
Copyedited by: ES MANUSCRIPT CATEGORY: Research article

[07:21 13/2/2020 OP-QJMA190021.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 36 36–50

ASYMPTOTIC APPROXIMANT FOR THE
FALKNER–SKAN BOUNDARY LAYER EQUATION

by E. R. BELDEN and Z. A. DICKMAN

(Department of Chemical Engineering, Rochester Institute of Technology, Rochester,
NY 14623, USA)

S. J. WEINSTEIN
(Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY

14623, USA and School of Mathematical Sciences, Rochester Institute of Technology,
Rochester, NY 14623, USA)

A. D. ARCHIBEE
(Department of Mechanical Engineering, Rochester Institute of Technology, Rochester,

NY 14623, USA)

E. BURROUGHS and N. S. BARLOW†

(School of Mathematical Sciences, Rochester Institute of Technology, Rochester,
NY 14623, USA)

[Received 15 July 2019. Revise 7 October 2019. Accepted 8 October 2019]

Summary

We demonstrate that the asymptotic approximant applied to the Blasius boundary layer flow over
a flat plat (Barlow et al., Q. J. Mech. Appl. Math. 70 (2017) 21–48.) yields accurate analytic
closed-form solutions to the Falkner–Skan boundary layer equation for flow over a wedge having
angle βπ/2 to the horizontal. A wide range of wedge angles satisfying β ∈ [−0.198837735, 1]
are considered, and the previously established non-unique solutions for β < 0 having positive
and negative shear rates along the wedge are accurately represented. The approximant is used to
determine the singularities in the complex plane that prescribe the radius of convergence of the
power series solution to the Falkner–Skan equation. An attractive feature of the approximant is
that it may be constructed quickly by recursion compared with traditional Padé approximants that
require a matrix inversion. The accuracy of the approximant is verified by numerical solutions,
and benchmark numerical values are obtained that characterize the asymptotic behavior of the
Falkner–Skan solution at large distances from the wedge.

1. Introduction

The Falkner–Skan equation describes boundary layer flow over a wedge of angle βπ/2 to the
horizontal that is driven by an external pressure gradient predicted from potential flow (see Fig. 1).
The equation also applies to regimes where the pressure gradient opposes the flow when β < 0
(Fig. 1(c) and (d)) for which boundary layer separation may occur. Through a similarity transform,
the governing two-dimensional boundary layer equations can be written as a nonlinear ordinary
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(a) (b)

(c) (d)

Fig. 1 Geometry of flow over a wedge showing potential flow and viscous boundary layer regions. (a) Domain
for the potential flow solution for β > 0, from which the nonzero velocity U(x) and associated Bernouli pressure
P(x) along y = 0 is extracted. (b) Domain for the thin viscous boundary layer (Falkner–Skan problem) that is
driven by the potential flow solutions for U(x) and P(x). There are no pressure variations in the y-direction. On
the length scale of figure (a), the boundary layer cannot be observed. The analogous wedge configuration for
β < 0 are shown in figures (c) and (d).

differential equation (ODE) system for the dimensionless stream function, f , as a function of a
similarity variable η(x, y) (1):

f ′′′ + ff ′′ + β(1 − f ′2) = 0

f (0) = 0, f ′(0) = 0, f ′(∞) = 1. (1.1)

Once (1.1) is solved for f (η), the dimensional stream function, ψ(x, y), may be extracted as (1)

η = y

√
m + 1

2

U

νx
(1.2)

ψ(x, y) = f (η)

√
2νUx

m + 1
,
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where x and y are coordinates along and perpendicular to the wedge surface (see Fig. 1), m =
β/(2 − β), ν is kinematic viscosity and U = U(x) is the velocity at the wedge surface determined
from potential flow, as indicated in Fig. 1. Although a power series solution can be found for (1.1),
it diverges at a finite value of η for all physical values of wedge angle β. The lack of an exact
analytical solution has necessitated several numerical (2–8) and approximate analytical (9–11)
solution approaches to the system (1.1). Here, we implement the recent method of asymptotic
approximants to analytically continue the power series solution, and thereby construct a highly
accurate closed-form solution to (1.1).

Asymptotic approximants are used to sum divergent series and may be constructed when
asymptotic behaviors are known in two different regions of a domain; implementation details are
given in (12–17). The method is a generalization of two well-known mathematical techniques:
asymptotic matching and Padé approximants (18). Whereas asymptotic matching leads to a single
expression that combines two overlapping asymptotic expansions, asymptotic approximants do not
require that the two series overlap; if the two series diverge before overlap, an asymptotic approximant
has the ability to analytically continue each series and accurately fill in the gap between them. Two-
point Padés and other generalizations of Padé approximants have also been used to accomplish
this task (19–21). In the same way as Padé approximants, asymptotic approximants are constructed
such that the series expansion of the approximant about a given point is the same as that of the
true expansion about that point. However, whereas Padé approximants are restricted to rational
functions and thus have a specific asymptotic behavior about a chosen expansion point, asymptotic
approximants are tailor-made to have the correct behavior in both regions of the domain. For example,
asymptotic approximants are shown to accurately describe the light trajectory around a Kerr black
hole (16, 17) by incorporating the correct logarithmic behavior near the black hole; a Padé is incapable
of representing such behavior efficiently. Asymptotic approximants are used to construct accurate
solutions for boundary layer flows over a stationary flat plate (the Blasius problem) and for a flat
plate moving through a stationary fluid (the Sakiadis problem) (15). The Blasius approximant uses a
power series expansion about η = 0 and the leading-order behavior as η → ∞; the full asymptotic
behavior in this latter regime is not needed to obtain a highly accurate solution. The leading-order
η → ∞ behavior of Blasius is exactly the same as that for the Falkner–Skan problem (1.1) for flow
over a wedge. Thus the asymptotic approximant used in (15) for the Blasius problem may be applied
to the Falkner–Skan equation. In this article, we construct a highly accurate approximant in which all
coefficients are determined recursively (that is, they do not require a matrix inversion), and through
which the location of complex singularities that lead to series divergence are identified.

Although accurate numerical solutions to nonlinear ODEs such as (1.1) are easily obtained today
on a modest computer, it can be advantageous to utilize an analytic form provided by an approximant.
Analytic forms enable highly resolved solutions on domains of arbitrary length to be obtained without
(a) interpolation or extrapolation of the numerical solution or (b) re-running the numerical solution
at higher computational cost. Additionally, analytic solutions preserve accuracy when integration or
differentiation is required to obtain auxiliary properties of the flow field. The main goal here, however,
is to advance the method of asymptotic approximants by demonstrating that the method disclosed
in previous work (12–17) may be applied to (1.1). The ability of the approximant to capture the full
range of solutions (as wedge angle is varied), and the accuracy of auxiliary properties obtained using
the approximant, are examined as well.

The article is organized as follows. In section 2, the series solution of (1.1) and numerically
obtained asymptotic properties are provided as a function of wedge angle. The Blasius asymptotic
approximant of (15) is applied to the Falkner–Skan equation in section 3; it is validated against
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numerical solutions for key values of wedge angle. The Blasius-type approximant is found to be
accurate for positive and negative shear rates at the wedge surface over a significant range of wedge
angles—the range of β encompasses all physical configurations for which there is no boundary layer
separation. An alternative asymptotic approximant is introduced to handle non-monotonic solutions
to the Falkner–Skan equation that occur over a small range of negative shear rates at the wedge surface
for β < 0. In section 3.1, the Blasius-type approximant is used to extract the radius of convergence
of the Falkner–Skan series as a function of wedge angle; to the authors’ knowledge, this is the first
time this dependence has been disclosed. Concluding remarks are made in section 4.

2. Asymptotic properties and series expansion of the Falkner–Skan equation

Solutions to the Falkner–Skan equation system (1.1) are found for a given flow by fixing the parameter
β, which is related to the wedge angle shown in Fig. 1. Note that this parameter incorporates the effect
of wedge angle on the potential flow that drives the fluid motion in the boundary layer. Although (1.1)
is a boundary value problem, a series solution may be generated if the infinity boundary condition is
relaxed, and the dimensionless velocity gradient at the wedge surface, κ(β), is applied at η = 0 as

f ′′(0) = κ(β). (2.1)

(a) (b)

Fig. 2 Solution properties as a function of the wedge angle parameter, β, obtained from the Falkner–Skan
system (1.1). (a) Dimensionless velocity gradient, κ = f ′′(0), used to construct the series expansion (2.2). (b)
Asymptotic constant B defined according to (2.3). The constants κ and B are determined numerically using
the shooting method of (2) with marching done using the fourth-order Runge–Kutta method with a step size
of 10−4. Specific values of (β, κ,B) associated with the roman numerals in the plots are as follows: I. (0.5,
0.927680039836653, −0.804548615), II. (0, 0.469599988361, −1.21678062) III. (−0.12, 0.28176052424,
−1.511343148) IV. (−0.198837735, 0, −2.359), V. (−0.12, −0.1429351943576, −4.3989990662) and VI.
(−0.02, −0.065168585542904, −9.18639214). Convergence has been established to within the digits reported
above by successively increasing the domain length (η ∈ [0,L], L=10, 20, 30, 40) of the shooting method. A
tabulated version of this data is provided in Supplementary Data.
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Note that the function κ(β) in (2.1) is determined such that the η → ∞ boundary condition in (1.1)
is applied and is typically determined numerically. Figure 2(a) shows the dependence of κ on the
wedge angle parameter β; the figure is constructed by implementing the shooting method of (2). Key
values in Fig. 2(a) are as follows. When β = 0 (point II in Fig. 2(a)), there is no pressure gradient
in the physical system, and the system (1.1) describes the classical Blasius problem for flow along a
flat plate‡. When κ = 0 (Point IV in Fig. 2(a), β ≈ −0.1988), the velocity gradient along the wedge
is zero, and this condition corresponds to the onset of boundary layer separation (1). As shown in
Fig. 2(a), there are multiple solutions to (1.1) for β < 0. Negative values of κ (for example, Points
V and VI in Fig. 2(a)) correspond to solutions of (1.1) that contain a region where f ′ is negative
before eventually switching sign to tend towards the asymptotic behavior f ′ → 1, given in (1.1); this
is referred to as a region of ‘reversed flow’ by Stewartson (24).

The series solution to (1.1) may be obtained (25) as

f =
∞∑

n=0

anη
n, (2.2a)

where

an+3 =

n∑
j=0

β(j + 1)(n − j + 1)a(j + 1)a(n − j + 1) − (j + 1)(j + 2)aj+2an−j

(n + 1)(n + 2)(n + 3)
. (2.2b)

The recursion above requires knowledge of the first three coefficients in order to generate the full
series. The first two coefficients a0 = f (0)=0 and a1 = f ′(0)=0 are given by the first two boundary
conditions in (1.1). The third coefficient a2 = f ′′(0)/2 = κ/2 is taken from the numerical solution
described above and shown in Fig. 2(a). As evidenced by Figs 3(a)–7(a), the utility of the series (2.2)
is limited for all values of β as it has a finite radius of convergence. The dependence of the radius of
convergence on β is investigated in section (3.1).

The far-field condition f ′(∞) = 1 appearing in (1.1) holds true for all wedge angles β, as does the
admission of an integration constant in this limit, such that the leading-order asymptotic behavior
may be written as (26)

lim
η→∞ (f − η) ≡ B(β), (2.3)

where B§ is a function of wedge angle β; the dependence is shown in Fig. 2(b). Both Fig. 2(a) and (b)
are constructed by implementing the numerical shooting method of (2), replacing ∞ in (2.3) with
a finite domain length L, calculating κ and B ≈ [f (η = L) − L], and recomputing the numerical
solution for successively increased L until κ and B are converged to within the tolerance reported
in the figure caption. Although presented in Fig. 2 using newly generated numerical solutions, the
functionality of both κ and B on β has long been known (24).

‡ The common form of the Blasius equation includes a coefficient of 1/2 in front of the ff ′′ term, as a result of omitting the
factor of 2 in the denominator of (1.2) when deriving (1.1) from the governing equations with β = 0 (1). A ramification of
this is that the values reported here are

√
2× the literature value of κ = 0.3320573362152 and 1/

√
2× the literature value of

B = −1.72078765752 (22, 23).
§ The parameter B is the negative of the displacement thickness defined in terms of the similarity variables as δ1 =∫∞

0

(
1 − f ′) dη (24). In this article, we define the quantity B such that (2.3) is consistent with the notation typically used for

the Blasius problem (β = 0) (22).
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(a) (b)

Fig. 3 (a) The N-term series (2.2) labeled SN and approximant (3.1) labeled AN compared with numerical
solution (•). (b) Derivatives of approximant (3.1) for N = 20. Data shown here corresponds to conditions at
point I in Fig. 2 (β = 0.5, κ = 0.927680039836653).

(a) (b)

Fig. 4 (a) The N-term series (2.2) labeled SN and approximant (3.1) labeled AN compared with numerical
solution (•). (b) Derivatives of approximant (3.1) for N=20. Data shown here corresponds to conditions at point
II in Fig. 2 (β = 0, κ = 0.469599988361). These results correspond to the classical boundary layer solution of
Blasius.
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(a) (b)

Fig. 5 (a) The N-term series (2.2) labeled SN and approximant (3.1) labeled AN compared with numerical
solution (•). (b) Derivatives of approximant (3.1) for N = 20. Data shown here corresponds to conditions at
point III in Fig. 2 (β = −0.12, κ = 0.28176052424). This solution is not unique—there is another solution for
the same value of β corresponding to point V in Fig. 2, as shown in Fig. 7.

(a) (b)

Fig. 6 (a) The N-term series (2.2) labeled SN and approximant (3.1) labeled AN compared with numerical
solution (•). (b) Derivatives of approximant (3.1) for N=20. Data shown here corresponds to conditions at point
IV in Fig. 2 (β = −0.198837735, κ = 0). These results correspond to the conditions at the onset of boundary
layer separation, for which the shear rate at wedge surface is zero.
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(a) (b)

Fig. 7 (a) The N-term series (2.2) labeled SN and approximant (3.1) labeled AN compared with numerical
solution (•). (b) Derivatives of approximant (3.1) for N=20. Data shown here corresponds to conditions at point
V in Fig. 2 (β = −0.12, κ = −0.1429351943576). This solution is not unique – there is another solution for
the same value of β corresponding to point III in Fig. 2, as shown in Fig. 5.

3. Asymptotic approximant

The divergence of the Falkner–Skan series (2.2) demonstrated in Figs 3(a)–7(a) is overcome using
the method of asymptotic approximants, which constrains the analytic continuation of the series via
an asymptotic behavior away from the point of expansion (15). An approximant that satisfies the
η → ∞ behavior (2.3) is given as

fA = η + B − B

(
1 +

N∑
n=1

An η
n

)−1

, (3.1a)

where the An coefficients are chosen such that the expansion of (3.1a) about η = 0 is exactly (2.2)
up to N th order. Note that the above form is not a Padé approximant for f , in that if one combines
the terms of (3.1a) through a common denominator, the coefficients of the numerator will have
an explicit dependence on those in the denominator—this is not the case for standard Padés. That
said, (3.1a) may be formulated as a Padé approximant for the quantity (f − η− B)/B. The form of the
approximant (3.1a) is used in (15) for β = 0 to generate accurate solutions of the Blasius boundary
layer problem for flow over a flat plate.

A recursion for the coefficients An in (3.1a) is obtained as follows. The N-term Taylor expansion
of (3.1a) about η = 0 is set equal to the N-term truncation of (2.2). Then, taking the limit N → ∞,
and re-arranging yields

∞∑
n=0

ãnη
n = −B

( ∞∑
n=0

Anη
n

)−1

,
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(a) (b)

Fig. 8 Error associated with approximant (3.1), measured against numerical solutions with truncation error
of O(10−16). (a) Absolute error in approximant (3.1) for β = 0.5. (b) Infinity norm (taken over 0 ≤ η ≤ 14) of
the absolute error associated with the approximant for −0.198837735 ≤ β ≤ 2. The multivalued solutions for
β < 0 are represented here; the filled and open symbols correspond to κ > 0 and κ < 0 solutions, respectively.

where (noting that a0 = a1 = 0) ã0 = −B, ã1 = −1, ã2 = a2 = κ/2 and ãj>2 = aj (given by (2.2b)).
Multiplying both sides of the above by the An series and applying the well-known identity for the
Cauchy product of two series (27), the expression becomes

∞∑
n=0

⎛
⎝ n∑

j=0

ãjAn−j

⎞
⎠ ηn = −B.

Noting that ã0 = −B, the above can be separated as

−BA0 +
∞∑

n=1

⎛
⎝−BAn +

n∑
j=1

ãj An−j

⎞
⎠ ηn = −B.

Equating like terms of η0 and ηn 
=0 in the expression above, we arrive at the following

A0 = 1,

An>0 = 1

B

n∑
j=1

ãj An−j, ã1 = −1, ãj>1 = aj, (3.1b)

such that now all An coefficients may be computed recursively. Note that the result (3.1b) is identical
to that provided in previous work (15) for the Blasius solution (β = 0), but here we provide the
intermediate steps for purposes of clarity.
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(a) (b)

Fig. 9 (a) The N-term series (2.2) labeled SN and approximant (3.1) labeled AN compared with numerical
solution (•). (b) Derivatives of approximant (3.1) for N = 30. Data shown here corresponds to conditions at
point VI in Fig. 2 (β = −0.02, κ = −0.065168585542904).

The approximant (3.1) is compared with the series and numerical solutions in Figs 3–7 for the
specific values of β enumerated as I through V in Fig. 2 (case VI is discussed separately). As is
evident in the figures, curves for fA approach a final curve shape as N increases. In fact, a key
property of a valid approximant is that, upon increasing the order N , a convergent sequence of
approximants is obtained in the sense of Cauchy. The justification for the choice of approximant
form is this convergent behavior. Since all derivatives of the approximant can be computed exactly,
it is not surprising that derivatives of the approximant are in excellent agreement with the numerical
solution, as shown in Figs 3(b)–7(b).

Convergence of approximant (3.1) is shown on a more sensitive scale in Fig. 8a for β = 0.5,
where the absolute error between the approximant and the numerical solution is shown for different
N values. The convergence behavior shown in the figure is representative of other β values within the
range examined here. The infinity norm of the error for η ∈ [0, 14] is shown in Fig. 8b over the full
range of β. For the cases of positive κ (filled symbols of Fig. 8b), convergence of approximant (3.1)
is established for all β, such that accurate solutions are obtained. For the cases of negative κ (open
symbols of Fig. 8b), convergence is apparent but is increasingly limited asβ → 0−. Note from Fig. 8b
that the overall error increases in this limit, and approximant (3.1) becomes worse at representing
the solution. This limited convergence is demonstrated in Fig. 9 for β = −0.02 (κ < 0, point VI in
Fig. 2), where approximant (3.1) is shown to poorly represent the solution for intermediate values
of η; an improvement is discussed below.

The monotonic or nearly monotonic solutions in f (η) shown in Figs 3–7 (representing cases I
through V in Fig. 2) enable the simple form of approximant (3.1) to provide accurate solutions over
the physical domain, from η = 0 towards ‘large’ η such that f ′ → 1. As β approaches 0 from the
left for κ < 0, f (η) becomes less monotonic and a minima manifests prior to reaching the f ′ → 1
large η behavior, as shown in Fig. 9 for β = −0.02 (point VI in Fig. 2). As mentioned above,
approximant (3.1) is incapable of correctly resolving this minima in f (η). To allow for more flexible
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(a) (b)

Fig. 10 (a) The N-term series (2.2) labeled SN and approximant (3.2) labeled AN compared with numerical
solution (•). (b) Derivatives of approximant (3.2) for N = 25. Data shown here corresponds to conditions at
point VI in Fig. 2 (β = −0.02, κ = −0.065168585542904).

curve shapes, the approximant is adjusted to have a cubic form in its numerator as follows:

fA = η + B − B

⎡
⎢⎢⎢⎢⎢⎣

A0 + A1η + A2η
2 + A3η

3

1 +
N−3∑
n=1

dnη
n

⎤
⎥⎥⎥⎥⎥⎦ , N > 3. (3.2)

Like (3.1), approximant (3.2) satisfies the large η behavior (2.3) by construction. The unknown
coefficients A0 . . .A3 and dn in (3.2) are chosen such that the expansion of (3.2) about η=0 is equal
to the series given by (2.2) to order N . Note that the term in square brackets in (3.2) is a [3/N −3] Padé
approximant, for which solvers are readily available (28) to handle the required matrix inversion.
One may compute the A0 . . .A3 and dn coefficients by isolating the bracketed term of (3.2) onto one

side of the equation and finding the [3/N − 3] Padé for the power series 1 +
(
η −∑N

n=0 anη
n
)
/B.

As before, the constants κ and B are taken from the numerical results shown in Fig. 2 and are inputs
to the approximant. Figure 10 shows the convergence of approximant (3.2) applied to β = −0.02
(κ < 0, point VI in Fig. 2), and demonstrates a significant improvement over approximant (3.1) (see
Fig. 9 for comparison). Note that, although a Padé solver can be used, (3.2) is not a standard Padé
as they are defined today—it is a Padé as it was originally intended by Baker and Gammel (29),
constructed such that it is consistent with the correct η → ∞ limit.

Although an improvement is found using approximant (3.2) over the simpler approximant (3.1)
for the cases of negative shear and small β, for all other β values (including those that are physically
relevant), both approximants perform equally well. Approximant (3.1), however, is easier to compute,
as it is based solely on recursion.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article-abstract/73/1/36/5732396 by W

allace Library Serials D
ept. user on 21 February 2020



Copyedited by: ES MANUSCRIPT CATEGORY: Research article

[07:21 13/2/2020 OP-QJMA190021.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 47 36–50

ASYMPTOTIC APPROXIMANTS 47

(a) (b)

Fig. 11 (a) Location of singularities that limit convergence of the Falkner–Skan series (2.2), shown for
three values of β. (b) Radius of convergence of (2.2); a tabulated version of this curve is provided in
Supplementary Data.

3.1 Complex singularities that limit convergence of power series solution (2.2)

The power series result (2.2) is an exact representation of the solution to (1.1) within its radius of
convergence. As there is no exact solution to (1.1), the radius of convergence must be extracted by
examining successive terms in the power series using standard methods such as the ratio test (30).
Alternatively, as has been done using Padé approximants (31, 32), the asymptotic approximant (3.1)
may be used to determine the location of these singularities and the radius of convergence of the series.
The radius itself is set from the singularities closest to η = 0 in the solution of (1.1) when viewed
in the complex plane; it follows, then, that the roots of the denominator of the approximant (3.1a)
should be examined. Here, we increase the number of terms in the An series in the denominator
of (3.1a) and obtain convergent solutions for the roots nearest to η = 0. Figure 11(a) provides results
corresponding to three different values of β. Roots for β = 0 lie on the negative real axis, the
first quadrant, and the fourth quadrant of the complex plane, and yield a radius of convergence of
approximately 4.024 in agreement with Boyd (22, 33)‖. For 0 < β < 0.6, the root structure changes,
as instead only one singularity appears that sets the circle convergence, lying on the negative real
axis¶, as shown in Fig. 11(a) for β = 0.5. For β < 0 (κ > 0 branch) there are a pair of singularities
that set the circle of convergence, shown in Fig. 11(a) for β = −0.12 (κ > 0); this singularity
orientation persists up until separation (β = −0.199). Outside of these ranges, for β > −0.199
(κ < 0) and β > 0.6, estimates for the roots using the approximant do not converge with increasing
N . However, even when the roots do not converge, the singularities move in such a way that their
distance from η = 0 does converge for all β excluding 0.5 < β < 0.6; over this limited range of β,

‖ As a result of using a different similarity variable, the value reported in (22, 33) is
√

2× our value (see footnote † in
section 2).
¶ For 0.5 < β < 0.6, the singularity location (orientation and radius) does not converge using (3.1). However, the series terms
eventually alternate sign at higher-order, indicating that the closest singularity lies on the negative real axis.
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the ratio-test provides an accurate radius of convergence—thus, the radius of convergence of (2.2)
may be determined. Figure 11(b) shows the dependence of radius of convergence on β. Note that,
although Fig. 11(b) indicates an apparent infinite radius of convergence for β → 0− (κ < 0), Figs 7
and 9 (typical of other cases) show that the local minima in the f (η) curve roughly tracks along with
the radius of convergence and is pushed farther out as β becomes small. Thus, although the radius
of convergence increases for smaller β past separation (κ < 0), the asymptotic behavior (f ′ → 1) is
never captured by the series.

4. Conclusions

Asymptotic approximants provide nearly exact closed-form solutions to the Falkner–Skan boundary
layer equation for varying wedge angle. This adds to the increasing number of problems in disparate
areas of mathematical physics to which asymptotic approximants have been applied successfully
(12–17). Advantages of asymptotic approximants, specifically for the Falkner–Skan problem and
in general for other problems, are their simple form, ability to yield highly accurate solutions,
accuracy in solution derivatives and low computational load. The approximant is used to determine the
singularities in the complex plane that prescribe the radius of convergence of the power series solution
to the Falkner–Skan equation for a large range of wedge angles. One limitation of the methodology
provided here is that accurate values of the wall velocity gradient, κ , and asymptotic parameter, B,
are needed to construct the approximant. As these are determined numerically in the present work,
the approximants can only be utilized in post-processing once numerics are implemented. In an
approximant generated for the Sakiadis boundary layer in a previous paper (15), however, it is possible
to predict with high accuracy these parameters by a judicious choice in approximant coefficients. In
the same paper, the approximant used here is applied to the Blasius problem to predict κ and B, but
the precision does not approach that of existing benchmarks (22) since, unlike the Sakiadis problem,
higher-order asymptotic behavior is not incorporated in the approximant. Although not reported
here, reasonable estimates for κ and B can be predicted applying the approximant for 0 ≤ β ≤ 1,
but the prediction method fails for β < 0. That said, one may interpolate between the numerically
obtained tabulated results given in the Supplementary Data to obtain fairly accurate values for κ and
B for values of β not tabulated. Implementation of approximants in this manner makes them fully
independent of further numerical predictions.

Supplementary data

Supplementary data are available online at Quarterly Journal of Mechanics and Applied
Mathematics.
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