatter Plot: autoencoder encodings based upon AE-
based CIs
Table 3: The summary of autoencoder model by layers used
to encode vibration-based CIs.

Layer Number of neurons Number of params Activation

fully-connected 0 (input) 33 0 None
fully-connected 1 32 1088 ELU
fully-connected 2 16 528 ELU
fully-connected 3 8 136 ELU
fully-connected 4 16 144 ELU
fully-connected 5 32 544 ELU
fully-connected 6 (output) 33 1089 Linear

Total params 3,529

Dropout: 10% for all layers

after 500 hours. Encodings 1 and 7 show monotonic varia-
tions with age. Encodings 2, 4 and 6 show breaks around 750
hours.

Similar analysis was conducted based upon vibration CIs,
with Table 3 summarizing the information on the autoencoder
network and Figure 28 and Figure 29 showing the encodings
and their scatter plots.

Like the case for the AE signal, the encodings are distinct
and have low correlation coefficients. Many of the encodings
seem to indicate activity around 750 hours. Encoding 2,3,
and 5 have sharp increases in amplitude and coding 1,4, and 5
seem to begin an incline at that rum-time. Encoding 7 appears
to be monotonic with age.

CONCLUSIONS

This experiment investigated novel approaches to diagnosing
the condition of grease lubricated bearings over hundreds of
hours of test time has established feasibility of improved diag-
nostics for the lubrication condition that can be implemented
in future aircraft. It leveraged previous feasibility work per-
formed at the authors laboratories (Ref. 5) and the volume of
data sampled gives additional insight to the variability in these
signals.

Fig. 28: Autoencoder codings based upon vibration-based CIs

Fig. 29: Scatter Plot: autoencoder encodings based upon
vibration-based CIs

The autoencoders based on the raw data showed a develop-
ing trend, but no new insights, beyond those already available
from CIs. On the other hand, the CI-based autoencoders sug-
gested more than one type of plausible degradation. In ad-
dition, the 2D CNNs were examined and they demonstrated
the ability to clearly separate the 4 subsets of data into in the
PC1-PC2 space. For those based on AE, the progression was
linear. For vibration, the separation appeared to rotate.

The work has found that: 1) extended duration experiments
are required to produce evidence of aging. 2) acoustic emis-
sion signals in mechanical components contain diagnostic fea-
tures that trend over time as grease life (lubricant) is con-
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sumed. 3) autoencoders enrich the existing set of engineered
CIs and provide improvements over individual CIs and those
fused using PCA. 4) the principle component space provides
a powerful mechanism for viewing and organizing features
from unsupervised learning.

Future work must next reproduce these results across multiple
specimens to establish reproducibility, extend the duration of
the tests to more severe grease conditions to establish feature
thresholds and end of life trends, and examine computation-
ally efficient methods of embedding the diagnostics onboard
aircraft. In addition, the reported on work on autoencoders
only scratched the surface of the possibilities for building use-
ful models. For example, similar models based upon 1D CNN
layers (instead of fully-connected layers) will be explored in
the future and compared with these models. In addition, as
more data becomes available, with more discrete instances
of ground truth, the performances of different models will be
reevaluated.
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APPENDIX

Table 4: Description of Calculated Condition Indicators

Index # CI Name CI Description

7 DC DC component
8 Std Standard Deviation
9 rms Root Mean Square
10 CF Crest Factor
11 kurt Kurtosis
12 , 13 min,max Minimumm and max.value
14,15,16 [3,4,5]xRMS Count of signal threshold crossings @ [3x,4x,5x] rms
17,18,19 [3,4,5]xRMSrate Count rate of signal threshold crossings @ [3x,4x,5x] rms
20 EnvBSFmax Peak of envelope spectrum at BSF
21 EnvBPFOmax Peak of envelope spectrum at BPFO
22 EnvBPFImax Peak of envelope spectrum at BPFI
23 EnvFTFmax Peak of envelope spectrum at FTF
24 EnvBSFmax3 Peak of envelope spectrum at BSF (max.of 3 nearest frequencies)
25 EnvBPFOmax3 Peak of envelope spectrum at BPFO (max.of 3 nearest frequencies)
26 EnvBPFImax3 Peak of envelope spectrum at BPFI (max.of 3 nearest frequencies)
27 EnvFTFmax3 Peak of envelope spectrum at FTF (max.of 3 nearest frequencies)
28 FFT BSFmax Peak of spectrum at BSF
29 FFT BPFOmax Peak of spectrum at BPFO
30 FFT BPFImax Peak of spectrum at BPFI
31 FFT FTFmax Peak of spectrum at FTF
32 FFT BSFmax3 Peak of spectrum at BSF (max. of 3 nearest frequencies)
33 FFT BPFOmax3 Peak of envelope at BPFO (max.of 3 nearest frequencies)
34 FFT BPFImax3 Peak of spectrum at BPFI (max.of 3 nearest frequencies)
35 FFT FTFmax3 Peak of envelope at FTF (max.of 3 nearest frequencies)
36 RMS 100 150 RMS of signal bandpassed from 100-150kHz (V + 20 dB)
37 RMS 150 200 (AE) RMS - bandpassed from 150-200kHz (V + 20 dB)
38 RMS 200 250 (AE) RMS - bandpassed from 200-250kHz (V + 20 dB)
39 Data 250 300 (AE) RMS - bandpassed from 250-300kHz (V + 20 dB)
40 Data 300 350 (AE) RMS - bandpassed from 300-350kHz (V + 20 dB)
41 Data 350 450 (AE) RMS - bandpassed from 350-500kHz (V + 20 dB)
35 Data 11 15 (VIB) RMS - bandpassed from 11-15kHz
37 Data 15 20 (VIB) RMS - bandpassed from 15-20kHz
38 Data 17 23 (VIB) RMS - bandpassed from 17-23kHz

The bearing fault frequencies and their harmonics are given in
Table 5

Table 5: Bearing Fault Frequencies (Hz.)

Harmonic CFF BSF BPFO BPFI

1 28.1 182.7 280.7 405.1
2 56.1 365.5 561.4 810.2
3 84.2 548.3 842.1 1215.4
4 112.3 731.2 112.8 1620.5

Cage Fault Freq. (CFF), Ball Spin Freq. (BSF), Ball Pass
Freq.-Outer (BPFO), Ball Pass Freq. - Inner (BPFI)
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