
Sami Yangui
Ismael Bouassida Rodriguez
Khalil Drira
Zahir Tari (Eds.)

17th International Conference, ICSOC 2019
Toulouse, France, October 28–31, 2019
Proceedings

Service-Oriented 
ComputingLN

CS
 1

18
95

Se
rv

ice
s S

cie
nc

e



Lecture Notes in Computer Science 11895

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA

Services Science
Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Athman Bouguettaya, RMIT University, Melbourne, Australia

Michael P. Papazoglou, University of Tilburg, The Netherlands

Subline Editorial Board

Boualem Bentallah, Australia Paul Maglio, USA
Murthy Devarakonda, USA Klaus Pohl, Germany
Carlo Ghezzi, Italy Stefan Tai, Germany
Chi-Hung Chi, Tasmania Yuzuru Tanaka, Japan
Hani Jamjoom, USA Christopher Ward, USA
Ingolf Krueger, USA



More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408


Sami Yangui • Ismael Bouassida Rodriguez •

Khalil Drira • Zahir Tari (Eds.)

Service-Oriented
Computing
17th International Conference, ICSOC 2019
Toulouse, France, October 28–31, 2019
Proceedings

123



Editors
Sami Yangui
Laboratory for Analysis and Architecture
Toulouse, France

Ismael Bouassida Rodriguez
National Engineering School of Sfax
Sfax, Tunisia

Khalil Drira
Laboratory for Analysis and Architecture
Toulouse, France

Zahir Tari
RMIT University
Melbourne, VIC, Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-33701-8 ISBN 978-3-030-33702-5 (eBook)
https://doi.org/10.1007/978-3-030-33702-5

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9756-642X
https://orcid.org/0000-0002-4770-1563
https://orcid.org/0000-0002-1235-9673
https://doi.org/10.1007/978-3-030-33702-5


Preface

The 17th International Conference on Service-Oriented Computing (ICSOC 2019) took
place in Toulouse, France, during October 28–31, 2019. It aimed at bringing together
academics, industry researchers, developers, and practitioners to report and share
ground-breaking work in the area of Service-Oriented Computing (SOC). The objective
of ICSOC 2019 was to foster cross-community scientific excellence by gathering
experts from various disciplines, such as business-process management, distributed
systems, computer networks, wireless and mobile computing, cloud computing,
cyber-physical systems, Internet of Thing (IoT), networking, scientific workflows,
services science, data science, management science, and software engineering. This
edition of ICSOC built upon a history of a successful series of previous editions in
Hangzhou (Zhejiang, China), Malaga (Spain), Banff (Alberta, Canada), Goa (India),
Paris (France), Berlin (Germany), Shanghai (China), Paphos (Cyprus), San Francisco
(California, USA), Stockholm (Sweden), Sydney (Australia), Vienna (Austria),
Chicago (USA), Amsterdam (the Netherlands), New York (USA), and Trento (Italy).

The conference attracted papers co-authored by researchers, practitioners, and
academics from different countries. We received 183 research and industry paper
submissions from countries across all continents. Each paper submission was carefully
reviewed by at least three members of the Program Committee (PC), followed by
discussions moderated by a senior PC member who made a recommendation in the
form of a meta-review. The PC consisted of 172 world-class experts in service-oriented
computing and related areas (142 PC members and 22 senior PC members) from
different countries across all continents. Based on the recommendations, and the
discussion, 28 papers (15%) were accepted as full papers. We also selected 10 short
papers (6%) and 7 posters (4%), as well as 2 invited papers from prominent researchers.

The program we assembled is reflective of the breadth and depth of the research and
applications of SOC, with contributions in the following areas:

– Service Engineering
– Run-time Service Operations and Management
– Services and Data
– Services in the Cloud
– Services for the Internet of Things
– Services in Organizations, Business, and Society
– Services at the Edge

In addition, we were honored to have three prominent players in academic and
industrial research areas who gave keynote addresses at ICSOC 2019:

– “State of Permissionless and Permissioned Blockchains: Myths and Reality,” by
Dr. C. Mohan, IBM Almaden Research Center in Silicon Valley, San Francisco,
CA, USA



– “The infrastructure, from physical servers to containers and beyond, what is the
next breakthrough?” by Dr. Pierre Rognant, Thales Alenia Space, Toulouse, France

– “Developing AI Systems New challenges for Software Engineering,” by Prof. Ivica
Crnkovic, Chalmers University, Gothenburg, Sweden

In addition to the technical program consisting of the keynote talks, the main
research track, the industry track, the PhD symposium, the demo session and poster
sessions, the scope of ICSOC 2019 was broadened by 5 workshops:

– The 15th International Workshop on Engineering Service-Oriented Applications
and Cloud Services (WESOACS 2019)

– The 4th International Workshop on Adaptive Service-oriented and Cloud
Applications (ASOCA 2019)

– The 4th International IoT Systems Provisioning & Management for Context-Aware
Smart Cities (ISYCC 2019)

– The first edition of Towards Blockchain-Based Collaborative Enterprise
(TBCE 2019)

– The first edition of Smart daTa integRation And Processing on Service based
environments (STRAPS 2019)

We are grateful to the members of the PC as well as the meta-reviewers for helping
us to provide valuable and timely reviews. Their efforts enabled us to put together a
high-quality technical program for ICSOC 2019. We are indebted to the local
arrangements team of LAAS-CNRS for the successful organization of all conference,
social, and co-located events. The ICSOC 2019 submission, review, and proceedings
process was extensively supported by the Conftool Conference Management System.
We are grateful to their technical support.

We would also like to acknowledge all the members of the Organizing Committee
and all who contributed to make ICSOC 2019 a successful event. We also acknowledge
the prompt and professional support from Springer, who published these proceedings in
printed and electronic volumes as part of the Lecture Notes in Computer Science series.
Most importantly, we would like to thank all authors and participants of ICSOC 2019
for their insightful work and discussions!

November 2019 Sami Yangui
Ismael Bouassida Rodriguez

Khalil Drira
Zahir Tari

vi Preface



Organization

General Chairs

Albert Zomaya University of Sydney, Australia
Djamal Benslimane Université de Lyon, France

Program Committee Chairs

Sami Yangui LAAS-CNRS, France
Khalil Drira LAAS-CNRS, France
Zahir Tari RMIT University, Australia

Industry Chairs

Samir Tata LinkedIn, USA
Emna Mezghani Orange Labs, France

Workshop Chairs

Sami Yangui LAAS-CNRS, France
Athman Bouguettaya University of Sydney, Australia
Xiao Xue Tianjin University, China

Demonstration Chairs

Noura Faci Université de Lyon, France
Qi Yu Rochester Institute of Technology, USA
Walid Gaaloul Télécom SudParis, France

PhD Symposium Chairs

Zhangbing Zhou University of Geosciences in Beijing, China
Nathalie Hernandez Université Toulouse 2, France
Elisa Y. Nakagawa Universidade de São Paulo, Brazil

Panel Chairs

Nicolas Van Wambeke Thales Alenia Space, France
Richard Chbeir Université de Pau et des Pays de l’Adour, France



Finance Chair

Bernd Krämer Fern University, Germany

Publication Chair

Ismael Bouassida Rodriguez University of Sfax, Tunisia

Publicity Chairs

Nicolas Seydoux LAAS-CNRS, France
Ilhem Khlif University of Sfax, Tunisia
YiWen Zhang Anhui University in Hefei, China
Manel Abdellatif École Polytechnique de Montréal, Canada

Web Chairs

Nour El-Houda Nouar LAAS-CNRS, France
Fatma Raissi LAAS-CNRS, France
Josue Castañeda Cisneros LAAS-CNRS, France

Steering Committee

Boualem Benatallah UNSW, Australia
Fabio Casati University of Trento, Italy
Bernd Krämer Fern University, Germany
Winfried Lamersdorf University of Hamburg, Germany
Heiko Ludwig IBM, USA
Mike Papazoglou Tilburg University, The Netherlands
Jian Yang Macquarie University, Australia
Liang Zhang Fudan University, China

Senior Program Committee

Benatallah Boualem UNSW, Australia
Bouguettaya Athman The University of Sydney, Australia
Canal Carlos University of Malaga, Spain
Casati Fabio University of Trento, Italy
Dustdar Schahram TU Wien, Austria
Franch Xavier Universitat Politcnica de Catalunya, Spain
Ghose Aditya University of Wollongong, Australia
Hacid Mohand University of Lyon, France
Pahl Claus Free University of Bozen-Bolzano, Italy
Paoli Flavio University di Milano Bicocca, Italy
Pautasso Cesare University of Lugano, Switzerland
Pernici Barbara Politecnico di Milano, Italy

viii Organization



Rossi Gustavo UNLP, Argentina
Ruiz-Corts Antonio University of Sevilla, Spain
Sheng Michael Macquarie University, Australia
Tai Stefan TU Berlin, Germany
Tata Samir Engineering Manager at LinkedIn, USA
Vukovic Maja IBM Research, USA
Weske Mathias HPI, University of Potsdam, Germany
Yang Jian Macquarie University, Australia
Yin Jianwei Zhejiang University, China
Zhang Liang Fudan University, China

Program Committee

Abdelkarim Erradi Qatar University, Qatar
Alena Buchalcevova University of Economics, Czech Republic
Alex Norta Tallinn University of Technology, Estonia
Allel Hadjali ENSMA, France
Alvaro Arenas IE Business School, Spain
Andrzej Goscinski Doctor, Australia
Anne Ngu Texas State University, USA
Antonio Brogi University of Pisa, Italy
Antonio Bucchiarone Fondazione Bruno Kessler, Italy
Anup Kumar Kalia IBM T. J. Watson Research Center, USA
Aviv Segev University of South Alabama, USA
Azadeh Ghari Neiat University of Sydney, Australia
Bedir Tekinerdogan Wageningen University, The Netherlands
Brahim Medjahed University of Michigan, USA
Bruno Defude Télécom SudParis, France
Carla Mouradian Concordia University, Canada
Carlos E. Cuesta Rey Juan Carlos University, Spain
Chihab Hanachi IRIT Laboratory, Toulouse University, France
Chi-Hung Chi CSIRO, Australia
Christian Zirpins Karlsruhe University of Applied Sciences, Germany
Christoph Bussler Google, Inc., USA
Claude Godart University of Lorraine, France
Cristina Cabanillas Vienna University of Economics and Business, Austria
Dalila Chiadmi EMI, Morocco
Daniela Grigori Université Paris-Dauphine, France
Danilo Ardagna Politecnico di Milano, Italy
David Bermbach TU Berlin, Germany
Diptikalyan Saha IBM Research, India
Domenico Bianculli University of Luxembourg, Luxembourg
Ebrahim Bagheri Ryerson University, Canada
Efstratios Georgopoulos University of Peloponnese, Greece
Ejub Kajan State University of Novi Pazar, Serbia
Elena Navarro Castilla-La Mancha, Spain

Organization ix



Elisa Yumi Nakagawa Universidade de São Paulo, Brazil
Emna Mezghani Orange Labs, France
Erik Wittern IBM Research, USA
Ernesto Exposito UPPA-LIUPPA, France
Fairouz Fakhfakh ReDCAD, Tunisia
Faiza Belala LIRE Laboratory Constantine 2 University, Algeria
Faouzi Ben Charrada University of Tunis El Manar, Tunisia
Flavia Coimbra Delicato Federal University of Rio de Janeiro, Brazil
Flavio Oquendo IRISA, UMR CNRS, Université Bretagne Sud, France
Florian Daniel Politecnico di Milano, Italy
Floriano Zini Free University of Bozen-Bolzano, Italy
Francois Charoy University of Lorraine, France
Frank Leymann University of Stuttgart, Germany
Fuyuki Ishikawa National Institute of Informatics, Japan
George Feuerlicht University of Technology, Australia
George Pallis University of Cyprus, Cyprus
George Spanoudakis City University London, UK
Gerald Kotonya Lancaster University, UK
Gianluigi Zavattaro University of Bologna, Italy
Gowri Sankar

Ramachandran
CCI, University of Southern California, USA

Guadalupe Ortiz University of Cadiz, Spain
Guiling Wang North China University of Technology, China
Hai Dong RMIT University, Australia
Hai Jin HUST, China
Haithem Mezni Taibah University, Tunisia
Hamid Reza

Motahari-Nezhad
EY - AI Lab, USA

Hanchuan Xu Harbin Institute of Technology, China
Helen Paik UNSW, Australia
Ignacio Silva-Lepe IBM, Mexico
Ilhem Khlif University of Sfax Redcad Research Laboratory,

Tunisia
Iman Saleh University of Miami, USA
Imen Abdennadher ReDCAD, Tunisia
Ioannis Stamelos Aristotle University of Thessaloniki, Greece
Ismael Bouassida Rodriguez University of Sfax, Tunisia
Javier Cubo University of Malaga, Spain
Jean Paul Arcangeli University Toulouse 3, France
Jean-Michel Bruel University Toulouse 2, France
Jian Yu Auckland University of Technology, New Zealand
Jianmin Wang Tsinghua University, China
Jianwu Wang University of Maryland, USA
Jin Xiao IBM T. J. Watson Research Center, USA
Joao E. Ferreira Universidade de São Paulo, Brazil
John Grundy Monash University, Australia

x Organization



Joyce El Haddad Université Paris-Dauphine, France
Juan Boubeta-Puig University of Cadiz, Spain
Juan Manuel Murillo University of Extremadura, Spain
Jun Han Swinburne University of Technology, Australia
Jun Shen University of Wollongong, Australia
Jun Wei Institute of Software, Chinese Academy of Sciences,

China
Kais Klai University of Paris 13, France
Khalil Drira LAAS Toulouse, France
Lamia BenAmor Redcad, Tunisia
Lars Braubach Hochschule Bremen, Germany
Lars Moench University of Hagen, Germany
Laura Gonzalez Universidad de la Republica, Uruguay
Lawrence Chung The University of Texas at Dallas, USA
Liang Chen Sun Yat-Sen University, China
Liang Zhang Fudan University, China
Lijie Wen Tsinghua University, China
Lionel Seinturier University of Lille, France
Luciano Baresi Politecnico di Milano, Italy
Manfred Reichert University of Ulm, Germany
Marcelo Fantinato Universidade de São Paulo, Brazil
Marco Aiello University of Stuttgart, Germany
Maria Maleshkova University of Bonn, Germany
Mark Little Red Hat, UK
Massimo Mecella Sapienza Università di Roma, Italy
Matthias Galster University of Canterbury, New Zealand
Maude Manouvrier Université Paris-Dauphine, France
Michael Mrissa InnoRenew CoE, University of Primorska, Slovenia
Mike Papazoglou University of Tilburg, The Netherlands
Mohamad Kassab Pennsylvania State University, USA
Mohamed Lamine Kerdoudi University of Biskra, Algeria
Mohamed Mohamed IBM Almaden Research Center, USA
Mohamed Sellami Télécom SudParis, France
Mohammad Abu-Lebdeh Concordia University, Canada
Monica Vitali Politecnico di Milano, Italy
Mu Qiao IBM Almaden Research Center, USA
N. D. Gangadhar M S Ramaiah University of Applied Sciences, India
Nanjangud C. Narendra Ericsson Research, India
Naouel Moha UQAM, Canada
Nathalie Hernandez University of Toulouse 2, France
Nawal Guermouche Université de Toulouse, France
Nesrine Khabou Redcad, Tunisia
Nirmit Desai IBM T J Watson Research Center, USA
Noura Faci Université Lyon 1, CNRS, France
Okba Tibermacine University of Biskra, Algeria

Organization xi



Olaf Zimmermann University of Applied Sciences of Eastern Switzerland
(HSR FHO), Switzerland

Olivier Perrin Lorraine University, France
Omar Boucelma Aix-Marseille University, France
Onyeka Ezenwoye Augusta University, USA
Pablo Fernandez University of Sevilla, Spain
Pascal Poizat Université Paris Nanterre, LIP6, France
Patricia Lago Vrije Universiteit Amsterdam, The Netherlands
Patrizia Scandurra University of Bergamo, Italy
Paul Greenfield CSIRO, Australia
Pedro lvarez University of Zaragoza, Spain
Philippe Lalanda UGA, France
Pierluigi Plebani Politecnico di Milano, Italy
Pooyan Jamshidi University of South Carolina, USA
Qi Yu Rochester Institute of Technology, USA
Qiang He Swinburne University of Technology, Australia
Rafael Capilla University Rey Juan Carlos, Spain
Raffaela Mirandola Politecnico di Milano, Italy
Rajkumar Buyya University of Melbourne, Australia
Rik Eshuis Eindhoven University of Technology, The Netherlands
Rogerio de Lemos University of Kent, UK
Sajib Mistry University of Sydney, Australia
Salah Sadou IRISA, University of South Brittany, France
Salima Benbernou Université Paris Descartes, France
Sami Bhiri Télécom SudParis, France
Sami Yangui CNRS-LAAS, France
Sanjay Chaudhary Ahmedabad University, India
Saul Hernandez Instituto Nacional de Astrofsica, ptica y Electrnica

Puebla, Mexico
Sergey Smirnov SAP, Germany
Shiping Chen CSIRO, Australia
Shuiguang Deng Zhejiang University, China
Sira Yongchareon Auckland University of Technology, New Zealand
Slim Kallel ReDCAD, University of Sfax, Tunisia
Somayeh Kianpisheh Concordia University, Canada
Sotirios P. Chatzis Cyprus University of Technology, Cyprus
Spiros Likothanassis University of Patras, Greece
Stefan Schulte TU Wien, Austria
Stefanie Rinderle-Ma University of Vienna, Austria
Sumaira Sultan Minhas Fatima Jinnah Women University, Pakistan
Surya Nepal CSIRO, Australia
Sven Graupner HP Labs, Palo Alto, USA
Takoua Abdellatif University of Carthage, Tunisia
Thais Batista UFRN, Brazil
Tommi Mikkonen University of Helsinki, Finland
Touraj Laleh Air Transat, Canada

xii Organization



Uwe Zdun University of Vienna, Austria
Vasilios Andrikopoulos University of Groningen, The Netherlands
Walid Gaaloul Télécom SudParis, France
Walter Binder University of Lugano, Switzerland
Weiliang Zhao Macquarie University, Australia
Willem-Jan van den Heuvel Tilburg School of Economics and Management,

The Netherlands
Wing-Kwong Chan City University of Hong Kong, Hong Kong, China
Wolfgang Reisig Humboldt-Universität zu Berlin, Germany
Xianzhi Wang University of Technology Sydney, Australia
Xiao Xue Tianjin University, China
Yan Wang Macquarie University, Australia
Yehia Taher University of Versailles-St-Quentin-en-Yvelines,

France
Ying Zou Queen’s University, Canada
Zahir Tari RMIT University, Australia
Zakaria Maamar Zayed University, UAE
Zaki Malik Texas A & M University, USA
Zhangbing Zhou China University of Geosciences, Beijing, China
Zhiyong Feng Tianjin University, China
Zhiyong Feng Tianjin University, China
Zhongjie Wang Harbin Institute of Technology, China

Additional Reviewer

Lamia BenAmor

Organization xiii



Contents

Service Engineering

An Empirical Study of GraphQL Schemas . . . . . . . . . . . . . . . . . . . . . . . . . 3
Erik Wittern, Alan Cha, James C. Davis, Guillaume Baudart,
and Louis Mandel

Automating SLA-Driven API Development with SLA4OAI . . . . . . . . . . . . . 20
Antonio Gamez-Diaz, Pablo Fernandez, and Antonio Ruiz-Cortes

On Observability and Monitoring of Distributed Systems – An Industry
Interview Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Sina Niedermaier, Falko Koetter, Andreas Freymann,
and Stefan Wagner

Integrating Geographical and Functional Relevance to Implicit Data
for Web Service Recommendation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Khavee Agustus Botangen, Jian Yu, Sira Yongchareon, LiangHuai Yang,
and Quan Z. Sheng

Towards Automated Microservices Extraction Using Muti-objective
Evolutionary Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Islem Saidani, Ali Ouni, Mohamed Wiem Mkaouer, and Aymen Saied

Towards Automated Planning for Enterprise Services:
Opportunities and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Maja Vukovic, Scott Gerard, Rick Hull, Michael Katz, Laura Shwartz,
Shirin Sohrabi, Christian Muise, John Rofrano, Anup Kalia,
Jinho Hwang, Dang Yabin, Ma Jie, and Jiang Zhuoxuan

Run-Time Service Operations and Management

A Model for Distributed Service Level Agreement Negotiation
in Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Fan Li, Andrei Palade, and Siobhán Clarke

Edge User Allocation with Dynamic Quality of Service . . . . . . . . . . . . . . . . 86
Phu Lai, Qiang He, Guangming Cui, Xiaoyu Xia, Mohamed Abdelrazek,
Feifei Chen, John Hosking, John Grundy, and Yun Yang

Automatic Business Process Model Extension to Repair
Constraint Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Xavier Oriol, Giuseppe De Giacomo, Montserrat Estañol,
and Ernest Teniente



N2TM: A New Node to Trust Matrix Method for Spam Worker Defense
in Crowdsourcing Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Bin Ye, Yan Wang, Mehmet Orgun, and Quan Z. Sheng

QoS Value Prediction Using a Combination of Filtering Method
and Neural Network Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Soumi Chattopadhyay and Ansuman Banerjee

Harmonia: A Continuous Service Monitoring Framework Using DevOps
and Service Mesh in a Complementary Manner . . . . . . . . . . . . . . . . . . . . . 151

Haan Johng, Anup K. Kalia, Jin Xiao, Maja Vuković,
and Lawrence Chung

Services and Data

ESDA: An Energy-Saving Data Analytics Fog Service Platform . . . . . . . . . . 171
Tiehua Zhang, Zhishu Shen, Jiong Jin, Atsushi Tagami, Xi Zheng,
and Yun Yang

Leveraging AI in Service Automation Modeling: From Classical AI
Through Deep Learning to Combination Models . . . . . . . . . . . . . . . . . . . . . 186

Qing Wang, Larisa Shwartz, Genady Ya. Grabarnik, Michael Nidd,
and Jinho Hwang

A Wearable Machine Learning Solution for Internet Traffic Classification
in Satellite Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Fannia Pacheco, Ernesto Exposito, and Mathieu Gineste

FAME: An Influencer Model for Service-Oriented Environments . . . . . . . . . 216
Faisal Binzagr, Hamza Labbaci, and Brahim Medjahed

Latency-Aware Deployment of IoT Services in a Cloud-Edge
Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Shouli Zhang, Chen Liu, Jianwu Wang, Zhongguo Yang, Yanbo Han,
and Xiaohong Li

Trusted Data Integration in Service Environments: A Systematic Mapping . . . 237
Senda Romdhani, Nadia Bennani, Chirine Ghedira-Guegan,
and Genoveva Vargas-Solar

CSI2: Cloud Server Idleness Identification by Advanced Machine
Learning in Theories and Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Jun Duan, Guangcheng Li, Neeraj Asthana, Sai Zeng, Ivan Dell’Era,
Aman Chanana, Chitra Agastya, William Pointer, and Rong Yan

xvi Contents



Services in the Cloud

An Energy Efficient and Interference Aware Virtual Machine Consolidation
Algorithm Using Workload Classification. . . . . . . . . . . . . . . . . . . . . . . . . . 251

Rachael Shaw, Enda Howley, and Enda Barrett

Thread-Level CPU and Memory Usage Control of Custom Code
in Multi-tenant SaaS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Majid Makki, Dimitri Van Landuyt, Bert Lagaisse, and Wouter Joosen

Optimized Application Deployment in the Fog . . . . . . . . . . . . . . . . . . . . . . 283
Zoltán Ádám Mann, Andreas Metzger, Johannes Prade,
and Robert Seidl

Toward Cost Efficient Cloud Bursting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Amirmohammad Pasdar, Young Choon Lee, and Khaled Almi’ani

Optimized Renewable Energy Use in Green Cloud Data Centers. . . . . . . . . . 314
Minxian Xu, Adel N. Toosi, Behrooz Bahrani, Reza Razzaghi,
and Martin Singh

Operating Enterprise AI as a Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Fabio Casati, Kannan Govindarajan, Baskar Jayaraman,
Aniruddha Thakur, Sriram Palapudi, Firat Karakusoglu,
and Debu Chatterjee

Towards Automated Patch Management in a Hybrid Cloud . . . . . . . . . . . . . 345
Ubaid Ullah Hafeez, Alexei Karve, Braulio Dumba, Anshul Gandhi,
and Sai Zeng

Services on the Internet of Things

QCF: QoS-Aware Communication Framework for Real-Time
IoT Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Omid Tavallaie, Javid Taheri, and Albert Y. Zomaya

Constraint-Aware Drone-as-a-Service Composition . . . . . . . . . . . . . . . . . . . 369
Babar Shahzaad, Athman Bouguettaya, Sajib Mistry,
and Azadeh Ghari Neiat

An Adaptive Monitoring Service Exploiting Data Correlations
in Fog Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Monica Vitali, Xuesong Peng, and Barbara Pernici

The Circuit Breaker Pattern Targeted to Future IoT Applications. . . . . . . . . . 390
Gibeon Aquino, Rafael Queiroz, Geoff Merrett, and Bashir Al-Hashimi

Contents xvii



Services in Organizations, Business and Society

A Catalogue of Inter-parameter Dependencies in RESTful Web APIs . . . . . . 399
Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés

Simplification of Complex Process Models by Abstracting
Infrequent Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

David Chapela-Campa, Manuel Mucientes, and Manuel Lama

Improving IT Support by Enhancing Incident Management Process
with Multi-modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Atri Mandal, Shivali Agarwal, Nikhil Malhotra, Giriprasad Sridhara,
Anupama Ray, and Daivik Swarup

A Recommendation of Crowdsourcing Workers Based
on Multi-community Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Zhifang Liao, Xin Xu, Peng Lan, Jun Long, and Yan Zhang

Analysis of Resource Allocation of BPMN Processes . . . . . . . . . . . . . . . . . 452
Francisco Durán, Camilo Rocha, and Gwen Salaün

Services at the Edge

Joint Operator Scaling and Placement for Distributed Stream Processing
Applications in Edge Computing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Qinglan Peng, Yunni Xia, Yan Wang, Chunrong Wu, Xin Luo,
and Jia Lee

Graph-Based Optimal Data Caching in Edge Computing . . . . . . . . . . . . . . . 477
Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, Phu Lai,
Mohamed Abdelrazek, John Grundy, and Hai Jin

Load-Aware Edge Server Placement for Mobile Edge Computing
in 5G Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

Xiaolong Xu, Yuan Xue, Lianyong Qi, Xuyun Zhang, Shaohua Wan,
Wanchun Dou, and Victor Chang

PAPS: A Framework for Decentralized Self-management at the Edge . . . . . . 508
Luciano Baresi, Danilo Filgueira Mendonça, and Giovanni Quattrocchi

Measuring the Fog, Gently . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Antonio Brogi, Stefano Forti, and Marco Gaglianese

Mobile Apps with Dynamic Bindings Between the Fog and the Cloud . . . . . 539
Dionysis Athanasopoulos, Mitchell McEwen, and Austen Rainer

xviii Contents



Re-deploying Microservices in Edge and Cloud Environment
for the Optimization of User-Perceived Service Quality . . . . . . . . . . . . . . . . 555

Xiang He, Zhiying Tu, Xiaofei Xu, and Zhongjie Wang

Short Papers

Mapping Business Rules to LTL Formulas . . . . . . . . . . . . . . . . . . . . . . . . . 563
Isaac Mackey and Jianwen Su

A SDN/NFV Based Network Slicing Creation System . . . . . . . . . . . . . . . . . 566
Meng Wang, Bo Cheng, and Junliang Chen

Neural Adaptive Caching Approach for Content Delivery Networks . . . . . . . 569
Qilin Fan, Hao Yin, Qiang He, Yuming Jiang, Sen Wang,
Yongqiang Lyu, and Xu Zhang

Personal Service Ecosystem (PSE) and Its Evolution Pattern Analysis . . . . . . 571
Haifang Wang, Yao Fu, Zhongjie Wang, Zhiying Tu, and Xiaofei Xu

Adaptive Mobile Business Process Monitoring Service
with Enhanced NFV MANO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Giovanni Meroni, Marouan Mizmizi, Pierluigi Plebani,
and Luca Reggiani

SATP: Sentiment Augmented Topic Popularity Prediction
on Social Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

Weizhi Gong, Zuowu Zheng, Xiaofeng Gao, and Guihai Chen

A Hierarchical Optimizer for Recommendation System Based
on Shortest Path Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

Jiacheng Dai, Zhifeng Jia, Xiaofeng Gao, and Guihai Chen

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

Contents xix



Service Engineering



An Empirical Study of GraphQL Schemas

Erik Wittern1(B), Alan Cha1, James C. Davis2, Guillaume Baudart1,
and Louis Mandel1

1 IBM Research, Yorktown Heights, USA
{witternj,lmandel}@us.ibm.com, {alan.cha1,guillaume.baudart}@ibm.com

2 Virginia Tech, Blacksburg, USA
davisjam@vt.edu

Abstract. GraphQL is a query language for APIs and a runtime to
execute queries. Using GraphQL queries, clients define precisely what
data they wish to retrieve or mutate on a server, leading to fewer round
trips and reduced response sizes. Although interest in GraphQL is on
the rise, with increasing adoption at major organizations, little is known
about what GraphQL interfaces look like in practice. This lack of knowl-
edge makes it hard for providers to understand what practices promote
idiomatic, easy-to-use APIs, and what pitfalls to avoid.

To address this gap, we study the design of GraphQL interfaces in
practice by analyzing their schemas – the descriptions of their exposed
data types and the possible operations on the underlying data. We base
our study on two novel corpuses of GraphQL schemas, one of 16 commer-
cial GraphQL schemas and the other of 8,399 GraphQL schemas mined
from GitHub projects. We make available to other researchers those
schemas mined from GitHub whose licenses permit redistribution. We
also make available the scripts to mine the whole corpus. Using the two
corpuses, we characterize the size of schemas and their use of GraphQL
features and assess the use of both prescribed and organic naming con-
ventions. We also report that a majority of APIs are susceptible to denial
of service through complex queries, posing real security risks previously
discussed only in theory. We also assess ways in which GraphQL APIs
attempt to address these concerns.

Keywords: GraphQL · Web APIs · Practices

1 Introduction

GraphQL is a query language for web APIs, and a corresponding runtime for
executing queries. To offer a GraphQL API, providers define a schema contain-
ing the available data types, their relations, and the possible operations on that
data. Clients send queries that precisely define the data they wish to retrieve
or mutate. The server implementing the GraphQL API executes the query, and
returns exactly the requested data. Figure 1 shows, on the left, an example query
for GitHub’s GraphQL API [12]. It aims to retrieve the description of the
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 3–19, 2019.
https://doi.org/10.1007/978-3-030-33702-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_1


4 E. Wittern et al.

graphql-js repository owned by graphql. The query, in case that this owner
is an Organization, further requests the totalCount of all members of that orga-
nization, and the names of the first two of them. The right hand side of Fig. 1
shows the response produced by GitHub’s GraphQL API after executing that
query,1 which contains exactly the requested data.

Fig. 1. Example of a GraphQL query (left), and corresponding JSON response (right).

GraphQL is seeing adoption at major organizations thanks in part to its
advantages for performance and usability. In some use-cases, allowing users
to precisely state data requirements using GraphQL queries can lead to fewer
request-response roundtrips and smaller response sizes as compared to other
API paradigms, e.g., REST-like APIs [16]. GraphQL prescribes a statically typed
interface, which drives developer tooling like GraphiQL, an online IDE helping
developers explore schemas and write and validate queries [2], or type-based data
mocking for testing services [3]. Major organizations have begun to embrace it,
including GitHub [12], Yelp [10], The New York Times [11], or Shopify [13].

As any new technology is deployed, users begin to follow useful patterns and
identify best practices and anti-patterns. Our aim is to shed light on emerg-
ing GraphQL uses and practices, in the spirit of similar studies for REST(-like)
APIs [18,22,23]. By studying technological practices in the GraphQL context, we
benefit the entire GraphQL community: Our study will help GraphQL providers
build idiomatic, easy-to-use GraphQL APIs, and avoid pitfalls others have expe-
rienced before. Our findings also inform tool developers about the practices that
are more (and less) important to support. Obviously GraphQL consumers will
benefit from the resulting well-designed GraphQL APIs and effective tool sup-
port. And finally, our contributions may influence the evolution of GraphQL
itself, as we highlight challenges that the specification may eventually address.

Specifically, the contributions of this work are:

– We present two novel GraphQL schema corpuses, derived respectively from
commercial GraphQL deployments and open-source projects (Sect. 3). We
make parts of the open-source corpus – as permitted by schema licenses –
publicly available for other researchers [30], and also share the scripts to
reproduce the whole open-source corpus [29].

1 We anonymized the returned names.



An Empirical Study of GraphQL Schemas 5

– We analyze our corpuses for common schema characteristics, naming conven-
tions, and worst-case response sizes, and describe practices that address large
responses (Sect. 4).

In brief, we find that: (1) There are significant differences between commercial
and open-source schemas; (2) Schemas commonly follow naming conventions,
both documented and not; (3) A majority of schemas have large worst-case
response sizes, which schema developers and endpoint providers should consider;
and (4) Mechanisms to avoid these large response sizes are applied inconsistently.

2 Background

As sketched above, a schema describes the types of data offered by a GraphQL
API, the relations between those types, and possible operations on them.
In this section, we outline selected concepts related to GraphQL schemas.
GraphQL providers can define schemas either programmatically using libraries
like graphql-js [6], or they can define them declaratively using the Schema Defi-
nition Language (SDL). Figure 2 shows an example schema defined in the SDL.

Fig. 2. Example of a GraphQL schema in the Schema Definition Language (SDL).

The schema defines fields query and mutation, one of which forms the entry for
any valid query. Every GraphQL schema must contain a Query operation type,
which in this case is the Query object type. According to this schema, queries can
retrieve a company field that returns a Company identified by an id argument of
type ID (the character “!” indicates that the argument is required). The returned
Company again allows queries to retrieve its id, name, address, age, and/or offices.
The latter requires the user to limit the number of offices returned. Offices,
implementing the connections pattern for pagination [7], are related to a com-
pany via an OfficeConnection, that contains information about the totalCount of
offices of that company, and grants access to them directly via the nodes field or



6 E. Wittern et al.

indirectly via the edges field. Querying for an OfficeEdge allows users to obtain a
cursor that they can use (in subsequent queries) to precisely slice which offices

to retrieve from a Company via the after argument.
query { company(id: "n3...") { offices(limit: 10, after: "mY...") { edges: {

cursor
node { name }

} } } }

The schema further allows to mutate data via the createOffice field. The
data about the office to create is defined in a dedicated input object type called
OfficeInput and passed as an argument. A corresponding query may look like:

mutation { createOffice(input: { name: "A new office" }) {
id

} }

In GraphQL, basic types like String, Int, or Boolean are called scalars, sets
of predefined strings are called enums, and complex types that contain fields are
called object types (e.g., Company in Fig. 2). GraphQL further allows developers to
define interfaces that can be implemented by object types or extended by other
interfaces, and unions which state that data can be of one of multiple object
types. For example, in line 5 of Fig. 1, ... on Organization is a type condition
that queries fields on the interface RepositoryOwner returned by field owner only
if the owner happens to be an Organization. Beyond queries that retrieve data,
GraphQL schemas may also define a root Mutation operation type, whose fields
define possible mutations, e.g., to create, edit, or delete data. Input for mutations
is defined using arguments, which are (lists of) scalars, enums, or input object
types. Finally, GraphQL schemas may contain directives that define metadata
or behavioral changes associated with field, type, argument or even the whole
schema definitions. For example, in Fig. 2 the field age in type Company is marked
with a directive as deprecated. This information could, for example, be displayed
by documentation tooling. Tools or clients can send an introspection query to
retrieve the latest schema from a GraphQL API.

After defining their GraphQL schema, to offer a GraphQL API a provider
must build a mapping between the data types defined in the schema and their
representation in the back-end storage system(s). The provider does this by
implementing a resolver function for each field defined in the schema, which can
retrieve or mutate the corresponding data. Resolver functions can, for exam-
ple, interact with databases, other APIs, or dynamically compute a result —
GraphQL is agnostic to their implementation. To execute a query, a GraphQL
runtime validates it against the schema, and then in sequence calls all resolver
functions required to fulfill the query.

Although a schema definition does not tell us everything about a GraphQL
API (e.g., how its resolver functions are implemented), GraphQL schemas can
still tell us about GraphQL practices. For example, from a GraphQL schema we
can learn the characteristics of the corresponding GraphQL API, the nature of
possible queries to its API, and the conventions followed in designing it. Schema
definitions thus comprise useful research artifacts. In the next section we discuss
the schema definitions we sampled to understand these and other topics.



An Empirical Study of GraphQL Schemas 7

3 Data: Two Novel GraphQL Schema Corpuses

We created two corpuses of GraphQL schemas: one from introspecting pub-
licly accessible commercial GraphQL APIs (Sect. 3.1), and the other from min-
ing GitHub for GraphQL schema definitions (Sect. 3.2). Figure 3 illustrates the
GraphQL schema populations we sampled to create these corpuses.

→ GitHub corpus
On GitHub

All GraphQL schemas

→ commercial corpus

Commercial

Fig. 3. Schema corpuses used in this work. A subset of all GraphQL schemas is defined
using the SDL rather than programmatically. We mine the subset hosted on GitHub.
Schemas in our commercial corpus can be defined either way, and may be hosted
(privately) on GitHub.

In both corpuses, we included only schemas that are parsable (e.g., written in
valid SDL syntax) and complete (e.g., contains a query operation and definitions
of all referenced types). We checked these constraints using the parsing and val-
idation capabilities offered by the graphql-js reference implementation [6], thus
ensuring that schemas can be processed and analyzed without risking runtime
errors. We make available the schemas in the open-source corpus – considering
the constraints for redistributing them defined in their licenses [30]. We also
make available the scripts to collect the whole open-source corpus [29]. These
scripts contain the schema reconstruction logic described in Sect. 3.2.

3.1 Commercial Corpus (Schemas Deployed in Practice)

Our commercial corpus (16 schemas) represents GraphQL schemas written and
maintained by professional software developers for business-critical purposes.
This corpus allows us to reason about GraphQL practices in industry.

To identify commercial GraphQL APIs, we started with the community-
maintained list provided by APIs.guru [1].2 We manually assessed the docu-
mentation for all 33 of the “Official APIs” listed on May 1st 2019 to remove
demo interfaces and non-commercial APIs. We then used introspection to collect
these commercial GraphQL schemas. After discarding invalid schemas (validity
is defined in Sect. 3.2), we obtained our final corpus of 16 valid, unique GraphQL
schemas maintained by commercial websites. The corpus includes, among others,
schemas of prominent GraphQL APIs like GitHub, Shopify, Yelp, and BrainTree.

2 We submitted a pull request adding several public GraphQL APIs that were missing
from the APIs.guru list, but that we found using web searches. The APIs.guru
maintainers accepted the pull request and we included those schemas in this analysis.



8 E. Wittern et al.

3.2 Open-Source Corpus (Schemas in GitHub Projects)

Our open-source corpus (8,399 schemas) provides another perspective on
GraphQL practices, depicting (ongoing) development efforts and privately-
deployed APIs. For this corpus, we aimed to collect schema definitions written
in the SDL (cf. Sect. 2) and stored in a GitHub project. Figure 4 summarizes the
stages of our data-collection methodology.

74,105 search result 55,306 pure 
schemas

-10,663 GitHub
URL duplicates

-3,659

-4,477

25,289 complete 
unmerged schemas

27,742 complete 
schemas

-30,017 incomplete
schemas

+2,453
recovered
schemas

19,379 valid 
schemas

8,399 valid, unique 
schemas

-10,980 AST
duplicates

-8,363 invalid
schemas

Fig. 4. Filters to construct the open-source schema corpus.

We used GitHub’s code search API to obtain search result files that likely
contain schemas on May 21st 2019 using this query:

type extension:graphql extension:gql
size:<min>..<max> fork:false

The pieces of this query have the following meaning. The search term type is
used in any non-trivial schema in the GraphQL SDL. The extensions .graphql

and .gql are common file suffixes for the GraphQL SDL. The file sizes <min> and
<max> partitioned the search space by file size in order to work around GitHub’s
limit on code search query results. We omitted project forks to avoid duplicates.

We removed duplicates by URL to obtain unique files. We filtered
unparsable files per the graphql-js [6] reference implementation to obtain SDL
files. The GraphQL SDL can describe not only schemas, but also executables
like queries, mutations, or subscriptions (e.g., the query in Fig. 1) or a mixture
of both. Because we are only interested in schemas, we obtained pure schemas
by removing any files that contain executables, a.k.a. executable definitions [14].

These steps left us with parsable SDL files, but not all are complete.3 We
observed that some schemas contain reference errors, e.g., because they are
divided across multiple files for encapsulation. Supposing that a repository’s
complete schema(s) can be produced through some combination of its GraphQL
files, we used heuristics to try to reconstruct these partitioned schemas, thus
3 A complete schema (1) contains a query operation (a SchemaDefinition node [15] or

a Query object type [8]), and (2) defines all referenced types and directives.



An Empirical Study of GraphQL Schemas 9

adding recovered schemas back to our data. For every schema that contains a
query operation but also reference errors, we searched for the missing definitions
in the repository’s other GraphQL files. When we found a missing type in another
file, we appended that file’s contents to the current schema.4 We repeated this
process until we obtained either a complete schema or an unresolvable reference.
Of the 30,017 incomplete schemas, there are 5,603 that contain an query
operation, meaning they can form the basis of a merged schema, and from these
schemas, we were able to recover 2,453 schemas (43.8% success rate). This suc-
cess rate suggests that distributing GraphQL schema definitions across multiple
files is a relatively common practice.

We obtained valid schemas by removing ones that could not be validated
by the graphql-js reference implementation, and finally valid, unique schemas
by removing duplicates by testing for abstract syntax tree (AST) equivalence.
We discarded about half of the remaining schemas during deduplication (Fig. 4).
Inspection suggests many of these schemas were duplicated from examples.

Our final open-source schema corpus contains 8,399 valid, unique GraphQL
Schema Definition files, 1,127 of which were recovered through merging.5

Although all of these schemas are valid, some may still be “toy” schemas. We
take a systematic approach to identify and remove these in the analysis that
follows.

4 Schema Analysis: Characteristics and Comparisons

In this section, we analyze our GraphQL schema corpuses. We discuss schema
metrics, characterize the corpuses, and compare and contrast them. Specifically,
we analyze some general characteristics (Sect. 4.1), identify naming conventions
(Sect. 4.2), estimate worst-case query response sizes (Sect. 4.3), and measure the
use of pagination, a common defense against pathological queries (Sect. 4.4).

Because our purpose is to understand GraphQL practices in open-source and
in industry, we extracted a subset of the GitHub corpus called the “GitHub-
large” (GH-large) corpus that is comparable in complexity to the commercial
corpus. This distinction is useful for measurements that are dependent on the
“quality” of the schema, e.g., worst-case response sizes and defenses, though
for studies like trends in naming conventions we think it is appropriate to also
consider the full GitHub corpus. In future analyses, other measures of quality
could be considered to segment the data, for example the number of stargazers
of the associated GitHub repository.

We identified the GitHub-large corpus using a simple measure of schema com-
plexity, namely its number of distinct definitions (for types, directives, operations
etc.). As shown in Fig. 5, the smallest commercial schema contains 8 definitions,

4 If multiple possible definitions were found, we broke ties under the assumption that
developers will use the directory hierarchy to place related files close to each other.

5 We collected data in November 2018 using the same methodology, and found 5,345
unique schemas, 701 of which resulted from merging. This reflects a growth of 57%
in half a year.



10 E. Wittern et al.

0 100 200 300 400 500 600

GitHub

Commercial

GitHub-large

1953

1953

662326122368

14
9

24

37 58 90 138

(8399 schemas)

(16 schemas)

(1739 schemas)

Fig. 5. Distributions of schema complexity (number of definitions) in the GitHub,
commercial, and GitHub-large schema corpuses. Whiskers show min and max values
and the boxes show the quartiles.

while half of the GitHub corpus contains 9 or less definitions. To avoid a bias
toward these toy schemas and to accommodate the small sample size of the
commercial corpus, we conservatively define a GitHub schema as large if it is at
least as complex as the first quartile of the commercial corpus (i.e., has more
than 36 definitions). We include separate measurements on this GitHub-large
corpus (1,739 schemas, 20.7% of the GitHub corpus, 10 of which were recovered
through merging). The complexity distribution of the GitHub-large corpus is not
perfectly aligned with the commercial corpus, but it is a better approximation
than the GitHub corpus and allows more meaningful comparisons of open-source
and industry GraphQL practices.

4.1 Schema Characteristics

First, we provide a reference for what GraphQL schemas look like in practice.
This snapshot can inform the design of GraphQL backends (e.g., appropriately
sizing caches) as well as the development of the GraphQL specification (e.g.,
more and less popular features). We parsed each schema using the graphql-js
reference implementation [6] and analyzed the resulting AST.

Table 1 shows clear differences among all three corpuses. Not surprisingly,
commercial and GitHub-large schemas are larger, containing more object and

Table 1. Characteristics & Features used in schema corpuses.

Commercial (16) GitHub (8,399) GH-large (1,739)

Median object types (OTs) 60 6 35

Median input OTs 44 6 43

Median fields in OTs 3 3 3

Median fields in Input OTs 2 3 3

Have interface types 11 (68.8%) 2,377 (28.3%) 1,395 (80.2%)

Have union types 8 (50.0%) 506 (6.0%) 330 (19.0%)

Have custom directives 2 (12.5%) 160 (1.9%) 26 (1.5%)

Subscription support 0 (0.0%) 2,096 (25.0%) 1,113 (64.0%)

Mutation support 11 (68.8%) 5,699 (67.9%) 1,672 (96.1%)



An Empirical Study of GraphQL Schemas 11

input object types. The sizes of individual object and input object types, how-
ever, look similar in all corpuses. In terms of feature use, commercial schemas
apply interface types, union types, and custom directives most frequently, fol-
lowed by GitHub-large schemas and then GitHub schemas. Conversely, GitHub-
large schemas have mutation and subscription6 support most frequently, followed
by GitHub schemas and then commercial schemas.

Analyzing multiple corpuses provides a fuller picture of GraphQL practices.
For example, suppose you were to propose changes to the GraphQL specification
based solely on one of these corpuses, e.g. to identify little-used features as dep-
recation candidates. Considering only commercial schemas, subscription support
appears to be unpopular (none of the commercial schemas offer subscriptions),
so subscriptions might be a deprecation candidate. But the GitHub-large cor-
pus tells a different story: subscriptions are offered in 64% of the GitHub-large
schemas. Considering only the GitHub-large corpus instead, you might conclude
that custom directives are a deprecation candidate (only 1.5% of GitHub-large
schemas use them), even though 12.5% of the commercial corpuses use them.
In both cases a single-corpus analysis is misleading, showing the value of our
multi-corpus analysis.

Finding 1: Commercial and GitHub-large schemas are generally larger
than GitHub schemas. Reliance on different GraphQL features (e.g., unions,
custom directives, subscription, mutation) varies widely by corpus.

4.2 Naming Conventions

Naming conventions help developers understand new interfaces quickly and cre-
ate interfaces that are easily understandable. In this section we explore the pre-
scribed and organic naming conventions that GraphQL schema authors follow,
e.g. common ways to name types, fields, and directives. Table 2 summarizes our
findings. We focus on the proportion of schemas that follow a convention con-
sistently, i.e., the schemas that use them in all possible cases.

Prescribed Conventions. GraphQL experts have recommended a set of nam-
ing conventions through written guidelines [4] as well as implicitly through the
example schemas in the GraphQL documentation [5]. These prescribed conven-
tions are: (1) Fields should be named in camelCase; (2) Types should be named
in PascalCase; and (3) Enums should be named in PascalCase with (4) values
in ALL CAPS.

We tested the prevalence of these conventions in real GraphQL schemas7. As
shown in Table 2, these prescribed conventions are far from universal. The only
prescribed convention that is frequently used in all three corpuses is (3) Pascal-
Case enum names, exceeding 80% of schemas in each corpuses and over 95% in
6 Subscriptions permit clients to register for continuous updates on data.
7 For simplicity, we tested for camelCase and PascalCase names using only the first

letter. A more sophisticated dictionary-based analysis is a possible extension.



12 E. Wittern et al.

Table 2. The proportion of schemas that consistently adhere to prescribed (upper
part) and organic (lower part) naming conventions. In rows marked with a † we report
percentages from the subsets of schemas that use any enums, input object types, or
mutations, respectively.

Commercial (16) GitHub (8,399) GH-large (1,739)

camelCase field names 12.5% 53.9% 8.2%

PascalCase type names 62.5% 91.8% 82.1%

PascalCase enum names † 81.3% 96.8% 96.4%

ALL CAPS enum values † 56.3% 35.7% 12.1%

Input postfix † 23.1% 71.6% 68.2%

Mutation field names † 9.1% 49.3% 62.9%

snake case field names 0.0% 0.5% 0.1%

the GitHub and GitHub-large corpuses. In contrast, (1) camelCase field names
are only common in GitHub schemas, (2) PascalCase type names are common
in GitHub and GitHub-large schemas and less so in commercial schemas, and
(4) ALL CAPS enum values appear in more than half of commercial schemas,
but are unusual in the GitHub and GitHub-large schemas.

Organic Conventions. Next we describe “organic” conventions8 that we
observed in practice but which are not explicitly recommended in grey liter-
ature like the GraphQL specification or high-profile GraphQL tutorials.

Input Postfix for Input Object Types. Schemas in our corpuses commonly
follow the convention of ending the names of input object types with the word
Input. This convention is also followed in the examples in the official GraphQL
documentation [5], but the general GraphQL naming convention recommenda-
tions do not remark on it [4]. In GraphQL, type names are unique, so the Input

postfix is often used to associate object types with related input object types
(e.g., the object type User may be related to the input object type UserInput).

Mutation Field Names. Developers commonly indicate the effect of the muta-
tion by including it as part of the field name. These names are similar to those
used in other data contexts: update, delete, create, upsert, and add.

snake case Field Names. Of the non-camelCase field names in the GitHub
corpus, 90.3% follow snake case (determined by the presence of an underscore:
“ ”), covering 30.6% of all field names and used in 37.3% of all schemas in
the GitHub corpus. However, barely any schema across all corpuses uses this
convention throughout.

8 These conventions are “organic” in the sense that they are emerging naturally with-
out apparent central direction. There could, however, be some hidden form of direc-
tion, e.g. many projects influenced by the same team or corporation.



An Empirical Study of GraphQL Schemas 13

In general, the observed organic conventions are much more common in
GitHub and GitHub-large schemas than in commercial schemas.

Finding 2: GraphQL experts have recommended certain naming conven-
tions. We found that PascalCase enum names are common in all three cor-
puses, and PascalCase type names are common in the GitHub and GitHub-
large corpuses, but other recommendations appear less consistently. In addi-
tion, we observed the relatively common practice of input postfix and muta-
tion field names in the GitHub and GitHub-large corpuses. We recommend
that commercial API providers improve the usability of their APIs by fol-
lowing both recommended and “organic” conventions.

4.3 Schema Topology and Worst-Case Response Sizes

Queries resulting in huge responses may be computationally taxing, so prac-
titioners point out the resulting challenge for providers to throttle such
queries [24,25]. The size of a response depends on three factors: the schema,
the query, and the underlying data. In this section, we analyze each schema in
our corpuses for the worst-case response size it enables with pathological queries
and data.

A GraphQL query names all the data that it retrieves (cf. Fig. 1). Provided a
schema has no field that returns a list of objects, the response size thus directly
corresponds to the size of the query. On the other hand, if a field can return a
list of objects (e.g., nodes in Fig. 1), nested sub-queries are applied to all the
elements of the list (e.g., name in Fig. 1). Therefore, nested object lists can lead
to an explosion in response size.

From the schema we can compute K, the maximum number of nested object
lists that can be achieved in a query. For example, if Query contains a field
repos:[Repo], and Repo contains a field members:[User] then K = 2. Without
access to the underlying data, we assume that the length of all the retrieved
object lists is bounded by a known constant D.9

Polynomial Response. For a query of size n, the worst-case response size is
O

(
(n−K) ×DK

)
— at worst polynomial in the length D of the object lists.

The proof is by induction over the structure of the query. As an illustration,
consider the worst-case scenario of a query with maximum number of nested
lists, K. Since the query must spend K fields to name the nested lists, each
object at the deepest level can have at most (n − K) fields and will be of size
at most (n − K). Each level returns D nested objects, plus one field to name
the list. The size of each level k starting from the deepest one thus follows the
relation: sk = D× sk−1 +1 with s0 = (n−K). The response size is given by the
top level K: sK = (n−K) ×DK + DK−1

D−1 , that is, O
(
(n−K) ×DK

)
.10

9 In practice, the size of retrieved object lists are often explicitly bounded by slicing
arguments (e.g., first: 2 in Fig. 1). See also Sect. 4.4.

10 In Table 3, we use the slightly relaxed notion O(n×DK).



14 E. Wittern et al.

Exponential Response. If the schema includes a cycle containing list types
(e.g., a type User contains a field friends:[User]), the maximum number of
nested object lists is only bounded by the size of the query, i.e., K < n.11 In that
case the worst-case response size becomes O(Dn−1), that is, exponential in the
size of the query. Consider for example the following query that requests names
of third degree friends (size n = 4 and nesting K = 3). If every user has at least
ten friends, the size of the response is 1 + 10 × (1 + 10 × (1 + 10 × 1)) = 1111.

query { friends(first: 10) { friends(first: 10) { friends(first: 10) { name } } } }

Table 3. Worst-case response size based on type graph analysis, where n denotes the
query size, and D the maximum length of the retrieved lists.

Worst-case response Commercial (16) GitHub (8,399) GH-large (1,739)

Exponential O(Dn−1) 14 (87.5%) 3,219 (38.3%) 1,414 (81.3%)

Polynomial O(n×D6) 0 (0.0%) 6 (0.1%) 4 (0.2%)

Polynomial O(n×D5) 0 (0.0%) 9 (0.1%) 4 (0.2%)

Polynomial O(n×D4) 0 (0.0%) 34 (0.4%) 7 (0.4%)

Polynomial O(n×D3) 1 (6.3%) 186 (2.2%) 40 (2.3%)

Quadratic O(n×D2) 1 (6.3%) 785 (9.3%) 88 (5.1%)

Linear O(n×D) 0 (0.0%) 3,112 (37.1%) 182 (10.5%)

Linear O(n) 0 (0.0%) 1,048 (12.5%) 0 (0.0%)

Results. We implemented an analysis for schema topographical connectedness
based on the conditions for exponential and polynomial responses sizes outlined
above, and applied it to our schema corpuses. As shown in Table 3, the majority
of commercial (100.0%), GitHub (50.5%), and GitHub-large (89.5%) schemas
have super-linear worst-case response sizes. This finding is of course not alto-
gether surprising, as the key to super-linear response sizes is a particular and
intuitive relational schema structure, and the purpose of GraphQL is to permit
schema providers to describe relationships between types. However, the implica-
tion is that GraphQL providers and middleware services should plan to gauge
the cost of each query by estimated cost or response size, or otherwise limit
queries.

Finding 3: The majority of commercial, GitHub, and GitHub-large
schemas have super-linear worst-case response sizes, and in the commercial
and GitHub-large corpuses, they are mostly exponential. Providers need to
consider throttling requests to their APIs to avoid the negative consequences
of expensive queries, whether malicious or inadvertent.

11 In GraphQL the first field is always query, and cannot be a list type.



An Empirical Study of GraphQL Schemas 15

4.4 Delimiting Worst-Case Response Sizes Through Pagination

Queries with super-linear response sizes can become security threats, overloading
APIs or even leading to denial-of-service. For commercial GraphQL providers,
exponential response sizes pose a potential security risk (denial of service). Even
polynomial response sizes might be concerning — e.g., consider the cost of
returning the (very large) cross product of all GitHub repositories and users.

The official GraphQL documentation recommends that schema developers
use one of two pagination techniques to bound response sizes [7]: Slicing refers
to the use of numeric arguments to index a subset of the full response set.
The connections pattern introduces a layer of indirection to enable more
complex pagination. The addition of Edge and Connection types allows schema
developers to indicate additional relationships between types, and to paginate
through a concurrently updated list (cf. schema described in Sect. 2).

Analysis. We used heuristics relying on names of fields and types to identify
the use of pagination patterns within schemas.

For slicing, we identify fields that return object lists and accept numeric slic-
ing arguments of scalar type Int. In our corpuses these arguments are commonly
named first, last, and limit, or size. We use the presence of arguments with
these names as an indication that slicing is in use. We differentiate schemas that
use such arguments for slicing consistently, for some fields, or not at all.

For the connections pattern, we check schemas for types whose names end in
Connection or Edge as proposed in the official GraphQL docs [7]. We again check
for the use of slicing arguments on fields that return connections.

Table 4. Use of slicing arguments and connections pattern.

Comm. (16) GitHub (8,399) GH-large (1,739)

Have fields returning object lists 16 (100.0%) 7,351 (87.5%) 1,739 (100.0%)

...with no slicing arguments 10 (62.5%) 5,335 (63.5%) 385 (22.1%)

...with slicing args. sometimes 6 (37.5%) 1,771 (21.1%) 1,265 (72.7%)

...with slicing args. throughout 0 (0.0%) 245 (2.9%) 89 (5.1%)

Have types with names matching

/Edge$/ and /Connection$/ 9 (56.3%) 2,073 (24.7%) 1,365 (78.5%)

...with no slicing arguments 1 (6.3%) 1,397 (16.6%) 1,073 (61.7%)

...with slicing args. sometimes 2 (12.5%) 48 (0.6%) 31 (1.8%)

...with slicing args. throughout 6 (37.5%) 628 (7.5%) 261 (15.0%)

Results. Using our heuristics, Table 4 summarizes the use of the pagination
patterns in our corpuses. In no corpus are these pagination patterns used consis-
tently, strengthening the threat of the worst-case responses discussed in Sect. 4.3.
For the schemas that do use pagination patterns, the commercial and GitHub-
large schemas tend to use the more complex yet flexible connections pattern,
while slicing alone is used inconsistently across all schemas.



16 E. Wittern et al.

Finding 4: No corpus consistently uses pagination patterns, raising the
specter of worst-case response sizes. When pagination patterns are used,
commercial and GitHub-large schemas tend to use the connections pattern,
while slicing is not used consistently. Our worst-case findings from Sect. 4.3
urge the wider adoption of pagination.

5 Related Work

Our work is most closely related to that of Kim et al., who also collected and
analyzed GraphQL schemas [21]. They analyzed 2,081 unique schemas mined
from open-source repositories on GitHub. Our works are complementary. We
use different mining techniques and conduct different analyses. For mining, to
identify GraphQL schemas on GitHub, both works queried the GitHub API
for filenames with GraphQL-themed substrings. We additionally proposed a
novel schema stitching technique to repair incomplete schemas, which permit-
ted us to recover thousands of schemas that their methodology would discard
(Sect. 3.2). In analysis, we compared multiple corpuses, while they focused solely
on schemas obtained from GitHub and did not distinguish between the larger
and smaller schemas therein. Where our analyses overlap, our findings agree:
in our GitHub schema corpus we report similar proportions of schemas using
mutations (we: 67.9%, they: 70%) and subscriptions (we: 25.0%, they: 20%).
Similarly, in our GitHub corpus we found a similar proportion of schemas with
type cycles (we: 38.3%, they: 39.7%). Our analyses of naming conventions, worst-
case response sizes, and pagination are novel.

Our worst-case response size analysis (Sect. 4.3) benefits from the work of
Hartig and Pérez. They complemented the GraphQL specification [17] with a
formal description for key parts of GraphQL [19,20]. They also proved the exis-
tence of GraphQL schema-data (graph) combinations on which a query will have
exponential-sized results (cf. [20, Propositions 5.2 and 5.3]) and gave an upper
bound for the response size (cf. [20, Theorem 5.4]). In comparison, our analy-
sis in Sect. 4.3 explicitly identifies object lists as the cause of the response size
explosion, and we use this observation to provide a tighter upper bound.

The remaining academic literature on GraphQL focuses on the challenges
of creating a GraphQL API. Several research teams have described their expe-
riences exposing a GraphQL API or migrating existing APIs to GraphQL [16,
27,28]. Others have described automatic techniques for migration [31] and test-
ing [26].

Our work is similar in spirit to studies of REST(-like) APIs, which have
focused on API design best practices [22,23] or assessed API business models [18].
Because of the paradigmatic differences between GraphQL and REST (single
endpoint, typed schema, queries formed by clients, etc.), this work complements
existing ones.



An Empirical Study of GraphQL Schemas 17

6 Threats to Validity

Construct Validity. In Sect. 4.3 we assume that response size is the primary
measure of query cost. We leave to future work a more fine-grained analysis
dependent on backend implementation details (e.g. resolver function costs).

Internal Validity. Our name-based analyses depend on heuristics which could
be inaccurate, although they are grounded in the grey literature where possible.

External Validity. Our corpuses may not be representative of the true state of
GraphQL schemas in practice, affecting the generalizability of our results. The
commercial corpus contains the 16 public commercial GraphQL APIs we could
identify, well short of the 100+ companies that use GraphQL (presumably inter-
nally) [9]. We restricted the open-source corpus to statically defined schemas
stored in GitHub. By analyzing the “GitHub large” schemas separately, we pro-
vide a better understanding of both (1) methodologically, the risks of treating
all GitHub schemas alike, and (2) scientifically, the properties of larger schemas.

7 Conclusions

GraphQL is an increasingly important technology. We provide an empirical
assessment of the current state of GraphQL through our rich corpuses, novel
schema reconstruction methodology, and novel analyses. Our characterization of
naming conventions can help developers adopt community standards to improve
API usability. We have confirmed the fears of practitioners and warnings of
researchers about the risk of denial of service against GraphQL APIs: most
commercial and large open-source GraphQL APIs may be susceptible to queries
with exponential-sized responses. We report that many schemas do not follow
best practices and thus incompletely defend against such queries.

Our work motivates many avenues for future research, such as: refactoring
tools to support naming conventions, coupled schema-query analyses to estimate
response sizes in middleware (e.g. rate limiting), and data-driven backend design.

Acknowledgments. We are grateful to A. Kazerouni and B. Pirelli for their feedback
on the manuscript, and to O. Hartig for a helpful discussion.

References

1. APIs-guru/graphql-apis: A collective list of public GraphQL APIs. https://github.
com/APIs-guru/graphql-apis

2. GraphiQL: An in-browser IDE for exploring GraphQL. https://github.com/
graphql/graphiql

3. GraphQL Faker. https://github.com/APIs-guru/graphql-faker
4. GraphQL Style conventions. https://www.apollographql.com/docs/apollo-server/

essentials/schema.html#style
5. Introduction to GraphQL. https://graphql.org/learn/

https://github.com/APIs-guru/graphql-apis
https://github.com/APIs-guru/graphql-apis
https://github.com/graphql/graphiql
https://github.com/graphql/graphiql
https://github.com/APIs-guru/graphql-faker
https://www.apollographql.com/docs/apollo-server/essentials/schema.html#style
https://www.apollographql.com/docs/apollo-server/essentials/schema.html#style
https://graphql.org/learn/


18 E. Wittern et al.

6. JavaScript reference implementation for GraphQL. https://github.com/graphql/
graphql-js

7. Pagination. http://graphql.github.io/learn/pagination/
8. Schemas and Types. https://graphql.org/learn/schema
9. Who’s using GraphQL? http://graphql.org/users

10. Introducing Yelp’s Local Graph (2017). https://engineeringblog.yelp.com/2017/
05/introducing-yelps-local-graph.html

11. React, Relay and GraphQL: Under the Hood of The Times Website
Redesign (2017). https://open.nytimes.com/react-relay-and-graphql-under-the-
hood-of-the-times-website-redesign-22fb62ea9764

12. GitHub GraphQL API v4 (2019). https://developer.github.com/v4/
13. GraphQL and Shopify (2019). https://help.shopify.com/en/api/custom-

storefronts/storefront-api/graphql/
14. GraphQL Current Working Draft: Schema (2019). https://facebook.github.io/

graphql/draft/#sec-Executable-Definitions
15. GraphQL Current Working Draft: Schema (2019). https://facebook.github.io/

graphql/draft/#sec-Schema
16. Brito, G., Mombach, T., Valente, M.T.: Migrating to GraphQL: a practical assess-

ment. In: 2019 IEEE 26th International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER), pp. 140–150. IEEE (2019)

17. Facebook Inc.: GraphQL. Working Draft, June 2018. https://facebook.github.io/
graphql/

18. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortes, A.: An analysis of RESTful APIs
offerings in the industry. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol,
M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 589–604. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69035-3 43

19. Hartig, O., Pérez, J.: An initial analysis of Facebook’s GraphQL language. In:
CEUR Workshop Proceedings (2017)

20. Hartig, O., Pérez, J.: Semantics and complexity of GraphQL. In: Conference on
World Wide Web (WWW) (2018)

21. Kim, Y.W., Consens, M.P., Hartig, O.: An empirical analysis of GraphQL API
schemas in open code repositories and package registries. In: Proceedings of the
13th Alberto Mendelzon International Workshop on Foundations of Data Manage-
ment (AMW), June 2019

22. Palma, F., Gonzalez-Huerta, J., Moha, N., Guéhéneuc, Y.-G., Tremblay, G.: Are
RESTful APIs well-designed? Detection of their linguistic (Anti)Patterns. In: Bar-
ros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol.
9435, pp. 171–187. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48616-0 11

23. Petrillo, F., Merle, P., Moha, N., Guéhéneuc, Y.-G.: Are REST APIs for cloud
computing well-designed? An exploratory study. In: Sheng, Q.Z., Stroulia, E., Tata,
S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 157–170. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46295-0 10

24. Rinquin, A.: Avoiding n+1 requests in GraphQL, including within subscriptions
25. Stoiber, M.: Securing your GraphQL API from malicious queries
26. Vargas, D.M., et al.: Deviation testing: a test case generation technique for

GraphQL APIs (2018)
27. Vázquez-Ingelmo, A., Cruz-Benito, J., Garćıa-Peñalvo, F.J.: Improving the

OEEU’s data-driven technological ecosystem’s interoperability with GraphQL. In:
Proceedings of the 5th International Conference on Technological Ecosystems for
Enhancing Multiculturality - TEEM 2017, pp. 1–8 (2017)

https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
http://graphql.github.io/learn/pagination/
https://graphql.org/learn/schema
http://graphql.org/users
https://engineeringblog.yelp.com/2017/05/introducing-yelps-local-graph.html
https://engineeringblog.yelp.com/2017/05/introducing-yelps-local-graph.html
https://open.nytimes.com/react-relay-and-graphql-under-the-hood-of-the-times-website-redesign-22fb62ea9764
https://open.nytimes.com/react-relay-and-graphql-under-the-hood-of-the-times-website-redesign-22fb62ea9764
https://developer.github.com/v4/
https://help.shopify.com/en/api/custom-storefronts/storefront-api/graphql/
https://help.shopify.com/en/api/custom-storefronts/storefront-api/graphql/
https://facebook.github.io/graphql/draft/#sec-Executable-Definitions
https://facebook.github.io/graphql/draft/#sec-Executable-Definitions
https://facebook.github.io/graphql/draft/#sec-Schema
https://facebook.github.io/graphql/draft/#sec-Schema
https://facebook.github.io/graphql/
https://facebook.github.io/graphql/
https://doi.org/10.1007/978-3-319-69035-3_43
https://doi.org/10.1007/978-3-662-48616-0_11
https://doi.org/10.1007/978-3-662-48616-0_11
https://doi.org/10.1007/978-3-319-46295-0_10


An Empirical Study of GraphQL Schemas 19

28. Vogel, M., Weber, S., Zirpins, C.: Experiences on migrating RESTful web services
to GraphQL. In: Braubach, L., et al. (eds.) ICSOC 2017. LNCS, vol. 10797, pp.
283–295. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91764-1 23

29. Wittern, E., Cha, A., Davis, J.C., Baudart, G., Mandel, L.: GraphQL schema col-
lector. https://doi.org/10.5281/zenodo.3352421, accessible at https://github.com/
ErikWittern/graphql-schema-collector

30. Wittern, E., Cha, A., Davis, J.C., Baudart, G., Mandel, L.: GraphQL
Schemas. https://doi.org/10.5281/zenodo.3352419, accessible at https://github.
com/ErikWittern/graphql-schemas

31. Wittern, E., Cha, A., Laredo, J.A.: Generating GraphQL-Wrappers for REST(-
like) APIs. In: Mikkonen, T., Klamma, R., Hernández, J. (eds.) ICWE 2018. LNCS,
vol. 10845, pp. 65–83. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91662-0 5

https://doi.org/10.1007/978-3-319-91764-1_23
https://doi.org/10.5281/zenodo.3352421
https://github.com/ErikWittern/graphql-schema-collector
https://github.com/ErikWittern/graphql-schema-collector
https://doi.org/10.5281/zenodo.3352419
https://github.com/ErikWittern/graphql-schemas
https://github.com/ErikWittern/graphql-schemas
https://doi.org/10.1007/978-3-319-91662-0_5
https://doi.org/10.1007/978-3-319-91662-0_5


Automating SLA-Driven API
Development with SLA4OAI

Antonio Gamez-Diaz(B), Pablo Fernandez, and Antonio Ruiz-Cortes

Universidad de Sevilla, Seville, Spain
{antoniogamez,pablofm,aruiz}@us.es

Abstract. The OpenAPI Specification (OAS) is the de facto standard
to describe RESTful APIs from a functional perspective. OAS has been
a success due to its simple model and the wide ecosystem of tools sup-
porting the SLA-Driven API development lifecycle. Unfortunately, the
current OAS scope ignores crucial information for an API such as its
Service Level Agreement (SLA). Therefore, in terms of description and
management of non-functional information, the disadvantages of not hav-
ing a standard include the vendor lock-in and prevent the ecosystem to
grow and handle extra functional aspects.

In this paper, we present SLA4OAI, pioneering in extending OAS not
only allowing the specification of SLAs, but also supporting some stages
of the SLA-Driven API lifecycle with an open-source ecosystem. Finally,
we validate our proposal having modeled 5488 limitations in 148 plans
of 35 real-world APIs and show an initial interest from the industry with
600 and 1900 downloads and installs of the SLA Instrumentation Library
and the SLA Engine.

1 Introduction

In the last decade, RESTful APIs are becoming a clear trend as composable
elements that can be used to build and integrate software [7,18]. One of the
key benefits this paradigm offers is a systematic approach to information mod-
eling leveraged by a growing set of standardized tooling stack from both the
perspective of the API consumer and the API provider.

Specifically, during the last years, the OpenAPI Specification1 (OAS), for-
merly known as Swagger specification, has become the de facto standard to
describe RESTful APIs from a functional perspective providing an ecosystem

1 https://github.com/OAI/OpenAPI-Specification.

This work is partially supported by the European Commission (FEDER), the Span-
ish Government under projects BELI (TIN2015-70560-R) and HORATIO (RTI2018-
101204-B-C21), and the FPU scholarship program, granted by the Spanish Ministry of
Education, Culture and Sports (FPU15/02980).
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 20–35, 2019.
https://doi.org/10.1007/978-3-030-33702-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_2&domain=pdf
https://github.com/OAI/OpenAPI-Specification
https://doi.org/10.1007/978-3-030-33702-5_2


Automating SLA-Driven API Development with SLA4OAI 21

that helps the developer in several aspects of the API development lifecycle2.
As an example, from the API provider perspective, there are tools that aim to
automate the server scaffolding, an interactive documentation portal creation or
the generation of unit test cases; from the perspective of the consumer, there are
tools to automate the creation of API clients, the security configuration or the
endpoints discovery and usage [1,15,16].

However, as APIs are deployed and used in real settings, the need for non-
functional aspects is becoming crucial. In particular, the adoption of Service
Level Agreements (SLAs) [13] could be highly valuable to address significant
challenges that the industry is facing, as they provide an explicit placeholder to
state the guarantees and limitations that a provider offers to its consumers. For
example, these limitations (such as quotas or rates) are present in most common
industrial APIs [3] and both API providers and consumers need to handle how
they monitor, enforce or respect them with the consequent impact in the API
deployment/consumption.

In this paper, we address the challenge of SLA modeling and management in
APIs by providing the following contributions:

– SLA4OAI, an open SLA specification that is integrated with the OpenAPI
Specification joint with a Basic SLA Management Service (i.e., a minimum
definition of endpoints required for the SLA enforcing in the APIs) that can
be used to promote the vendor independence.

– A set of tools to support the different activities of the API development
lifecycle when it becomes aware of the existence of an SLA.

– An initial validation over 5488 limitations in 35 of real-world APIs show-
ing the expressiveness coverage and the potential evolution roadmap for the
specification.

The rest of the paper is structured as follows: in Sect. 2, we describe the
related work and motivate the need for our proposal. In Sect. 3 we describe in
brief words the OpenAPI Specification focusing on its extension’s capabilities. In
Sect. 4 we describe our SLA4OAI model proposal. In Sect. 5 we show the ecosys-
tem of tools that have been built around our proposal. In Sect. 6 we validate
our proposal by modeling 5488 limitations in 35 of real-world APIs. Finally, in
Sect. 7 we show some remarks and conclusions.

2 Motivation and Related Work

The software industry has embraced integration as a key challenge that should
be addressed in multiple scenarios. In such a context, the proliferation of APIs is
a reality that has been formally analyzed: in [14], authors performed an analysis
of more than 500 publicly-available APIs to identify the different trends in the
current industrial landscape. Specifically, regarding the documentation, there is
a clear trend with respect to the functional description of the service: during

2 https://openapi.tools.

https://openapi.tools


22 A. Gamez-Diaz et al.

the last years, the OpenAPI Specification has consolidated as a de-facto stan-
dard to define the different functional properties an API provides. For instance,
in [12], authors study on the presence of dependency constraints among input
parameters in web APIs in industry.

With such a consolidated market of APIs, non-functional aspects are also
becoming a key element in the current landscape. In [3], authors analyze a set
of the 69 real APIs in the industry to characterize the variability in its offerings,
obtaining a number of valuable conclusions about real-world APIs, such as: (i)
Most APIs provide different capabilities depending on the tier or plan of the API
consumer is willing to pay. (ii) Usage limitations are a common aspect all APIs
describe in their offerings. (iii) Limitations over API requests are the most com-
mon including quotas over static periods of times (e.g., 1.000 request each natural
day) and rates for dynamic periods of times (3 request per second). (iv) Offerings
can include a wide number of metrics over other aspects of the API that can be
domain-independent (such as the number of returned results or the size in bytes
of the request) or domain-dependent (such as the CPU/RAM consumption during
the request processing or the number of different resource types). Based on these
conclusions, we identify the need for non-functional support in the API develop-
ment life-cycle and the high level of expressiveness present in the API offerings.

From the perspective of the API development life-cycle, the lack of a standard
spec for non-functional aspects integrated with existing standards OpenAPI, pre-
vents the tooling ecosystem to grow and provide support advanced issues: as an
example, to support the API consumer, it could be possible to develop tools to
automate the generation of SLA-aware API clients able to self-adapt the request
rate to the API limitations; to support the API provider, it could be possible to cre-
ate of SLA-aware API testers enriching the habitual tests with information about
limitations in order to analyze the actual performance capabilities to decide the
maximum number of API consumers to be allowed with a certain SLA that explic-
itly states the limitations in their usage. We have analyzed the most prominent
academic and industrial proposals that aim to the definition of SLAs in both tra-
ditional web services and cloud scenarios in order to outline their scope and limita-
tions. Specifically, in Table 1, we have considered 7 aspects to analyze in each SLA
proposal, namely: F1 determines the format in which the document is written;
F2 shows whether the target domain is web services; F3 indicates if it can model
more than one offering (i.e., different operations of a web service); F4 determines
if it allows modeling hierarchical models or overriding properties and metrics; F5
shows whether temporal concerns can be model (e.g., in metrics); F6 indicates if
there exists a tool for assisting users to model using this proposal; F7 determines
if there exists a tool/framework for enacting the SLA.

Based on this comparison of the different SLA models, we highlight the follow-
ing conclusions: (i) None of the specifications provides any support or alignment
with the OpenAPI Specification; (ii) Most of the approaches provide a concrete
syntax on XML, RDF (some of them they even lack concrete syntax) and there is
no explicit support to YAML or JSON serializations. (iii) An important number
of proposals are complete, but others leave some parts open to being implemented
by practitioners. (iv) Besides the fact that a number of proposals are that aims to
model web services, they are focused on traditional SOAP web services rather than



Automating SLA-Driven API Development with SLA4OAI 23

Table 1. Analysis of SLA models

Name F1 F2 F3 F4 F5 F6 F7

SLAC [19] DSL ✓ ✓

CSLA [9] XML ✓ ✓

L-USDL Ag. [6] RDF ✓ ✓ ✝ ✓

rSLA [17] Ruby ✓ ✓ ✓ ✓

SLAng [10] XML ✓

WSLA [11] XML ✓ ✓ ✓

SLA* [8] XML ✓ ✓ ✓

WS-Ag. [2] XML ✓ ✓ ✓ ✝

✝ Supported with minor enhancements or modifica-
tions.

RESTful APIs. In this context, they do not address the modeling standardization
of the RESTful approach: i.e., the concept of a resource is well unified (a URL), and
the amount of operations is limited (to the HTTP methods, such as GET, POST,
PUT and DELETE). This lack of support of the RESTful modeling prevents the
approaches to have a concise and compact binding between functional and non-
functional aspects. (v) They do not have enough expressiveness to model limita-
tions such as quotas and rates, for each resource and method and with complete
management of temporally (static/sliding time windows and periodicity) present
in the typical industrial API SLAs. (vi) Most proposals are designed to model a
single offering and they mostly lack support to modeling hierarchical models or
overriding properties and metrics (F4); in such a context, they cannot model a set
of tiers or plans that yield a complex offering thatmaintains the coherence bymodel
and instead they rely on a manual process that is typically error-prone. (vii) finally,
the ecosystem of tools proposed in each approach (in the case of its existence) is
extremely limited and that aims to be solely as a prototype; moreover, they appar-
ently are not integrated into a developer community nor there is evidence of this
usage by practitioners in the industry.

In order to overcome the limitations of existing approaches, the main goals
of this paper can be summarized as follows: (i) An interoperable model fully-
integrated with leading API description language (OAS) to express the API
limitations. (ii) an initial ecosystem of tools to provide support to different parts
of the SLA-Driven API development lifecycle. (iii) validation of this model in
real-world scenarios to assess its expressiveness.

3 OAS in a Nutshell

In this section, we briefly present the OpenAPI Specification (OAS), consid-
ering its goals, structure and extension capabilities. OAS, formerly known as
Swagger, is a vendor-neutral, portable and open specification for the functional
deception of APIs. It is promoted by the OpenAPI Initiative (OAI), an open
source consortium hosted by The Linux Foundation and supported by a grow-
ing number of leading industry stakeholders, such as Google, IBM, Microsoft or



24 A. Gamez-Diaz et al.

Oracle, amongst others. Both API clients and vendors are able to benefit from
the formal definition using the OAS: from the clients’ point of view, they can use
any tool from the extensive ecosystem created around the OAI; conversely, from
the vendors’ point of view, they can generate interactive documentation portals,
create auto-generated prototypes and perform automatic API monitoring and
testing. Specifically, as a minimum content, an OAS document should describe a
set of aspects including API general information (such as title, description and
version), a list of Resources, Paths and Methods allowed, and set of Schemas
(following the JSON-schema specification) to identify the structure of the data
to be exchanged with the API (e.g., a resource structure). In order to have a
more concise description, it is possible to reuse definitions of schemes by means
of the $ref constructor as proposed in the JSON-schema standard. Comple-
mentary, API provider can include optional elements such as the different API
endpoints, where the API can be accessed. This is especially useful in scenarios
with different endpoints for development and production stages.

� �

1 openapi: 3.0.0
2 info:
3 title: Simple petstore API
4 description: ...
5 version: ...
6 x-sla: ./pets -plans.yaml
7 servers:
8 - url: ....
9 paths:

10 /pets:
11 get:
12 description: ...
13 parameters: ..
14 responses:
15 200:
16 description: pet response
17 content:
18 application/json:
19 schema:
20 $ref: "#/ components/schemas/pet"
21 post:
22 ...
23 components:
24 schemas:
25 pet:
26 title: pet model
27 ...

� �

Listing 1.1. RESTful API in OAS

� �

1 context:
2 id: plans
3 sla: ‘1.0’
4 type: plans
5 ...
6 infrastructure: ...
7 metrics:
8 requests:
9 type: integer

10 format: int64
11 description: #requests
12 resolution: consumption
13 ...
14 plans:
15 free:
16 pricing:
17 cost: 0
18 currency: USD
19 billing: monthly
20 quotas:
21 /pets:
22 post:
23 requests:
24 - max: 100
25 period: daily
26 rates:
27 /pets:
28 get:
29 requests:
30 - max: 2
31 period: secondly
32 scope: tenant
33 pro:
34 ...

� �

Listing 1.2. SLA written in
SLA4OAI

As an example, Listing 1.1 shows an OAS fragment from a basic RESTful
API that corresponds with a single endpoint (/pets) and two methods. Lines
9–22 describe the definition of the pet resource including the GET and POST
methods for retrieving and creating resources; specifically, line 11 starts modeling



Automating SLA-Driven API Development with SLA4OAI 25

the GET method with a description and the parameters that the request might
be able to handle and responses section (lines 14–20) describe the model of
a successful HTTP response (i.e., status code 200 ) returning a pet resource
conforming with the appropriate schema reference (line 20). Finally, in lines 24–
27, the data model (schema) of the pet object is being defined. A key feature
of the OAS is the capability of being extended with the definition of custom
properties starting with x-, paving the way for customizing or adding additional
features according to specific business needs. As an example, line 6 shows the
use of the x- extension point to include a reference to the SLA description of the
API following our proposal (c.f., Sect. 4).

4 Our Proposal

4.1 SLA4OAI Language

SLA4OAI3 is a language which provides a model for describing SLA in APIs in a
vendor-neutral way by means of extending the main specification. This proposal
is open for evolution based on the discussion with the community and other
partners of the OpenAPI Initiative, hosted by the Linux Foundation. For the
sake of completeness, always refer to the online version so as to have a complete
reference of the language.

The figure available online4 depicts an abstract syntax of an SLA4OAI
description. Starting with the top-level placeholder (denoted as SLA4OAI Doc-
ument in the figure) we can describe basic information about the context, the
infrastructure endpoints that implement the Basic SLA Management Service,
the metrics and a default value for quotas, rates, guarantees and pricing.

Context contains general information, such as the id, the version, the URL
pointing to the api OAS document, the type and the validity of the document;
in this context, the type field can be either plans or instance and it indicates
whether the document corresponds with the general plan offering or it corre-
spond with a specific SLA agreed with a given customer. The Metrics enables
the definition of custom metrics which will be used to define the limitations,
such as the number of requests, or the bandwidth used per request. For each
metric, the type, format, unit, description, and resolution should be defined.
The Plan configuration (configuration parameters for the service tailored for
the plan), availability (availability of the service for this plan expressed via time
slots using the ISO 8601 time intervals format), and the rest of the elements that
will override the default with plan-specific values: quotas, rates and guarantees,
pricing. In this context, it is important to highlight that the Plan section maps
the structure in the OAS document to attach the specific limitations (quotas or
rates) for each path and method. Specifically, after defining the configuration,
the availability, pricing, guarantees, the limitations quotas and rates can be mod-
eled; particularly, the limitations are described in the Limit with a max value

3 https://sla4oai.specs.governify.io.
4 https://isa-group.github.io/2019-05-sla4oai/files/sla4oai_diagram.png.

https://sla4oai.specs.governify.io
https://isa-group.github.io/2019-05-sla4oai/files/sla4oai_diagram.png


26 A. Gamez-Diaz et al.

that can be accepted, a period (i.e., secondly, minutely, hourly, daily, monthly
or yearly) and the scope where they should be enforced; as an extensible scope
model, we propose two possible initial values (tenant or account as default) cor-
responding with a two-level structure: a limitation or guarantee with a tenant
scope will be applicable to the whole organization while an account scope would
be applicable to each specific user or account (typically with a different API key)
in the organization.

Considering the features of the existing SLA proposals previously analyzed
and available in the online appendix, SLA4OAI is a proposal serialized using the
YAML/JSON syntax (F1) specifically designed for web services (F2), concretely,
RESTful APIs. It is able to model one or more offerings (F3) in a hierarchical
model (F4) since plans can override the default values for the limitations. Fur-
thermore, our proposal takes into account the temporality (F5), since each limi-
tation is scoped to a precise period of time and each plan has its own availability
information. Finally, as stated in following sections, SLA4OAI has a set of tools
for assisting users to write the model (F6) and an initial ecosystem of tools to
support parts of the development lifecycle (F7).

Let us consider the aforementioned example (as modeled in Listing 1.1) to be
extended with a basic SLA: as a provider, it would be useful to limit, on the one
hand, the number of requests a consumer is allowed to make in a static window
(quota) of 1 day depending on the plan purchased and, on the other hand, the
requests allowed to be made in a sliding window (rate), differing from GET and
POST methods to avoid the API saturation derived from abusive customers.
Specifically, Listing 1.2 illustrates the model in SLA4OAI of the limitations of
this example API: in lines 14–34 the free and pro plans are being modeled.
Focusing on the first, line 15 define a specific plan by its limitations quotas (lines
20–25) and rates (lines 26–32). For instance, a quota of 100 POST requests over
the resource /pets in a static window of 1 day is defined in lines 23–25. Conversely,
a rate of 2 requests per second is defined for /pets GET requests (lines 29–32).
Finally, note that line 4 indicates that this document is for describing plans.
Whenever a client accepts a specific plan, type field would become an instance
one. It is interesting to highlight the scope: tenant (line 32) in the rates for
the GET request represents a limitation for the whole consumer organization
affecting all the accounts of the organization, while the rest of the quotas and
rates are enforced on a default per-account basis.

4.2 SLA-Driven API Development Lifecycle

In spite of the fact that each organization could address the API development
lifecycle with slightly different approaches, a minimal set of activities can be
identified: a first activity corresponds with the actual Functional Development of
the API implementing and testing the logic; next a Deployment activity where
the developed artifact is configured to be executed in a given infrastructure;
finally, once the API is up and running, an Operation activity starts where the
requests from consumers can be accepted. This process is a simplification that
can be evolved to add intermediate steps (such as testing) or to include an



Automating SLA-Driven API Development with SLA4OAI 27

evolutive cycle where different versions are deployed progressively. In order to
incorporate SLAs in this process, we expand this basic lifecycle where both API
Provider and API Consumer can interact (as depicted in Fig. 1).

Developer Product
manager

Product
operator

API
provider

Functional
development

SLA
modeling

Operation

SLA
enactment

Deployment

SLA registry

Offer
analysis

Offer
selection Consumption

SLA instance

SLA
instrumentation

P
ro

vi
de

r

S
LA

-D
riv

en
 A

P
I D

ev
el

op
m

en
t L

ife
cy

cl
e

C
on

su
m

er

API
consumer

Consumer

Fig. 1. SLA-Driven API development lifecycle

Specifically, from the provider’s perspective, the Functional Development can
be developed in parallel with a SLA modelling where the actual SLA offer-
ing (type plans) is written and stored in a given SLA Registry. Once both the
functional development and the SLA modeling has concluded, the SLA instru-
mentation must be carried out, where the tools and/or developed artifacts are
parameterized so they can adjust their behavior depending on a concrete SLA
and provide the appropriate metrics to analyze the SLA status. Next, while the
deployment of the API takes place, a parallel activity of SLA enactment is devel-
oped where the deployment infrastructure should be configured in order to be
able to enforce the SLA before the API reaches the operation activity.

Complementary, from consumer’s perspective, once the provider has pub-
lished the SLA offering (i.e., Plans) in the SLA Registry, it starts the offer
analysis to select the most appropriate option (offer selection activity) and to
create and register its actual SLA (type instance); finally, the API Consumption
is carried out as long as the API is the Operation activity and its regulated based
on the terms (such as quotas or rates) defined in the SLA.

In order to implement this lifecycle, it is important to highlight that the SLA
instrumentation, SLA enactment and Operation activities should be supported
by an SLA enforcement protocol that aims to define the interactions for checking
if the consumption of the API for a given consumer is allowed (e.g., it meets the
limitations specified in its SLA) and to gather the actual values of the metrics
from the different deployed artifacts that implement the API.



28 A. Gamez-Diaz et al.

4.3 Basic SLA Management Service

TheBasicSLAManagementService (BSMS) is abasicnon-normativeAPIdescrip-
tion to provide basic support for the SLA enforcing protocol as motivated in the
SLA-Driven API development lifecycle (c.f., Sect. 4.2) and addresses the following
features: (i) Checking the current state of a given SLA (SLA Check). (ii) Reporting
metrics to calculate the current state of a given SLA (SLA Metrics). To this end,
thisBSMSproposal represents a descriptive interface that could be implemented in
different technologies and acts as a decoupling mechanism to the underlying infras-
tructure that actually provides support to the development lifecycle.

Moreover, the definition of a BSMS paves the way to define multiple SLA
enforcing architectures that could be selected depending on the performance or
technological constraints of a given scenario. Specifically, Figs. 2 and 3 represent
an overview of two different SLA enforcing architectures: on the one hand, the
Standalone enforcing define an SLA instrumentation as part of the API with a
direct communication with the SLA management infrastructure; on the other
hand, a Gateway enforcing relays on the front load balancer to connect with
the SLA management infrastructure so a potential set of API instances do only
provide the functional logic.

SLA Check SLA Metrics

Request
workload

API

1

2

3

4 5

6

Fig. 2. Standalone SLA enforcing arch.

SLA Check SLA Metrics

Request
workload API

API Gateway

APIAPI

1

2

3

4 5

6

Fig. 3. Gateway SLA enforcing arch.

In order to illustrate the interactions and behavior of each component imple-
menting (or interacting with) the BSMS, we will focus on the Gateway enforcing
architecture (See Fig. 3) as it is a more complete scenario:

1. Requests will pass through the API Gateway until they are directed to the
node that will serve it (step 1).

2. The API Gateway query the SLA Check component to determine if the
request is authorized to develop the actual operation based on the appropri-
ate SLA (step 2).

(a) If it is authorized, the actual API is invoked and the response is returned
(step 3).

(b) If it is not authorized, a status code and a summary of the reason (as
generated by the SLA check component) is returned (step 3).

3. After the consumption ends (step 4), the metrics are sent to the SLA Metrics
component (step 5). This component is in charge of updating the status of the
agreement with the new metrics introduced (step 6). This new information



Automating SLA-Driven API Development with SLA4OAI 29

could be processed to determine the SLA state that should be taken into
account in further requests.

In the following subsections, we overview the interface and the expected
behavior of the SLA Check and SLA Monitor components; a complete description
of the proposed API is available online5.

SLA Check. This component should support the verification process to decide
whether an API request can be satisfied based on the current state of its SLA.
In particular, it should provide two different endpoints:

– A query (GET ) operation over the /tenants path in order to locate the SLA
scope and the SLA id that should regulate the consumption based on a given
token (typically an API key sent by the consumer as a query or header
parameter). The SLA scope should determine the actual tenant (the con-
sumer organization that has signed the SLA) and the account (that belongs
to the consumer organization).

– A verification (POST ) operation over the /check path in order verify whether
a specific request can be done; specifically, it will respond true or false to notify
the provider if it is: (i) Acceptable to fulfill the request (positive case), or on
the contrary; (ii) Not acceptable and then, the request should be denied (neg-
ative case); in such a case, it could include optional information describing the
reason for the SLA violation. Concerning the HTTP status code, in a general
case, a negative response should correspond with standard 403 Forbidden;
if the denial reason is rate/quota limit enforcement, then the recommenda-
tion is to use 429 Too Many Requests and include rate limit information as
metadata into the consumer response to explain the denial of service: as an
example it could include the actual metric computation, the limit or a future
timestamp when the rate/quota will be reset for the given consumer.

It is important to note that, while a complete interaction with the SLA Check
component involves the invocation to both endpoints, in demanding scenarios,
a local API key cache can be introduced in order to avoid the first query over
the/tenants path.

SLA Metrics. This component should implement a mechanism for metric gath-
ering in order to support the analysis of SLA fulfillment. In particular, it should
provide a storage (POST ) operation over the /metric path in order to register
a certain metric. In addition to the actual metric value, as mandatory elements,
it should also include information about the metric context including the SLA
Scope, the SLA Id and the sender (i.e., the specific API instance or API Gateway
generating the metric).

The metrics can correspond with a standard set of well-defined domain-
independent metrics such as request count or response time, or domain-dependent
metrics such as a certain payload attribute (e.g., the size of a specific parameter).
5 https://sla4oai.specs.governify.io/operationalServices.html.

https://sla4oai.specs.governify.io/operationalServices.html


30 A. Gamez-Diaz et al.

Since metrics flow could be dense in the same scenarios a buffering can be
introduced; to this respect, the SLA Metric component should allow reception
of multiple metrics values in a single operation. Consequently, metrics can be
grouped in batches or sent one by one to fine-tune performance versus real-time
SLA tracking in each scenario.

5 Tool Support

The SLA-Driven API development lifecycle, depicted in Fig. 1 and explained in
Sect. 4.2, should be assisted by a set of tools during certain activities. Since we
seek to provide a fully-fledged language, we provide an initial working implemen-
tation of these tools [4]. Specifically, for the SLA modeling activity we present
the SLA Editor for hiding the complexity of the language to the end user. The
concrete implementation of the SLA instrumentation activity is provided in the
SLA Engine, an implementation of the Basic SLA Management Service, defining
the /metrics and /check endpoints. On the one hand, for the Standalone SLA
enforcing architecture, we support the SLA instrumentation and SLA enact-
ment activities with the SLA Instrumentation Library in a Node.js module; on
the other hand, for the Gateway SLA enforcing architecture, a complete SLA-
Driven API Gateway is provided as a service.

SLA Editor. In modeling tasks, supporting tools are commonly provided to the
users. In this scenario, we provide the SLA editor6, for the SLA modeling activ-
ity in the SLA-Driven API development lifecycle. SLA editor is a user-friendly
and web-based text editor specifically developed for assisting the user during
the modeling tasks, including auto-completion, syntax checking, and automatic
binding. It is possible to create plans (e.g., free and pro) with quotas and rates.
Clicking on the + sign, the user is able to select the path and method (previously
defined in the OAS document) for entering the value of the limitation. Note that
custom metrics can also be defined at the bottom, however, the calculation logic
is left open for a specific implementation.

SLA Engine. Whereas the BSMS (c.f., Sect. 4.3 defines the interaction flows
and the endpoints /check and /metric, a reference implementation should be
provided in order to properly carry out the SLA instrumentation activity in
the SLA-Driven API development lifecycle. The SLA Engine, thus, provides a
concrete implementation which also includes a particular way to handle SLA sav-
ing/retrieving tasks. Specifically, Monitor7 is an implementation of the Metrics
BSMS service and Supervisor8, of the Check service.

The Monitor service exposes a POST operation in the route /metrics for
gathering the metrics collected from other different services. It can collect a
6 https://designer.governify.io.
7 http://monitor.oai.governify.io/api/v1/docs.
8 http://supervisor.oai.governify.io/api/v1/docs.

https://designer.governify.io
http://monitor.oai.governify.io/api/v1/docs
http://supervisor.oai.governify.io/api/v1/docs


Automating SLA-Driven API Development with SLA4OAI 31

set of basic metrics and send them to a data store for aggregation and later
consumption. The metrics can be grouped in batches or sent one by one to
fine-tune performance versus real-time SLA tracking.

The Supervisor service has a POST /check endpoint for the verification of
the current state of the SLA for a given operation in a certain scope. For each
request, this service will evaluate the state of the SLA and will respond with
a positive or negative response depending on whether a limitation has been
overcome. In addition, this service also implements (outside the scope of the
BSMS) these additional endpoints: GET/POST /tenants, GET/POST /slas and
PUT/DELETE slas/<id> for managing both users (tenants and accounts) and
SLA4OAI documents themselves.

SLA Instrumentation Library. Despite the fact that the BSMS defines the
interaction flows between the endpoints, the concrete implementation of these
interactions is left open for the activities of SLA instrumentation and SLA enact-
ment of the SLA-Driven API development lifecycle. The tool that we present aims
to cover this lack in the Standalone SLA enforcing architectures. Specifically, we
present an SLA Instrumentation Library for Node.js9, which is a middleware (i.e.,
a filter that intercepts the HTTP requests and perform transformation if neces-
sary) written for Express, the most used Node.js web application framework. This
middleware intercepts all the inbound/outbound traffic to perform the BSMS flow.

Specifically, Monitor is an implementation of the Metrics BSMS service and
Supervisor, of the Check service, as explained in the SLA Engine section.

Once the API uses the SLA Instrumentation Library, a new endpoint /plans
is added. It creates a provisioning portal for clients to purchase a plan. Once
the customer purchases (or simply selects, in case of the free ones) a plan, this
customer will get an API-key, acting as a bearer token for HTTP authentication.

SLA-Driven API Gateway. A more transparent way to implement the inter-
action flows defined is the BSMS is achieved by using an SLA-Driven API Gate-
way10. We provide an open-source implementation for deploying SLA-Driven
API Gateways using any SLA Engine and supporting the SLA instrumentation
and SLA enactment activities of the SLA-Driven API development lifecycle in
a Gateway SLA enforcing architecture.

Particularly, we provide as a service, an online preconfigured instance (using
the aforementioned SLA Instrumentation Library) of an SLA-Driven API Gate-
way. API providers are only required to enter: (i) The real endpoint of their API;
(ii) A URL pointing to the SLA4OAI document. Once an API is registered, the
SLA-Driven API Gateway exposes a public and SLA-regulated endpoint, as well
as the /plans endpoint for the provisioning portal. Clients who have selected
a plan will get an API-key from the portal that will be as a bearer token to
consume the SLA-regulated API.

9 https://www.npmjs.com/package/sla4oai-tools.
10 https://gateway.oai.governify.io.

https://www.npmjs.com/package/sla4oai-tools
https://gateway.oai.governify.io


32 A. Gamez-Diaz et al.

6 Validation

In this section, we describe how we have evaluated our proposal. In particular,
the goal of the evaluation was to answer the following research questions:

RQ1: How expressive is our SLA4OAI model in comparison to real-world APIs’
SLAs We want to know whether the SLA4OAI model that we use is expres-
sive enough to model a wide variety of real-world SLAs and which are the
characteristics of the SLAs that we are not able to express.

RQ2: Which difficulties appear when modeling SLAs defined are expressed in nat-
ural language? All real-world APIs’ SLAs are expressed in natural language.
Therefore, before checking their limitations, it is necessary to formalize them.
With this question, we examine the problems that may appear in this step.

RQ3: What is the reception of our SLA4OAI model and tools in the community?
Besides this proposal has not been officially published, it is publicly available
in our code and artifact repositories (such as NPM). We wonder whether our
proposal is being used by a set of external users and how large this set is.

RQ1: Expressiveness of SLA4OAI. To evaluate the expressiveness of the
SLA4OAI proposal, we have modeled the limitations of a set of APIs. For select-
ing this set we considered the work of [3], where the authors analyzed a set of
69 APIs from two of the largest API directories, Mashape (now integrated into
RapidAPI) and ProgrammableWeb, studying 27 and 41 respectively.

For our evaluation, we have manually selected a subset of these APIs, giving, as
a result, a number of 35 APIs whose modeling using SLA4OAI is challenging (i.e.,
the 27 ones from RapidAPI have the same expressiveness, as the authors noted).
Specifically, have modeled 5488 limitations (quotas/rates) over 7055 combinations
of metrics (e.g., number of requests) and periods (e.g., secondly, monthly) in 148
plans of 35 real-world APIs. We provide a workspace11 with the 35 modeled APIs
and the statistical analysis that we have performed. Focusing on these limitations,
the quotas use to be defined over custom metrics based on their business logic
(e.g., credits spent by request, the number of returned results or the storage con-
sumed).On the other hand, rates aremostly defined over the number of requests. In
both cases, APIs usually define their limitations over one or two different metrics.
Finally, regarding the periods, both limitations are usually over just one period:
monthly for quotas, and secondly for rates.

RQ2: Modeling Issues. During the modeling process we have noticed a few
issues, namely: (i) When an overage exists (i.e., one can overcome the limita-
tion value by paying an extra amount of money per request), the quotas are
soft, that is, the service is still accessible, but this situation should be taken
into account. (ii) Sometimes plans in real APIs are the result of an aggregation
of other plans. For instance, one can buy a base plan with N requests/s, but,
purchasing an upgrade, it is possible to reach the N+1 requests/s. (iii) Using
11 https://isa-group.github.io/2019-05-sla4oai.

https://isa-group.github.io/2019-05-sla4oai


Automating SLA-Driven API Development with SLA4OAI 33

more than one period for limitations. For instance, (1000 requests/month and
100 requests/week). Despite the fact that it is supported in SLA4OAI, it is not
present in the current reference implementation. (iv) Some limitations use a cus-
tom period by means of defining the amount and unit, for example, every 5min,
every 2.5months, etc. (v) In a few APIs, especially for trial plans, forever periods
are often used.

RQ3: SLA4OAI Interest in the Community. Despite the SLA4OAI exten-
sion and tools have not been widely announced nor promoted, we have dis-
closed the tooling ecosystem into the main public NodeJS artifact repository
(i.e., NPM) and this platform provides a set of analytics, refering to individ-
ual installations12, of the usage since it was published. Specifically, based on its
data, it is observed that the SLA Instrumentation Library has been downloaded
and installed more than 600 times13 while the SLA Engine was downloaded
more installed than 1900 times. Furthermore, several industry members of the
Open API Initiative (including Google or PayPal) have expressed their interest
in this proposal and to promote a working group for evolving and extending the
SLA4OAI proposal [5].

7 Conclusions

The current de facto standard for modeling functional aspects of RESTful APIs,
the OpenAPI Specification, ignore crucial non-functional information for an API
such as its Service Level Agreement (SLA). This lack of a standard to define
the non-functional aspects leads to vendor lock-in and it prevents the open tool
ecosystem to grow and handle extra functional aspects. In this paper, we pioneer
in extending OAS to define a specific model for SLAs description and we provide
an initial set of open-source tools that leverage the pre-existing OAI ecosystem
in order to automate some stages of the SLA-Driven API lifecycle. Our proposal
has been validated in terms of expressivity in 35 real-world APIs and, in spite of
the lack of promotion, the initial metrics of usage of the tools proof an interest
from the industry.

As future work, the modeling issues identified in Sect. 6 spot the potential
improvements of SLA4OAI specification and the ecosystem of tools, namely: (i)
Incorporate the concept of hard/soft limitation types. (ii) Add the definition of
custom periods, rather than limiting them to a fixed set of values. (iii) Design
a process for creating composite plans on the top of simpler ones. (iv) Improve
the reference implementation of the tools to support more than one period in
each limitation. From a community perspective, based on the interest received
in the industry, we are in the process of creating an official working group for the
industrial members in OAI to incorporate more feedback from the industry and

12 Details about how this calculation is being made is available at http://bit.ly/npm-
calculation.

13 https://npm-stat.com/charts.html?package=sla4oai-tools.

http://bit.ly/npm-calculation
http://bit.ly/npm-calculation
https://npm-stat.com/charts.html?package=sla4oai-tools


34 A. Gamez-Diaz et al.

define a coordinated mechanism of evolution for future versions of the current
SLA4OAI proposal.

References

1. Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from
source code. In: ESEC-FSE 2007, p. 25. ACM Press, New York (2007)

2. Andrieux, A., et al.: Web Services Agreement Specification (WS-Agreement) (2004)
3. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortes, A.: An analysis of RESTful APIs

offerings in the industry. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol,
M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 589–604. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69035-3_43

4. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortes, A.: Governify for APIs: SLA-Driven
ecosystem for API governance. In: ESEC-FSE 2019. ESEC/FSE 2019, Tallin, Esto-
nia. ACM (2019)

5. Gamez-Diaz, A., et al.: The role of limitations and SLAs in the API industry. In:
ESEC-FSE 2019. ESEC/FSE 2019, Tallin, Estonia. ACM (2019)

6. Garcia, J.M., Fernandez, P., Pedrinaci, C., Resinas, M., Cardoso, J., Ruiz-Cortes,
A.: Modeling service level agreements with linked USDL agreement. IEEE TSC
10(1), 52–65 (2017)

7. Harms, H., Rogowski, C., Lo Iacono, L.: Guidelines for adopting frontend archi-
tectures and patterns in microservices-based systems. In: Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, pp. 902–907 (2017)

8. Kearney, K.T., Torelli, F., Kotsokalis, C.: SLA*: an abstract syntax for service
level agreements. In: GRID, pp. 217–224. IEEE, October 2010

9. Kouki, Y., Alvares de Oliveira, F., Dupont, S., Ledoux, T.: A language support for
cloud elasticity management. In: CCGrid 2014, pp. 206–215. IEEE, May 2014

10. Lamanna, D.D., Skene, J., Emmerich, W.: SLAng: a language for defining service
level agreements. In: FTDCS, pp. 100–106, January 2003

11. Ludwig, H., Keller, A., Dan, A., King, R.: A service level agreement language
for dynamic electronic services. In: WECWIS 2002, pp. 25–32. IEEE Computer
Society (2002)

12. Martin-Lopez, A., Segura, S., Ruiz-Cortes, A.: A catalogue of inter-parameter
dependencies in restful web APIs. In: Yangui, S., et al. (eds.) ICSOC 2019. LNCS,
vol. 11895, pp. 399–414. Springer, Cham (2019)

13. Muller, C., Gutierrez Fernandez, A.M., Fernandez, P., Martin-Diaz, O., Resinas,
M., Ruiz-Cortes, A.: Automated validation of compensable SLAs. IEEE TSC, 1
(2018)

14. Neumann, A., Laranjeiro, N., Bernardino, J.: An analysis of public REST web
service APIs. IEEE TSC, 1 (2018)

15. Nguyen, T.N., et al.: Complementing global and local contexts in representing
API descriptions to improve API retrieval tasks. In: ESEC/FSE 2018, pp. 551–
562. ACM Press, New York (2018)

16. Reinhardt, A., Zhang, T., Mathur, M., Kim, M.: Augmenting stack overflow with
API usage patterns mined from GitHub. In: ESEC/FSE 2018, pp. 880–883 (2018)

17. Tata, S., Mohamed, M., Sakairi, T., Mandagere, N., Anya, O., Ludwiga, H.: RSLA:
a service level agreement language for cloud services. In: CLOUD, pp. 415–422,
June 2017

https://doi.org/10.1007/978-3-319-69035-3_43


Automating SLA-Driven API Development with SLA4OAI 35

18. Thomas Fielding, R.: Architectural styles and the design of network-based software
architectures. Ph.D. thesis, University of California, Irvine (2000)

19. Uriarte, R.B., Tiezzi, F., De Nicola, R.: SLAC: a formal service-level-agreement
language for cloud computing. In: UCC, pp. 419–426. IEEE, December 2014



On Observability and Monitoring
of Distributed Systems – An Industry

Interview Study

Sina Niedermaier1, Falko Koetter2(B), Andreas Freymann2,
and Stefan Wagner1

1 Institute of Software Technology, University of Stuttgart, Stuttgart, Germany
{sina.niedermaier,stefan.wagner}@iste.uni-stuttgart.de

2 Fraunhofer Institute for Industrial Engineering IAO, Fraunhofer IAO,
Stuttgart, Germany

{falko.koetter,andreas.freymann}@iao.fraunhofer.de

Abstract. Business success of companies heavily depends on the avail-
ability and performance of their client applications. Due to modern
development paradigms such as DevOps and microservice architectural
styles, applications are decoupled into services with complex interactions
and dependencies. Although these paradigms enable individual develop-
ment cycles with reduced delivery times, they cause several challenges
to manage the services in distributed systems. One major challenge is
to observe and monitor such distributed systems. This paper provides
a qualitative study to understand the challenges and good practices
in the field of observability and monitoring of distributed systems. In
28 semi-structured interviews with software professionals we discovered
increasing complexity and dynamics in that field. Especially observabil-
ity becomes an essential prerequisite to ensure stable services and further
development of client applications. However, the participants mentioned
a discrepancy in the awareness regarding the importance of the topic,
both from the management as well as from the developer perspective.
Besides technical challenges, we identified a strong need for an organiza-
tional concept including strategy, roles and responsibilities. Our results
support practitioners in developing and implementing systematic observ-
ability and monitoring for distributed systems.

Keywords: Monitoring · Observability · Distributed systems ·
Cloud · Industry

1 Introduction

In recent years, many IT departments have successfully migrated their services
to cloud computing [21]. Still, challenges for cloud adoption remain regarding the
operation and holistic monitoring of such services [16]. While conventional IT
infrastructure can be monitored with conventional monitoring solutions, cloud
environments are more dynamic and complex [1], resulting in a gap [12] between
the complexity of distributed systems and the capability of monitoring tools to
manage that complexity.
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 36–52, 2019.
https://doi.org/10.1007/978-3-030-33702-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_3


On Observability and Monitoring of Distributed Systems 37

Emerging trends like Internet of Things (IoT) and microservices further
increase the complexity, making monitoring a significant barrier for adoption
of these technologies [13].

While newly emerged software tools try to bridge this complexity gap, the
way forward for many companies is unclear. We found that there is no research
matching new solutions and technologies to different application areas, problems
and challenges. While a plethora of new technologies and approaches exists,
companies need to be able to relate these technologies to the challenges they
face. Processes and good practices are necessary to incorporate new solutions
into existing enterprise architectures as well as emerging cloud architectures.

To address this need, we conducted an industry interview study among dif-
ferent stakeholders involved in monitoring, including service managers, DevOps
engineers, software providers, and consultants. From the semi-structured inter-
views, we extracted contemporary challenges, requirements, and solutions.

2 Related Work

To provide context to the survey described in this work, the related work inves-
tigates (1) current approaches to bridging the gap between distributed system
complexity and monitoring capability as well as (2) preceding surveys regarding
monitoring and observability (see Fig. 1).

IEEE defines monitoring as the supervising, recording, analyzing or verifying
the operation of a system or component [10].

The term Observability originates in control system theory and measures the
degree to which a system’s internal state can be determined from its output
[7]. In cloud environments, observability indicates to what degree infrastructure
and applications and their interactions can be monitored. Outputs used are for
example logs, metrics and traces [18].

Yang et al. [24] investigate the capturing of service execution paths in dis-
tributed systems. While capturing the execution path is challenging, as each
request may cross many components of several servers, they introduce a generic
end-to-end methodology to capture the entire request. During our interviews
we found a need for transparency of execution paths as well as more generally
interdependencies between services.

The current trend towards more flexible and modular distributed systems
is characterized by using independent services, such as micro- or web services.
While systems consisting of web services provide better observability than mono-
lithic systems, services have the potential to enhance their observability and
monitoring by giving relevant information about their internal behaviour. Sun
et al. [23] deal with the challenge that web service definitions do not have any
information about their behaviour. They extend the web service definition by
adding a behaviour logic description based on a constraint-based model-driven
testing approach. During our interviews we identified that the behaviour espe-
cially of third-party services needs to be more clearly communicated to assess
the impact on service levels and to detect and diagnose faults.

Besides monitoring individual service calls, it is important to predict the
runtime performance of distributed systems. Johng et al. [11] show that two



38 S. Niedermaier et al.

techniques, benchmarking and simulation, have shortcomings if they are used
separately and introduce and validate a complementary approach. Their app-
roach presents a process which maps benchmark ontologies of simulations. This
prove to be inexpensive, fast and reliable. Similarly, Lin et al. [14] propose a
novel way of root cause detection in microservice architectures utilizing causal
graphs. In our interviews we found that performance is often only known when
a system goes live, as the interdependencies between different services and their
individual performance are not assessed beforehand.

Gupta et al. [8] addresses runtime monitoring on continuous deployment
in software development as a crucial task, especially in rapidly changing soft-
ware solutions. While current runtime monitoring approaches of previous and
newly deployed versions lack in capturing and monitoring differences at runtime,
they present an approach which automatically discovers an execution behaviour
model by mining execution logs. Approaches like this that gather information
automatically instead of necessitating manual definition are crucial with growing
complexity and dynamics of distributed systems.

These works show that for research on closing the complexity gap between
cloud environments and their monitoring is ongoing. However, these solutions are
not yet widely adopted in practice. When adopting new technology to industry
application, non-functional requirements such as usability, configurability and
adaptability increase in importance.

In the following preceding surveys in the context of monitoring and observ-
ability (2) are described.

Hasselbring

Preceding surveys (2)

Monitoring Observability

Sun et al.

Johng et al.

Current approaches to bridging the gap (1)

Distributed system complexity monitoring capability

Gupta et al. Alhamazani et al.

Sfondrin et al. Natu et al.Yang et al. Lin et al.

Gamez-Diaz et al.

Heger et al.

Fig. 1. Overview on the related work

Aceto et al. [1] conducted a comprehensive cloud monitoring survey in 2013,
detailing motivations, then-current tool support and open challenges. They iden-
tified the need for scalability, robustness and flexibility. The survey correctly pre-
dicted the rise in complexity and dynamics of cloud architectures and propose
actions to handle these such as root-cause-detection, filtering/summarizing of
data, and cross-layer/cross-platform monitoring. Similarly, another early survey
of cloud monitoring tools by Fatema et al. [5] identifies capabilities such as scal-
ability, robustness, interoperability and customizability to find a gap between
necessary capabilities and existing tools.



On Observability and Monitoring of Distributed Systems 39

Sfondrin et al. [21] conducted a survey of 62 multinational companies on
public cloud adoption. While use of public cloud infrastructure is on the rise,
barriers like security, regulatory compliance, and monitoring remain. Regarding
monitoring, the survey has shown that half of the companies rely solely on their
cloud providers’ monitoring dashboard. Participants noted a crucial need for
quality of service monitoring integrated with their monitoring tool.

Similarly, Knoche and Hasselbring [13] conducted a survey of German experts
on microservice adoption. Drivers for microservice adoption are scalability, main-
tainability and development speed. On the other hand, barriers to adoption are
mainly operational in nature. Operations department resist microservices due to
the change in their tasks. On the technical level, running distributed applications
prone to partial failures and monitoring them is a significant challenge.

Gamez-Diaz et al. [6] performed an analysis of RestFUL APIs of cloud
providers, identifying requirements for API governance and noting a lack of
standardization.

While not an empirical study, Natu et al. [16] show monitoring challenges of
holistic cloud applications. Scale and complexity of applications is identified as
a main challenge. Related to observability, incomplete and inaccurate views of
the total system as well as fault localization are other identified challenges.

Heger et al. [9] give an overview of the state-of-the-art in application per-
formance monitoring (APM), describing typical capabilities and available APM
software. They found APM to be a solution to monitoring and analyzing cloud
environments, but note future challenges in root cause detection, setup effort and
interoperability. APM cannot be understood as a purely technical topic anymore
but needs to incorporate business and organizational aspects as well.

Alhamazani et al. [2] give an insight into commercial cloud monitoring tools,
showing state-of-the-art features, identifying shortcomings and, connected with
that, future areas of research. Information aggregation across different layers
of abstraction, a broad range of measurable metrics and extensibility are seen
as critical success factors. Tools were found to be lacking in standardization
regarding monitoring processes and metrics.

Comparing preceding surveys regarding monitoring and observability (2) to
our work, these surveys focus either on drivers and challenges or on available
solutions (in science and commercial tools). In comparison, our study takes a
holistic approach. We provide empirical industry-focused research with in-depth
interviews, where we combine different perspectives in order to find out which
emerging solutions and strategies are used by companies and to what degree
they overcome the existing challenges. This is necessary to gauge the adoption
of new technologies in practice. Moreover, it comprises which challenges these
technologies address and which challenges emerge in adoption or are unsolved.

3 Scope and Research Method

Study Design: To structure our research, we applied the five-step case study
research process as described by Runeson and Hoest [19]. Our research objective



40 S. Niedermaier et al.

can be defined as follows: Analysis of the contemporary challenges of monitor-
ing and operating distributed systems for the purpose of deducting requirements
and mapping existing solutions and strategies from the viewpoint of different
stakeholders of monitoring systems and tool providers. Table 1 summarizes the
research questions:

Table 1. Overview of the research questions

RQ1 Which contemporary challenges exist in monitoring distributed systems?

RQ2 Which requirements do stakeholders have for a monitoring and
observability concept for distributed systems?

RQ3 What are technical and organizational strategies and solutions in
companies?

To answer our research questions, we applied the qualitative method of semi-
structured interviews. They allow us to explore the individual challenges stated
by the participants and to analyze the underlying relations by providing a basic
agenda. At the same time, interviews enable dynamic interaction based on the
background of our experts and their responses [22].

In total, we conducted 28 semi-structured interviews of 45 min on average.
The interviews were completed between February and April 2019. To achieve a
balanced distribution of interviewees, first, we considered users using monitoring
solutions and tool providers offering monitoring solutions (see Table 2). Second,
we ensured that solution providers and users are related to different domains
and focus to get diverse perspectives of monitoring solutions. Apart from the
tool providers, we covered further domains such as software and IT service, IoT,
telecommunication, insurance, and IT consulting. The users have been selected
from different points of view in the application stack and different roles like
DevOps and support engineers along with product owners and managers. The
recruiting of participants was achieved by personal industry contacts as well as
by acquisition on developer conferences.

Preparation for Data Collection: To conduct the semi-structured interviews,
we created an interview guide [17]. The guide is structured in different thematic
blocks to group the individual questions. The interviewees were pre-informed
about scope and procedure of the interviews. Besides the information to treat
their transcripts as confidential, we asked to record the interviews to create
transcripts if permitted. Moreover we informed them about the possibility to
review their transcript to assent to the information given in the interview.

Data Collection: From the 28 interviews, 15 were conducted ‘face to face’ and
13 via remote communication. The interviews were held in German, except for
two interviews in English. While 21 interviews have been audio recorded, for
the remaining interviews two researchers created protocols to reduce researcher
bias. During the interviews, we loosely followed the interview guide accordingly



On Observability and Monitoring of Distributed Systems 41

Table 2. Overview about participants and companies

CID Domain Staff EID Expert role Focus

C1 IoT >100T E1 Product Owner APM Solution

E2 Lead Architect Cloud Infrastructure

E3 Product Owner Connectivity Backend

E4 Service Manager Support and Operation of
IoT Solution

E5 Cloud Architect IoT Backend

C2 IoT 100-1T E6 IoT Consultant/Architect Consulting of IoT Projects

E7 Open Source Developer Cloud Service

E8 DevOps Engineer Cloud Service

E9 DevOps Architect Cloud Service

E10 Product Owner Cloud Service

E11 Project Lead IoT Project

C3 IoT 10T-100T E12 Manager IoT Platform

C4 IoT 10T-100T E13 IoT Solution Owner Cloud Service

C5 Telecom 10T-100T E14 Product Owner Monitoring Platform

C6 Software and
IT Services

>100T E15 Former Chief Technology
Officer

Software Development and
Operations Tool

E16 Technical Lead
IT-Operations

Operation Solution and
Event Management

C7 Applied
Research

100-1T E17 DevOps Engineer Insurance Service

E18 Developer Front- and Backend of
Fleet Management

C8 Tool Provider 1T-10T E19 Sales Engineer APM Solution

C9 Tool Provider 10T-100T E20 Strategic Officer Infrastructure Monitoring
Tool

E21 Support Infrastructure Monitoring
Tool

C10 Tool Provider 100-1T E22 Developer and Architect Infrastructure Monitoring
Tool

C11 Tool Provider 100-1T E23 Developer Monitoring Tool

C12 IT Service
Insurance

1T-10T E24 Divisional Director
Monitoring

Performance-Monitoring

C13 IT Consulting 1-25 E25 Developer and Architect IT Consulting Monitoring

C14 IT Consulting 100-1T E26 Chief Executive Officer Business Process
Monitoring

C15 Software and
IT Services

10T-100T E27 Solution Architect Open Source Technology
Provider

C16 Software and
IT Services

10T-100T E28 Developer Cross-Stack
Instrumentation for
Monitoring and Debugging

*CID = Company ID, *EID = Expert ID



42 S. Niedermaier et al.

to the answers and to the participants’ focuses. After manually transcribing the
interviews, we sent the transcripts to the participants for review, where they had
the possibility to correct unintended statements or remove sensitive data.

Data Analysis: For the analysis of the individual transcripts, we encoded the
material to extract important categories regarding our research goal. For this
purpose, we followed Mayring’s approach of qualitative content analysis [15].
We openly encoded the transcripts by applying inductive category develop-
ment, where we analyzed the transcripts on sentence level. Usually, one code
was assigned to different sentences in a transcript and furthermore one sentence
could be assigned to more than one code. During analysis we formed hierarchies
of codes and sub-codes. In several iterations, the codes were revised, split or
merged.

4 Results and Discussion

This section presents the aggregated findings from the interview analysis with
the focus on our research questions defined in Sect. 3. We created a hierarchy
of categories as an abstraction of the codes defined during the analysis of the
transcripts. This paper presents the top-level hierarchy of the identified chal-
lenges, requirements, and solutions. In the following, we describe the different
codes generated according to the research questions and illustrate the answers
given for the codes with some exemplary statements from the experts (see EID
Table 2).

4.1 Challenges

The first research question (RQ1) aims to understand the challenges our partic-
ipants deal with in the field of distributed systems and which implications are
further related with these challenges. We identified a set of nine challenges (Cx)
and their corresponding implications which are described in the following.

Increasing dynamics and complexity (C1): The emerging trend of microser-
vice architectures, cloud deployments, and DevOps increase the complex-
ity of distributed systems. While the individual complexity of a microser-
vice is reduced, the complexity of the interdependencies of microservices and
the dynamic components within a distributed system cause more operational
effort. This dynamic environment is not manageable manually and traditional
approaches such as Configuration Management Database (CMDB) [4] are not
sufficient anymore: “CMDB are often based on polling and get the state of the
system once a week. In one week, a lot has happened in the cloud system, which
a CMDB can not cover.” (E16). This issue does not only include cloud native
microservice architectures but also historically grown systems, where an overview
of service the dependencies is missing. In addition, some participants stated an
underestimation of the dynamic complexity of their systems. This caused that



On Observability and Monitoring of Distributed Systems 43

in case of a problem (especially for the diagnosis of context dependent or non-
permanent faults) the average duration for detection and recovery took too long.

Heterogeneity (C2): Todays distributed systems consist of several layers: from
application to infrastructure technologies like containers, VMs or even server-
less environments. These layers are developed and operated by heterogeneous
teams. Moreover, as stated by our participants, systems often contain legacy
and modern service technology in parallel, where additional tooling is neces-
sary to integrate legacy components. With regard to multi-tenant systems, some
participants experienced a noisy-neighbour-effect, where one tenant monopolizes
resources and negatively affect other tenants on the same infrastructure. How-
ever, in this case the participants were not able to separate views among different
tenants. In terms of technological heterogeneity and speed of innovation, the par-
ticipants had divisive opinions. For distributed systems developer can choose the
most suitable technology on the one hand, but on the other hand, the techno-
logical heterogeneity complicates the consistent application of monitoring tools.
Furthermore, other participants have criticized the speed of innovation and some
require a slow-down of technology hypes by defining regulations. The heterogene-
ity in these different areas is leading to a missing overview of the overall system,
it’s individual components and the requests processed.

Company culture and mindset (C3): Most of the participants believe that
culture and mindset aspects referring to monitoring are essential. Several even
stated that this aspect is more challenging than technical aspects. Furthermore,
some interviewees also mentioned that a holistic transparency to apply monitor-
ing is often not intended. This gives for instance rise to danger of being blamed
in retrospect for a failure. Often, the participants described that teams do not
have an overview outside of their own area, for example of the business context
of their service. This caused isolated monitoring and operation concepts without
context to customer solutions and related requirements. Overall, collaboration
and communication between teams and the perspective from which they develop
and operate their services are often weakly pronounced. This illustrates the fol-
lowing statement (E22): “It is usually not the ignorance or the inability of people
in the company, but the wrong point of view. Often the developers are so buried
in their problem environment, so engrossed in their daily tasks that they can no
longer afford to change themselves.”

Lack of central point of view (C4): Participants stated limited possibilities
in terms of visibility and dependencies to other services and teams. This results
in turn in a missing system-wide overview. E6 describes for instance such situa-
tion: “If it comes to problems such that there are many user complains because
the system is not working properly, everyone went for troubleshooting. Due to
the lack of an overview, it was difficult to diagnose the faults. It took several
escalation rounds and teleconferences to discuss where the fault is located.” At
the same time, we identified a lack of a responsible persons in charge to gener-
ate overall views and thus to enable individual teams to collaborate. Another
point mentioned is the missing transparency about the impact on availability and



44 S. Niedermaier et al.

performance of integrated components from 3rd parties which are often part of a
distributed system. Due to the fact that for such components service parameters
are usually not accessible, blind spots remain and prevent an overall monitoring.

Flood of data (C5): Participants mentioned the overwhelming flood of data
coming from the distributed system, which is constantly in change. The identi-
fied challenge is to create meaningful conclusions from customer alerts and how
to prioritize them. This shows the following statement (E17):“The volume and
amount of alerts are currently challenging, we are not able to prioritize the cus-
tomer impacting ones.” Moreover, for problems, where one request has to be
handled by multiple components that are developed by independent teams, it is
very complex to identify the location of faults, including the responsibilities to
fix it. In more detail, many participants described the complexity in correlation
of metrics and timestamped logs from multiple services which is often accompa-
nied by insufficient metadata. In addition, participants stated an absence of a
comprehensible dashboard that enables navigable views through the data.

Dependency on experts (C6): The process of fault detection and diagnosis,
which are often manually performed, seems to be highly dependent on knowledge
of individual experts about design and behaviour of the systems. As the following
statement from E11 illustrates, these experts appear as a ‘source to debug’:
“This form of troubleshooting depends highly on the expert knowledge of the
team members [...]. Mostly, the knowledge about the structure of the service is
currently more crucial than a monitoring which specifically indicates ‘search at
this point’.” This challenge again outlines the missing systematic development
of monitoring systems in supporting humans in fault detection and diagnosis.

Lack of experience, time and resources (C7): Many participants described
the challenge of mastering microservice technologies and the DevOps paradigm,
which require additional effort for operation, but at the same time, skilled
DevOps engineers are missing. Especially, the short time to market results in
a prioritization of features and in a disregard of non-functional requirements like
availability or performance. Most participants mentioned the limited time as
reason for an iterative, often reactive development of system observability and
monitoring.

Unclear non-functional requirements (C8): According to the interviewees,
non-functional requirements like availability and performance, also referred to
as Quality of Service (QoS) or Service Levels (SL), are often not or insufficiently
defined and controlled. In addition, some participants commented that teams
are often not aware of their major QoSs as well as of their importance in the
context of what needs to be measured and monitored. The related reasons for
that is due to missing or unprecise customer requirements or due to the lack
of awareness regarding the importance of non-functional requirements (E6): “It
is very important to think about service levels or KPls and to define them in a
certain way. This is often underestimated. In many projects it can be determined
that the project managers only have a purely technical view of the system without
being aware of the availability and performance that is needed.” Another reason



On Observability and Monitoring of Distributed Systems 45

we identified is the complexity to define overall availability and performance
goals, which then have to be converted into goals for component services. This
is further intensified by time constraints that lead to reactive implementations
as stated in the following statement (E6):“Many development teams are under
pressure to bring the service to market as quickly as possible. So the teams usually
start developing without specific customer requirements and end up in produc-
tion without any systematically derived requirements.” The lack of requirement
definitions leads in turn to missing feedback loops (E4): “ [...] where the quality
control in the service provision is missing”.

Reactive implementation (C9): As stated in several interviews, the unclear
requirements and the lack of sufficient indication and control often leads to fail-
ure. In these cases, the development of monitoring was triggered by an failure
in production, where the teams recognized a lack of observability to diagnose
customer failure or even to detect them. In fact, customers often received inad-
equate service levels. In several examples, the teams were occupied only with
troubleshooting, which in turn resulted into ad-hoc solutions, instead of creating
systematically derived monitoring solutions. Moreover, we identified that teams
run into same problems, where labor-intensive development of monitoring for
individual services are created and synergy effects of sharing knowledge, exper-
tise and good practices are not used. A further reason for reactive implementa-
tion is that during development, the developers did not have enough knowledge
about the complex interactions in production and therefore blind spots remained
until operation.

4.2 Requirements and Solutions

Regarding RQ 2 and RQ 3, the following requirements (Rx) and possible solu-
tions (Sx) are listed. Rx and Sx have been extracted from the interviews. The
mapping of the previous described challenges, the corresponding requirements
as well as the solutions are shown in Fig. 2.

Holistic approach (R1): Along with C4, the interview participants stated that
they characterize monitoring “ [...] as holistic problem and try to come up with
a holistic approach to ensure observability [...]” (E28). Therefore, it is necessary
to enable collaboration and communication along different system layers and
teams. We worked out that a common and central view is required which assists
the implementation of a system-wide diagnosis and fault detection. One solu-
tion stated by interviewees is an event management system (S1), also referred
as ‘manager of managers’, that enables an overall view of the system state. This
allows to correlate events for event reduction. Other solutions mentioned are
topology managers and architecture discovery modeling (S2). These enable to
dynamically map transactions to underlying infrastructure components. More-
over, distributed tracing (S3) was emphasized as solution, which records the
execution path of a request at runtime by propagating request IDs [20]. This
solution enables to capture causal relationship among events on the execution
path. It allows to create a “ [...] bird’s eye view, to find out what is going on with



46 S. Niedermaier et al.

C1 C2 C3 C4 C5 C6 C7 C8 C9

Dynamics and 
complexity Heterogeneity Culture and 

mindset
Lack of central 
point of view Flood of data Dependency

on experts

Lack in 
experience, 

me and 
resources

Unclear non-
func onal

requirements

Reac ve
implementa on

R1 Holis c approach

R2 Management from business
&  user experience view

R3 Context propaga on

R4 Defini on of core metrics 
from customer centric view

R5 Governance

R6 Collabora on model

R7 Monitoring pla orm

R8 Monitoring mindset

R9 New quality of operator

R10 Detec on of normal and 
abnormal pa

R11 Automa za on

R12 Monitoring from the start

R13 All-in-one solu on

R14 Tool capability

Synthe c probing (S5),
APM (S6)

SLO, SLI (S8)

SRE (S4)

SR
E 

(S
4)

SL
O

, S
LI

 (S
8)

Central group
of experts (S9)SL

O
, S

LI
 

(S
8)

SLO (S8),
excep on policies

Metadata 
(S7)

Adaptors (S13) Out of the box 
(S12)

SLO, SLI (S8) SLO, SLI (S8)

SRE (S4)

Event management (S1),
AI (14)

Bots (S15), agents (S16),
AI (S14) Bots (S15), agents (S16), AI (S14)

SLO, SLI (S8) SLO, SLI (S8)

Distributed
tracing (S3)

Distributed tracing
(S3), AI (14)

Distributed tracing (S3),
metadata (S7)

Event management (S1), topology 
manager (S2), distributed tracing (S3)

SRE (S4)

SLO, SLI (S8)

SRE=Site Reliability Engineering; SLO=Service Level Objec ve; SLI=Service Level Indicator;
AI=Ar ficial Intelligence; APM=Applica on Performance Management

Available solu on(s) No solu on(s) needed

Fig. 2. Overview of challenges, requirements and solutions

a user request [...]” (E28). Distributed tracing can also be applied for diagnosis
of 3rd party components where source code is not available. Hence, the par-
ticipants mentioned that the instrumentation in order to propagate trace IDs
through individual services, developed by different teams, is at the moment not
consistently assured.

Management from business and user experience view (R2): Several
participants described the trend moving from isolated monitoring of individual
services to a context dependent view from the perspective of a customer or
business application. In addition, some stated to apply Google’s approach of Site
Reliability Engineering (SRE) (S4) (E28): “With our SRE approach in mind, we
care about the user experience and these are the golden paths we want to improve.
I do not necessarily care about what is going on underneath, as soon as the user
is not experiencing any errors, latency or unlikely indicators.” SRE [3] takes
aspects of software engineering and applies them to infrastructure and operations
problems with a focus on customer experience. Moreover, several interviewees
stated to perform synthetic probing. This is known as end-to-end monitoring
(S5) that enables emulation of real user behaviour to measure and compare its
availability and performance. In general, many participants referred to apply
Application Performance Management (APM) (S6) which comprises methods,
techniques, and tools to continuously monitor the state of a system from an
application-centric view. The APM allows diagnosing and resolving especially
performance-related problems.



On Observability and Monitoring of Distributed Systems 47

Context propagation (R3): To provide a holistic approach and to be able
to detect customer impacting events context propagation is needed. The system
propagates relevant context in form of metadata, such as IDs or tags along the
execution flow of a request through services. Alongside with distributed tracing
(S3), adding metadata (S7) to metrics and logs are further examples. This helps
to localize the underlying fault in the flood of data generated by the systems
by providing contextual information (E28):“With context propagation, you can
easily point to the root cause of the issues. For example, there is some additional
latency and you can see that this other particular database call is causing the
additional latency. You can automatically inspect and ping the right time and
component [...]”.

Definition of core metrics from customer centric view (R4): A way to
systematically define metrics for individual services is the concept of establishing
service level metrics. Some participants apply Service Level Objectives (SLO)
and Service Level Indicators (SLI) (S8) as part of a SRE approach. While SLOs
describe business objectives by defining the acceptable downtime of a service
from a user perspective, the SLI in turn enables to tie back metrics to the business
objectives. The interviewees express an essential need for a systematic definition
of these metrics, but at the same time they struggle with their implementation
(E28): “It is a lot of work to figure out the right SLO, which is a very long process.
Not everybody is interested in this. [...] It is hard to introduce this concept at a
later time. This is creating tension in teams, because they are saying: “This is not
what you have promised us”. But the problem is, if nobody actually formulated
what the promise was.”

Governance (R5): To foster the previous requirements, several participants
outlined the need for a governance that defines a strategy including roles,
responsibilities, processes and technologies for monitoring and observability. This
should comprise clear formulations of a minimal set of indicators that have to
be monitored from every service. A further requirement is to claim observabil-
ity of a service as an acceptance criteria for development and operation. The
participants mentioned that developing and applying governance needs several
iterations and has to be continuously adapted in terms of the company strat-
egy. Especially for services running in the cloud, guidelines have to be defined
because “Cloud is standardization” (E16). Concurrently some participants crit-
icized the introduction of tooling standards and a slow-down of development by
oversized governance regulations. Some companies already have an own depart-
ment and group of specialists with the central responsibility of monitoring (S9).
To provide a strategy, participants mentioned to align their governance to SRE
principles and guidelines (S4), which in some examples already evolved into a
self-regulating system. A commonly mentioned issue addresses the creation of
community of a practice (S10) to share good practices and lessons learned.

Collaboration model (R6): Some participants described a collaboration
model as an essential base for communication and efficient diagnosis processes
along different teams. As part of that, exception policies and taxonomies for



48 S. Niedermaier et al.

anomalies (S11) need to be defined. To efficiently work together during diag-
nosis metadata (S7), capturing the causal relationships and providing context
are needed. Moreover, some participants stated that a (E28): “ [...] common lan-
guage, called SLO and SLI” (S8) is base for their team collaboration.

Monitoring platform (R7): Several interviewees required a unified monitoring
platform to increase operational efficiency. This includes out of the box (S12) and
standardized components which can be used modularly and are customizable to
specific needs of the individual services. Monitoring and its default setup also
needs to enable the “democratization of data” (E19), for example to offer a
standard API to deploy adaptors (S13) for different technologies. This default
can therefore “ [...] create a kind of governance that is not strict.”(E20).

Monitoring mindset (R8): The prerequisite is to increase the importance
of observability and monitoring of distributed systems. Without an increasing
awareness, isolated ad-hoc solutions will remain, which do not enable sufficient
service provisioning and diagnostics. One mentioned solution to increase the
importance of non-functional attributes, like availability and performance, can
be reached by setting and controlling SLOs (S8). Thereby, stability and feature
development can be controlled from management perspective. Further, the par-
ticipants outlined a need to equalize functional and non-functional requirements.

New quality of operator (R9): Many participants mentioned a lack of aca-
demic education of the operators. Accordingly, operators need to increase their
skills especially of being able to cope with automation tasks. Achieving this, the
company has to increase the awareness of monitoring and to promote proper
responsible operators. Some participants highlighted the need for Site Reliabil-
ity Engineers (SRE) (S4), who are able to work on operation and infrastructure
tasks as well as software engineering aspects.

Detection of normal and abnormal patterns (R10): Nearly all intervie-
wees spoke about anomaly detection as an important task for monitoring to
differ between what is normal and abnormal behaviour. Different solutions are
mentioned, such as event management (S1), to correlate events from different
parts of the system. For correlating events, predictive analytics and artificial
intelligence (AI) (S14) are in use. Some participants discussed the problem of
differentiating normal behaviour of a service. In this context, some participants
considered distributed tracing (S3) to indicate performance measures and iter-
atively develop guarantees for their services by setting service levels. The most
advanced method for anomaly detection is AI (S14). Almost all participants
appreciated its enormous potential to master the complexity and the flood of
data generated by distributed systems. However, many interviewees pointed out
that sufficient preconditions for the use of AI are still missing in practice. Primar-
ily, the right data has to be collected, the quality of data has to be ensured, the
context needs to be propagated and data has to be stored centrally. Concerns in
terms of the cost value ratio of AI approaches and their reliability remain (E28):
“I don’t know if we will ever have a solution that we can rely on confidently”.



On Observability and Monitoring of Distributed Systems 49

Automation (R11): The increasing dynamics and complexity within dis-
tributed systems, caused by the upcoming microservice architecture and shorter
lifecycles of components, is not manually controllable as a whole any more.
Therefore, automation is indispensable to observe and monitor a distributed
system. Especially recurring problems can be automatically solved and basic
monitoring techniques can be automatically implemented. Bots (S15) and agents
(S16) can realize automation, as they act by themselves. In combination with
AI (S14), bots and agents can be more efficient and more precise in their tasks
such as collection and analysis of traffic data.

Monitoring from the start (R12): Monitoring is a prerequisite for any devel-
opment and operation. Many interviewees indicated to consider monitoring from
the start. It should be the part of any design. Some participants quote to inte-
grate SLOs and SLIs (S8) “ [...] in the design time. As soon as there is a new
service you have a section in the design doc., where you can see these are the
promises, they may change over time to reduce toil. We start the conversation
very early on.” (E28). This might enhances the awareness for monitoring and
can change the company culture towards a monitoring mindset. While IT depart-
ments should see monitoring as an integrated part, the management needs to be
the key driver to implement such a mindset.

All-in-one solution (R13): Solutions covering all monitoring functionalities in
one solution were mentioned in the interviews. However, the reality shows that
such solutions do not exist. In the best case, the market offers solutions which
provide basic functionalities for monitoring such as performance measurement
or logging. In more detail, they often provide the capability to easily expand the
solutions, for instance by combining and integrating other software solutions.
This can also comprise new standards, technologies and other already existing
solutions. Hence, all-in-one solutions represent in this context a combination of
several solutions and technologies. Nevertheless, to realize such an encompassing
solution, it needs to avoid or substitute isolated solutions with standard monitor-
ing software, open standards and modern technologies to reach an encompassing
solution in the future.

Tool Capabilities (R14): In this paragraph, we summarized different tool
capabilities, mainly non-functional requirements, mentioned by the participants.
An often stated requirement is real-time monitoring, where changes and impacts
are being directly monitored without delay. Therefore, the necessary information
can be provided for appropriate response (e.g. real-time alerts to reduce reac-
tion time). A further requirement addresses the use of open standards (e.g. JSON
or standard monitoring functionalities), which is motivated by being adaptable
and flexible due to new technologies and standards. This also fosters the main-
tainability and portability of monitoring solutions by being easily transferable
to other distributed systems. Associated with that, scalability is of a particu-
lar importance to cope with large and dynamic distributed systems. While the
management of the dynamics within a distributed system needs to be addressed,
reliability and availability of the monitoring is highly demanded. For example,



50 S. Niedermaier et al.

health functionalities, such as the current status of the system, needs to be avail-
able all the time. Moreover, tools need to support multi-tenant management.
This requirement specifically addresses the ability of tenant specific views and
individual permission management. A further mentioned aspect is the impor-
tance of the security of the monitoring tools itself. The more agents are used
and the higher the integration depth is, the more ‘backdoors’ might be open and
the higher the possible negative impact could be. Thus, security aspects such as
prevention actions need to be realized. A minimally invasive approach needs to
be followed, where the changes in an existing system are limited. This might be
opening just a minimum of relevant ports. In addition, a careless deployment and
configuration of monitoring agents have been mentioned as potential problems
which might causes instability and an increasing network load.

5 Threats to Validity

For internal validity, there is a risk that the participants did not state the true
situation or their opinion. However, this risk is rather small, because we were
ensuring the anonymity of the interviews and the participants seemed not to be
worried to talk about negative aspects of their product or company. Another
threat to internal validity are potentially misunderstood concepts used within
the questions. Therefore, we provided additional explanations for important con-
cepts. Otherwise, we asked questions to clarify terms used by the participants
that could have a domain or company specific meaning. To reduce researcher
bias and therefore to increase the interpretation validity, every transcript was
reviewed by at least one additional researcher. Furthermore, our participants
had the chance (and took it) to adjust statements in their transcript that were
incorrect, indistinct or contained sensitive data.

To increase external validity, we asked participants not exclusively based
in Germany but also participants coming form international companies with
diversity in terms of domain and size. Additionally, with our participants we are
covering different roles, coming from different layers of the application stack as
well as including providers of monitoring solutions and consultants advising com-
panies and teams in integrating monitoring solutions. Therefore, it was possible
to generate an overall view of the complex relations in terms of technical and
organizational aspects leading to challenges as well as requirements and solu-
tions. Still, as we performed qualitative research, we do not claim our results to
be generalizable.

6 Conclusion

Our research objective was to explore challenges, requirements and contemporary
good practices as well as solutions in terms of monitoring and observability of
distributed systems. Therefore, we conducted interviews with 28 software profes-
sionals from 16 organizations. We identified that monitoring and the observabil-
ity of distributed systems is not purely a technical issue anymore but becomes



On Observability and Monitoring of Distributed Systems 51

a more cross-cutting and strategic topic, critical to the success of a company
which offers services. Development and deployment paradigms of microservices,
DevOps and cloud are creating maximal independence and specialization result-
ing in isolated monitoring and observability solutions, not allowing to manage a
service from a customer or business centric view. Most companies have already
solutions and good practices in place, but in many cases they remain isolated
approaches due to siloed company structures. With reference to the findings of
the contemporary state of practice, we see a need for further work on good prac-
tices and real world-examples for aligning business goals with technical metrics to
break down silos and enable efficient development and operation. Furthermore,
researchers can take these results into account for designing industry-focused
methods.

References

1. Aceto, G., Botta, A., de Donato, W., Pescapè, A.: Cloud monitoring: a survey.
Comput. Netw. 57(9), 2093–2115 (2013)

2. Alhamazani, K., et al.: An overview of the commercial cloud monitoring tools:
research dimensions, design issues, and state-of-the-art. Computing 97(4), 357–
377 (2015)

3. Beyer, B., Jones, C., Petoff, J., Murphy, N.R.: Site Reliability Engineering: How
Google Runs Production Systems. O’Reilly Media Inc., Sebastopol (2016)

4. Colville, R.J.: CMDB or configuration database: know the difference (2006)
5. Fatema, K., Emeakaroha, V.C., Healy, P.D., Morrison, J.P., Lynn, T.: A survey of

cloud monitoring tools: taxonomy, capabilities and objectives. J. Parallel Distrib.
Comput. 74(10), 2918–2933 (2014)

6. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortes, A.: An analysis of RESTful APIs
offerings in the industry. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol,
M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 589–604. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69035-3 43

7. Gopal, M.: Modern Control System Theory, 2nd edn. Halsted Press, New York
(1993)

8. Gupta, M., Mandal, A., Dasgupta, G., Serebrenik, A.: Runtime monitoring in
continuous deployment by differencing execution behavior model. In: Pahl, C.,
Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 812–827.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9 58

9. Heger, C., van Hoorn, A., Mann, M., Okanovic, D.: Application performance man-
agement: state of the art and challenges for the future. In: Proceedings of the 8th
ACM/SPEC International Conference on Performance Engineering (ICPE 2017).
ACM (2017)

10. IEEE: IEEE Standard Glossary of Software Engineering Terminology (1990).
https://ieeexplore.ieee.org/document/159342

11. Johng, H., Kim, D., Hill, T., Chung, L.: Estimating the performance of cloud-based
systems using benchmarking and simulation in a complementary manner. In: Pahl,
C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 576–591.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9 42

https://doi.org/10.1007/978-3-319-69035-3_43
https://doi.org/10.1007/978-3-030-03596-9_58
https://ieeexplore.ieee.org/document/159342
https://doi.org/10.1007/978-3-030-03596-9_42


52 S. Niedermaier et al.

12. Kinsella, J.: The cloud complexity gap: making software more intelligent to
address complex infrastructure. https://www.cloudcomputing-news.net/news/
2015/jun/17/cloud-complexity-gap-making-software-more-intelligent-address-
complex-infrastructure/

13. Knoche, H., Hasselbring, W.: Drivers and barriers for microservice adoption–
a survey among professionals in Germany. Enterp. Model. Inf. Syst. Architect.
(EMISAJ)–Int. J. Conceptual Model. 14(1), 1–35 (2019)

14. Lin, J., Chen, P., Zheng, Z.: Microscope: pinpoint performance issues with causal
graphs in micro-service environments. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q.
(eds.) ICSOC 2018. LNCS, vol. 11236, pp. 3–20. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03596-9 1

15. Mayring, P.: Qualitative Content Analysis: Theoretical Foundation, Basic Proce-
dures and Software Solution (2014)

16. Natu, M., Ghosh, R.K., Shyamsundar, R.K., Ranjan, R.: Holistic performance
monitoring of hybrid clouds: complexities and future directions. IEEE Cloud Com-
put. 3(1), 72–81 (2016)

17. Niedermaier, S., Koetter, F., Freymann, A., Wagner, S.: Interview guideline on
observability and monitoring of distributed systems (2019). https://doi.org/10.
5281/zenodo.3346579

18. Picoreti, R., Pereira do Carmo, A., Mendonça de Queiroz, F., Salles Garcia, A.,
Frizera Vassallo, R., Simeonidou, D.: Multilevel observability in cloud orchestra-
tion. In: 2018 IEEE 16th International Conference on DASC/PiCom/DataCom/
CyberSciTech, pp. 776–784, August 2018

19. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131 (2008)

20. Sambasivan, R.R., Shafer, I., Mace, J., Sigelman, B.H., Fonseca, R., Ganger, G.R.:
Principled workflow-centric tracing of distributed systems. In: Proceedings of the
Seventh ACM Symposium on Cloud Computing, pp. 401–414. ACM (2016)

21. Sfondrini, N., Motta, G., Longo, A.: Public cloud adoption in multinational com-
panies: a survey. In: 2018 IEEE International Conference on Services Computing
(SCC), pp. 177–184, July 2018

22. Singer, J., Sim, S.E., Lethbridge, T.C.: Software engineering data collection for
field studies. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to Advanced
Empirical Software Engineering, pp. 9–34. Springer, London (2008). https://doi.
org/10.1007/978-1-84800-044-5 1

23. Sun, C., Li, M., Jia, J., Han, J.: Constraint-based model-driven testing of web
services for behavior conformance. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.)
ICSOC 2018. LNCS, vol. 11236, pp. 543–559. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03596-9 40

24. Yang, Y., Wang, L., Gu, J., Li, Y.: Transparently capturing execution path of
service/job request processing. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.)
ICSOC 2018. LNCS, vol. 11236, pp. 879–887. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03596-9 63

https://www.cloudcomputing-news.net/news/2015/jun/17/cloud-complexity-gap-making-software-more-intelligent-address-complex-infrastructure/
https://www.cloudcomputing-news.net/news/2015/jun/17/cloud-complexity-gap-making-software-more-intelligent-address-complex-infrastructure/
https://www.cloudcomputing-news.net/news/2015/jun/17/cloud-complexity-gap-making-software-more-intelligent-address-complex-infrastructure/
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.5281/zenodo.3346579
https://doi.org/10.5281/zenodo.3346579
https://doi.org/10.1007/978-1-84800-044-5_1
https://doi.org/10.1007/978-1-84800-044-5_1
https://doi.org/10.1007/978-3-030-03596-9_40
https://doi.org/10.1007/978-3-030-03596-9_40
https://doi.org/10.1007/978-3-030-03596-9_63
https://doi.org/10.1007/978-3-030-03596-9_63


Integrating Geographical and Functional
Relevance to Implicit Data for Web

Service Recommendation

Khavee Agustus Botangen1(B), Jian Yu1, Sira Yongchareon1,
LiangHuai Yang2, and Quan Z. Sheng3

1 School of Engineering, Computer, and Mathematical Sciences,
Auckland University of Technology, Auckland, New Zealand
{khavee.botangen,jian.yu,sira.yongchareon}@aut.ac.nz

2 School of Computer Science and Technology, Zhejiang University of Technology,
Hangzhou, China

yang.lianghuai@gmail.com
3 Department of Computing, Macquarie University, Sydney, Australia

michael.sheng@mq.edu.au

Abstract. Designing efficient and effective Web service recommenda-
tion, primarily based on usage feedback, has become an important task
to support the prevalent consumption of services. In the mashup-API
invocation scenario, the most available feedback is the implicit invoca-
tion data, i.e., the binary data indicating whether or not a mashup has
invoked an API. Hence, various efforts are exploiting potential impact
factors to augment the implicit invocation data with the aim to improve
service recommendation performance. One significant factor affecting the
context of Web service invocations is geographical location, however, it
has been given less attention in the implicit-based service recommenda-
tion. In this paper, we propose a recommendation approach that derives
a contextual preference score from geographical location information
and functionality descriptions. The preference score complements the
mashup-API invocation data for our implicit-tailored matrix factoriza-
tion recommendation model. Evaluation results show that augmenting
the implicit data with geographical location information and functional-
ity description significantly increases the precision of API recommenda-
tion for mashup services.

Keywords: Recommendation · Location · Topic model · Implicit
feedback · Matrix factorization

1 Introduction

The growing number and diversity of Web services present challenges in the dis-
covery and selection of appropriate services to construct service compositions
[2,10]. Service recommendation techniques have been explored to handle such

This work is supported in part by Key Project of the National Natural Science Foun-
dation of China (No. 61832004 and 61672042).

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 53–57, 2019.
https://doi.org/10.1007/978-3-030-33702-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_4


54 K. A. Botangen et al.

challenges, and since the explicit QoS information is considered one of the key
criteria in service recommendation, collaborative QoS prediction has been the
main focus of various research works [9,12]. But oftentimes, the most realistic
and best available data is the implicit user-service invocation, which simply tells
whether a user has invoked a service or not. We propose in this paper a context-
aware collaborative filtering service-recommendation approach that deals with
the implicit mashup-API invocation scenario, i.e., a mashup uses an API. We
explore two contextual factors that may influence the invocation preference for
an API. By contextual factors, we mean those surround information stretching
beyond the mashup-API invocation matrix. These contextual factors are the
geographic locations and functional characteristics of mashups and APIs. From
these two factors, we respectively derive the geographical and functional rele-
vance scores for a certain mashup-API invocation. This paper has the following
main contributions: (1) the mapping of geographical location information into
geographical relevance scores; (2) the mapping of textual descriptions into func-
tional relevance scores; and (3) the integration of the geographical and functional
relevance scores as impact factors to the implicit mashup-API invocation data
that is utilized by our matrix factorization recommendation model.

2 Deriving Geographical and Functional Relevance

To demonstrate our approach, we utilize one of the largest repositories of APIs
and mashups – the ProgrammableWeb. We extract a dataset that comprises the
mashup-API invocation matrix: 5,691 mashups and 1,170 APIs, with only 10,737
mashup-API invocations, which shows a very low matrix density of 1.6 × 10−3.
Afterwards, we derive the geographical and functionality information to establish
the degrees of preference for the implicit mashup-API invocations.

Mashups and APIs are situated in various geographical locations, e.g., city,
country, or autonomous system. Each location provides the mashup-API invoca-
tion a certain operational context which can be different in every other location.
We formulate two assumptions in the mashup-API service invocation scenario: (i)
there is a better quality of service invocations in shorter geographic distances,
hence, a higher preference should be given to a potential API that is located
closer to the mashup; and (ii) the preference of mashup m for a potential API
a reflects the preferences of m’s neighboring mashups. When a is invoked by
m’s neighboring mashup n, we expect that a provides better quality of service
invocation to n. When m is geographically close to n, it is likely to get that
same (better) quality of invocation when m invokes a. We define a geographical
similarity function that transforms the distance dui between the geolocations of
a mashup u and a potential API i into a similarity value:

geosimui = 1 −
((

1

1 + e(−1· dui
δ )

· 2
)

− 1

)
(1)

where δ is the dispersion factor that approximates the decrease rate of the simi-
larity value as the distance dui increases, and dui is computed using the inverse



Integrating Geographical and Functional Relevance to Implicit Data 55

Haversine formula. Our similarity function should satisfy two constraints: (i) the
function is equal to 1 when dui = 0, and (ii) the function tends to be 0 as the
distance dui increases.

Given a mashup u and a potential API i, we get the list of nearest neighbors of
mashup u: M(u) = {m | m is within k distance from u, and m invokes i}. Then, we
compute the geographical similarity between each m and u: geosimum. We aggre-
gate the geographical similarity of u with all its neighbors into a mashup context
similarity:

consimu =
1

| M(u) |
∑

m∈M(u)

geosimum (2)

The geographical relevance score between a mashup u and API i aggregates
the geosimui and consimu: gs(u, i) = geosimui × consimu.

Then, for each mashup/API in the dataset, we aggregate its description, cat-
egory, and tags into a mashup/API document. We use the Latent Dirichlet Allo-
cation (LDA) topic model [1] to analyze each document and obtain the associated
topic distribution. We define the functionality relevance score between a mashup
mu and an API ai as the similarity of the topic distributions of mu: θu, and ai: θi.
We compare the topic distributions using the Jensen-Shannon divergence method:
JSD (θu‖θi) = 0.5 × D (θu‖M) + 0.5 × D (θi‖M), where M = 0.5 × (θu + θi),
and D(.‖.) is the Kullback-Leibler divergence. Hence, the functionality relevance
score of mu and ai is defined as: fs(mu, ai) = 1 − JSD (θu‖θi).

3 The Recommendation Model

Adapting the collaborative filtering approach that integrates preference degrees
to implicit feedback [3], our matrix factorization model augments the implicit
mashup-API invocation pairing rui with the unified preference score pui =
gs(u, i) × fs(u, i). With a non-zero entry rui = 1, we believe that i is preferred
in u. Otherwise, a zero entry rui = 0 indicates a negative or none preference.
We associate these beliefs with varying preference degrees which indicate the
levels of confidence we have. We use a variable cui to hold our confidence for
rui, and is calculated as follows: cui = 1 + αpui. For every mashup-API pair
rui, we have a minimal confidence that increases with the preference score pui.
The larger the preference score for an rui = 1, the higher our confidence will be.
The increase rate in our confidence is set through the linear scaling factor α.
Increasing or decreasing α will respectively increase or decrease the confidence
variability among the preferences. Setting α = 200 has given good results in our
experiments. It is worth noting that if rui = 0, then pui = 0, giving us a minimal
confidence cui = 1. We compute the latent factors (i.e., xu ∈ R

d for each mashup
u, and yi ∈ R

d for each API i), by minimizing a confidence weighted sum of
squared errors loss function:

L = min
x∗,y∗

∑
u,i

cui(rui − xT
u yi)2 + λ

(∑
u

||xu||2 +
∑
i

||yi||2
)

(3)

where λ
( ∑

u ||xu||2+∑
i ||yi||2

)
is an L2 regularization term to reduce overfitting

the training data.



56 K. A. Botangen et al.

(a) (b)

(c) (d)

Fig. 1. MAP@K scores comparison.

4 Evaluation

Using the Mean Average Precision (MAP@K) metric, we evaluate the recommen-
dation performance of our approach against some baseline prediction methods:
the neighbor-based CF (NCF [11]), the SVD-based MF (SVD [8]), the non-
negative MF (NMF [5]), the regularized MF (RMF [4]), the weighted regular-
ized MF (wRMF [7]) which is a variant of RMF, and the probabilistic MF (PMF
[6])which is considered a probabilistic extension of SVD.

To create the training data, we hide an n equal number of interactions of each
mashup in the mashup-API interaction matrix (i.e., the corresponding entries
become 0). The test data contains all the mashups, each with the n invoked
APIs (i.e., the APIs associated with the hidden interactions). We then evaluate
the MAP of the top K recommended APIs with regard to those hidden ones.

In the derivation of MAP scores, we create four settings of training data:
s > 4, s > 3, s > 2, and s > 1, where s is the number of APIs in a mashup.
In the setting s > 3, for instance, we only consider those mashup rows invoking
more than 3 APIs. Each setting has its test cases with varying sizes of the
training-test split. For example, the setting s > 3 has 3 test cases: t = {3, 2, 1},
where each t corresponds to the number of APIs in the test set of each mashup.
The training-test split varies with t. Figure 1 illustrates the MAP@K evaluation
results of the various methods in the four dataset settings. Each setting shows the
average scores from the test cases, e.g., Fig. 1(b) which corresponds to the setting
s > 3, plots the average MAP@K of its 3 test cases. Our method outperforms
the baseline methods in all four settings in terms of precision on the top-10
recommendations.



Integrating Geographical and Functional Relevance to Implicit Data 57

5 Conclusion and Future Work

In this paper, we leverage the matrix factorization technique to not just consider
invocation patterns but also recognize the varying degree of preferences behind
the binary mashup-API invocation data. We combine the geographical and func-
tional relevance scores and integrate them as preference degrees to the mashup-
API invocations in our implicit-tailored matrix factorization model. During the
training process, we can make full use of the geographic locations and functional
descriptions of mashups and APIs, besides the implicit invocation data.

We are conducting more experiments to ascertain the impact of the key
model parameters, as well as the individual components of the relevance scores.
We also aim (i) to consider the proximity among neighboring APIs in the geo-
graphical relevance model, and (ii) to integrate into our recommendation model
additional contextual information such as social relationships among the neigh-
boring mashups and APIs.

References

1. Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)
2. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-

mun. ACM 60(4), 64–72 (2017)
3. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback

datasets. In: 8th International Conference on Data Mining, pp. 263–272. IEEE
(2008)

4. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

5. Luo, X., Zhou, M., Xia, Y., Zhu, Q.: An efficient non-negative matrix-factorization-
based approach to collaborative filtering for recommender systems. IEEE Trans.
Industr. Inf. 10(2), 1273–1284 (2014)

6. Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: Advances in
Neural Information Processing Systems, pp. 1257–1264 (2008)

7. Pan, R., et al.: One-class collaborative filtering. In: 8th International Conference
on Data Mining, pp. 502–511. IEEE (2008)

8. Symeonidis, P., Zioupos, A.: Matrix and Tensor Factorization Techniques for Rec-
ommender Systems, vol. 1. Springer, New York (2016). https://doi.org/10.1007/
978-3-319-41357-0

9. Wu, H., Yue, K., Li, B., Zhang, B., Hsu, C.H.: Collaborative QoS prediction with
context-sensitive matrix factorization. Future Gener. Comput. Syst. 82, 669–678
(2018)

10. Yao, L., Wang, X., Sheng, Q.Z., Benatallah, B., Huang, C.: Mashup recommen-
dation by regularizing matrix factorization with API co-invocations. IEEE Trans.
Serv. Comput. (2018). https://doi.org/10.1109/TSC.2018.2803171

11. Zheng, Z., Ma, H., Lyu, M.R., King, I.: WSREC: a collaborative filtering based web
service recommender system. In: IEEE International Conference on Web Services,
pp. 437–444. IEEE (2009)

12. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating QoS of real-world web services.
IEEE Trans. Serv. Comput. 7(1), 32–39 (2014)

https://doi.org/10.1007/978-3-319-41357-0
https://doi.org/10.1007/978-3-319-41357-0
https://doi.org/10.1109/TSC.2018.2803171


Towards Automated Microservices
Extraction Using Muti-objective

Evolutionary Search

Islem Saidani1, Ali Ouni1(B), Mohamed Wiem Mkaouer2, and Aymen Saied3

1 ETS Montreal, University of Quebec, Montreal, QC, Canada
islem.saidani@ens.etsmtl.ca, ali.ouni@etsmtl.ca

2 Rochester Institute of Technology (RIT), Rochester, NY, USA
mwm@se.rit.edu

3 Concordia University, Montreal, QC, Canada
m saied@encs.concordia.ca

Abstract. We introduce in this paper a novel approach, named MSEx-
tractor, that formulate the microservices identification problem as a
multi-objective combinatorial optimization problem to decompose a
legacy application into a set of cohesive, loosely-coupled and coarse-
grained services. We employ the non-dominated sorting genetic algorithm
(NSGA-II) to drive a search process towards optimal microservices iden-
tification while considering structural dependencies in the source code.
We conduct an empirical evaluation on a benchmark of two open-source
legacy software systems to assess the efficiency of our approach. Results
show that MSExtractor is able to find relevant microservice candidates
and outperforms recent three state-of-the-art approaches.

Keywords: Microservices · Search-based software engineering ·
Legacy decomposition · Microservices architecture

1 Introduction

In this paper, we introduce a novel approach namely MSExtractor, that formulate
the microservices extraction problem as a multi-objective combinatorial opti-
mization problem to decompose an OO legacy application into a set of cohesive,
loosely-coupled microservices. We employ the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [1], as search method to drive the decomposition pro-
cess and find the near-optimal trade-off between two objectives: (1) minimize
coupling (inter-service dependencies), and (2) maximize cohesion (intra-services
dependencies) while leveraging the structural information embodied in the source
code. MSExtractor aims at supporting software developers and architects by pro-
viding a decision-making support in their design decisions for their microservices
migration.

We conduct an empirical study to evaluate our approach on a benchmark of
two open source Java legacy applications. Results show that MSExtractor is able
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 58–63, 2019.
https://doi.org/10.1007/978-3-030-33702-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_5


Towards Automated Microservices Extraction 59

to extract cohesive and loosely coupled microservices with higher performance
than three recent state-of-the-art approaches.

2 Approach

We formulate the automated extraction of microservices from a legacy appli-
cation as a combinatorial optimization problem, in which a search algorithm
explores alternative combinations of classes from an input legacy system. Given
legacy system composed of a set of classes to be decomposed into microservices,
there are many ways in which the microservice boundaries can be drawn lead-
ing to different possible class combinations. The problem is a graph partitioning
problem, which is known to be NP-hard and therefore seems suited to a meta-
heuristic search-based techniques [2].

To identify such instances of candidate microservices, MSExtractor proceeds
to (i) create a set of new empty microservices, and (ii) assign each class to
a unique microservice. The process should assign each class to exactly one
microservice, and have no empty microservices. Then, MSExtractor uses NSGA-
II [1] in order to find the optimal solutions that provide the best trade-off between
our two objective functions.

Figure 1 shows a simple microservices decomposition example. A simple solu-
tion X = {1, 1, 2, 3, 1, 1, 2}, for example, denotes a decomposition of seven classes
into three microservices. The classes InitF ilter, IPBanFilter and User are in
the microservice m1, Product, CarItem and Category are in m2, and finally,
Order and Catalog are in m3. Moreover, different class dependencies exist in
order to implement the required functionalities by the microservice. An appro-
priate decomposition should maximize the cohesion within a microservice while
minimizing coupling between the extracted microservices.

Fig. 1. An example of a microservice decomposition solution (snippet) from JPetstore.

Source code dependencies are widely used in software engineering to measure
how strongly related are the elements of a software system, i.e., methods, classes,
packages, etc. [3]. MSExtractor is based on a combination of structural measures
to detect the dependencies among classes. In a nutshell, structural dependency
for two given classes represents the shared method calls between them. We use
two popular structural measurements to define our fitness objectives.

Objective Functions. To evaluate the quality (i.e.,the fitness) of a candidate
microservices decomposition solution, we define a fitness function that evaluates
multiple objective and constraint dimensions. Each objective dimension refers



60 I. Saidani et al.

to a specific value that should be either minimized or maximized for a solution
to be considered “better” than another solution. In our approach, we optimize
the three following objectives:

1. Cohesion: The cohesion objective function is a measure of the overall cohe-
sion of a candidate microservices decomposition. The cohesion of a candidate
microservice m is denoted by Coh(m) and defined as the complement of the
average of all pairs of classes belonging to the microservice m. Then, the
cohesion objective function corresponds to the average cohesion value of all
microservice candidates in a decomposition. This objective function should
be maximized to ensure that each candidate microservice contains strongly
related classes and does not contain classes that are not part of its function-
ality.

2. Coupling: The coupling objective function measures the overall coupling
among the microservice in a decomposition M. We define the coupling
between two microservices m1 and m2 as the average similarity between all
possible pairs of classes from m1 and m2. The coupling objective function
corresponds to the average coupling measures between all possible pairs of
microservices in the decomposition. This objective function is to be mini-
mized. The lower the coupling value between all candidate microservices, the
better is the decomposition quality.

3 Empirical Evaluation

In this section, we present the results of our evaluation for the proposed app-
roach, MSExtractor. The goal of this evaluation is to assess the efficiency of our
approach in identifying appropriate microservices and compare it with available
state-of-the-art approaches. This study aims at answering the following research
question:

– RQ1. To what extent can MSExtractor identify relevant microservices?

Empirical Setup. To evaluate our approach, we conduct an experimental study
on a benchmark of two legacy web applications namely JPetstore1, and Spring-
blog2. To answer RQ1, we employ four evaluation metrics to assess the quality of
the identified microservices based on measuring their functional independence.
This measure assesses the extent to which microservices exhibit a bounded con-
text and present their own functionalities with low coupling to other microser-
vices. In particular, four metrics were commonly used in recent studies [4–6] to
assess the quality of Web service interfaces.

– CHM (CoHesion at Message level): CHM is inspired by LoCmsg, a widely
used metric to measure the cohesion of a service at the message level [4–6].

1 https://github.com/mybatis/jpetstore-6.
2 https://github.com/Raysmond/SpringBlog.

https://github.com/mybatis/jpetstore-6
https://github.com/Raysmond/SpringBlog


Towards Automated Microservices Extraction 61

– CHD (CoHesion at Domain level): CHD is inspired by LoC dom, a widely
used metric to measure the cohesion of a service at the domain level [4,5].

– OPN (OPeration Number): OPN computes the average number of public
operations [4,7] exposed by an extracted microservice to other candidate
microservices. The smaller OPN is, the better.

– IRN (InteRaction Number): IRN represents the number of method calls
among all pairs of extracted microservices [4,8]. The smaller is IRN, the
better is the quality of candidate microservices as it reflects loose coupling.

State-of-the-Art Comparison. We evaluate the performance of our approach,
we compare it against three recent state-of-the-art approaches, namely FoME [4],
MEM [9], and LIMBO [10]. We selected these three state-of-the-art methods as
they use different decomposition techniques, and have been selected in recent
comparative studies [4].

Table 1. The results achieved by MSExtractor, FoME, MEM, and LIMBO.

System Metric MSExtractor FoME MEM LIMBO

Jpetstore CHM 0.5–0.6 0.7–0.8 0.5–0.6 0.5–0.6

CHD 0.6–0.7 0.6–0.7 0.6–0.7 0.6–0.7

OPN 28 22 39 68

IRN 33 35 48 329

SpringBlog CHM 0.5–0.6 0.7–0.8 0.6–0.7 0.6–0.7

CHD 0.6–0.7 0.8–0.9 0.8–0.9 0.7–0.8

OPN 10 7 21 147

IRN 21 26 30 238

3.1 Results

Table 1 presents the achieved results by each of the approaches, MSExtractor,
and the compared approaches, FoME [4], MEM [9], and LIMBO [10]. The met-
rics CHM and CHD reflect the cohesion of the identified microservices, while
the metrics OPN and IRN reflect the coupling. Higher cohesion metrics values
indicate better performance while lower coupling metrics values indicate bet-
ter performance. The cohesion results are provided in the form of an interval,
e.g., [0.5–0.6], instead of specific values since slight differences between CHM or
CHD values are not significant. We observe from the table that our approach,
MSExtractor, outperforms the three competing approaches in the two studied
systems, in the majority of metrics. In particular, for smaller systems such as
JPetStore (24 classes), the achieved results on the four metrics are comparable.
Indeed, this system represents a relatively smaller search space where determinis-
tic approaches may achieve high performance. For larger systems, such as Roller



62 I. Saidani et al.

and JForum (340 and 534, respectively), there is a clear superiority achieved by
MSExtractor compared to the three compared approaches in terms of both CHM
and CHD, as well as IRN.

We can also observe from Table 1 that FoME tends to provide better results
in terms of OPN in three out of the two systems. This superiority is justified by
the fact that FoME excludes a relatively important number of classes that are
not covered by the dynamic analysis scenarios. These excluded classes will be,
in turn, excluded from the candidate microservices. Obviously, ignoring a num-
ber of classes may improve coupling, but would provide functionally incomplete
microservice candidates. These classes are generally related to exceptions, e.g.,
the classes MailingException, FilePathException, BootstrapException from the
project Roller, or to other third-party or no-behavior classes, e.g., YoutubeLink-
Transformer, MessageHelper, and SecurityConfig from the project Springblog.
Such exclusion of classes from microservices would result in an incomplete archi-
tecture and would require a manual inspection by developers performing the
migration.

4 Conclusions and Future Work

In this paper, we proposed MSExtractor, a novel approach that tackles the
microservices extraction problem and formulates it as a multi-objective com-
binatorial optimization problem. Specifically, MSExtractor employs the non-
dominated sorting genetic algorithm (NSGA-II) to drive a search process towards
an optimal decomposition of a given legacy application while considering struc-
tural dependencies in the source code. Our evaluation demonstrates that MSEx-
tractor is able to extract cohesive and loosely coupled services with higher per-
formance than three recent state-of-the-art approaches.

As we only focused on the identification of microservices boundaries, we
plan in our future work to investigate the other steps of the migration process
towards containerization and pre-deployment configuration of our microservices
candidates. We also plan to evaluate our approach form developers and software
architects perspective on more systems. We also plan to consider non-functional
criteria that are essential in the context of microservices architecture, including
the scalability and availability of the system. We further plan on challenging the
effectiveness of NSGA-II, being the main search algorithm used in MSExtractor,
by performing a comparative study with other popular search algorithms, namely
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [1], and Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [11].

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

2. Mkaouer, W., et al.: Many-objective software remodularization using NSGA-III.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 24(3), 17 (2015)



Towards Automated Microservices Extraction 63

3. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

4. Jin, W., Liu, T., Zheng, Q., Cui, D., Cai, Y.: Functionality-oriented microservice
extraction based on execution trace clustering. In: 2018 IEEE International Con-
ference on Web Services (ICWS), pp. 211–218. IEEE (2018)

5. Athanasopoulos, D., Zarras, A.V., Miskos, G., Issarny, V., Vassiliadis, P.: Cohesion-
driven decomposition of service interfaces without access to source code. IEEE
Trans. Serv. Comput. 8(4), 550–562 (2015)

6. Ouni, A., Wang, H., Kessentini, M., Bouktif, S., Inoue, K.: A hybrid approach
for improving the design quality of web service interfaces. ACM Trans. Internet
Technol. (TOIT) 19(1), 4 (2018)

7. Adjoyan, S., Seriai, A.-D., Shatnawi, A.: Service identification based on quality
metrics object-oriented legacy system migration towards SOA. In: SEKE: Software
Engineering and Knowledge Engineering (2014)

8. Newman, S.: Building Microservices: Designing Fine-grained Systems. O’Reilly
Media, Sebastopol (2015)

9. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic
software architectures. In: 2017 IEEE International Conference on Web Services
(ICWS) (2017)

10. Andritsos, P., Tzerpos, V.: Information-theoretic software clustering. IEEE Trans.
Softw. Eng. 31(2), 150–165 (2005)

11. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evo-
lutionary algorithm, TIK-report, vol. 103 (2001)



Towards Automated Planning
for Enterprise Services: Opportunities

and Challenges

Maja Vukovic1(B), Scott Gerard1, Rick Hull1, Michael Katz1, Laura Shwartz1,
Shirin Sohrabi1, Christian Muise1, John Rofrano1, Anup Kalia1,

Jinho Hwang1, Dang Yabin2, Ma Jie2, and Jiang Zhuoxuan2

1 IBM T.J. Watson Research Center, Yorktown Heights, USA
{maja,sgerard,lshwartz,ssohrab,rofrano,jinho}@us.ibm.com,

{michael.katz1,christian.muise,anup.kalia}@ibm.com
2 IBM China Research Lab, Beijing, China
{dangyb,bjmajie,jzxjiang}@cn.ibm.com

Abstract. Existing Artificial Intelligence (AI) driven automation solu-
tions in enterprises employ machine learning, natural language process-
ing, and chatbots. There is an opportunity for AI Planning to be applied,
which offers reasoning about action trajectories to help build automation
blueprints. AI Planning is a problem-solving technique, where knowl-
edge about available actions and their consequences is used to identify a
sequence of actions, which, when applied in a given initial state, satisfy
a desired goal. AI Planning has successfully been applied in a number of
domains ranging from space applications, logistics and transportation,
manufacturing, robotics, scheduling, e-learning, enterprise risk manage-
ment, and service composition. In this paper, we discuss experience in
building automation solutions that employ AI planning for use in enter-
prise IT and business services, such as change and event management,
migration and transformation and RPA composition. We discuss chal-
lenges in adoption of AI planning across the enterprise from implemen-
tation and deployment perspectives.

Keywords: Enterprise services · Change and event management ·
Migration · AI planning

1 Introduction

For the past several years there has been a focus on AI driven automation in
services business, with successful solutions that employ Machine Learning (ML),
Natural Language Processing (NLP), and chatbots. We believe there is also
an opportunity to apply AI Planning in multiple domains e.g., to accelerate
migration processes and IT service management (ITSM), speed up creation of
RPA solutions and to further enhance chatbots.

AI Planning offers a capability to reason about possible action trajectories
to help build automation blueprints. We discuss use cases in services business,
proposed framework and challenges to adoption of AI planning.
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 64–68, 2019.
https://doi.org/10.1007/978-3-030-33702-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_6


Planning for Enterprises: Opportunities and Challenges 65

2 Use Cases

AI Planning offers automated means to schedule, re-plan when needed and
manage the design phase of migration processes [8], and can be further used
to dynamically assemble (and reassemble) sequences of actions that drive the
migration execution process. We also see an opportunity for AI planning in IT
Service Management, such as event management, change management, and ser-
vice management. Similarly, one catalyst for exploring the use of AI Planning in
the process specification area is the field of Robotic Process Automation (RPA),
and more broadly workflow management.

The general idea of using AI Planning to orchestrate services was explored
in the Web Services area [10]. Hoffmann et al. [6] provides a first exploration of
how planning can be applied in connection with SAP-based business processes.
In task-oriented conversation scenarios, bots are designed to follow a pre-defined
dialog flow to respond to user’s intents, collect information, take actions and
fulfill the user predefined task. But in many business scenarios, tasks are complex
and difficult to define as a logical flow, and this opens an opportunity for AI
planning.

3 Framework for AI Planning in Enterprise

There are two phases in the application of AI Planning to business domains.
At design time: the domain is explored, the problem is specified, stakeholders
validate the expected value, the solution is designed, and the implementation is
built. Typically at run time, the implementation is executed, plans are created
on-demand, and are recreated as unforeseen events occur plan actions are exe-
cuted, and the implementation is refined as necessary. The design time vs. run
time distinction is somewhat variable. Specifically, if the domain is both stable
(unchanging) and well understood, it is possible that plans can be generated
once during design time and then used repeatedly throughout run time. In this
case, a Subject Matter Experts (SME) might review and refine the plan before it
is used for repeated execution. Also, in this approach the plans typically include
conditionals, so that a single plan can accommodate variations that will arise as
the plan is applied to different real-world cases.

Figure 1 illustrates how a Planning capability can be situated in an overall
process automation scenario. Starting from the bottom center, the figure shows a
library of re-usable configurable items, including micro-robots, decisioning capa-
bilities, and manual tasks. The engines for the configurable items are shown at
the bottom, including the ML-based decisioning components, the Robot Engines
(from various vendors), and the rules engine. The configurable items are callable
using REST APIs, gRPC APIs, or similar. The meta-data about the configurable
items is based on a World Model that supports generic business processes (e.g.,
supporting notions of process flows and conditionals) and also the application
at hand (e.g., including data structures for the different business entity types
that progress through the process). There is also meta-data about the client
environment (e.g., system configuration information).



66 M. Vukovic et al.

When applying AI Planning for process specification there is a design-time
variant, where the plan is created in advance and includes conditionals, and
a run-time variant, where planning is preformed dynamically, at the beginning
and/or in the middle of process execution. The design-time variant is appropriate
when developing a process that will be run many times (e.g., invoice processing,
supply chain management, report generation) or where a manual validation and
refinement of the automatically generated plan is desired. The run-time variant
is useful for handling exceptional situations. Figure 1 shows Planning Engines in
two places, corresponding to the use of design-time or run-time planning.

Fig. 1. High-level framework

Finally, the top layer of the figure shows the main user interface capabilities
of the framework. These include, for design-time planning, a UI for specifying
the goals to be achieved, and also for reviewing and refining the generated plans
and process schemas. For both design-time and run-time planning there are UIs
for end-user task performance and for monitoring and reporting.

4 Challenges in AI Planning for Enterprise

Non-experts rarely are familiar with the existing planning tools and their for-
malisms. For example, tools that provide a provably optimal solution might be
of interest for some tasks, while tools that provide a solution of increased quality
in an anytime manner can be desired in other cases. Thus, there is a clear benefit
in removing the burden of choosing the right tool from the non-expert user.

The work on planning portfolios, where multiple planners for the same com-
putational problem are exploited to derive a meta-planner for that computational
problem is one step in that direction [4,9,12]. Across computational problems,
aside of educating the user, not much has been done so far. One possible step
in that direction is creating a single entry point that receives a planning task



Planning for Enterprises: Opportunities and Challenges 67

and returns solutions for multiple computational problems, emphasizing the dif-
ferences in solution quality, consumed resources, and solution guarantees. That
way, the user will be able to make an intelligent decision about the actual com-
putational problem and the respective (meta-)planner to use.

Per computational problem, the performance issues may be tackled by intro-
ducing additional planners, and making the choice of the actual planner task
dependent. Performance can improve gradually, with every additional planner
added to the meta-planner.

Since planning domains often ignore large parts of the actual problem at
hand, all too often, the obtained solutions are not fully applicable in the real
world. Further, since planning tools are not easily maintained by generalists, it
might be beneficial to minimize the actual planning at the critical path of an
application.

To ease the entry into planning for the general crowd, it might be beneficial
to focus on a small set of domains of specific interest, such as IT service manage-
ment. In these domains, specific tools can be created to extract the knowledge
needed in order to create the planning model. Creating such tools will reduce
the barrier to using planners for these applications.

Difficulty of modeling planning tasks is one of the major obstacles to using
planners, there are research efforts on developing tools that help with generic,
domain-independent modeling, such as itSIMPLE [14]. Other possibilities may
include the use of Mind Maps, a graphical representation of concepts and rela-
tions, to address the knowledge engineering challenge. The domain knowledge
can be encoded by one or more Mind Maps connected by the same concept used
in multiple Mind Maps. The system can then translates the Mind Maps into an
AI planning problem automatically [13]. It is also possible to learn the causal
relation between the concepts in order to build the Mind Maps automatically
from scratch or augment or validate existing ones [5].

Another area for research is how to develop systems that automatically learn
the actions that comprise the domain descriptions. The goal would be to learn
both the actions themselves coupled with preconditions and effects. Predicates
would need to be consistent across all the atomic actions. Some early work is
being done on learning the actions from SMEs (e.g. generating high level descrip-
tions and approximated preconditions and effects, prompting the SME to refine
them); business process information is extracted from text-based descriptions
using natural language processing [3,7,11].

5 Conclusion

We presented use cases of AI planning as means of automating IT and Business
services. We introduced key elements of an overarching framework, which brings
together planning at design and runtime phases. We then outline key research
challenges to full adoption of AI planning for automation in the Enterprise,
including lack of tooling that enables seamless and automated development of
world models, coupled with generic planning models. Future work will focus on
integration of planning and learning.



68 M. Vukovic et al.

Acknowledgments. We thank our colleagues: Stefan Pappe, Arvind Viswanathan,
Valentina Salapura, Sridrar Thiruvengadam, Boby Philip, Sharon Alvarado Brenes,
Joaquin Eduardo Bonilla Arias, and Sussana Ting.

References

1. Ninth International Planning Competition (IPC-9): planner abstracts (2018)
2. Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI

2019). AAAI Press (2019)
3. van der Aa, H., Leopold, H., Reijers, H.A.: Detecting inconsistencies between pro-

cess models and textual descriptions. In: Business Process Management - 13th
International Conference, BPM 2015, Innsbruck, Austria, 31 August - 3 Septem-
ber, 2015, Proceedings, pp. 90–105 (2015)

4. Cenamor, I., de la Rosa, T., Fernández, F.: IBaCoP-2018 and IBaCoP2-2018. In:
Ninth International Planning Competition (IPC-9): planner abstracts [1], pp. 9–10

5. Hassanzadeh, O., et al.: Answering binary causal questions through large-scale text
mining: An evaluation using cause-effect pairs from human experts. In: IJCAI19
(2019)

6. Hoffmann, J., Weber, I., Kraft, F.M.: Sap speaks PDDL: exploiting a software-
engineering model for planning in business process management. J. Artif. Int. Res.
44(1), 587–632 (2012). http://dl.acm.org/citation.cfm?id=2387933.2387946

7. Hull, R., Nezhad, H.R.M.: Rethinking BPM in a cognitive world: transforming how
we learn and perform business processes. In: BPM 2016, Rio de Janeiro, Brazil,
18–22 September 2016, Proceedings (2016)

8. Jackson, M., Rofrano, J.J., Hwang, J., Vukovic, M.: Blueplan: a service for auto-
mated migration plan construction using AI. In: Service-Oriented Computing -
ICSOC 2018 Workshops, Hangzhou, China, November 2018, Revised Selected
Papers (2018)

9. Katz, M., Sohrabi, S., Samulowitz, H., Sievers, S.: Delfi: Online planner selection
for cost-optimal planning. In: Ninth International Planning Competition (IPC-9):
planner abstracts [1], pp. 57–64

10. Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composi-
tion of web services. In: Proceedings of the 11th International Conference on World
Wide Web, WWW 2002, pp. 77–88. ACM, New York (2002)

11. Nezhad, H.R.M., Akkiraju, R.: Towards cognitive BPM as the next generation
BPM platform for analytics-driven business processes. In: Business Process Man-
agement Workshops - BPM 2014 International Workshops, Eindhoven, The Nether-
lands, 7–8 September 2014, Revised Papers, pp. 158–164 (2014)

12. Sievers, S., Katz, M., Sohrabi, S., Samulowitz, H., Ferber, P.: Deep learning for
cost-optimal planning: task-dependent planner selection. In: Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelligence (AAAI 2019). [2]

13. Sohrabi, S., Katz, M., Hassanzadeh, O., Udrea, O., Feblowitz, M.D., Riabov, A.:
IBM scenario planning advisor: plan recognition as AI planning in practice. AI
Commun. 32(1), 1–13 (2019)

14. Vaquero, T.S., Romero, V., Tonidandel, F., Silva, J.R.: itSIMPLE 2.0: an inte-
grated tool for designing planning domains. In: Boddy, M., Fox, M., Thiébaux,
S. (eds.) Proceedings of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS 2007), pp. 336–343. AAAI Press (2007)

http://dl.acm.org/citation.cfm?id=2387933.2387946


Run-Time Service Operations and
Management



A Model for Distributed Service
Level Agreement Negotiation

in Internet of Things

Fan Li(B) , Andrei Palade(B), and Siobhán Clarke(B)

Trinity College Dublin, College Green, Dublin, Ireland
{fali,paladea,Siobhan.Clarke}@scss.tcd.ie

Abstract. Internet of Things (IoT) services can provide a comprehen-
sive competitive edge compared to traditional services by leveraging the
physical devices’ capabilities through a demand-driven approach to pro-
vide a near real-time state of the world. Service provision in such a
dynamic and large-scale environment needs to cope with intermittent
availability of service providers, and may require negotiation to agree
on Quality of Service (QoS) of a particular service. Existing negotia-
tion approaches for IoT require a centralised perspective of the envi-
ronment, which may not be practical given the scale and autonomy of
service providers that rely on sensors deployed various environments to
deliver their services. We propose a negotiation mechanism that uses
distributed service brokers to dynamically negotiate with multiple IoT
service providers on behalf of service consumers. The framework uses
a hierarchical architecture to cluster service information and to man-
age the message flows during the negotiation process. Simulation results
demonstrate the feasibility and efficiency of our proposal.

Keywords: Internet of Things · Distributed SLA negotiation ·
Negotiation protocol

1 Introduction

The IoT envisions that a large number of physical, potentially mobile devices,
connected over the Internet, may provide a near real-time state of the world.
The capabilities of each device can be abstracted through a well-defined interface
and provided as a service [24]. Compared to traditional (cloud-based) services,
service provisioning in such a dynamic and large-scale environment needs to cope
with the intermittent availability of service providers, and may have flexible
service quality demands and pricing options [8]. For example, compared to a
weather forecasting application, a fire detection application has more stringent
QoS demands on a smoke detection service and a temperature service. If a pay-
as-you-go model is used, the same services can be delivered to different users
with different service properties or QoS, by reconfiguring the services [5,14].

Mission-critical applications in transportation, health care, and emergency
response services, require certain QoS guarantees to be provided to successfully
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 71–85, 2019.
https://doi.org/10.1007/978-3-030-33702-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_7&domain=pdf
http://orcid.org/0000-0002-9729-9250
http://orcid.org/0000-0001-5721-9976
https://doi.org/10.1007/978-3-030-33702-5_7


72 F. Li et al.

deliver their services to stakeholders [23]. Traditionally, such applications have
relied on a Service Level Agreement (SLA), which is a contract-like concept
that formalizes the obligations and the guarantees of involved parties in the
context of a particular service provisioning [13]. To tailor a service based on
user’s demand, and resolve possible conflicts between a service provider and
consumer, a dynamic negotiation process is required where both parties express
their own demands and preferences to arrive at a consensus before the actual
service delivery. The output of this process is used to generate an SLA [21].

Compared to traditional (cloud-based) services, research on SLA negotiation
in the IoT is still in the preliminary stage [17,19]. Because of the scale and
the intermittent availability of geographically distributed service providers, the
existing proposals do not address the negotiation problems that emerge because
of frequent disconnections between service providers and insufficient awareness
of local context such as service location [16]. The IoT is dynamic nature in
terms of service providers’ availability and mobility, unpredictable device status,
and unstable wireless network conditions. Also, the data transmissions between
devices and cloud, and the spontaneous interactions amongst devices may pro-
duce an enormous number of messages or events, which may further cause net-
work congestion and reduce event processing capability. A lightweight negotia-
tion protocol that considers the communication problems in a dynamic environ-
ment is needed for run-time IoT service negotiation. In our previous work, we
assume a middleware is deployed on a set of edge devices, which uses a decen-
tralized negotiation protocol to negotiate with candidate service providers on
behalf of consumers [11]. The services are registered in the gateways that receive
the registration requests, and the negotiation requests are forwarded by gate-
ways to their neighbours until the request can be solved, or the maximum hop
is reached. The simulation result shows that the purely decentralized architec-
ture is not efficient enough to address large-scale and dynamic issues. Also, this
experiment does not consider users’ spatial requirements.

In this paper, we propose IoT-Negotiate, a negotiation model that enables
distributed service brokers connected through an overlay network to manage the
service information and control message flows during the negotiation process.
The model uses a hierarchical topology to address the communication challenges
in the environment, performs location-based data distribution and replication to
enable an efficient message forwarding, and conducts distributed SLA negotiation
with candidate service providers.

The remainder of this paper is organised as follows. Section 2 summarises
the related work. Section 3 introduces the IoT-Negotiate mechanism. Section 4
describes the hierarchical overlay network of IoT-Negotiate and introduces the
overlay network creation algorithm. Section 5 presents the service distribu-
tion mechanism. Section 6 illustrates the distributed SLA negotiation process.
Section 7 details the experimental setup and evaluation results and Sect. 8 con-
cludes the paper with a discussion about future research directions.



A Model for Distributed Service Level Agreement Negotiation 73

2 Related Work

Existing literature on SLA negotiation is limited, especially for dynamic, large-
scale environments such as IoT. As one of the key area of building a negotiation
component [26], the negotiation protocol has been discussed in different cloud
projects. For instance, a set of messages were designed for QoS negotiation when
delivering composite services [23]. However, this proposal moved the burden of
negotiation from the end user to each atomic service. Karl Czajkowski et. al. [4]
presented the Service Negotiation and Acquisition Protocol (SNAP) for nego-
tiating access to different resources in a distributed system. However, it is too
heavyweight and not flexible enough for automatic negotiation. Nabila et. al. [9]
illustrated the generic alternating offers protocol proposed by Rubinstein, for
bargaining between agents. Based on that, a set of extensions has been pro-
posed to address different negotiation issues such as multilateral negotiation [2],
or semantic-based approach [18]. FIPA Contract Net Interaction Protocol [6]
(CNP) is another commonly-used negotiation protocol, which supports recur-
sive negotiation to find a compromise [28]. Smith [22] described the semantics
of exchanged information among the nodes in a distributed system under the
assumption that each node can communicate with every other node. Misura
et al. [16] proposed a cloud-based mediator platform where automatic negotia-
tion is performed to find the conditions of data provision that are acceptable to
application providers. Gaillard et al. [7] outlined a centralized SLA management
component in WSN to guarantee the QoS parameters. However, this framework
relies on human intervention to finish the negotiation process. Mingozzi et al.
presented an SLA negotiation framework for M2M application [15]. However, the
paper does not specify the detail of the negotiation mechanism, and the single
request-reply interaction is insufficient for multi-round negotiation.

3 System Model

Consider a smart city environment where service providers deploy their services
on resource-constrained, potentially mobile devices to capture data from the
surrounding physical environment. Such service providers can provide a compre-
hensive competitive edge compared to traditional service provisioning techniques
by leveraging the available services through a demand-driven approach to enable
new applications for citizens such as real-time monitoring applications (e.g., traf-
fic and real-time public transport services monitoring, particle concentration or
noise pollution detection). Such services are generally developed using various
approaches and technologies, and provide various QoS levels. SLA negotiation
procedures may be required to achieve certain guarantees about the QoS of
the application. Also, given the scale the environment, an automated procedure
may be required as a manual approach may not be practical. To automate SLA
negotiation for an urban-scale environment, we propose IoT-Negotiate, which is
a distributed negotiation framework deployed on a set of devices deployed at
the edge of the network. These devices can be mobile such a mobile handset or



74 F. Li et al.

Fig. 1. IoT-negotiate ontology

fixed such as a workstation connected through WiFi or Ethernet. We refer to
the devices as gateways. The negotiation procedure is performed by the fixed
gateways because they are likely to have more stable and reliable network con-
nections, whilst the mobile gateways are only used for forwarding messages.

To enable the demand-driven service provisioning vision, the service providers
are required to provide the service properties with default values in SLA tem-
plates and publish the templates to the market. An SLA template is defined
as SLAT = 〈Atid, Ac, Att, Ni, T, C〉, consisting of template id Atid, agreement
context Ac, template temporality Att, negotiation information Ni, terms T
(e.g., location, QoS, price, etc.) and constraints C, which can be regarded as a
blueprint to create a valid negotiation offer based on user-specific demands [10].
Figure 1 shows the ontology of our proposed IoT-Negotiate model.

The IoT-Negotiate model composed of three stages: pre-negotiation, nego-
tiation, and post-negotiation. Seven types of messages are designed to support
different phases in the three stages:

Definition 1. Ping message, which is defined as: Ping=<Sid, Rid, “hello”>,
consisting of the sender identifier Sid, receiver identifier Rid and a “hello” string.

Definition 2. Configuration message, which is defined as: Cfmsg =<Op,
Sid, Rid,m, ttl, Route>, consisting of an operation code Op, sender identifier Sid,
receiver identifier Rid, message content m, the maximum number of hops ttl, and
a routing table Route.

Definition 3. Template registration message, which is defined as:
Trmsg =<Op, SPid, St>, consisting of an operation code Op, service provider
identifier SPid, and a template St.



A Model for Distributed Service Level Agreement Negotiation 75

Definition 4. Negotiation customize message, which is defined as:
Ncmsg =<Niid, Nrid, cnt, St>, consisting of the negotiation initiator identifier
Niid, negotiation responder identifier Nrid, negotiation context cnt (e.g., nego-
tiation protocol, SLA schema, deadline, etc.), and the referred template St.

Definition 5. Negotiate message, which is defined as: Ngmsg =<Sid, Rid, O,
Op,m>, consisting of the sender identifier Sid, receiver identifier Rid, negotia-
tion offers O, operation code Op and message content m.

Definition 6. Signing request message, which is defined as: Srmsg =<Gid,
SCid, Oa, Route>, consisting of the gateway identifier Gid, the consumer iden-
tifier SCid, a list of acceptable offers Oa, and a routing table Route.

Definition 7. Mobile entity locating message, which is defined as:
Mlmsg =
<Sid, Rid, Eid,m,Op>, consisting of the sender identifier Sid, the receiver iden-
tifier Rid, the entity identifier Eid, message content m, and operation code Op.

Definition 8. SLA creation message, which is defined as: Scmsg =<Aiid,
Nrid, Oa>, consisting of the agreement initiator identifier Aiid, agreement
responder identifier Arid, and an offer signed by the service user Oa. The
response should contain the reference of new pending SLA instance.

In the pre-negotiation stage, a logic hierarchical negotiation overlay net-
work (HNON) is dynamically created by exchanging ping and configuration mes-
sages (Phase 1.1, Sect. 4). The HNON manages SLA templates and controls the
message flow during the negotiation process. The SLATs submitted by service
providers are distributed in HNON according to service locations using template
registration messages. The location-based message forwarding mechanism (Phase
1.2, Sect. 5) is designed based on the assumption that service providers are more
likely to appear or move around the areas that are close to the advertised ser-
vice location. If a gateway detects a local stored SLAT has the potential to meet
QoS requirements, the gateway has a bigger chance to directly connected to the
service provider (i.e. candidate service provider) to start a bilateral negotiation.

The negotiation stage begins when a user submits the request through
a negotiation message. The message contains an offer expected by the user,
which specifies the requested service location, QoS requirements and negotiation
constraints. The message is forwarded to the gateways that are close to the
requested location over the HNON. The gateways compare the request with
local stored SLATs according to a unified SLA ontology (e.g., the WIoT-SLA
ontology [10]) to search for candidate services (Phase 2.1). Once a candidate
service is detected, a negotiation customization message (Phase 2.2) is sent to
the service provider to initialize the negotiation instance before the bilateral
negotiation (Phase 2.3). After the negotiation, the entity locating message may
be used to locate mobile consumers if they cannot be contacted at the moment
(Sect. 6).

In the post-negotiation stage, the negotiation results from different bro-
kers are aggregated and the most optimized solution is selected and sent to the



76 F. Li et al.

Fig. 2. Hierarchical negotiation overlay network

user through a signing request message (Phase 3.1). Once the negotiation result
is approved by the user (i.e., the message is digitally signed), an SLA creation
message is sent to the corresponding service provider to create a pending SLA
(Phase 3.2).

4 Hierarchical Negotiation Overlay Network (HNON)

The HNON is a logistic negotiation overlay built upon the actual network topol-
ogy. Figure 2 shows the three-layered structure of the proposed HNON. Each
static gateway distributed in the environment is assigned to at least one of the
following roles: follower, controller or coordinator. Each follower has a controller
and each controller is associated with a coordinator. Followers compose the bot-
tom layer of the overlay, which only work as brokers under the control of their
controllers. Controllers compose the middle layer, which divides the environment
into a set of sub-areas. Each controller can be regarded as a small data centre in
the sub-area. It collects its followers’ information and replicates local registered
templates. The sub-area is referred to as the controller’s range, which is roughly
estimated by the maximum distance between the controller and its followers. The
top layer is comprised of coordinators, which are directly connected with each
other through the internet. A coordinator can be regarded as the access point of
its controllers. In this hierarchical architecture, the follower layer guarantees a
timely bilateral negotiation with service providers, the controller layer allocates
negotiation tasks and improves the efficiency of template match-making process.
The coordinator layer propagates messages over different sub-areas.

To create the HNON, the key requirement is to automatically assign different
roles to gateways based on the network topology. To maximize the communi-
cation efficiency, we enforce that in each sub-area, the gateways which have
the maximum number of wireless connections are assigned as controllers. Since
the network topology is unknown for each gateway initially, the static gateways
first broadcast ping messages through WiFi to identify their neighbouring gate-
ways. Based on the number of replies, each gateway acquires the connection



A Model for Distributed Service Level Agreement Negotiation 77

information and exchange this information with neighbours. As can be seen in
Algorithm 1, each gateway initially caches itself as the controller and sends the
controller’s information through a configuration message (Op is set to CIM) to
search for a gateway that has the maximum number of connections in the nearby
area (Line 1–6 in Algorithm 1(a)). Then, it waits for messages from other gate-
ways and updates the cache if the controller specified in the received message
has more connections than the cached one, or a shorter route has been detected
for the same controller. If the cache is updated and the TTL message has not
been reached, the controller’s information is further propagated to neighbours
(Line 2–17 in Algorithm 1(b)). Here the message’s TTL controls the message
propagation range, which is also the range of each sub-area. When the message
propagation time is due, it sends a verification to the controller through a Cfmsg

whose Op is set to CVM (Line 7–10 in Algorithm 1(a)). The controller saves the
follower’s information and updates its range (Line 18–21 in Algorithm1(b)). If
the controller can not access to the Internet, it multicasts a Cfmsg (Op is set to
RIM ) to neighbours to search for an internet-connected gateway in the sub-area,
and sends a verification to it when the time is due (Line 13–22 in Algorithm1(a)).
Once a gateway is allocated as a new coordinator, it saves controllers’ informa-
tion and collects other coordinators’ information by broadcasting a Cfmsg (Op

is set to FRM ) through the Internet (Line 23–26 in Algorithm1(a), Line 22–35
in Algorithm 1(b)).

5 Location-Based Template Distribution

As we mentioned in Sect. 3, the location-based template distribution mechanism
is performed when a service provider advertises its service by sending the SLA
template to a nearby gateway through a Trmsg (Op is set to ADV ). The template
is forwarded over the HNON and stored in the gateways that are within or
close to the service location. Figure 3 shows the template distribution process,
the message is first forwarded to a coordinator. The coordinator computes the
distance between the service location and its controllers’ locations, and forwards
the message to controllers whose range is within the service coverage (Op is set
to CREG). Controllers compute the distance between service location and their
followers’ locations, cache the follower that has minimum distance and reply the
distance to its coordinator. The coordinator caches the controller that has the
minimum distance, adds the distance (df ) to the message content and sends
the message to other coordinators (Op is set to TRG). If the coordinator does
not have any controllers whose range is within the service coverage, the df is
set as the minimum distance between the service location and its controllers’
locations. Other coordinators perform the same process and reply the minimum
distance if it is not greater than the df specified in the received message. When
time is due, the originating coordinator forwards the template to the cached
controller if there is no reply (Op is set to FREG), or forwards the template
to the coordinator that replies minimum df (Op is set to RREG). Then the
template is further forwarded to the cached follower so that it can be saved in the



78 F. Li et al.

Algorithm 1: HNON Creation Algorithm (a) - Message Sender
1 Cache itself as controller;
2 Create Cfmsg (Cfmsg.m ←cached controller info, Cfmsg.Op←CIM);
3 Set Timer T;
4 Send Cfmsg to neighbours;
5 /* Waiting for responses */
6 if receives a reply: Check if the cached controller needs to be updated;
7 if T expires and the cached controller is not itself:
8 Create Cfmsg (Cfmsg.m ←self info, Cfmsg.Op ←CVM);
9 Mark itself as a follower, send Cfmsg to cached controller;

10 if receives the ACK: Save controller’s identifier and routing info;
11 if T expires and the cached controller is itself:
12 Mark itself as a controller;
13 if current gateway is a controller and no Internet connection:
14 Create Cfmsg (Cfmsg.m ←self info, Cfmsg.Op ←RIM);
15 Set Timer T;
16 Send Cfmsg to neighbours;
17 /* Waiting for responses */
18 if receives a reply: Check if the cached coordinator needs to be updated;
19 if T expires:
20 Create Cfmsg (Cfmsg.m ←self info, Cfmsg.Op ←RVM);
21 Send Cfmsg to cached coordinator;
22 if receives the ACK: Save coordinator’s identifier and routing info;
23 if current gateway is a controller and have Internet connection:
24 Create Cfmsg (Cfmsg.m ←self info, Cfmsg.Op ←FRM);
25 Mark itself as a coordinator, broadcast Cfmsg;
26 if receives a reply: Add the responder to coordinator list;

gateway that closest to the service location (Op is set to REG). All the registered
templates are also replicated in corresponding controllers. If a service provider
is mobile and specifies a flexible service location, the SLA template is stored
in the gateway that receives the request. The provider re-submits the request
when moving more than a pre-defined distance. All the registered templates are
periodically checked by gateways to remove the ones that are out of date or
the providers are unreachable. Also, a provider can change their offerings after
registration by submitting a new template with the same identifier but different
creation timestamp. The updated template is submitted to a nearby gateway
through a Trmsg (Op is set to UPD). Similarly, this message is forwarded to a
coordinator and multicasted to all coordinators. Each coordinator forwards the
message to its controllers to detect if the originating template is stored in their
local areas and update it if so. If the service location is changed in the updated
template, the same template distribution process will be performed to search for
the closest gateway, and the old template will be deleted.



A Model for Distributed Service Level Agreement Negotiation 79

Algorithm 2: HNON Creation Algorithm (b) - Message Receiver
1 /* listening configuration messages */
2 if Cfmsg.Op =CIM:
3 resvCon ← Cfmsg.getMessageContent().getControllerConnections();
4 resvRoute ← Cfmsg.getRoute();
5 if resvCon > cached controller’s connections:
6 Update cache with received controller’s info;
7 Set state into active;
8 else if Cfmsg specifies a shorter route for a same controller:
9 Update cache with resvRoute;

10 Set state into active;
11 else: Set state into inactive;
12 if state is active and TTL is not reached :
13 Add self identifier to resvRoute;
14 Create Cfmsg (Cfmsg.m ←cached controller info, Cfmsg.Op←CIM,

resvRoute);
15 Send Cfmsg to neighbours;
16 Set state into inactive;
17 else: Set state into inactive;
18 if Cfmsg.Op =CVM:
19 Mark itself as a controller, update range;
20 Mark sender as a follower, save follower’s identifier, location and route;
21 Send back ACK;
22 if Cfmsg.Op =RIM:
23 if current gateway has internet connection:
24 Reply with self identifier and routing info;
25 else if TTL is not reached:
26 add self identifier to message’s routing table;
27 forward the message to neighbours;
28 if Cfmsg.Op =RVM:
29 Mark itself as a coordinator, mark sender as a controller ;
30 Save controller’s identifier, location, range and route;
31 Send back ACK;
32 if Cfmsg.Op =FRM:
33 if current gateway is a coordinator:
34 Save sender’s identifier;
35 Reply with self identifier;

6 Distributed SLA Negotiation

The SLA negotiation process is mainly composed of three phases: (i) request
forwarding and template match-making; (ii) negotiation customization with the
candidate service providers; (iii) distributed bilateral negotiation and mobile
consumer locating.



80 F. Li et al.

Fig. 3. Processing of template registration messages

Fig. 4. Processing of negotiation messages

6.1 Negotiation Request Forwarding

Figure 4 shows the location-based request forwarding mechanism: a user sub-
mits a request through a negotiation message (Op is set to REQ). The message
is first forwarded to the coordinator layer (Op is set to TREQ), then propa-
gated to the controllers whose range covers the requested location (Op is set to
CREQ). Controllers match the request with local backup templates to search



A Model for Distributed Service Level Agreement Negotiation 81

for the candidate services that have the potential to satisfy all the QoS require-
ments and forward the providers’ information to the followers that actually store
the templates (Op is set to INS ) to initialize the negotiation instance. Based
on the negotiation information provided in the template, the follower sends a
customization message to the provider’s negotiation interface to test provider’s
availability and customize the negotiation context (i.e. negotiation protocol, SLA
schema, template). Then the follower generates an initial offer according to the
constraints specified in the request and the template. The bilateral negotiation
phase starts when the follower sends the offer to the service provider through a
negotiation message (Op is set to NEG). During the phase, follower negotiates
with the service provider by exchanging offers in an orderly way [25]. Each time
a new offer is proposed by the service provider, the follower makes decisions
(i.e., accept/reject the received offer, or propose a new offer) according to a pre-
defined negotiation strategy1. The bilateral negotiation stops when the deadline
is reached, or an offer is accepted. During the negotiation customization or con-
sumer approval phase, it is possible that the WiFi-connected mobile negotiating
parties (i.e., service providers or users) move to another place and lose the orig-
inal network connection. The mobile entity locating message is created and sent
to the local controller to detect the negotiation parties (Op is set to INQ). The
local controller propagates the message to its followers (Op is set to FINQ) and
each follower sends a ping message to the entity to test the connection. If any
follower receives an ACK, it forwards the message content to the entity. Oth-
erwise, the local controller forwards the message to its coordinator(Op is set to
RINQ), the coordinator propagates the message to its other controllers (Op is set
to CINQ) to detect the entity in different managed sub-areas. If the consumer
cannot be connected in any sub-area, the coordinator forwards the message to
other coordinators (Op is set to NINQ) to start an exhaustive searching over the
whole network. This design guarantees that the entity locating process is firstly
performed in the local sub-area, then the nearby sub-areas, and then the whole
network.

7 Evaluation

To test the performance of IoT-Negotiate model, we implemented it using Simon-
strator [20], which is a peer to peer simulator for distributed mobile applications.
The environment is configured as Dublin city center where a set of static gate-
ways are randomly distributed and connected through WiFi. 50% gateways have
Internet connections. Service providers (mobile or static) and consumers (mobile)
are initialized randomly in the environment. The consumers and autonomous ser-
vice providers are connected to the network by WiFi while web service providers
connect with the Ethernet. Based on an existing OWLS-SLR dataset [1] and
the IoT services examples proposed in related literature [3,27], we create 436
1 The discussion of negotiation strategy is out of this paper’s scope, more details about

the evaluation of received offers and the corresponding decision-making model can
be found in [12].



82 F. Li et al.

service prototypes which specify the service name, domain information, func-
tional and non-functional properties (i.e., location and QoS parameters). Based
on the prototypes, we generated different SLA templates for each provider by
randomly assigning values to negotiable QoS parameters based on a predefined
variation range. The variation range guarantees that the conflict between the
service provider and a consumer is resolvable. In other words, it guarantees a
successful negotiation if the services provider receives the request. In this exper-
iment, the maximum hop of messages is set to 8 and the negotiation timeout
is set to 2 min. Considering the possible network congestion, gateways use the
UDP send-and-reply mode to send messages, the maximum time to wait for the
reply is 2 s. Since the autonomous service providers are likely to be online and
offline at any time, the Churn model provided by Simonstrator to model the
connectivity of peers is adopted to simulate the availability of hosts, and the
mobile entities follow a random movement pattern with a pre-defined moving
speed varying from 16.7 m/s to 27.8 m/s (i.e., car speed).

Figure 5(a) shows the simulation results when the number of static gate-
ways increases from 50 to 250 while the number of service providers is set to
150 (i.e., 50 mobile service providers and 100 static service providers). 100 con-
sumers periodically submit requests to nearby gateways within 100 min. The
negotiation result is evaluated using three metrics: template registration accu-
racy, percentage of successful negotiation, and the percentage of signing request
messages received by the user. The template registration accuracy measures if
the template has been correctly registered into the proper gateways. If the dis-
tance between the service location and the registering gateway is within 500 m,
we regard it as a correct registration. The percentage of successful negotiations
measures the ability to achieve a successful negotiation when potential solutions
are existing in the environment. Since we adopt a negotiation strategy that guar-
antees a successful negotiation when consumers and providers have overlapped
negotiation space, this metric measures if a candidate service provider can be
successfully detected and contacted with. The percentage of signing request mes-
sages received by the user measures the efficiency of the mobile entity locating
mechanism when returning the negotiation result back to the user.

The simulation result shows that the registration accuracy is around 75%
when there are only 50 gateways deployed in the environment. The incorrect
registrations are mainly caused by two reasons: (i) some controllers cannot find
any coordinators to propagate messages. When we increase the percentage of
internet-connected gateway from 50% to 90%, the registration accuracy increases
to 97.2%. This is also approved by the result that the registration accuracy
improves as the number of deployed gateways increasing. (ii) the SLA templates
are more likely to be forwarded to the controllers that have large ranges, but
the gateway finally registers the template may not be the closest gateway. This
implies that the SLA templates may be stored in incorrect places if the gate-
ways are not evenly distributed. The success rate is not as high as we expected:
the percentage of successful negotiations is only about 31.7% when there are
150 gateways deployed in the environment. The main reason that causes the



A Model for Distributed Service Level Agreement Negotiation 83

(a) Negotiation Performance (b) The number of dropped links

Fig. 5. Simulation result

negotiation failures is negotiation timeout, which includes following situations:
(i) mobile entities can not connect to any gateway during the negotiation pro-
cess, or the area they are moving around does not have any internet-connected
gateway;(ii) the candidate service is not registered in the right place since the
controller which receives the registration request can not find a coordinator to
propagate the request. When we increase the percentage of internet-connected
gateway from 50% to 90%, the success rate increases from 31.7% to 72%. If we
assume a majority of gateways are internet-connected, this result is acceptable.
However, if most of the gateways are WiFi-connected, increasing the number of
gateways can reduce the type of failures to some extent but can not eliminate
the negative impact because the mobile entity locating mechanism highly relies
on the interactions between gateways of different layers. Any lost response may
cause a large number of simultaneous interactions when the number of gateways
is large, which further increases the risk of losing packages. Figure 5(b) shows
the comparison of the number of dropped links with and without mobile entity
locating process (MEL). This result implies that the current mobile entity locat-
ing mechanism is not lightweight enough to locate entities that move fast in
the environment. A mechanism that can trace and manage mobile negotiating
entities may be more efficient to address the communication problem.

However, compared to our previous work, by adopting the hierarchical nego-
tiation overlay network, we have decreased the maximum negotiation time from
10 min to 2 min, and the users’ spatial requirements are considered as well.

8 Conclusion and Future Work

In the IoT environment, there is potential for a range of different types of
devices to provide their functionalities as services and tailor the services’ prop-
erties based on user-specific requirements. However, the demand-driven IoT ser-
vice provisioning requires an SLA negotiation between consumers and service
providers. In a distributed large-scale environment like the IoT, a middleware
that can automatically negotiate with candidate service providers on behalf of



84 F. Li et al.

users is needed. This paper proposes a distributed SLA negotiation model in
the IoT environment, which uses a hierarchical negotiation overlay network to
cluster service information and to manage the message flows during the nego-
tiation process. Although the simulation results demonstrate the feasibility and
efficiency of the negotiation model, it still shows some limitation in term of
addressing mobility problems. In future work, we plan to optimize the negotia-
tion model by designing a more lightweight mobile entity locating mechanism.
This might be improving the hierarchical negotiation overlay network so that
it can trace and predict the location of mobile negotiation parties in real-time
without introducing much wireless communication.

Acknowledgment. This work was funded by Science Foundation Ireland (SFI) under
grant 13/IA/1885.

References

1. OWLS-SLR - Datasets. http://lpis.csd.auth.gr/systems/OWLS-SLR/datasets.
html

2. Aydoğan, R., Festen, D., Hindriks, K.V., Jonker, C.M.: Alternating offers proto-
cols for multilateral negotiation. In: Fujita, K., et al. (eds.) Modern Approaches
to Agent-based Complex Automated Negotiation. SCI, vol. 674, pp. 153–167.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51563-2 10

3. Cabrera, C., Palade, A., Clarke, S.: An evaluation of service discovery protocols in
the internet of things. In: Proceedings of the Symposium on Applied Computing,
pp. 469–476. ACM (2017)

4. Czajkowski, K., Foster, I., Kesselman, C., Sander, V., Tuecke, S.: SNAP: a protocol
for negotiating service level agreements and coordinating resource management in
distributed systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2002. LNCS, vol. 2537, pp. 153–183. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36180-4 9

5. Elfatatry, A., Layzell, P.: Negotiating in service-oriented environments. Commun.
ACM 47(8), 103–108 (2004)

6. FIPA, F.f.I.P.A.: FIPA Contract Net Interaction Protocol Specification.
Architecture (SC00029H), 9 (2002). http://www.mit.bme.hu/projects/intcom99/
9106vimm/fipa/XC00029E.pdf

7. Gaillard, G., Barthel, D., Theoleyre, F., Valois, F.: Service level agreements for
wireless sensor networks: a WSN operator’s point of view. In: 2014 IEEE/IFIP
Network Operations and Management Symposium (NOMS), pp. 1–8. IEEE (2014)

8. Grubitzsch, P., Braun, I., Fichtl, H., Springer, T., Hara, T., Schill, A.: ML-SLA:
multi-level service level agreements for highly flexible IoT services. In: 2017 IEEE
International Congress on Internet of Things (ICIOT), pp. 113–120. IEEE (2017)

9. Hadidi, N., Dimopoulos, Y., Moraitis, P.: Argumentative alternating offers. In:
McBurney, P., Rahwan, I., Parsons, S. (eds.) ArgMAS 2010. LNCS (LNAI), vol.
6614, pp. 105–122. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21940-5 7

10. Li, F., Cabrera, C., Clarke, S.: A WS-agreement based SLA ontology for IoT ser-
vices. In: Issarny, V., Palanisamy, B., Zhang, L.-J. (eds.) ICIOT 2019. LNCS,
vol. 11519, pp. 58–72. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
23357-0 5

http://lpis.csd.auth.gr/systems/OWLS-SLR/datasets.html
http://lpis.csd.auth.gr/systems/OWLS-SLR/datasets.html
https://doi.org/10.1007/978-3-319-51563-2_10
https://doi.org/10.1007/3-540-36180-4_9
https://doi.org/10.1007/3-540-36180-4_9
http://www.mit.bme.hu/projects/intcom99/9106vimm/fipa/XC00029E.pdf
http://www.mit.bme.hu/projects/intcom99/9106vimm/fipa/XC00029E.pdf
https://doi.org/10.1007/978-3-642-21940-5_7
https://doi.org/10.1007/978-3-642-21940-5_7
https://doi.org/10.1007/978-3-030-23357-0_5
https://doi.org/10.1007/978-3-030-23357-0_5


A Model for Distributed Service Level Agreement Negotiation 85

11. Li, F., Clarke, S.: Service negotiation in a dynamic IoT environment. In: Proceed-
ings of the Service-Oriented Computing Workshop (ICSOC) (2018)

12. Li, F., Clarke, S.: A context-based strategy for SLA negotiation in the IoT envi-
ronment. In: 2019 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops). IEEE (2019)

13. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web service level agreement
(WSLA) language specification, pp. 815–824. IBM Corporation (2003)

14. Menascé, D.A.: QoS issues in web services. IEEE Internet Comput. 6(6), 72–75
(2002)

15. Mingozzi, E., Tanganelli, G., Vallati, C.: A framework for QoS negotiation in
things-as-a-service oriented architectures. In: 2014 4th International Conference
on Wireless Communications, Vehicular Technology, Information Theory and
Aerospace & Electronic Systems (VITAE), pp. 1–5. IEEE (2014)

16. Misura, K., Zagar, M.: Internet of Things cloud mediator platform. In: 2014 37th
International Convention on Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO), pp. 1052–1056. IEEE (2014)

17. Palade, A., et al.: Middleware for Internet of Things: an evaluation in a small-scale
IoT environment. J. Reliable Intell. Environ. 4, 3–23 (2018)

18. Ragone, A., Di Noia, T., Di Sciascio, E., Donini, F.M.: Alternating-offers protocol
for multi-issue bilateral negotiation in semantic-enabled marketplaces. In: Aberer,
K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 395–408. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0 29

19. Razzaque, M.A., Milojevic-Jevric, M., Palade, A., Clarke, S.: Middleware for Inter-
net of Things: a survey. IEEE Internet Things J. 3(1), 70–95 (2016)

20. Richerzhagen, B., Stingl, D., Rückert, J., Steinmetz, R.: Simonstrator: simulation
and prototyping platform for distributed mobile applications. In: Proceedings of the
8th International Conference on Simulation Tools and Techniques (SIMUTOOLS),
pp. 99–108. ACM, August 2015

21. Saravanan, K., Rajaram, M.: An exploratory study of cloud service level
agreements-state of the art review. KSII Trans. Internet Info. Syst. 9(3) (2015)

22. Smith, R.G.: The contract net protocol: high-level communication and control in
a distributed problem solver. IEEE Trans. Comput. 12, 1104–1113 (1980)

23. Swiatek, P., Rucinski, A.: Iot as a service system for eHealth. In: 2013 IEEE 15th
International Conference on e-Health Networking, Applications & Services (Health-
com), pp. 81–84. IEEE (2013)

24. Thoma, M., Meyer, S., Sperner, K., Meissner, S., Braun, T.: On IoT-services: sur-
vey, classification and enterprise integration. In: 2012 IEEE International Confer-
ence on Green Computing and Communications (GreenCom), pp. 257–260. IEEE
(2012)

25. Waeldrich, O., Battré, D., Brazier, F.F., Clark, K., Oey, M., Papaspyrou, A.,
Wieder, P., Ziegler, W.: WS-Agreement Negotiation Version 1.0, p. 64 (2011)

26. Yao, Y., Ma, L.: Automated negotiation for web services. In: 2008 11th IEEE
Singapore International Conference on Communication Systems. ICCS 2008, pp.
1436–1440. IEEE (2008)

27. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for
smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

28. Zulkernine, F., Martin, P., Craddock, C., Wilson, K.: A policy-based middleware
for web services SLA negotiation. In: 2009 IEEE International Conference on Web
Services. ICWS 2009, pp. 1043–1050. IEEE (2009)

https://doi.org/10.1007/978-3-540-76298-0_29


Edge User Allocation with Dynamic
Quality of Service

Phu Lai1, Qiang He1(B), Guangming Cui1, Xiaoyu Xia2,
Mohamed Abdelrazek2, Feifei Chen2, John Hosking4, John Grundy3,

and Yun Yang1

1 Swinburne University of Technology, Hawthorn, Australia
{tlai,qhe,gcui,yyang}@swin.edu.au

2 Deakin University, Burwood, Australia
{xiaoyu.xia,mohamed.abdelrazek,feifei.chen}@deakin.edu.au

3 Monash University, Clayton, Australia
john.grundy@monash.edu

4 The University of Auckland, Auckland, New Zealand
j.hosking@auckland.ac.nz

Abstract. In edge computing, edge servers are placed in close proxim-
ity to end-users. App vendors can deploy their services on edge servers
to reduce network latency experienced by their app users. The edge user
allocation (EUA) problem challenges service providers with the objec-
tive to maximize the number of allocated app users with hired comput-
ing resources on edge servers while ensuring their fixed quality of service
(QoS), e.g., the amount of computing resources allocated to an app user. In
this paper, we take a step forward to consider dynamic QoS levels for app
users, which generalizes but further complicates theEUAproblem, turning
it into a dynamic QoS EUA problem. This enables flexible levels of qual-
ity of experience (QoE) for app users. We propose an optimal approach for
finding a solution thatmaximizes app users’ overallQoE.Wealso propose a
heuristic approach for quickly finding sub-optimal solutions to large-scale
instances of the dynamic QoS EUA problem. Experiments are conducted
on a real-world dataset to demonstrate the effectiveness and efficiency of
our approaches against a baseline approach and the state of the art.

Keywords: Resource allocation · Edge computing · Quality of
Service · Quality of Experience · User allocation

1 Introduction

Mobile and Internet-of-Things (IoT) devices, including mobile phones, wear-
ables, sensors, etc., have become extremely popular in modern society [4]. The
rapid growth of those devices have increased the variety and sophistication of
software applications and services such as facial recognition [21], interactive gam-
ing [6], real-time, large-scale warehouse management [7], etc. Those applications
usually require intensive processing power and high energy consumption. Due to
the limited computing capabilities and battery power of mobile and IoT devices,

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 86–101, 2019.
https://doi.org/10.1007/978-3-030-33702-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_8


Edge User Allocation with Dynamic Quality of Service 87

a lot of computing tasks are offloaded to app vendors’ servers in the cloud. How-
ever, as the number of connected devices is skyrocketing with the continuously
increasing network traffic and computational workloads, app vendors are facing
the challenge of maintaining a low-latency connection to their users.

Edge computing – sometimes often referred to as fog computing – has been
introduced to address the latency issue that often occurs in the cloud computing
environment [3]. A usual edge computing deployment scenario involves numer-
ous edge servers deployed in a distributed manner, normally near cellular base
stations [16]. This network architecture significantly reduces end-to-end latency
thanks to the close proximity of edge servers to end-users. The coverage areas of
nearby edge servers usually partially overlap to avoid non-serviceable areas – the
areas in which users cannot offload tasks to any edge server. A user located in the
overlapping area can connect to one of the edge servers covering them (proximity
constraint) that has sufficient computing resources (resource constraint) such as
CPU, storage, bandwidth, or memory. Compared to a cloud data-center server,
a typical edge server has very limited computing resources, hence the need for
an effective and efficient resource allocation strategy.

1

2

3

4

5

QoS level/ Required resource

 Eo
Q

/ 
noitcafsitas re s

U

W1

W2

W3

Fig. 1. Quality of Experience - Quality of Service correlation

Naturally, edge computing is immensely dynamic and heterogeneous. Users
using the same service have various computing needs and thus require different
levels of quality of service (QoS), or computational requirements, ranging from
low to high. Tasks with high complexity, e.g. high-definition graphic rendering,
eventually consume more computing resources in an edge server. A user’s satis-
faction, or quality of experience (QoE), varies along with different levels of QoS.
Many researchers have found that there is a quantitative correlation between
QoS and QoE, as visualized in Fig. 1 [2,8,15]. At one point, e.g. W3, the user
satisfaction tends to converge so that the QoE remains virtually unchanged at
the highest level regardless of how high the QoS level is.

Consider a typical game streaming service for example, gaming video frames
are rendered on the game vendor’s servers then streamed to player’s devices.
For the majority of players, there is no perceptible difference between 1080p and
1440p video resolution on a mobile device, or even between 1080p and UHD



88 P. Lai et al.

from a distance farther than 1.5x the screen height regardless of the screen
size [17]. Servicing a 1440p or UHD video certainly consumes more resources
(bandwidth, processing power), which might be unnecessary since most players
are likely to be satisfied with 1080p in those cases. Instead, those resources can
be utilized to serve players who are currently unhappy with the service, e.g. those
experiencing poor 240p or 360p graphic, or those not able to play at all due to
all nearby servers being overloaded. Therefore, the app vendor can lower the
QoS requirements of high demanding users, potentially without any remarkable
downgrade in their QoE, in order to better service users experiencing low QoS
levels. This way, app vendors can maximize users’ overall satisfaction measured
by their overall QoE. In this context, our research aims at allocating app users
to edge servers so that their overall QoE is maximized.

We refer to the above problem as a dynamic QoS edge user allocation (EUA)
problem. Despite being critical in edge computing, this problem has not been
extensively studied. Our main contributions are as follows:

– We define and model the dynamic QoS EUA problem, and prove its NP-
hardness.

– We propose an optimal approach based on integer linear programming (ILP)
for solving the dynamic QoS EUA and develop a heuristic approach for finding
sub-optimal solutions to large-scale instances of the problem efficiently.

– Extensive evaluations based on a real-world dataset are carried out to demon-
strate the effectiveness and efficiency of our approaches against a baseline
approach and the state of the art.

The remainder of the paper is organized as follows. Section 2 provides a moti-
vating example for this research. Section 3.1 defines the dynamic QoS problem
and proves that it is NP-hard. We then propose an optimal approach based on
ILP and an efficient sub-optimal heuristic approach in Sect. 4. Section 5 evalu-
ates the proposed approaches. Section 6 reviews the related work. Finally, we
conclude the paper in Sect. 7.

2 Motivating Example

Using the game streaming example in Sect. 1, let us consider a simple scenario
shown in Fig. 2. There are ten players u1, ..., u10, and four edge server s1, ..., s4.
Each edge server has a particular amount of different types of available resources
ready to fulfill users’ requests. A server’s resource capacity or player’s resource
demand are denoted as a vector 〈CPU,RAM, storage, bandwidth〉. The game
vendor can allocate its users to nearby edge servers and assign a QoS level to each
of them. In this example, there are three QoS levels for the game vendor to choose
from, namely W1,W2 and W3 (Fig. 1), which consume 〈1, 2, 1, 2〉, 〈2, 3, 3, 4〉, and
〈5, 7, 6, 6〉 units of 〈CPU,RAM, storage, bandwidth〉, respectively. Players’ cor-
responding QoE, measured based on Eq. 3, are 1.6, 4.09, and 4.99, respectively.
If the server’s available resources are not limited then all players will be able to
enjoy the highest QoS level. However, a typical edge server has relatively limited



Edge User Allocation with Dynamic Quality of Service 89

Edge server

Edge user

Coverage

s1 <9,15,12,10>

u1

<16,9,10,13>: <CPU, RAM, 
Storage, Bandwidth>

s2 <6,9,10,13> s4 <6,9,7,8>

s4 <3,5,5,8>

u10

u3

u4

u2 u6

u5

u9

u7u8

Fig. 2. Dynamic QoS EUA example scenario

resources so not everyone will be assigned W3. The game provider needs to find
a player - server - QoS allocation so that the overall user satisfaction, i.e. QoE,
is maximized.

Let us assume server s2 has already reached its maximum capacity and cannot
serve anymore players. As a result, player u8 needs to be allocated to server s4
along with player u7. If player u8 is assigned the highest QoS level W3, the
remaining resources on server s4 will suffice to serve player u7 with QoS level
W1. The resulting total QoE of those two players is 1.6+4.99 = 6.59. However, we
can see that the released resources from the downgrade from W3 to W2 allows
an upgrade from W1 to W2. If players u7 and u8 both receive QoS level W1,
players’ overall QoE is 4.09 + 4.09 = 8.18, greater than the previous solution.

The scale of the dynamic QoS EUA problem in the real-world scenarios can
of course be significantly larger than this example. Therefore, it is not always
possible to find an optimal solution in a timely manner, hence the need for an
efficient yet effective approach for finding a near-optimal solution to this problem
efficiently.

3 Problem Formulation

3.1 Problem Definition

This section defines the dynamic QoS EUA problem. Table 1 summarizes the
notations and definitions used in this paper. Given a finite set of m edge servers
S = {s1, s2, ..., sm}, and n users U = {u1, u2, ..., un} in a particular area, we aim
to allocate users to edge servers so that the total user satisfaction, i.e. QoE, is
maximized. In the EUA problem, every user covered by edge servers must be
allocated to an edge server unless all the servers accessible for the user have
reached their maximum resource capacity. If a user cannot be allocated to any
edge servers, or is not positioned within the coverage of any edge servers, they
will be directly connected to the app vendor’s central cloud server.



90 P. Lai et al.

Table 1. Key notations

Notation Description

S = {s1, s2, ..., sm} finite set of edge server sj , where j = 1, 2, ...,m

D = {CPU,RAM,
storage, bandwidth}

a set of computing resource dimension

cj = 〈c1j , c2j , ..., cdj 〉 d−dimensional vector with each dimension ckj being a
resource type, such as CPU or storage, representing the
available resources of an edge server sj , k ∈ D

U = {u1, u2, ..., un} finite set of user ui, where i = 1, 2, ..., n

W = {W1,W2, ...,Wq} a set of predefined resource level Wl, where l = 1, 2, ..., q.
A higher resource level requires more resource than a
lower one Wl < Wl+1. We will also refer to a resource
level as a QoS level.

wi = 〈w1
i , w

2
i , ..., w

d
i 〉 d−dimensional vector representing the resource amount

demanded by user ui. Each vector component wk
i is a

resource type, k ∈ D. Each user can be assigned a
resource level wi ∈ W

U(sj) set of users allocated to server sj , U(sj) ⊆ U
S(ui) set of user ui’s candidate servers – edge servers that cover

user ui, S(ui) ⊆ S
sui edge server assigned to serve user ui, sui ∈ S
cov(sj) coverage radius of server sj

A user ui can only be allocated to an edge server sj if they are located within
sj ’s coverage area cov(sj). We denote Sui

as the set of all user ui’s candidate
edge servers – those that cover user ui. Take Fig. 2 for example, users u3 and u4

can be served by servers s1, s2, or s3. Server s1 can serve users u1, u3, u4, and u5

as long as it has adequate resources.

ui ∈ cov(sj),∀ui ∈ U ;∀sj ∈ S (1)

If a user ui is allocated to an edge server, they will be assigned a specific
amount of computing resources wi = (wd

i ), where each dimension d ∈ D repre-
sents a type of resource, e.g. CPU, RAM, storage, or bandwidth. wi is selected
from a predetermined set W of q resource levels, ranging from low to high. Each
of those resource levels corresponds to a QoS level. The total resources assigned
to all users allocated to an edge server must not exceed the available resources on
that edge server. The available computing resources on an edge server sj , sj ∈ S
are denoted as cj = (cd

j ), d ∈ D. In Fig. 2, users u1, u3, u4, and u5 cannot all
receive QoS level W3 on server s1 because the total required resources would be
〈20, 28, 24, 24〉, exceeding server s1’s available resources 〈9, 15, 12, 10〉.

∑

ui∈U(sj)

wi ≤ cj , ∀sj ∈ S (2)



Edge User Allocation with Dynamic Quality of Service 91

Each user ui’s assigned resource wi corresponds to a QoS level that results
in a different QoE level. As stated in [2,8,15], QoS is non-linearly correlated
with QoE. When the QoS reaches a specific level, a user’s QoE improves very
trivially regardless of a noticeable increase in the QoS. For example, in the model
in Fig. 1, the QoE gained from the W2−W3 upgrade is nearly 1. In the meantime,
the QoE gained from the W1 − W2 upgrade is approximately 3 at the cost of
a little extra resource. Several works model the correlation between QoE and
QoS using the sigmoid function [10,12,20]. In this research, we use a logistic
function (Eq. 3), a generalized version of the sigmoid function, to model the QoS
- QoE correlation. This gives us more control over the QoE model, including
QoE growth rate, making the model more generalizable to different domains.

Ei =
L

1 + e−α(xi−β)
(3)

where L is the maximum value of QoE, β controls where the QoE growth should
be, or the mid-point of the QoE function, α controls the growth rate of the QoE
level (how steep the change from the minimum to maximum QoE level is), Ei

represents the QoE level given user ui’s QoS level wi, and xi =
∑

k∈D wk
i

|D| . We

let Ei = 0 if user ui is unallocated.
Our objective is to find a user-server assignment {u1, ..., un} −→ {s1, ..., sm}

with their individual QoS levels {w1, ..., wn} in order to maximize the overall
QoE of all users:

maximize

n∑

i=1

Ei (4)

3.2 Problem Hardness

We can prove that the dynamic QoS EUA problem defined above is NP-hard
by proving that its associated decision version is NP-complete. The decision
version of dynamic QoS EUA is defined as follows:

Given a set of demand workload L = {w1, w2, ..., wn} and a set of server
resource capacity C = {c1, c2, ..., cm}; for each positive number Q determine
whether there exists a partition of L′ ⊆ L into C′ ⊆ C with aggregate QoE
greater than Q, such that each subset of L′ sums to at most cj ,∀cj ∈ C′, and
the constraint (1) is satisfied. By repeatedly answering the decision problem,
with all feasible combination of wi ∈ W,∀i ∈ {1, ..., n}, it is possible to find the
allocation that produces the maximum overall QoE.

Theorem 1. The dynamic QoS EUA problem is NP.

Proof. Given a solution with m servers and n users, we can easily verify its
validity in polynomial time O(mn) – ensuring each user is allocated to at most
one server, and each server meets the condition of having its users’ total workload
less or equal than its available resource. Dynamic QoS EUA is thus in NP class.



92 P. Lai et al.

Theorem 2. Partition ≤p dynamic QoS EUA. Therefore, dynamic QoS EUA
is NP-hard.

Proof. We can prove that the dynamic QoS EUA problem is NP-hard by reduc-
ing the Partition problem, which is NP-complete [9], to a specialization of the
dynamic QoS EUA decision problem.

Definition 1 (Partition). Given a finite sequence of non-negative integers
X = (x1, x2, ..., xn), determine whether there exists a subset S ⊆ {1, ..., n} such
that

∑
i∈S xi =

∑
j /∈S xj.

Each user ui can be either unallocated to any edge server, or allocated to an edge
server with an assigned QoS level wi ∈ W. For any instance X = (x1, x2, ..., xn)
of Partition, construct the following instance of the dynamic QoS problem:
there are n users, where each user ui has two 2-dimensional QoS level options,
〈xi, 0〉 and 〈0, xi〉; and a number of identical servers whose size is 〈C,C〉, where

C =
∑n

i=1 xi

2
. Assume that all users can be served by any of those servers. Note

that 〈xi, 0〉 ≡ 〈0, xi〉 ≡ wi. Clearly, there is a solution to dynamic QoS EUA
that allocates n users to two servers if and only if there is a solution to the
Partition problem. Because this special case is NP-hard, and being NP, the
general decision problem of dynamic QoS EUA is thus NP-complete. Since the
optimization problem is at least as hard as the decision problem, the dynamic
QoS EUA problem is NP-hard, which completes the proof.

4 Our Approach

We first formulate the dynamic QoS EUA problem as an integer linear pro-
gramming (ILP) problem to find its optimal solutions. After that, we propose a
heuristic approach to efficiently solve the problem in large-scale scenarios.

4.1 Integer Linear Programming Model

From the app vendor’s perspective, the optimal solution to the dynamic QoS
problem must achieve the greatest QoE over all users while satisfying a number
of constraints. The ILP model of the dynamic QoS problem can be formulated
as follows:

maximize
n∑

i=1

m∑

j=1

q∑

l=1

Elxijl (5)

subject to: xijl = 0 ∀l ∈ {1, ..., q},∀i, j ∈ {i, j|ui /∈ cov(sj)} (6)
n∑

i=1

q∑

l=1

W k
l xijl ≤ ck

j ∀j ∈ {1, ...,m},∀k ∈ {1, ..., d} (7)

m∑

j=1

q∑

l=1

xijl ≤ 1 ∀i ∈ {1, ..., n} (8)

xijl ∈ {0, 1} ∀i ∈ {1, ..., n},∀j ∈ {1, ...,m},∀l ∈ {1, ..., q}



Edge User Allocation with Dynamic Quality of Service 93

xijl is the binary indicator variable such that,

xijl =

{
1, if user ui is allocated to server sj with QoS level Wl

0, otherwise.
(9)

The objective (5) maximizes the total QoE of all allocated users. In (5), the
QoE level El can be pre-calculated based on the predefined set W of QoS levels
Wl,∀l ∈ {1, ..., q}. Constraint (6) enforces the proximity constraints. Users not
located within a server’s coverage area will not be allocated to that server. A user
may be located within the overlapping coverage area of multiple edge servers.
Resource constraint (7) makes sure that the aggregate resource demands of all
users allocated to an edge server must not exceed the remaining resources of
that server. Constraint family (8) ensures that every user is allocated to at most
one edge server with one QoS level. In other words, a user can only be allocated
to either an edge server or the app vendor’s cloud server.

By solving this ILP problem with an Integer Programming solver, e.g. IBM
ILOG CPLEX1, or Gurobi2, an optimal solution to the dynamic QoS EUA
problem can be found.

4.2 Heuristic Approach

However, due to the exponential complexity of the problem, computing an opti-
mal solution will be extremely inefficient for large-scale scenarios. This is demon-
strated in our experimental results presented in Sect. 5. Approximate methods
have been proven to be a prevalent technique when dealing with this type of
intractable problems. In this section, we propose an effective and efficient heuris-
tic approach for finding sub-optimal solutions to the dynamic QoS problem.

Heuristic 1. Greedy
1: procedure AllocateEdgeUsers(S,U)
2: for each ui ∈ U do
3: Sui ← {sj ∈ S|ui ∈ cov(sj)};
4: if Sui �= ∅ then
5: sui ← argmaxsj∈{0}∪Sui

{sj : cj ≥ W1};

6: wi ← argmaxWl∈{0}∪W{Wl : Wl ≤ cj};
7: end if
8: end for
9: end procedure

The heuristic approach allocates every user ui ∈ U one by one (line 2). For
each user ui, we obtain the set Sui

of all candidate edge servers that cover that
user (line 3). If the set Sui

is not empty, or user ui is covered by one or more edge
1 www.ibm.com/analytics/cplex-optimizer/.
2 www.gurobi.com/.

https://www.ibm.com/analytics/cplex-optimizer/
https://www.gurobi.com/


94 P. Lai et al.

servers, user ui will then be allocated to the server that has the most remaining
resources among all candidate servers (line 5) so that the server will be most
likely to have enough resources to accommodate other users. In the meantime,
user ui is assigned the highest QoS level that can be accommodated by the
selected edge server (line 6).

The running time of this greedy heuristic consists of: (1) iterating through
all n users, which costs O(n), and (2) sorting a maximum of m candidate edge
servers for each user, which costs O(m log m), to obtain the server that has the
most remaining resources. Thus, the overall time complexity of this heuristic
approach is O(nm log m).

5 Experimental Evaluation

In this section, we evaluate the proposed approaches by an experimental study.
All the experiments were conducted on a Windows machine equipped with Intel
Core i5-7400T processor(4 CPUs, 2.4 GHz) and 8 GB RAM. The ILP model in
Sect. 4.1 was solved with IBM ILOG CPLEX Optimizer.

5.1 Baseline Approaches

Our optimal approach and sub-optimal heuristic approach are compared to two
other approaches, namely a random baseline, and a state-of-the-art approach for
solving the EUA problem:

– Random: Each user is allocated to a random edge server as long as that server
has sufficient remaining resources to accommodate this user and has this user
within its coverage area. The QoS level to be assigned to this user is randomly
determined based on the server’s remaining resources. For example, if the
maximum QoS level the server can achieve is W2, the user will be randomly
assigned either W1 or W2.

– VSVBP : [18] models the EUA problem as a variable sized vector bin packing
(VSVBP) problem and proposes an approach that maximizes the number of
allocated users while minimizing the number of edge servers needs to be used.
Since VSVBP does not consider dynamic QoS, we randomly preset users’ QoS
levels, i.e., resource demands.

5.2 Experiment Settings

Our experiments were conducted on the widely-used EUA dataset [18], which
includes data of base stations and end-users within the Melbourne central busi-
ness district area in Australia. In order to simulate different dynamic QoS EUA
scenarios, we vary the following three parameters:

– Number of end-users: We randomly select 100, 200, ..., 1, 000 users. Each
experiment is repeated 100 times to obtain 100 different user distributions
so that extreme cases, such as overly sparse or dense distributions, are neu-
tralized.



Edge User Allocation with Dynamic Quality of Service 95

(a) Total QoE (b) Elapsed CPU time

Fig. 3. Experiment set #1 results

– Number of edge servers: Say the users selected above are covered by m servers,
we then assume 10%, 20%, ..., 100% of those m servers are available to accom-
modate those users.

– Server’s available resources: The server’s available computing resources is gen-
erated following a normal distribution N (μ, σ2), where σ = 1 and the average
resource capacity of each server μ = 5, 10, 15, ...50 in each dimension d ∈ D.

Table 2 summarizes the settings of our three sets of experiments. The possible
QoS level, for each user is preset to W = {〈1, 2, 1, 2〉, 〈2, 3, 3, 4〉, 〈5, 7, 6, 6〉}. For
the QoE model, we set L = 5, α = 1.5, and β = 2. We employ two metrics to
evaluate our approaches: (1) overall QoE achieved over all users for effectiveness
evaluation, and (2) execution time (CPU time) for efficiency evaluation.

Table 2. Experiment Settings

Number of users Number of servers Server’s available resources

Set #1 100, 200, ..., 1000 70% 35

Set #2 500 10%, 20%, ..., 100% 35

Set #3 500 70% 5, 10, 15, ..., 50

5.3 Experimental Results and Discussion

Figures 3, 4, and 5 depict the experimental results of three experiment sets 1, 2,
and 3, respectively.

(1) Effectiveness: Figures 3, 4, and 5(a) demonstrate the effectiveness of all
approaches in experiment sets 1, 2, and 3, measured by the overall QoE of
all users in the experiment. In general, Optimal, being the optimal approach,
obviously outperforms other approaches across all experiment sets and param-
eters. The performance of Heuristic largely depends on the computing resource
availability, which will be analyzed in the following section.



96 P. Lai et al.

(a) Total QoE (b) Elapsed CPU time

Fig. 4. Experiment set #2 results

In experiment set 1 (Fig. 3(a)), we vary the number of users starting from
100 and ending at 1,000 in steps in 100 users. From 100 to 600 users, Heuristic
results in higher total QoE than Random and VSVBP. Especially in the first
three steps (100, 200, and 300 users), Heuristic achieves a QoE almost as high as
Optimal. This occurs in those scenarios because the available resource is redun-
dant and therefore almost all users receive the highest QoS level. However, as the
number of users continues to increase while the amount of available resources
is fixed, the computing resource for each user becomes more scarce, making
Heuristic no longer suitable in these situations. In fact, from 700 users onwards,
Heuristic starts being outperformed by Random and VSVBP. Due to being a
greedy heuristic, Heuristic always tries to exhaust the edge servers’ resources
by allocating the highest possible QoS level to users, which is not an effective
use of resource. For example, one user can achieve a QoE of 4.99 if assigned the
highest QoS level W3, which consumes a resource amount of 〈5, 7, 6, 6〉. That
resource suffices to serve two users with QoS levels W1 and W2, resulting in an
overall QoE of 1.6 + 4.09 = 5.69 > 4.99. Since a user’s QoS level is randomly
assigned by Random and VSVBP, these two methods are able to user resource
more effectively than Heuristic in those specific scenarios.

A similar trend can be observed in experiment sets 2 and 3. In resource-scarce
situations, i.e. number of servers ranging from 10%–40% (Fig. 4(a)), and server’s
available resources ranging from 5–25 (Fig. 5(a)), Heuristic shows a nearly sim-
ilar performance to Random and VSVBP (slightly worse in a few cases) for
the same reason discussed previously. In those situations, the performance dif-
ference between Heuristic and Random/VSVBP is not as significant as seen in
experiment set 1 (Fig. 3(a)). Nevertheless, the difference might be greater if the
resources are more limited, e.g. 1,000 users in both experiment sets 2 and 3, an
average server resource capacity of 20 in set 2, and 50% number of servers in set 3.

As discussed above, while being suitable for resource-redundant scenarios,
Heuristic has not been proven to be superior when computing resources are lim-
ited. This calls for a more effective approach to solve the dynamic QoS problem
under resource-scarce circumstances.



Edge User Allocation with Dynamic Quality of Service 97

(a) Total QoE (b) Elapsed CPU time

Fig. 5. Experiment set #3 results

(2) Efficiency: Figures 3, 4, and 5(b) illustrate the efficiency of all approaches
in the study, measured by the elapsed CPU time. The execution time of Opti-
mal follows a similar pattern in all three experiment sets. As the experimental
parameters increase from the starting point to a point somewhere in the mid-
dle – 600 users in set 1, 70% number of servers in set 2, and 30 average server
resource capacity in set 3 – the time quickly increases until it reaches a cap of
around a hefty 3 seconds due to being NP-hard. The rationale for this is that the
complexity of the problem increases as we keep adding up more users, servers,
and available resource, generating more possible options and solutions for Opti-
mal to select from. After passing that mid-point, the time gradually decreases
at a slower rate then tends to converge. We notice that this convergence is a
reflection of the convergence of the total QoE produced by Optimal in each cor-
responding experiment set. After the experimental parameters passing the point
mentioned above, the available resource steadily becomes more redundant so
that more users can obtain the highest QoS level without competing with each
others, generating less possible options for Optimal, hence running faster.

In experiment sets 1 and 2, the execution time of Heuristic grows gradually
up to just 1 milliseconds. However, it does not grow in experiment set 3 and
instead stabilizes around 0.5–0.6 ms. This is because the available resource does
not impact the complexity of Heuristic, which runs in O(nm log m).

5.4 Threats to Validity

Threat to Construct Validity. The main threat to the construct validity lies in the
bias in our experimental design. To minimize the potential bias, we conducted
experiments with different changing parameters that would have direct impact
on the experimental results, including the number of servers, the number of
users, and available resources. The result of each experiment set is the average
of 100 executions, each with a different user distribution, to eliminate the bias
caused by special cases such as over-dense or over-sparse user distributions.

Threat to External Validity. A threat to the external validity is the general-
izability of our findings in other specific domains. We mitigate this threat by



98 P. Lai et al.

experimenting with different numbers of users and edge servers in the same geo-
graphical area to simulate various distributions and density levels of users and
edge servers that might be observed in different real-world scenarios.

Threat to Internal Validity. A threat to the internal validity is whether an exper-
imental condition makes a difference or not. To minimize this, we fix the other
experimental parameters at a neutral value while changing a parameter. For
more sophisticated scenarios where two or more parameters change simultane-
ously, the results can easily be predicted in general based on the obtained results
as we mentioned in Sect. 5.3.

Threat to Conclusion Validity. The lack of statistical tests is the biggest threat to
our conclusion validity. This has been compensated for by comprehensive exper-
iments that cover different scenarios varying in both size and complexity. For
each set of experiments, the result is averaged over 100 runs of the experiment.

6 Related Work

Cisco [3] coined the fog computing, or edge computing, paradigm in 2012 to over-
come one major drawback of cloud computing – latency. Edge computing comes
with many new unique characteristics, namely location awareness, wide-spread
geographical distribution, mobility, substantial number of nodes, predominant
role of wireless access, strong presence of streaming and real-time applications,
and heterogeneity. Those characteristics allows edge computing to deliver a very
broad range of new services and applications at the edge of network, further
extending the existing cloud computing architecture.

QoE management and QoE-aware resource allocation have long been a chal-
lenge since the cloud computing era and before that [13]. Su et al. [22] propose
a game theoretic framework for resource allocation among media cloud, brokers
and mobile social users that aims at maximizing user’s QoE and media cloud’s
profit. While having some similarity to our work, e.g. the brokers can be seen as
edge servers, there are several fundamental architectural differences. The broker
in their work is just a proxy for transferring tasks between mobile users and the
cloud, whereas our edge server is where the tasks are processed. In addition, the
price for using/hiring the broker/media cloud’s resource seems to vary from time
to time, broker to broker in their work. We target a scenario where there is no
price difference within a single service provider. [11] investigates the cost - QoE
trade-off in virtual machine provisioning problem in a centralized cloud, specific
to video streaming domain. QoE is measured by the processing, playback, or
downloading rate in those work.

QoE-focused architecture and resource allocation have started gaining attrac-
tion in edge computing area as well. [5] proposes a novel architecture that inte-
grates resource-intensive computing with mobile application while leveraging
mobile cloud computing. Their goal is to provide a new breed of personalized,
QoE-aware services. [1,19] tackle the application placement in edge computing
environments. They measure user’s QoE based on three levels (low, medium, and



Edge User Allocation with Dynamic Quality of Service 99

high) of access rate, required resources, and processing time. The problem we are
addressing, user allocation, can be seen as the step after application placement.
[14] focuses on computation offloading scheduling problem in mobile clouds from
a networking perspective, where energy and latency must be considered in most
cases. They propose a QoE-aware optimal and near-optimal scheduling scheme
applied in time-slotted scenarios that takes into account the trade-off between
user’s mobile energy consumption and latency.

Apart from the aforementioned literature, there are a number of work on
computation offloading or virtual machine placement problem. However, they
do not consider QoE, which is important in an edge computing environment
where human plays a prominent role. Here, we seek to provide an empirically
grounded foundation for the dynamic QoS/QoE edge user allocation problem,
forming a solid basis for further developments.

7 Conclusion

App users’ quality-of-experience is of great importance for app vendors where
user satisfaction is taken seriously. Despite being significant, there is very limited
work considering this aspect in edge computing. Therefore, we have identified
and formally formulated the dynamic QoS edge user allocation problem with
the goal of maximizing users’ overall QoE as the first step of tackling the QoE-
aware user allocation problem. Having been proven to be NP-hard and also
experimentally illustrated, the optimal approach is not efficient once the problem
scales up. We therefore proposed a heuristic approach for solving the problem
more efficiently. We have also conducted extensive experiments on real-world
dataset to evaluate the effectiveness and efficiency of the proposed approaches
against a baseline approach and the state of the art.

Given this foundation of the problem, we have identified a number of pos-
sible directions for future work with respect to QoE such as dynamic QoS user
allocation in resource-scarce or time-varying situations, user’s mobility, service
migration, service recommendation, just to name a few. In addition, a finer-
grained QoE model with various types of costs or network conditions could be
studied next.

Acknowledgments. This research is funded by Australian Research Council Discov-
ery Projects (DP170101932 and DP18010021).

References

1. Aazam, M., St-Hilaire, M., Lung, C.H., Lambadaris, I.: Mefore: QoE based resource
estimation at fog to enhance QoS in IoT. In: 2016 23rd International Conference
on Telecommunications (ICT), pp. 1–5. IEEE (2016)

2. Alreshoodi, M., Woods, J.: Survey on QoE\QoS correlation models for multimedia
services. arXiv preprint arXiv:1306.0221 (2013)

http://arxiv.org/abs/1306.0221


100 P. Lai et al.

3. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, pp. 13–16. ACM (2012)

4. Cerwall, P., et al.: Ericsson Mobility Report. Ericsson, Stockholm (2018). https://
www.ericsson.com/en/mobility-report/reports/november-2018

5. Chen, M., Zhang, Y., Li, Y., Mao, S., Leung, V.C.: EMC: emotion-aware mobile
cloud computing in 5G. IEEE Netw. 29(2), 32–38 (2015)

6. Chen, X.: Decentralized computation offloading game for mobile cloud computing.
IEEE Trans. Parallel Distrib. Syst. 26(4), 974–983 (2015)

7. Ding, B., Chen, L., Chen, D., Yuan, H.: Application of RTLS in warehouse manage-
ment based on RFID and wi-fi. In: 2008 4th International Conference on Wireless
Communications, Networking and Mobile Computing, pp. 1–5. IEEE (2008)

8. Fiedler, M., Hossfeld, T., Tran-Gia, P.: A generic quantitative relationship between
quality of experience and quality of service. IEEE Netw. 24(2), 36–41 (2010)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. wh freeman,
New York (2002)

10. Hande, P., Zhang, S., Chiang, M.: Distributed rate allocation for inelastic flows.
IEEE/ACM Trans. Netw. (TON) 15(6), 1240–1253 (2007)

11. He, J., Wen, Y., Huang, J., Wu, D.: On the cost-QoE tradeoff for cloud-based video
streaming under Amazon EC2’s pricing models. IEEE Trans. Circuits Syst. Video
Technol. 24(4), 669–680 (2013)

12. Hemmati, M., McCormick, B., Shirmohammadi, S.: QoE-aware bandwidth alloca-
tion for video traffic using sigmoidal programming. IEEE MultiMedia 24(4), 80–90
(2017)

13. Hobfeld, T., Schatz, R., Varela, M., Timmerer, C.: Challenges of QoE management
for cloud applications. IEEE Commun. Mag. 50(4), 28–36 (2012)

14. Hong, S.T., Kim, H.: QoE-aware computation offloading scheduling to capture
energy-latency tradeoff in mobile clouds. In: 2016 13th Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON), pp. 1–9. IEEE
(2016)

15. Hoßfeld, T., Seufert, M., Hirth, M., Zinner, T., Tran-Gia, P., Schatz, R.: Quantifica-
tion of YouTube QoE via crowdsourcing. In: 2011 IEEE International Symposium
on Multimedia, pp. 494–499. IEEE (2011)

16. Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing–a
key technology towards 5G. ETSI White Pap. 11(11), 1–16 (2015)

17. Lachat, A., Gicquel, J.C., Fournier, J.: How perception of ultra-high definition is
modified by viewing distance and screen size. In: Image Quality and System Per-
formance XII, vol. 9396, p. 93960Y. International Society for Optics and Photonics
(2015)

18. Lai, P., et al.: Optimal edge user allocation in edge computing with variable sized
vector bin packing. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018.
LNCS, vol. 11236, pp. 230–245. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03596-9 15

19. Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya, R.: Quality of
experience(QoE)-aware placement of applications in fog computing environments.
J. Parallel Distrib. Comput. (2018)

https://www.ericsson.com/en/mobility-report/reports/november-2018
https://www.ericsson.com/en/mobility-report/reports/november-2018
https://doi.org/10.1007/978-3-030-03596-9_15
https://doi.org/10.1007/978-3-030-03596-9_15


Edge User Allocation with Dynamic Quality of Service 101

20. Shenker, S.: Fundamental design issues for the future internet. IEEE J. Sel. Areas
Commun. 13(7), 1176–1188 (1995)

21. Soyata, T., Muraleedharan, R., Funai, C., Kwon, M., Heinzelman, W.: Cloud-
vision: real-time face recognition using a mobile-cloudlet-cloud acceleration archi-
tecture. In: 2012 IEEE Symposium on Computers and Communications (ISCC),
pp. 59–66. IEEE (2012)

22. Su, Z., Xu, Q., Fei, M., Dong, M.: Game theoretic resource allocation in media
cloud with mobile social users. IEEE Trans. Multimedia 18(8), 1650–1660 (2016)



Automatic Business Process Model
Extension to Repair Constraint Violations

Xavier Oriol2(B), Giuseppe De Giacomo1, Montserrat Estañol2,3,
and Ernest Teniente2

1 Sapienza Università di Roma, Rome, Italy
degiacomo@dis.uniroma1.it

2 Universitat Politècnica de Catalunya, Barcelona, Spain
{oriol,estanyol,teniente}@essi.upc.edu

3 Barcelona Supercomputing Center, Barcelona, Spain

Abstract. Consider an artifact-centric business process model, contain-
ing both a data model and a process model. When executing the process,
it may happen that some of the data constraints from the data model are
violated. Bearing this in mind, we propose an approach to automatically
generate an extension to the original business process model that, when
executed after a constraint violation, repairs the contents of the data
leaving it in a new consistent state.

Keywords: BPMN · UML · Data-aware processes · Integrity
constraints repair

1 Introduction

Artifact-centric business process modeling has been recognized as an appropriate
approach to specify the two main assets of any organization, i.e. information
(data as defined through the artifacts managed by the business) and processes
(services offered by the organization to perform its business) [14,15].

Despite the variety of existing proposals to specify artifact-centric Business
Process Models (BPMs), there is a large consensus that any of them must contain
at least a conceptual model for data, such as a UML class diagram [11], and
a model for the processes, such as BPMN [8,28]. Linking data and processes
along these two models has shown to be a feasible and practical way to achieve
automatic executability of BPMs [5].

Furthermore, a data model always includes a set of integrity constraints, i.e.
conditions that each state of the information base must satisfy. These constraints
can be specified either graphically (such as multiplicity constraints) or textually
(for instance by means of OCL constraints or SQL assertions).

The BPM states the order of execution of activities to successfully perform
a business and also the effect of each executed activity over the contents of
the information base (i.e. the object insertions and deletions performed by that
activity over the classes in the data model). Clearly, this effect might violate
some of the constraints in the data model.
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 102–118, 2019.
https://doi.org/10.1007/978-3-030-33702-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_9


Automatic BPM Extension to Repair Constraint Violations 103

Handling integrity constraints in the data model itself provides several advan-
tages over manually programming them inside the BPM. Indeed, each constraint
can be violated by different activities, and it is very difficult to manually identify
all possible situations that may induce such violations. This makes programming
manually the treatment of constraints an error-prone task and, thus, it should
be avoided as much as possible. Therefore, we assume here that the execution
of an activity in the BPM can raise an integrity constraint violation. A naive
approach to deal with these violations would consist in forbidding the execution
of the activity that caused the violation. However, this is not always appropriate
because the actions entailed by the activity might have already happened in the
real world. Thus, not performing this activity would end up with an information
system that no longer represents the real world.

To overcome this situation, there is an alternative approach aimed at repair-
ing the constraint violation, so that the activity can be executed anyway. This is
achieved by means of performing additional updates, other than the ones explic-
itly specified by the activity. Therefore, under this approach, both the state of
the real world and the contents of the information system will coincide and be
consistent.

Since constraints can be repaired in several ways, the user (i.e. the person
executing the process) should choose the most appropriate action in each sit-
uation. However, the chosen repair might lead to another violation which, in
turn, requires additional repairing. Choosing repairs blindly can make the user
get into a complicated sequence of violations/repairs which, known in advance,
would have led him/her to make a better decision in the first place.

To properly deal with this phenomenon, we realized that the sequence of
actions required to repair a constraint can be seen as a process. Then, all poten-
tial sequences of repairing actions may be modeled as a BPM itself. Therefore,
given a constraint violation, we build a BPM that shows all possible ways to
repair it. Then, the user may use this extended model to select the proper repair-
ing actions by having a global sense of all the repair implications. By inspecting
the model, the user can see which is the shortest path to reach consistency,
which is the way to avoid a certain undesired repairing action, etc., and choose
the repair(s) accordingly.

Given an artifact-centric BPM, where the data is described through a data
model containing integrity constraints and the behavior of the activities is
described in terms of modifications over the previously mentioned data model,
we can automatically compute, at compile time, the whole chain of activities
that, when executed, repairs a constraint violation. Therefore, we can extend
the original BPM model by considering the flow of additional activities that
have to be performed to preserve an integrity constraint. This extension can be
computed for each activity of the original BPM and, since the computation can
be done at compile time, it does not negatively impact the performance of the
original process execution.

Moreover, by modelling the repairing process as a BPM, the process designer
may customize these models at compile time to forbid some undesired paths/ac-
tivities. Then, the final process model obtained can be used at execution time,



104 X. Oriol et al.

by the user, to repair constraint violations when they occur. In particular, the
user executes the original process as usual (e.g., through a CASE tool). How-
ever, when an integrity violation is detected, the current execution of the process
stops, and the user starts executing the corresponding BPM extension to repair
the violation caused by the last activity execution. When, the user has finished
executing the extension, he/she can continue executing the original BPM, with
the guarantee that no constraint is being violated.

2 Generating Violation Handling Extensions in BPM

We will illustrate our approach by means of the BPMN diagram in Fig. 1,
together with the UML class diagram in Fig. 2. The UML diagram specifies
that employees work in and manage projects. Additionally, there is a subset
constraint stating that each manager of a project should work in it.

The process model begins when creating a new project. Then, the user can
either provide employee information, in order to add him to the project (Add
Employee) or not (the process ends). If the former, the user then can choose
to provide (another) project in order to delete this employee from it (Delete
From Project), or not. In any case, the flow goes back to the option of adding
another employee to the recently created project. Hence, the message events in
the BPMN diagram correspond to user-provided input, and not to evaluation
of expressions using process data. This is why we use Event-Based Gateways.
Note that there may be other processes in the company for hiring managers or
performing other tasks, which are not shown here.

Create New Project Add Employee

Employee Info

Delete From 
Project

Project Info

No Employee to Add

No project

Fig. 1. Initial BPMN diagram

When executing any process activity, a violation of a constraint can occur.
For example, when executing Delete From Project the subset constraint may be
violated (i.e. a manager of the project is not one of its employees any more).
Naturally, we could reject such activity to avoid the violation, but it may likely
happen that this deletion has already taken place in the real world and cannot
be undone. Thus, a reactive behavior has to be applied. We can repair that
constraint by removing this employee as a manager of the project. However, this
additional removal might in turn violate the minimum cardinality constraint



Automatic BPM Extension to Repair Constraint Violations 105

Employee Projectworks in

manages

* 1..*

workProj
1..* *

managedProj
{subset workProj}

Fig. 2. Class diagram for the BPMN diagram in Fig. 1

stating that each project needs at least one manager, thus forcing the execution
of more updates to preserve the consistency of the information base. This is the
difficulty of the problem of integrity constraint repairing.

Fortunately, the constraints that might be violated when repairing other
constraints can be determined at compile time; i.e., we can identify them by
inspecting the constraints’ definition itself, without considering the information
contents. Indeed, several approaches build a dependency-graph showing this rela-
tion among the constraints [21,24]. Thus, the idea is that, to repair a constraint
violation C and ensure that no other constraint has been violated, we have to
repair C, check the constraints pointed out by C and repair them if necessary
(which might require inspecting and repairing other constraints, recursively).

For instance, in our example we would be able to determine that the sub-
set constraint might violate the minimum cardinality constraint requiring one
manager for each project. Thus, after repairing the subset constraint, we should
check, and possibly repair, such cardinality constraint.

In essence, our idea is that we can see the dependency graph as a BPMN
diagram establishing which activities have to be carried out (and in which order)
to repair a constraint violation. That is, each activity in the diagram stands for
an update to apply to repair a constraint violation. Then, this activity is followed
by those additional activities that repair the constraint that might have been
violated because of the previously applied data update. When we reach the
final BPM end event, we are sure that the initially violated constraint has been
repaired, and that it has been repaired in such a way that no other constraint
is being violated.

More in detail, our method uses the following steps which will be further
explained in the remainder of this section:

1. Translating integrity constraints into RGDs. Repair-generating dependencies
(RGDs) are logic formulas that, given a database state and a data update,
derive new updates that must be applied to repair a constraint violation [22].
In this step, we translate the constraints into the corresponding RGDs.

2. Building the dependency-graph of RGDs. When executing RGDs to derive new
updates, one RGD can cause the violation of another constraint, thus trig-
gering the execution of another RGD. In the dependency-graph, we explicitly
show this interaction, i.e., which RGDs might trigger other RGDs.

3. Associating each activity to the affected part of the dependency-graph. Given
a BPMN activity, its execution might only violate some constraints, thus
triggering only some specific RGDs from the dependency-graph. In this step,
we automatically prune all those RGDs that can never be triggered.



106 X. Oriol et al.

4. Translating the dependency-graph fragment into a BPMN diagram. Intu-
itively, RGDs are translated as BPMN activities and the dependency-graph
edges determine the flow between them.

5. Customization. Finally, the BPM designer may decide to prune some of the
suggested ways to repair a constraint in the BPM. Indeed, our method gen-
erates all possible activities that might be applied to repair a violation. How-
ever, it might be the case that some of them are not desirable in the domain.
In this step, we show how to prune undesired repairs.

In this way, given any BPM activity, we compute its BPM extension which
guarantees that, when executed, it checks and repairs all violations that might
occur. This extension could be integrated in the original BPM through a CASE
tool, and can be used at runtime to repair constraint violations through a process
executor, such as [5]. In this paper, we leave the part of showing the extension
as further work, and concentrate on generating the extension and executing it.
Furthermore, although we use the BPMN and UML notations, it is worth to
mention that other languages, such as service blueprints for instance, might be
used as long as they are detailed enough to be executed [10]. In particular, we
only need these notations to be translatable into first-order logics, which is the
base framework of our approach. Finally, one limitation of our approach is that
two tasks cannot be executed simultaneously, as they might interact to cause a
constraint violation. In such cases, they should be serialized.

2.1 Translating Constraints into RGDs

RGDs are logic formulas that, given a database state and a set of updates, derive
new updates in order to repair a constraint violation [22]. Every UML/OCL
constraint gives raise to several RGDs, each one capturing a different way to
violate/repair it. For instance, consider the subset constraint stating that if x
Manages y, then x WorksIn y. This constraint gives raise to the following RGDs:

ιManages(x, y) ∧ ¬WorksIn(x, y) → ιWorksIn(x, y) (1)
Manages(x, y) ∧ δWorksIn(x, y) → δManages(x, y) (2)

ιManages(x, y) ∧ δWorksIn(x, y) → ⊥ (3)

The first RGD states that if we insert that x manages y (ιManages(x , y)),
when x is not working in y (¬WorksIn(x, y)), then, we must insert that x works
in y (ιWorksIn(w, y)) to guarantee the consistency of the new state after the
update. Similarly, the second RGD states that if we delete some worker x from
y, s.t. x was managing y, then, we must also delete that x no longer manages
y. Finally, the third RGD asserts that, if we insert some manager x into y and
we delete x as working in y, there is an irreparable violation, since these are two
contradictory events (a manager of a project should work in it) that are executed
simultaneously. Generally, any RGD with ⊥ in the head cannot be repaired.



Automatic BPM Extension to Repair Constraint Violations 107

Not all RGDs are deterministic since some violations can be repaired in
different ways. RGDs capture this indeterminism through disjunctions and exis-
tential variables in their head. E.g., consider the cardinalities from our UML
diagram stating that each employee works at least in one project, and that each
project has, at least, one manager. These constraints give raise, respectively, to
the following RGDs:

Employee(x) ∧ δWorksIn(x, y) ∧ ¬OtherWorksIn(x) → δEmployee(x) ∨ ιWorksIn(x, y
′
) (4)

OtherWorksIn(x) ← WorksIn(x, z) ∧ ¬δWorksIn(x, z)

Project(y) ∧ δManages(x, y) ∧ ¬OtherManager(y) → δProject(y) ∨ ιManages(x
′
, y) (5)

OtherManager(y) ← Manages(z, y) ∧ ¬δManages(z, y)

Intuitively, RGD 4 detects a violation when we delete employee x from project
y, and x does not work for any other project. In this case, we should choose
between deleting the employee x, or adding a new project y′ where he is working.
Note that the decision is indeterministic. Moreover, choosing the project y′ is
also indeterministic since it can take different values. A similar condition with
projects and managers is stated by RGD 5.

Some RGDs can be simplified by taking into account that, given a particular
domain, some events cannot ever happen. Indeed, we can consider that projects
are never deleted from the system. Thus, the literal δProject can be safely deleted
from the head of the RGD 5, leading to a new formula:

Project(y) ∧ δManages(x, y) ∧ ¬OtherManager(y) → ιManages(x
′
, y) (6)

OtherManager(y) ← Manages(z, y) ∧ ¬δManages(z, y)

The structural updates (i.e., insertions or deletions) that cannot happen in a
domain can be extracted from the UML class diagram itself. When a class/asso-
ciation A is considered to be add-only, this means that the event of deleting an
instance of A cannot take place. Similarly, if a class/association A is considered
to be frozen, no insertion nor deletion update can occur in its population.

The problem of obtaining RGDs from UML/OCL constraints, and simplify-
ing them, is already solved in [22]. For our purposes, we consider only constraints
written in the UML/OCLuniv subset [20]. Roughly speaking, UML/OCLuniv is
the subset of UML/OCL where all constraints are universally quantified (i.e., no
OCL exists operator is allowed), with the exception of UML min. cardinalities.
We impose this limitation because: (1) RGDs from UML/OCLuniv constraints
generate repairs of only one single structural event, which are easier to translate
to BPMN activities, and (2) the termination of the repair process is guaranteed
(while, in general OCL constraints, the repair process is undecidable) [20].

2.2 Building the Dependency-Graph of RGDs

Given a set of RGDs, we can build a dependency-graph that shows which RGDs
may trigger other RGDs. Indeed, consider the case in which we delete some
worker x from project y, when x was manager of y. In this situation, RGD 2
states that we have to additionally delete x as a manager of y. However, if we



108 X. Oriol et al.

do so, it might be the case that the project y has no manager, thus triggering
RGD 6, which states that we should add a new manager to it.

This triggering relationship between RGDs can be depicted graphically in
several ways. For our purposes, we choose the one from [21]. Briefly, for each
RGD, the left-hand side is depicted as a vertex (called constraint-vertex ), and the
different structural events from the right-hand side are depicted also as vertices
(called repair-vertex ). There is an arrow from an RGD constraint-vertex to each
of its corresponding repair-vertices that indicates that, when the condition stated
in the constraint-vertex is satisfied, one of its repair-vertices should be executed.
Then, there is also an edge from a repair-vertex to each of the constraint vertices
that might have been violated because of its execution.

The grey part of Fig. 3 shows the dependency-graph of RGDs 1, 2, 3, 4 and
6, together with other RGDs that will be used in the rest of the paper1. Note
that there is, as expected, a triggering relationship between 2 and 6.

Project(y) ∧ δManages(x,y)
∧ ¬OtherManager(y) 

ιManages(x', y)

δEmployee(x)

Manages(x,y) ∧
δWorksIn(x,y)

δManages(x,y)

ιManages(x,y) ∧
δWorksIn(x,y)

ιManages(x,y) ∧
¬WorksIn(x,y)

ιWorksIn(x,y) ∧
δEmployee(x) 

1

2

3

6

4
Employee(x) ∧ δWorksIn(x,y)
∧ ¬OtherWorksIn(x) 

ιWorksIn(x, y')

deleteFromProject(x, y) δWorksIn(x,y)

RGDs encoding 

the schema

Project(y) ∧ δManages(x,y)
∧ ¬OtherManager(y) 

ιManages(x', y)

δEmployee(x)

Manages(x,y) ∧
δWorksIn(x,y)

δManages(x,y)

ιManages(x,y) ∧
δWorksIn(x,y)

ιManages(x,y) ∧
¬WorksIn(x,y)

ιWorksIn(x,y) ∧
δEmployee(x) 

1

2

3

6

4
Employee(x) ∧ δWorksIn(x,y)
∧ ¬OtherWorksIn(x)

ιWorksIn(x, y')

RGDs encoding

the schema
8

ιWorksIn(x,y) ∧
δEmployee(x)

15
δEmployee(x) ∧
WorksIn(x, y)

δWorksIn(x,y)

14

Fig. 3. Fragment of the dependency-graph showing constraint-vertices as circles,
repair-vertices as squares, and triggering relationships with dashed-edges between both.

In general, there is a triggering relationship between the repair vertex R of
a RGD to the constraint vertex C of another RGD if R and C have a struc-
tural event (i.e. an update operator) in common. Indeed, this means that the
repair of the first constraint is applying some update that can potentially violate
the second constraint. We could also apply some optimizations to remove some
triggering relationships [21], but we leave them out due to space limitations.

2.3 Associating Activities to the Dependency-Graph

We start with a graph showing which constraints can be violated when repairing
other constraints, and we want to know now which constraints can be violated
when executing a BPMN activity in the process model. This is achieved by

1 We do not include all the generated RGDs for easier understandability.



Automatic BPM Extension to Repair Constraint Violations 109

specifying the BPMN activity as an RGD, include this RGD in the dependency-
graph, and identify the RGDs in the original graph reachable from it.

A BPMN activity can be seen as an RGD whose repair is, in fact, the execu-
tion of the update it specifies. For instance, consider the BPMN activity delete
from project, from Fig. 1, stating the deletion of an employee from a project given
by parameter. This BPMN activity can be written as the RGD:

deleteFromProject(x, y) → δWorksIn(x, y) (7)

This way of specifying BPMN activities is already used in [5], where an
automatic translation from BPMN activities written with OCL constraints into
these RGDs is given. Now, this RGD can be incorporated in the dependency-
graph, as shown in Fig. 3, and indicate its triggering relationships, i.e. those
RGDs with a constraint-vertex containing the structural events applied in the
BPMN activity. In our running example, this new RGD would point to RGDs 2
and 4 since they have the δWorksIn predicate in common.

Thus, the RGDs possibly affected by the execution of the BPMN activity
correspond to the fragment of the dependency-graph reachable from the RGDs
encoding the activity. In our example, these correspond to the RGDs seen so far,
but, in a real case, they would likely be a subset of all the RGDs in the graph.
Intuitively, this is because the execution of some activity affecting one part of
the diagram will not necessarily propagate its effects to the whole diagram.

The rest of the RGDs, i.e., those that are not reachable from the RGD encod-
ing the activity, are removed. They correspond to constraints that can never be
violated when executing and repairing the main activity. Thus, they can be safely
removed from the graph.

2.4 Translating the Dependency-Graph into a BPMN Diagram

Now, we translate the relevant part of the pruned dependency-graph we have
just obtained into a BPMN diagram. The basic idea of the translation is that
constraint-vertices are translated to BPMN gateway events that allow a user
to choose between the available repairs, and any repair-vertex becomes a single
BPMN activity that applies the repair itself. Then, these BPMN activities are
followed either by an OR-gateway which points out to the (BPMN translation
of) constraint-vertices that may have been violated because of the repair applied,
or by an end-event in case none of the constraints can be actually violated.

More precisely, the translation of a constraint-vertex depends on the number
of repair-vertices it has. If there is no repair, the constraint-vertex becomes a
BPMN error event which means that, if we reach the violation of such constraint
in the way captured by the constraint-vertex, there is no possible way to repair it
and an error is thrown. If there is a single repair, the constraint-vertex becomes
the BPMN-activity that applies its unique repair. If there is more than one
potential repair, the constraint-vertex is translated to an event-gateway that
enables the user to choose his preferred way to repair the violation (Fig. 4).



110 X. Oriol et al.

Fig. 4. Algorithm for obtaining the BPMN diagram from the dependency-graph (Java-
like notation used)

The translation of a repair-vertex always produces a unique activity that
applies the changes that repair the constraint. This activity may require user
input to choose the value for the existential variables. In this case, the BPMN
activity is represented as a receive task. As an example, consider the case of
RGD 2 where we have a repair vertex which inserts a new Manager x′ to the
project. In case a user wants to repair this RGD by means of this x′ insertion,
we need the user to explicitly choose a specific value for this x′.

After applying a repair, it may be the case that other constraints are violated.
If this is the case, several constraints may need to be repaired. The OR-gateway
is in charge of checking this. If no violation occurs, the flow continues to the
end event. Otherwise, one (or several) path(s) will be activated. These paths
will lead to the corresponding constraint-vertices so that the violations can be
repaired.

This is guaranteed by the guard conditions in the OR-gateway’s outgoing
flows. That is, an outgoing flow pointing to the (BPMN translation of a) con-
straint vertex c has, as a guard, the logic condition encoded in c. Thus, the
unique way to execute an activity that repairs a violation (or leads to an error



Automatic BPM Extension to Repair Constraint Violations 111

event) is through the guard that first checks the constraint. So, these activities
only take place when the update needs to be applied.

Note that we do not use OR-joins for synchronizing the activities execution.
Intuitively, such synchronization is not necessary since each path execution rep-
resents a different violation repair for some particular values, and such repair
for those particular values is independent from the rest of violations/repairs. We
capture this behaviour using OR-gateways without OR-joins for ease of readabil-
ity. However, if the user prefers to avoid this kind of diagrams, since OR-gateways
are usually synchronized with OR-joins, our method can be adapted to replace
these OR gateways by a combination of XORs and tasks.

The translation process of our approach is formalized in Algorithm 4. This
algorithm has two input parameters: the (relevant part of) the dependency
graph, together with the constraint-vertex representing the BPMN activity that
triggers all the repairing procedure, and thus, behaves as the starting activity.
As output, the algorithm provides the resulting BPMN diagram. It is easy to
see that the algorithm runs in polynomial time w.r.t the input.

In Fig. 5 we show the result of applying the previous algorithm to our running
example. In this BPMN we see that when executing deleteFromProject it may
happen that we satisfy all the constraints, or that we need to delete the worker as
a manager (to satisfy the subset constraint), or that we need to choose between:
(1) deleting him as an employee or (2) including him in a new project (to satisfy
the minimum cardinality constraint stating that each employee works in at least
one project).

deleteFromProject

Insert WorksIn

RGD 4

Delete Employee

ins_WorksIn

del_Employee

del_Manages

RGD 2

/

/

RGD 2

/

RGD 8

RGD 8

\

ins_ManagesRGD 6

RGD 3

ins_WorksInRGD 1

/

RGD 14

del_WorksIn RGD 15

/

RGD 2

/

Fig. 5. BPMN diagram for repairing activity deleteFromProject in case of a violation

Although it does not happen in our running example, we should note that
the BPMN diagram might have cycles. This is the case when a constraint C1 can
be repaired in such a way that violates a constraint C2, and when repairing C2



112 X. Oriol et al.

we might end violating C1 again. These cycles require special attention since, in
the general case, they are a source of an infinite BPM execution.

However, limiting the constraint language to be UML/OCLuniv ensures that,
at runtime, these cycles do not execute forever. That is, at some point, the
guard that checks if one of these activities has to be executed is going to be
false, and thus, the user will not be able to loop forever. Roughly speaking,
this is because, when repairing a UML/OCLuniv constraint violated by some
object a of class A, we only need to create instances of a class different than A.
Moreover, if those other instances violate another constraint, it is guaranteed
that they will create instances of a class different than A and their current
one. In general, when repairing UML/OCLuniv constraints we will never create
instances of already visited classes. Thus, since the number of different classes is
finite, all the constraints will eventually be repaired in a finite number of steps.
A more detailed explanation of the finiteness of the computation, based on the
chase algorithm termination, is given in [20].

2.5 Customization

The obtained BPMN diagram represents all possible ways to repair the various
constraints that can eventually be violated by the activity execution. This is due
to the fact that RGDs capture all possible ways to repair a constraint [22], and
all the RGDs are represented in the BPMN diagram.

However, it might be the case that some of the proposed repairs are not
desirable in the domain of the problem. For instance, in our running example,
a domain expert may consider inappropriate to fire employees just to repair a
constraint. In this context, we want to avoid this kind of repair.

To do this, we need to consider which RGDs result in deleting employees.
These RGDs are no longer appropriate and should be deleted from the depen-
dency graph. In terms of the BPMN diagram, this implies removing any activ-
ities that delete employees and all the subsequent ones. In this case, removing
del Employee causes the deletion of del WorksIn and del Manages since they
cannot be reached from the starting BPMN node. This leads to the final BPMN
diagram shown in Fig. 6.

As a result of the whole process, we have obtained a BPM diagram (referred
to as BPM extension) that, executed after the Delete From Project activity
from Fig. 1, ensures that Delete From Project preserves the consistency of the
data regarding the constraints in Fig. 2. Note that the execution of the original
diagram is paused while the BPM extension executes to repair the constraints.
Finally, this extension could be directly embedded in the original diagram, or be
shown only on-demand, i.e., when some violation occurs, in order to guide the
user to repair the violations due to this activity.



Automatic BPM Extension to Repair Constraint Violations 113

deleteFromProject RGD 4 ins_WorksIn

del_Manages

RGD 2

/

/

RGD 8

/

ins_ManagesRGD 6

RGD 3

ins_WorksInRGD 1

/

RGD 14

/

Fig. 6. Customized BPMN diagram for repairing the deleteFromProject activity

3 Executing BPM Extensions to Repair Violations

We first explain how our generated BPM extension is executed, with special
emphasis on the interpretation of OR-gateways. Then, we use an existing BPM
executor to run our generated extension to show the feasibility of our approach.

3.1 Business Process Extension Execution Semantics

Intuitively, the BPMN language is based on token semantics [16]. Each diagram
node consumes and generates tokens. Roughly, when a process begins its exe-
cution, a token is generated by its start event for each of its outgoing flows.
Each activity activates when a token reaches one of its incoming flows. When
finishing its execution, the activity generates a token for each of its outgoing
flows. When a token reaches an OR-gateway, all the conditions of the gateway’s
outgoing flows are analyzed. The gateway places a token on each outgoing flow
whose condition evaluates to true. If no condition is true, then, a token is placed
in the default flow. For our purposes, this intuitive token semantics suffices, but
it is worth mentioning that they can be formalized by means of petri-nets [7].

The key idea of our approach is that, when running our BPM extension,
each token will correspond to a different constraint violation. Since there are
several constraints that can be violated simultaneously, when executing the BPM
extension, there might be several tokens alive simultaneously.

The generation of these tokens is done by the OR-gateways. An OR-gateway
generates a token for each outgoing flow satisfying the corresponding guard-
condition. Thus, since the guard-conditions evaluate to true when there is a
violation, the OR-gateway will generate, for each detected violation, a new token
in the corresponding outgoing flows. Then, each of these tokens will trigger the
execution of the activity that repairs the violation. After the activity’s execution,
another OR-gateway checks for more violations and generates the corresponding
tokens. If no violation occurs, the OR-gateway generates a token in its default
path, which leads to the end event, since no more repairs are needed.

For instance, when running the BPMN example of Fig. 6, we start with only
one token placed in the activity deleteFromProject. This activity represents the



114 X. Oriol et al.

structural event in the original process model that can lead to the violation of
several constraints, and thus, to the execution of their repairing activities.

Once this initial activity is executed, the token reaches an OR-gateway. This
OR-gateway checks if the employee who has been unassigned from the project
is assigned to another project; if this is not the case, the activity ins WorksIn is
executed. The OR-gateway also checks if the employee was the manager of the
initial project, and if this is the case, the del Manages activity is executed.

The execution of the process terminates when all the tokens have reached
the end events, or when one of them arrives into an error end event. In the first
case, the process terminates because it has repaired all the violations and thus,
the database is valid again. In the second case, the process terminates because
it has found a violation that cannot be repaired2.

It is worth mentioning that, in our approach, we consider that an OR-gateway
can generate several tokens pointing to the same activity. This is the case when
a constraint is violated several times by means of several data. For instance,
consider that the deleteFromProject activity, instead of just deleting one worker
given by parameter from some project, deletes several workers from different
projects (i.e., its input parameter is a list of workers instead of just one). In
this case, we might need to execute the activity del Manages several times (one
time for each worker that was also managing the project), similarly to [4]. In
any case, note that the tokens that need to be spawned by an OR-gateway can
be automatically generated by means of a query into the database that obtains
the data that violates a particular constraint.

For our purposes, we do not commit the database changes established by
the execution of those activities until all the tokens have successfully reached
the end-event. That is, all the updates are delayed to be applied in a unique
transaction at the end of the execution of the repairing-process rather than one
at a time. There are two reasons behind this: (1) to avoid database rollbacks
in case one of the tokens reaches an error event, (2) it is known that applying
the events one at a time loses the information of the previously-applied events,
which might result in changes which contradict past events (e.g., deleting, at the
end of the process, a tuple that was inserted previously to repair some violation)
[25]. In order to be able to check the constraints through database queries, these
delayed changes are temporally stored in some auxiliary database tables.

3.2 Prototype Tool Implementation

In order to show the feasibility of our approach, we have implemented a prototype
tool by means of adapting our previous version of the OpExec Java library [5].
OpExec is a Java library capable of parsing and executing BPMN activities.
Since OpExec is not meant to control the BPM flow neither provide a GUI
(indeed, controlling the BPM flow and bringing a GUI is a different problem [6]),

2 Following the BPMN standard, we use the common behavior of terminating the
whole process instance when we reach an unhandled error event. Other possibilities
are allowed [16].



Automatic BPM Extension to Repair Constraint Violations 115

we have to simulate the BPM flow of the original process programmatically. For
the BPM extensions, however, we have extended OpExec to parse and execute
the condition gateways that checks the current database state, and leads the
execution to the corresponding next activity. This adaptation can be downloaded
at http://www.essi.upc.edu/∼xoriol/opexec/.

Using this library, a BPM-user can effectively repair the violations that take
place when executing its activities. For instance, consider the case of two different
employees working and managing two different projects. In such case, removing
the first employee from his project leads to a constraint violation. Our adapted
library detects this situation, and forces the execution of the activities which
make the data consistent again. That is, it applies the sufficient activities to
remove the first employee from the first project, adds it to the second project,
removes him as a manager from the project, picks the second employee and
makes her manager of the first project, and includes her as a worker from the
first project. A test file to check this behavior is available at the previous website.

4 Related Work

There are several approaches to model artifact-centric BPM, ranging from more
flexible approaches [17] - which use condition-action rules instead of a BPMN,
for instance - to procedural ones, such as ours, which establish a clear order for
task execution [4,11,27]. To the best of our knowledge, there are no previous
works which deal with constraint repair in artifact-centric process models and
which generate an extension of the original model to carry out the repairs.

4.1 Constraint Repair

In the conceptual modeling literature, there are quite a lot of proposals for incre-
mentally evaluating constraints [3,12,26]. Using these techniques, it is possible
to efficiently identify when the execution of some activity leads to a constraint
violation. However, none of them is able to derive the repairing activities that
need to be applied, as we do.

In a different way, some approaches are meant to, given a schema with some
constraints, build operations for inserting/deleting/updating instances in the
schema, and completing the behavior of the operation with additional updates
to satisfy all the constraints [1,23].

However, we argue that these approaches of compiling all the repairing
actions into a single activity are more limited than ours. Indeed, our approach
generates a process, rather than a single activity, and a process can naturally
encode recursive repair actions by means of adding a cycle in the BPMN diagram.
However, the proposals defined in [1,23] lacks recursion, thus, these approaches
might hang because of infinitely unfolding the recursion into a single method.

http://www.essi.upc.edu/~xoriol/opexec/


116 X. Oriol et al.

4.2 Compliance in Business Process Models

There are several approaches to verify and/or validate the correctness of artifact-
centric business process models, such as [4,11,13,14,27]. However, these works
focus on the correctness of the model as a whole and checking if it fulfills certain
desirable properties. Note that this is different from our proposal, where we
detect potential integrity constraint violations and find ways to repair them.

Similarly, [18] applies constraint programming to detect errors in data con-
straints without the need for an information base, taking the data flow through
the process into consideration. However, the approach does not generate repairs
for these constraints.

On the other hand, there are other works dealing with process compliance at
design-time [2,9] and runtime [19], but without considering data. For instance, [2]
focuses on detecting violations of task order execution and proposes repairs. Sim-
ilarly, [9] checks the process’s compliance with several patterns, such as existence,
absence or separation-of-duties, determining the reason behind each violation.
On the other hand, [19] detects constraint violations at runtime and proposes
several strategies to deal with them, but does not generate any repairs.

5 Conclusions

We have proposed an approach to automatically extend a business process model
to include, at compile time, the activities that might repair constraint violations.
We take as a starting point an artifact-centric BPM, represented by a UML
class diagram (with OCL integrity constraints) to model the data; and a BPMN
diagram to model the tasks and their execution order.

As further work, we would like to study the generation of BPM extensions
for full OCL constraints rather than OCLuniv ones, and to analyze the usage
of BPMN reasoning tools to optimize our generated BPMN diagrams. Another
area of interest is the development of heuristics or an aid to help choose the best
repair when there are different repair options available.

References

1. Albert, M., Cabot, J., Gómez, C., Pelechano, V.: Automatic generation of basic
behavior schemas from UML class diagrams. Softw. Syst. Model. 9(1), 47–67 (2010)

2. Awad, A., Smirnov, S., Weske, M.: Resolution of compliance violation in business
process models: a planning-based approach. In: Meersman, R., Dillon, T., Her-
rero, P. (eds.) OTM 2009. LNCS, vol. 5870, pp. 6–23. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05148-7 4

3. Bergmann, G.: Translating OCL to graph patterns. In: Dingel, J., Schulte, W.,
Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp.
670–686. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11653-2 41

4. Borrego, D., Gasca, R.M., López, M.T.G.: Automating correctness verification of
artifact-centric business process models. Inf. Softw. Technol. 62, 187–197 (2015)

https://doi.org/10.1007/978-3-642-05148-7_4
https://doi.org/10.1007/978-3-319-11653-2_41


Automatic BPM Extension to Repair Constraint Violations 117

5. De Giacomo, G., Oriol, X., Estañol, M., Teniente, E.: Linking data and BPMN
processes to achieve executable models. In: Dubois, E., Pohl, K. (eds.) CAiSE
2017. LNCS, vol. 10253, pp. 612–628. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59536-8 38

6. Diaz, E., Panach, J.I., Rueda, S., Pastor, O.: Towards a method to generate GUI
prototypes from BPMN. In: 12th International Conference on Research Challenges
in Information Science (RCIS), pp. 1–12, May 2018

7. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

8. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-662-56509-4

9. Elgammal, A., Turetken, O., van den Heuvel, W.-J., Papazoglou, M.: Root-Cause
analysis of design-time compliance violations on the basis of property patterns. In:
Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol.
6470, pp. 17–31. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
17358-5 2

10. Estañol, M., Marcos, E., Oriol, X., Pérez, F.J., Teniente, E., Vara, J.M.: Validation
of service blueprint models by means of formal simulation techniques. In: Maximi-
lien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601,
pp. 80–95. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 6

11. Estañol, M., Sancho, M., Teniente, E.: Ensuring the semantic correctness of a
BAUML artifact-centric BPM. Inf. Softw. Technol. 93, 147–162 (2018)

12. Falleri, J., Blanc, X., Bendraou, R., da Silva, M.A.A., Teyton, C.: Incremental
inconsistency detection with low memory overhead. Softw. Pract. Exper. 44(5),
621–641 (2014)

13. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Verification of GSM-based artifact-
centric systems by predicate abstraction. In: Barros, A., Grigori, D., Narendra,
N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 253–268. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-0 16

14. Hariri, B.B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification
of relational data-centric dynamic systems with external services. In: PODS 2013,
pp. 163–174. ACM (2013)

15. Hull, R.: Artifact-centric business process models: brief survey of research results
and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332,
pp. 1152–1163. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
88873-4 17

16. ISO: ISO/IEC 19510:2013 Information technology - Object Management Group
Business Process Model and Notation (2013)

17. Leno, V., Dumas, M., Maggi, F.M.: Correlating activation and target conditions
in data-aware declarative process discovery. In: Weske, M., Montali, M., Weber, I.,
vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 176–193. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98648-7 11

18. López, M.T.G., Gasca, R.M., Pérez-Álvarez, J.M.: Compliance validation and diag-
nosis of business data constraints in business processes at runtime. Inf. Syst. 48,
26–43 (2015)

19. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitor-
ing business constraints with linear temporal logic: an approach based on colored
automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 132–147. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23059-2 13

https://doi.org/10.1007/978-3-319-59536-8_38
https://doi.org/10.1007/978-3-319-59536-8_38
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-642-17358-5_2
https://doi.org/10.1007/978-3-642-17358-5_2
https://doi.org/10.1007/978-3-319-69035-3_6
https://doi.org/10.1007/978-3-662-48616-0_16
https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/978-3-319-98648-7_11
https://doi.org/10.1007/978-3-642-23059-2_13
https://doi.org/10.1007/978-3-642-23059-2_13


118 X. Oriol et al.

20. Oriol, X., Teniente, E.: OCLuniv: expressive UML/OCL conceptual schemas for
finite reasoning. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017.
LNCS, vol. 10650, pp. 354–369. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69904-2 28

21. Oriol, X., Teniente, E.: Simplification of UML/OCL schemas for efficient reasoning.
J. Syst. Softw. 128, 130–149 (2017)

22. Oriol, X., Teniente, E., Tort, A.: Computing repairs for constraint violations in
UML/OCL conceptual schemas. Data Knowl. Eng. 99, 39–58 (2015)

23. Pastor-Collado, J.A., Olivé, A.: Supporting transaction design in conceptual mod-
elling of information systems. In: Iivari, J., Lyytinen, K., Rossi, M. (eds.) CAiSE
1995. LNCS, vol. 932, pp. 40–53. Springer, Heidelberg (1995). https://doi.org/10.
1007/3-540-59498-1 236

24. Queralt, A., Teniente, E.: Verification and validation of conceptual schemas with
OCL constraints. ACM Trans. Softw. Eng. Methodol. 21(2), 13:1–13:41 (2012)

25. Teniente, E., Olivé, A.: Updating knowledge bases while maintaining their consis-
tency. VLDB J. 4(2), 193–241 (1995)

26. Uhl, A., Goldschmidt, T., Holzleitner, M.: Using an OCL impact analysis algorithm
for view-based textual modelling. ECEASST 44, 1–20 (2011)

27. Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification
of semantic business process models. Distrib. Parallel Databases 27(3), 271–343
(2010)

28. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-642-28616-2

https://doi.org/10.1007/978-3-319-69904-2_28
https://doi.org/10.1007/978-3-319-69904-2_28
https://doi.org/10.1007/3-540-59498-1_236
https://doi.org/10.1007/3-540-59498-1_236
https://doi.org/10.1007/978-3-642-28616-2


N2TM: A New Node to Trust Matrix Method
for SpamWorker Defense in Crowdsourcing

Environments

Bin Ye, Yan Wang(B), Mehmet Orgun, and Quan Z. Sheng

Macquarie University, Sydney, Australia
bin.ye@students.mq.edu.au,

{yan.wang,mehmet.orgun,michael.sheng}@mq.edu.au

Abstract. To defend against spam workers in crowdsourcing environments, the
existing solutions overlook the fact that a spam worker with guises can easily
bypass the defense. To alleviate this problem, in this paper, we propose a Node
to Trust Matrix method (N2TM) that represents a worker node in a crowdsourc-
ing network as an un-manipulable Worker Trust Matrix (WTM) for identifying the
worker’s identity. In particular, we first present a crowdsourcing trust network con-
sisting of requester nodes, worker nodes, and transaction-based edges. Then, we
construct WTMs for workers based on the trust network. A WTM consists of trust
indicators measuring the extent to which a worker is trusted by different requesters
in different sub-networks. Moreover, we show the un-manipulable property and
the usable property of a WTM that are crucial for identifying a worker’s identity.
Furthermore, we leverage deep learning techniques to predict a worker’s identity
with its WTM as input. Finally, we demonstrate the superior performance of our
proposed N2TM in identifying spam workers with extensive experiments.

Keywords: Crowdsourcing · Trust · Spam worker identification

1 Introduction

Crowdsourcing is a novel problem-solving model that organizes anonymous and scal-
able workers to solve the tasks published by requesters in the form of an open call
[8]. In a crowdsourcing platform, a requester (service demander) publishes a group of
tasks to be available for all the undefined workers (service providers) in the form of an
open call, and then a worker whose answer is approved in a task by the answer approval
mechanism (such as a voting-based mechanism or a verification-based mechanism) will
be rewarded [24]. Due to its cost-effectiveness, crowdsourcing has been widely applied
in various human intelligence tasks, such as tagging images, translation, and predic-
tion. In the meantime, a trust crisis exists in crowdsourcing environments because spam
workers could flood the tasks with junk answers [7,9,22,28]. In particular, spam work-
ers could cheat for rewards by submitting random answers to as many tasks as possible
[21]. In addition, a sufficient number of spam workers can uniformly submit an incorrect
answer to a task, and thus manipulate the incorrect answer to be approved as a correct
answer under the voting-based consensus mechanisms [17]. Moreover, prior studies,
e.g., [20,22], have indicated that spam workers with different cheating strategies (e.g.,
randomly answer, uniformly answer and selectively answer) may co-exist in a task.
c© Springer Nature Switzerland AG 2019

S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 119–134, 2019.
https://doi.org/10.1007/978-3-030-33702-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_10


120 B. Ye et al.

A well-known spam attack was reported in the DARPA Shredder Challenge 2013,
where the team that first completed five jigsaw puzzles would win the prize of US
$50,000. In this attack, spam workers sabotaged the crowdsourcing processes of a team
from the University of California San Diego when the team had reached the second
place [19].

In crowdsourcing environments, spam worker defense has become a top-priority but
it is an extremely challenging problem [7]. The low or even free transaction fee [3] and
the high degree of user anonymity [28] in most crowdsourcing platforms make it easy
for workers to masquerade as “honest” workers via low-cost collusions [1].

In general, a spam worker can possess two types of guises:

– G1 (Manipulated Trust): a spam worker obtains a high answer approval rate that
is widely applied as a trust indicator in crowdsourcing environments, by colluding
with some requesters to manipulate the transaction outcomes in shadow tasks [10].
A shadow task is one whose answer is preset and revealed to the colluding spam
workers beforehand, which ensures the spam workers can succeed in the task.

– G2 (Fake Trust Link): a spam worker colludes with some requesters and workers
who are trusted by some honest workers and requesters [25]. Such a spam worker
can indirectly link himself/herself to honest requesters and then mount attacks in the
tasks published by these honest requesters.

To defend against the spammers in general online environments rather than crowdsourc-
ing environments, such as e-commerce and P2P networks, two categories of trust-aware
defense models have been widely discussed: trust value-based defense models (Cate-
gory 1) and trust feature-based defense models (Category 2). In Category 1, the existing
models commonly suggest that a trust value calculated from a worker’s historical trans-
action records can truly indicate the worker’s reliability in future tasks [7,12,27]. How-
ever, in crowdsourcing environments, these models are vulnerable to the spam workers
who possess manipulated trust values from many “successful” transactions (i.e., guise
G1). In Category 2, several studies have suggested limiting the number of spammers in
general online environments. However, to the best of our knowledge, there is a lack of
studies to effectively identify spam workers in crowdsourcing environments. Though,
in P2P networks, SybilLimit [26] and SybilInfer [5] can constrain the number of spam-
mers with guise G1 by investigating trust network-based features, they cannot precisely
identify a specific worker’s identity. Moreover, in crowdourcing environments, a spam
worker with guise G2 can render these conventional trust feature-based defense models
ineffective.

To address the problem discussed above, in this paper, we propose a novel Node
to Trust Matrix method (N2TM), and combine it with learning algorithms to achieve
effective spam worker identification.

Target Problem. Effective defense against spam workers with both guises G1 and G2
in crowdsourcing environments.

Our Approach. We propose a novel method that represents a Node as a Trust Matrix
(N2TM) for identifying spam worker (see Fig. 1). N2TM firstly represents each worker
as a trust network-based feature set called Worker Trust Matrix (WTM), and then pre-
dicts each worker’s identity by using a deep learning-based model taking its WTM as
input. To the best of our knowledge, in the literature, N2TM is the first proposal to



A Node to Trust Matrix Method for Spam Worker Defense in Crowdsourcing 121

Fig. 1. A Worker Trust Matrix (WTM) encapsulates the global trust network-based features of
the worker and thus is exploited by machine learning algorithms for further prediction.

investigate trust network-based representation for identifying spam workers in crowd-
sourcing environments.

Contributions. (1) We first propose a requester taxonomy and a worker taxonomy.
Then, we formulate a Crowdsourcing Trust Network (CTN) where the requesters and
workers are connected via transaction-based edges with trust values.

(2) We then propose a novel Node as Trust Matrix method (N2TM) that repre-
sents each worker as a novel Worker Trust Matrix (WTM). A worker’s WTM con-
tains the transaction-based trust links of the worker in sub-CTNs starting from different
requesters and thus is a global set of trust network-based features of the worker.

(3) We further illustrate that a WTM possesses the un-manipulable property and the
usable property that are critical for effective spam worker identification.

(4) We apply deep learning techniques for predicting a worker’s identity by taking
the worker’s WTM as input. We demonstrate the effectiveness of our proposed model
in extensive experiments over four datasets.

2 Related Work

2.1 Trust Value-Based Defense in Crowdsourcing

On crowdsourcing platforms, such as Amazon Turk, a worker’s overall answer approval
rate has been commonly used to evaluate his/her trust level [15]. Taking geographi-
cal factors into account, a location-aware trust value-based defense model is proposed
by [13] to assess a worker’s trust level. Furthermore, a sequential performance-based
defense model named H2010e is proposed by [27] to ascertain if a worker is trustworthy.
In addition, a worker’s performance in gold-standard tasks with known answers is used
to evaluate the worker’s reliability in a crowdsourcing data analytics system (CDAS)
proposed in [12]. Moreover, the consistency of each pair of workers in answering tasks
is leveraged to detect random and uniform spam workers by [21]. In [7], based on con-
sistency, the disagreement level of a worker’s answers in past tasks is used to assess
the worker’s trust. Taking contextual factors into account, CrowdTrust [24] calculates
the task type-aware trust and the task reward amount-aware trust for selecting trustwor-
thy workers. CrowdDefense [25] suggests that a worker is trustworthy if the worker’s



122 B. Ye et al.

three trust values calculated from a trust network are all above the averages. However,
the existing trust value-based defense models proposed in crowdsourcing environments
commonly overlook the case in which spam workers with guise G1 can easily bypass
the trust value-based defense.

2.2 Trust Feature-Based Defense

Trust features derived from a trust network have been widely applied for defending
against spammers in P2P networks. In P2P networks, SybilLimit [26] reduces the max-
imum number of permitted spammers in a user network to g ∗w, where g is the number
of attack edges and w is the mixing time of the user network. SybilInfer [5] detects
spammers by directly estimating the minimum-quotient cut between honest networks
and a spam network. Essentially, this method leverages Bayesian inference with the
knowledge of a known honest user to detect spam users. SybilRank [4] infers a user’s
reliability based on the distributed trust scores assigned by verified users to the user.
SybilDefender [23] identifies a user as a spammer if he/she tightly links to a very few
users. The effectiveness of these studies is based on a basic assumption that the number
of attack edges is relatively small. However, this assumption can be hardly supported
in crowdsourcing environments because a spam worker can easily obtain many attack
edges via collusions (i.e., guise G2).

From the perspective of machine learning, Louvain [2] and Infomap [18] leverage
clustering to detect communities in bipartite networks. Deepwalk [16] represents each
node as a unique embedding that contains latent features for further classifying nodes in
a social network. However, these models ignore the fake trust links, i.e., guise G2, and
hence are vulnerable to spam workers who tightly connect with honest communities via
fake trust links.

3 Problem Formulation

3.1 A Requester Taxonomy

Based on requesters’ transaction behaviours, we define three types of requester identities:
(1) Honest Requester: a requester who publishes normal tasks and fairly verifies,

approves, and rewards the answers submitted by workers.
(2) Grey Requester: a requester who publishes normal tasks when he/she is not

colluding with other workers but publishes shadow tasks to assist his/her colluding
workers to obtain a good reputation (i.e., guise G1) and attack edges (i.e., guise G2).

(3) Spam Requester: a requester who only publishes shadow tasks to assist his/her
colluding workers to obtain guises G1 and G2.

3.2 A Worker Taxonomy

Based on workers’ transaction behaviours, we define three types of worker identities:
(1) Honest Worker: a worker who submits answers that are believed by him-

self/herself as the correct answers.



A Node to Trust Matrix Method for Spam Worker Defense in Crowdsourcing 123

(2) Grey Worker: a worker who honestly behaves in some tasks to obtain a good
reputation and trust links to honest requesters but colludes with some spam requesters
and grey requesters in shadow tasks.

(3) Spam Worker: a worker who colludes with spam requesters and grey requesters
in shadow tasks to obtain both a manipulated good reputation (i.e., guise G1) and fake
trust links (i.e., guise G2). Then, a spam worker may follow an arbitrary cheating strat-
egy to submit junk answers in tasks published by honest requesters.

Based on the above discussion, we know that a spam worker generally colludes
with his/her accomplices to obtain a good reputation and fake trust links for further
mounting attacks in the tasks published by honest requesters. However, a spam worker’s
behaviours for obtaining the guises are permanently recorded in a Crowdsourcing Trust
Network (CTN). Below, we discuss the components of constructing a CTN.

3.3 Crowdsourcing Trust Network (CTN)

Direct Trust The answer approval rate has been widely adopted as a trust metric in
crowdsourcing platforms (e.g., Amazon Turk). Thus, we apply the answer approval rate
of worker wj in the tasks published by requester ri to indicate the direct trust dt(ri,wj)

between ri and wj , i.e., dt(ri,wj) =
napv(ri,wj)

nsub(ri,wj)
, 0 ≤ dt(ri,wj) ≤ 1. Here, nsub(ri,wj)

denotes the total number of the answers submitted by wj in the tasks published by ri,
and napv(ri,wj) denotes the number of the approved answers submitted by wj in the
tasks.

Trust Edge. A trust edge connects a requester r and a worker w who directly trust each
other, i.e., dt(r,w) ≥ ε.

Distrust Edge. A distrust edge connects a requester r and a worker w who directly
distrust each other, i.e., dt(r,w) < ε.

In practice, the threshold ε can be set as the value of the average answer approval
rate of honest workers in normal tasks. In this paper, we set ε = 0.9 as it is commonly
applied in Amazon Turk.

Construction of a Crowdsourcing Trust Network (CTN). As a crowdsourcing user
may have the roles of both a requester and a worker, we use two separate nodes to
represent a user’s worker role and requester role, respectively. Based on the direct trust
values between requesters and workers, requesters and workers can be connected via
trust edges or distrust edges to construct a bipartite trust network. Note that, there are
no edges between any two requesters in the trust network because they cannot transact
with each other. Likewise, there are no edges between any two workers in the trust
network. Therefore, one hop in a path in the trust network contains two intermediate
nodes of a worker and a requester, respectively (e.g., r1-w1-r2-w2 in Fig. 2), which is
different from the concept of one hop in social networks. Let R = {ri}|R|

i=1 denote

the set of all the requester nodes, W = {wj}|W |
j=1 denote the set of all the worker nodes,

TE = {tek}|TE|
k=1 denote the set of all the trust edges, and DTE = {dtek}|DTE|

k=1 denote
the set of all the distrust edges.

Then, a crowdsourcing trust network (CTN) can be represented as CTN(R ∪ W,
TE ∪ DTE). The construction of such a trust network only requires the transaction



124 B. Ye et al.

records that are available in most of the existing crowdsourcing platforms, e.g., Amazon
Turk. Thus, technically, it is easy to construct such a trust network in practice.

Note that, a spam worker can obtain a manipulated trust value and fake trust links
via collusions, however, the trust and distrust edges generated during the collusions are
all permanently recorded in the CTN. This critical characteristic is taken into account in
the design of our novel worker trust representation called Worker Trust Matrix (WTM),
which is discussed in the next section.

3.4 Problem Definition

Input: (1) A CTN(R∪W, TE ∪DTE); (2) a small worker set U ⊂ W , and in U the
workers’ identities have been manually verified; and (3) a large worker set V = W −U
where workers’ identities need to be predicted.
Output: The predicted identities of the workers in V .

4 The Node to Trust Matrix (N2TM) Method

In this section, we present the method to represent a Node to a Trust Matrix (N2TM).
As we focus on defending against spam workers, each worker node is represented as a
Worker Trust Matrix (WTM). We then illustrate the critical properties of a WTM for
effectively identifying a worker’s identity.

4.1 Trust and Distrust in Paths

Trustworthy Path. Based on an intuitive trust inference method [6], i.e., a friend’s
friend is a friend, we define a trustworthy path as the one where each pair of directly
connected nodes consists of a requester and a worker who directly trust each other.
Thus, a trustworthy path tpk

(ri,wj)
is a k-hop path that starts from a requester ri and

ends at a worker wj , in which each edge is a trust edge.

Positive Trust Indicator. In a k-hop sub-CTN that starts from requester ri, if there
exist k-hop trustworthy paths ending at worker wj , we calculate the positive trust indi-
cator positrustk(ri,wj)

of wj in the sub-CTN. In particular, a trustworthy path only
contains trust edges, which indicates each pair of directly connected nodes trust each
other. Accordingly, the worker wj is trusted by the requester ri in these trustworthy
paths. As such, we apply the sum of all the direct trust values {dt} in the trustworthy
paths between ri and wj to represent the positrustk(ri,wj)

in Eq. (1):

positrustk(ri,wj) =
∑

tpk(ri,wj)
∈TPk

(ri,wj)

∑

dt∈DT
tpk(ri,wj)

dt, (1)

where, TP k
(ri,wj)

denotes the set of all the k-hop trustworthy paths between ri and

wj , and DT
tpk

(ri,wj) denotes the set of all the direct trust values in a trustworthy path
tpk

(ri,wj)
. Note that, if TP k

(ri,wj)
= ∅, positrustk(ri,wj)

= 0.



A Node to Trust Matrix Method for Spam Worker Defense in Crowdsourcing 125

Untrustworthy Path. Accordingly, following the rule that the friends’ enemy is enemy,
we define an untrustworthy path utpk

(ri,wj)
as a k-hop path that starts from a requester

ri and ends at a worker wj , where each edge is a trust edge except that the one between
the last requester in the path and the worker wj is a distrust edge.

Trust Penalty. In a k-hop sub-CTN starting from requester ri, if there exist k-hop
untrustworthy paths ending at worker wj , we calculate the trust penalty penaltyk

(ri,wj)

of wj in the sub-CTN. In particular, as only the worker wj is connected to a requester
via a distrust edge in each of the untrustworthy paths, wj is distrusted by ri in these
paths. As such, we apply the sum of all the direct trust values dt on the trust edges and
the distrust degrees (1 − dte) on the distrust edges in the untrustworthy paths between
ri and wj to represent penaltyk

(ri,wj)
in Eq. (2):

penaltyk
(ri,wj) =

∑

utpk(ri,wj)
∈UTPk

(ri,wj)

∑

dt∈DT
utpk(ri,wj)

dt+ 1− dte, (2)

where, UTP k
(ri,wj)

denotes the set of all the k-hop untrustworthy paths between ri and

wj , DT
utpk

(ri,wj) denotes the set of all the direct trust values in the trust edges in an
untrustworthy path utpk

(ri,wj)
, and dte denotes the direct trust value on the distrust edge

in utpk
(ri,wj)

. Note that, if UTP k
(ri,wj)

= ∅, penaltyk
(ri,wj)

= 0.

4.2 Construction of a Worker Trust Matrix

Trust Trace. A trust trace trk
(ri,wj)

aggregates both the positive trust indicator and the
trust penalty of worker wj in a k-hop sub-CTN starting from requester ri to measure
the extent to which the worker wj is trusted by the requester ri in the sub-CTN, which
is calculated by Eq. (3):

trk(ri,wj) =
positrustk(ri,wj)

− penaltyk
(ri,wj)∑

tpk∈TPk
ri

∑

dt∈DT tpk

dt
, (3)

where, TP k
ri

denotes the set of all the k-hop trustworthy paths that start from requester
ri and end at any worker. The sum of all direct trust values in TP k

ri
is applied as the

denominator in Eq. (3) as it is the total trust information given by ri in the k-hop sub-
CTN. Essentially, trk

(ri,wj)
leverages the frequencies by which the worker wj appears

in the k-hop trustworthy paths and the k-hop untrustworthy paths that start from the
requester ri for measuring the extent to which the worker wj is trusted by the requester
ri in the k-hop sub-CTN.

Worker Trust Matrix (WTM). Given a target worker wt, we compute the trust traces
between wt and all the requesters in sub-CTNs with different hops to obtain a global
trust feature set for representing the worker, i.e., a Worker Trust Matrix (WTM). For
example, in Fig. 2, we first compute the trust traces of wt in the sub-CTNs that start
from r1 and end with 0 to m (m ≥ 1) hops, i.e., TR(r1,wt) = {tr0(r1,wt)

, tr1(r1,wt)
, ...,

trm
(r1,wt)

}. Here, m is the maximum hop of all the sub-CTNs. Likewise, the trust trace



126 B. Ye et al.

Fig. 2. An example of a WTM for a target worker wt

set TR between wt and each of other requesters can be obtained. Taking each TR
of wt as one column of WTMwt

, we obtain WTMwt
= {TR(r1,wt), TR(r2,wt), ...,

TR(rn,wt)}. WTMwt
contains all the trust relations between wt and all the requesters

in sub-CTNs with different hops, and thus is a global trust feature set of worker wt.
Below, we illustrate that such a global trust feature set also possesses (1) the un-
manipulable property and (2) the usable property that are critical for identifying a
worker’s identity.

4.3 Properties of a Worker Trust Matrix

The Un-manipulable Property of a WTM. We use θw, ρw, and τw to represent the
probabilities by which a worker w can obtain a trust edge to an honest requester, a
grey requester, and a spam requester, respectively. Given a spam worker sw, we have
θsw < ρsw < τsw because sw can easily succeed in a shadow task published by a spam
requester or a grey requester while it is hard for sw to have a junk answer approved
in a normal task published by an honest requester or a grey requester. By contrast,
we have θhw > ρhw > τhw because it is easier for an honest worker hw to succeed
in a normal task than in a shadow task. We know as a fact that it is not possible for
sw to behave as an honest worker in all the transactions to make θsw < ρsw < τsw

become θsw > ρsw > τsw. Therefore, sw cannot manipulate its WTMsw determined
by θsw < ρsw < τsw to be the same as an honest worker’s WTMhw determined
by θhw > ρhw > τhw. Likewise, a grey worker gw with θgw ≤ ρsw ≤ τsw also
cannot manipulate WTMgw to be the same as WTMhw. Therefore, a WTM is un-
manipulable.
The Usable Property of a WTM. Below, we prove the usable property of a WTM.

Theorem 1. Given any honest worker hwi, grey worker gwj , and spam worker swk,
there exists a function φ(·) that satisfies φ(WTMhwi

) �= φ(WTMgwj
), φ(WTMgwj

)
�= φ(WTMswk

), and φ(WTMhwi
) �= φ(WTMswk

).

Proof. Let F , G and S denote the distribution functions of the trust trace sets TRs
between a worker and all the honest requesters HR = {hrl}|HR|

l=1 , all the grey

requesters GR = {grp}|GR|
p=1 , and all the spam requesters SR = {sru}|SR|

u=1 , respec-
tively. Given a worker wt’s WTMwt

, as the values of the trust traces in WTMwt



A Node to Trust Matrix Method for Spam Worker Defense in Crowdsourcing 127

depend on to whom wt links via trust edges, the probabilities θwt
, ρwt

, and τwt
by

which wt can obtain a trust edge to an honest requester, a grey requester, and a spam
requester are the latent parameters of F , G, and S, respectively. Hence, we obtain
that WTMhwi

= {TR(hr,hwi) ∼ F(θhwi
), TR(gr,hwi) ∼ G(ρhwi

), TR(sr,hwi) ∼
S(τhwi

)}, WTMgwj
= {TR(hr,gwj) ∼ F(θgwj

), TR(gr,gwj) ∼ G(ρgwj
), TR(sr,gwj)

∼ S(τgwj
)}, and WTMswk

= {TR(hr,swk) ∼ F(θswk
), TR(gr,swk) ∼ G(ρswk

),
TR(sr,swk) ∼ S(τswk

)}, respectively. As a worker’s identity determines its transac-
tion behaviours, and vice versa, the probabilities by which a worker can obtain a trust
edge to an hr, a gr or an sr satisfy θhwi

> θgwj
> θswk

, ρhwi
< ρgwj

< ρswk
,

and τhwi
< τgwj

< τswk
. Thus, there must exist a function φ(·) that satisfies

φ(WTMhwi
) �= φ(WTMgwj

), φ(WTMgwj
) �= φ(WTMswk

), and φ(WTMhwi
) �=

φ(WTMswk
).

Based on the above inequality relations among φ(WTMhwi
), φ(WTMgwj

), and
φ(WTMswk

) proved in Theorem 1, a worker can be classified into the correct identity
type once knowing the φ. Therefore, we conclude that a WTM contains the usable
property for effectively identifying spam workers.

5 SpamWorker Identification Model

Our proposed model consists of (1) a random walk-based WTM estimation algorithm,
and (2) a convolutional neural network (CNN)-based classifier.

5.1 WTM Estimation Algorithm

Ideally, WTMw∈W can be exactly calculated by traversing all the paths in a CTN.
However, the complexity of a traversal algorithm exponentially increases with the
degree of a node. Thus, we devise a random walk-based algorithm with a lower com-
plexity to estimate WTMs. In particular, in each round of a random walk, we update
the trust traces of all the workers in a randomly searched path. The algorithm ter-
minates when the number of searching rounds exceeds the maximum round number
rodmax or the change of WTMs converges. The algorithm’s worst time complexity
is O(rodmax ∗ hopmax ∗ de), where hopmax is the maximum number of hops in a
searching path, and de is the maximum degree of a node.

5.2 CNN-based Classifier

A WTM contains the latent spatial features because the trust traces in a column in
a WTM derive from the sub-CTNs starting from the same requester. As CNNs are
effective in discovering spatial features [11], we devise a six-layer convolutional net-
work CLnet-6 to learn WTMs for correctly classifying workers with different identities.
Compared to Lnet-5, CLnet-6 contains one more layer after the input layer for standard-
izing WTMs. Probabilistic Classifier. Let WM denote the weight matrix, b denote the
bias vector, WI = {HW,GW,SW} denote the worker identity set, and

⊗
denote the



128 B. Ye et al.

operations in CLnet-6. Given a WTM ′
wk

, the probability that wk ∈ WIi is defined as

a stochastic variable P (Y = WIi|WTM ′
wk

,WM, b) = e
⊗

WTM′
wk

∗WMi+bi

e
∑

j
⊗

WTM′
wk

∗WMj+bj
.

Loss Function. Given WTMwi∈U with workers’ identities, the log-likelihood is cal-
culated as L(W, b,WTMwi∈U ) =

∑|U |
i=1 log (P (Y = WI(wi)|WTMwi

,WM, b)). In
CLnet-6, we adopt the negative log-likelihood as the loss, i.e., l(W, b,WTMwi∈U ) =
−L(W, b,WTMwi∈U ).
Training Operations. (1) Standardization: We normalize each element in WTMwk∈W

by 4:

WTMwk (i, j) =
WTMwk (i, j) + avg(WTM)−min(WTM)

max(WTM) + avg(WTM)−min(WTM)
(4)

where, avg(WTM) denotes the average trust trace values in all the WTMs,
min(WTM) denotes the minimal trust trace value in all the WTMs, and max(WTM)
denotes the maximal trust trace value in all the WTMs.

(2) Convolution: The size of a receptive field of a filter function is set as β ∗ γ.
In particular, for each β ∗ γ area X in a feature map, we calculate an output: o =
tanh(X ∗ WMc + bc), where WEc ∈ Rβ∗γ is weight matrix and bc is bias.

(3) Sub-sampling: Given a feature map, the sub-sampling operation extracts the
sampling information from the map to reduce the computation in the next operations
and also provides the robustness of position. Max-pooling is applied in sub-sampling
because it can effectively reduce the dimensions of intermediate representations [11].
Given a feature map with size m′∗n′, we firstly partition the map into l non-overlapping
regions with size m′

l ∗ n′
l . In each region, the maximum value is selected and then

mapped to the corresponding feature map in the next layer.
(4) Parameter Update: in CLnet-6, we apply the Stochastic Gradient Descent

(SGD) with mini batches to update the parameters because it can effectively reduce
the time consumption. Let lr denote the learning rate, then the parameters are updated
as follows: WE = WE − lr ∗ ∂l

∂WE and b = b − lr ∗ ∂l
∂b .

6 Experiments

6.1 Data Preparation

To evaluate the effectiveness of our model in identifying a worker’s identity, we first
conduct experiments on a CTN constructed from the complete transaction records of
a real-world crowdsourcing processing dataset wiki-RfA1. Furthermore, to evaluate the
effectiveness of our model in identifying spam workers who possess different degrees
of guises G1 and G2, we conduct experiments on three CTNs constructed based on
three semi-synthetic datasets generated from a real-world dataset soc-sign-epinions2.

(1) wiki-RfA: this dataset records the crowdsourcing processes of administrator elec-
tions on wikipedia, where voters (workers) submit votes (answers) in one or more of
the elections for an administrator (a requester). Based on the ground truth of wiki-RfA

1 https://snap.stanford.edu/data/wiki-RfA.html
2 https://snap.stanford.edu/data/soc-sign-epinions.html

https://snap.stanford.edu/data/wiki-RfA.html
https://snap.stanford.edu/data/soc-sign-epinions.html


A Node to Trust Matrix Method for Spam Worker Defense in Crowdsourcing 129

(i.e, the final result after multiple elections), we manually verified the identities of 1,880
workers, and found 1,418 honest workers, 48 grey workers, and 414 spam workers.

(2) soc-sign-epinions 1-3: soc-sign-epinions contains the complete transaction-based
trust relations between reviewers (workers) and review verifiers (requesters) without
spam workers possessing guises G1 and G2. Thus, based on soc-sign-epinions, we gen-
erate three semi-synthetic datasets soc-sign-epinions 1-3 to contain spam workers with
different degrees of guises G1 and G2 and construct their CTNs. In particular, all spam
workers are first granted with high trust values (i.e., guise G1). In addition, the percent-
ages of the fake trust edges (i.e., guise G2) in all the edges of a spam worker are set
as 10%, 30% and 50%, respectively in the three datasets. In each dataset, we randomly
generate workers based on the definition of a grey worker. The percentage of the spam
workers and grey workers in all the workers is commonly set to be less than 10%.

Table 1. The Comparison of different models in identifying workers with different identities

Datasets Models Honest Worker Grey Worker Spam Worker

Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

wiki-RfA Our model 0.9986 0.9831 0.9908 0.9537 0.9952 0.9740 0.9231 1 0.96

Deepwalk 0.7812 0.8504 0.8143 0.2535 0.1956 0.2208 0.1667 0.0590 0.0872

SybilDefender 0.7708 0.1031 0.1819 - - - 0.0313 0.8709 0.0604

H2010e 0.7426 1 0.8599 - - - 0 0 0

AMT 0.7426 1 0.8599 - - - 0 0 0

soc-sign-epinions 1 Our model 1 1 1 0.9459 1 0.9722 1 0.9444 0.9714

Deepwalk 1 0.9970 0.9985 0.4615 0.3529 0.4000 0.4211 0.5714 0.4849

SybilDefender 0.9153 0.0620 0.1161 - - - 0.0370 0.9167 0.0711

H2010e 0.9245 1 0.9608 - - - 0 0 0

AMT 0.9245 1 0.9608 - - - 0 0 0

soc-sign-epinions 2 Our model 1 1 1 0.9079 0.9857 0.9452 0.9859 0.9091 0.9459

Deepwalk 1 0.9907 0.9953 0.68 0.5 0.5763 0.6170 0.8286 0.7073

SybilDefender 0.8704 0.0537 0.1012 - - - 0.0753 0.9481 0.1395

H2010e 0.8559 1 0.9223 - - - 0 0 0

AMT 0.8559 1 0.9223 - - - 0 0 0

soc-sign-epinions 3 Our model 1 1 1 0.6923 0.9643 0.8060 0.9787 0.7931 0.8762

Deepwalk 1 0.9935 0.9968 0.1667 0.067 0.0952 0.6216 0.8846 0.7302

SybilDefender 0.9048 0.0648 0.1209 - - - 0.0598 0.9310 0.1124

H2010e 0.9104 1 0.9531 - - - 0 0 0

AMT 0.9104 1 0.9531 - - - 0 0 0

6.2 Compared Models

To evaluate the effectiveness of our proposed trust feature-based model in defending
against spam workers, we first compare our model with two representative trust value-
based defense models (i.e., AMT and H2010e). In the trust feature-based defense mod-
els, there is a lack of studies in crowdsourcing environments. Thus, we compare our
model with two promising models (i.e., SybilDefender [23] and Deepwalk [16]) that
can be adapted to crowdsourcing. In this paper, we do not consider some models with
strict synthetic conditions that cannot be fairly compared with our model without these
settings, e.g., CrowdDefense [25] that presets all requesters’ reputations and a group of
trustworthy requesters.



130 B. Ye et al.

All of the above models have been reviewed in the Related Work section.
AMT: a model applied in Amazon Turk, which uses the overall answer approval

rate to judge if a worker is trustworthy [15].
H2010e: a model that leverages a worker’s sequential performance for differentiat-

ing between spam workers and honest workers [27].
SybilDefender: a model that investigates the frequently appearing nodes in the ran-

dom walks starting from trust seeds for identifying spammers [23].
Deepwalk: a model that leverages SkipGram [14] to learn latent representations of

nodes from a social network for classification [16].
Moreover, in order to find out whether WTMs is a promising representation for

learning algorithms to identify spam workers. In addition to our proposed CLnet-6, we
also apply two representative learning algorithms, i.e., Logistic Regression and Multi-
ple Perceptron on our proposed WTM. The classic SVMs inherently perform a binary
classification, thus, we do not directly apply them to our problem with three types of
worker identities.

6.3 Parameter and Measure Settings

In all the experiments, 2-fold cross validation is used. In the training of CLnet-6, the
batch size is set as 5% of the total number of training samples, and the number of two
feature maps in convolutional layers are set as 20 and 50, respectively. The maximum
number of training epochs is set as 150. All the experiments are implemented by using
Theano in a Ubuntu 16.04.1 system with 16 GB RAM. To measure the effectiveness of
each model, we calculate the precision, the recall and the F-measure values.

6.4 Experimental Results

Result 1-1 (Effectiveness Comparison in wiki-RfA). First, our model with WTMs as
input is the best one in identifying honest workers. Our model delivers the highest F-
measure value of 0.9908 which is 15.22% higher than the best result delivered by the
comparison models. Interestingly, all the four comparison models deliver satisfactory
precision values in identifying honest workers (see Table 1). Regarding the effective-
ness in identifying grey workers, our model possesses the highest F-measure value of
0.974, which is higher than that of the second best model Deepwalk by 341.12%. Most
importantly, our model performs best in identifying spam workers in terms of both pre-
cision and recall. The precision value and the recall value of our model are 0.9321 and
1, respectively, which are about 4.5 times and 14.5 times higher than the best results
delivered by all the four compared models.

Result 1–2 (Effectiveness Comparison in soc-sign-epinions 1-3). When the spam
workers possess different degrees of guises G1 and G2, i.e., the percentage of the fake
trust edges in all the edges of a spam worker increases from 10% to 50% with a step
of 20%, our model maintains the highest F-measure values in identifying all types of
workers (see Table 1). Regarding the effectiveness in identifying grey workers in soc-
sign-epinions 1-3, our model possesses the highest F-measure values. On average, the
F-measure value of our model in identifying grey workers is 0.9078, improving the best



A Node to Trust Matrix Method for Spam Worker Defense in Crowdsourcing 131

result delivered by all the four compared models by 154.14%. Most importantly, regard-
ing the effectiveness in identifying spam workers with different degrees of guises G1
and G2 in the three datasets, the F-measure values of our model are as high as 0.9714,
0.9459, and 0.8762, respectively, which are 100.33%, 33.73%, and 19.99% higher than
those of the second best model Deepwalk.

Analysis: (1) In the wiki-RfA dataset, the four compared models cannot effectively iden-
tify spam workers, which demonstrates that spam workers in real-world crowdsourcing
environments may possess guises G1 and G2 and thus can bypass the general defense
models. (2) The superior performance of our model on both wiki-RfA and soc-sign-
epinions 1-3 datasets results from the fact that WTM is un-manipulable and contains
the usable trust network-based features for identifying workers’ identities.

Result 2 (Comparison of Different Learning Algorithms with WTMs as Input):
Figures 3(a)–(d) depict the test errors of different learning algorithms that all take
WTMs as input in 200 epoches of training. As Stochastic Gradient Descent (SGD)
training is applied, we can see some fluctuations at the early stages of training. In
Figs. 3(a)–(d), the lowest test errors are always delivered by the CLnet-6 over all the
four datasets among the 200 epoches. Though the Logistic Regression and the Multi-
ple Perceptron converge to the satisfied errors, the minimal errors achieved by CLnet-6
are 0.0138, 0.0021, 0.0078, and 0.0135, which are still 84.15%, 66.67%, 43.98%, and
13.33% lower than the minimum test errors delivered by the Logistic Regression and
Multiple Perceptron, respectively.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Number of Epoches

Te
st

 E
rr

or

WTM+Multiple Perceptron
WTM+Logistic Regression
WTM+CLnet−6

(a) wiki-RfA

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

The Number of Epoches

Te
st

 E
rr

or

WTM+Multiple Perceptron
WTM+Logistic Regression
WTM+CLnet−6

(b) soc-sign-epinions 1

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

The Number of Epoches

Te
st

 E
rr

or

WTM+Multiple Perceptron
WTM+Logistic Regression
WTM+CLnet−6

(c) soc-sign-epinions 2

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

The Number of Epoches

Te
st

 E
rr

or

WTM+Multiple Perceptron
WTM+Logistic Regression
WTM+CLnet−6

(d) soc-sign-epinions 3

Fig. 3. The Comparison of test errors of different learning algorithms with WTMs as input



132 B. Ye et al.

Analysis: (1) All the three learning algorithms converge to the satisfied testing errors
which shows that WTM is a type of effective representations containing usable trust
features for identifying a worker’s identity. (2) A WTM contains trust traces derived
from the sub-CTNs starting from the same requester. Thus, it possesses the latent spatial
features that enable our proposed CNN-based CLnet-6 outperform other two classic
learning algorithms.

7 Conclusion

In this paper, we have proposed a novel Node to Trust Matrix (N2TM) method which
generated input for the proposed learning algorithm CLnet-6 to effectively predict a
worker’s identity. The experiments have demonstrated the superior performance of our
model in identifying spam workers over several state-of-the-art methods. The perfor-
mance of our supervised learning-based model still highly depends on the training data
containing ground truth, therefore we plan to extend our model with unsupervised learn-
ing techniques to identify both spam workers and spam requesters.

References

1. Allahbakhsh, M., Ignjatovic, A., Benatallah, B., Beheshti, S., Bertino, E., Foo, N.: Rep-
utation management in crowdsourcing systems. In: Proceeding of the 2012 International
Conference on Collaborative Computing: Networking, Applications and Worksharing, pp.
664–671 (2012). https://doi.org/10.4108/icst.collaboratecom.2012.250499

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities
in large networks. J. Stat. Mech. Theory Exp. 2008(10), 10008 (2008)

3. Callison-Burch, C., Dredze, M.: Creating speech and language data with Amazon’s mechan-
ical turk. In: Proceedings of the 2010 Workshop on Creating Speech and Language Data with
Amazon’s Mechanical Turk, Los Angeles, USA, pp. 1–12 (2010). https://aclanthology.info/
papers/W10-0701/w10-0701

4. Cao, Q., Sirivianos, M., Yang, X., Pregueiro, T.: Aiding the detection of fake accounts in
large scale social online services. In: Proceedings of the 2012 USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA, pp. 197–210
(2012), https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/cao

5. Danezis, G., Mittal, P.: Sybilinfer: Detecting sybil nodes using social networks. In: Proceed-
ings of the 2009 Network and Distributed System Security Symposium, NDSS, San Diego,
California, USA (2009). http://www.isoc.org/isoc/conferences/ndss/09/pdf/06.pdf

6. Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust. In: Pro-
ceedings of the 13th International Conference on World Wide Web, pp. 403–412. ACM
(2004)

7. Jagabathula, S., Subramanian, L., Venkataraman, A.: Reputation-based worker filtering in
crowdsourcing. In: Proceeding of the 2014 Annual Conference on Neural Information Pro-
cessing Systems, Montreal, Quebec, Canada, pp. 2492–2500 (2014). http://papers.nips.cc/
paper/5393-reputation-based-worker-filtering-in-crowdsourcing

8. Jeff, H.: The rise of crowdsourcing. Wired Mag. 14(6), 1–4 (2006)

https://doi.org/10.4108/icst.collaboratecom.2012.250499
https://aclanthology.info/papers/W10-0701/w10-0701
https://aclanthology.info/papers/W10-0701/w10-0701
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/cao
http://www.isoc.org/isoc/conferences/ndss/09/pdf/06.pdf
http://papers.nips.cc/paper/5393-reputation-based-worker-filtering-in-crowdsourcing
http://papers.nips.cc/paper/5393-reputation-based-worker-filtering-in-crowdsourcing


A Node to Trust Matrix Method for Spam Worker Defense in Crowdsourcing 133

9. Karger, D.R., Oh, S., Shah, D.: Iterative learning for reliable crowdsourcing systems. In:
Proceeding of the 2011 Annual Conference on Neural Information Processing Systems,
Granada, Spain, pp. 1953–1961 (2011). http://papers.nips.cc/paper/4396-iterative-learning-
for-reliable-crowdsourcing-systems

10. KhudaBukhsh, A.R., Carbonell, J.G., Jansen, P.J.: Detecting non-adversarial collusion in
crowdsourcing. In: Proceedings of the 2014 Second AAAI Conference on Human Computa-
tion and Crowdsourcing, HCOMP, Pittsburgh, Pennsylvania, USA (2014). http://www.aaai.
org/ocs/index.php/HCOMP/HCOMP14/paper/view/8967

11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
12. Liu, X., Lu, M., Ooi, B.C., Shen, Y., Wu, S., Zhang, M.: Cdas: A crowdsourc-

ing data analytics system. PVLDB 5(10), 1040–1051 (2012). http://vldb.org/pvldb/vol5/
p1040xuanliuvldb2012.pdf

13. Mashhadi, A.J., Capra, L.: Quality control for real-time ubiquitous crowdsourcing. In: Pro-
ceedings of the 2011 International Workshop on Ubiquitous Crowdsouring, pp. 5–8. ACM
(2011)

14. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space. CoRR abs/1301.3781 (2013). http://arxiv.org/abs/1301.3781

15. Peer, E., Vosgerau, J., Acquisti, A.: Reputation as a sufficient condition for data quality on
Amazon mechanical turk. Behav. Res. Methods 46(4), 1023–1031 (2014)

16. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In:
The Proceeding of 2014 ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2014, New York, NY, USA, pp. 701–710 (2014). https://doi.org/10.
1145/2623330.2623732

17. Raykar, V.C., Yu, S.: Eliminating spammers and ranking annotators for crowdsourced
labeling tasks. J. Mach. Learn. Res. 13, 491–518 (2012). http://dl.acm.org/citation.cfm?
id=2188401

18. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal commu-
nity structure. Natl. Acad. Sci. 105(4), 1118–1123 (2008)

19. Stefanovitch, N., Alshamsi, A., Cebrian, M., Rahwan, I.: Error and attack tolerance of col-
lective problem solving: the darpa shredder challenge. EPJ Data Sci. 3(1), 13 (2014)

20. Tran, D.N., Min, B., Li, J., Subramanian, L.: Sybil-resilient online content voting. In: Pro-
ceedings of the 2009 USENIX Symposium on NSDI, Boston, MA, USA, pp. 15–28 (2009).
http://www.usenix.org/events/nsdi09/tech/full papers/tran/tran.pdf

21. Vuurens, J.B.P., de Vries, A.P.: Obtaining high-quality relevance judgments using crowd-
sourcing. IEEE Internet Comput. 16(5), 20–27 (2012). https://doi.org/10.1109/MIC.2012.71

22. Vuurens, J.B., de Vries, A.P., Eickhoff, C.: How much spam can you take? An analysis of
crowdsourcing results to increase accuracy. In: ACM SIGIR Workshop on Crowdsourcing
for Information Retrieval, CIR11, pp. 21–26 (2011)

23. Wei, W., Xu, F., Tan, C.C., Li, Q.: Sybildefender: a defense mechanism forsybil attacks in
large social networks. IEEE Trans. Parallel Distrib. Syst. 24(12), 2492–2502 (2013). https://
doi.org/10.1109/TPDS.2013.9

24. Ye, B., Wang, Y., Liu, L.: Crowd trust: a context-aware trust model for worker selection in
crowdsourcing environments. In: Proceeding of the 2015 IEEE International Conference on
Web Services, ICWS 2015, New York, NY, USA, pp. 121–128 (2015). https://doi.org/10.
1109/ICWS.2015.26

25. Ye, B., Wang, Y., Liu, L.: Crowddefense: a trust vector-based threat defense model in crowd-
sourcing environments. In: Proceeding of the 2017 IEEE International Conference on Web
Services, ICWS 2017, Honolulu, HI, USA, pp. 245–252 (2017). https://doi.org/10.1109/
ICWS.2017.39

http://papers.nips.cc/paper/4396-iterative-learning-for-reliable-crowdsourcing-systems
http://papers.nips.cc/paper/4396-iterative-learning-for-reliable-crowdsourcing-systems
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP14/paper/view/8967
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP14/paper/view/8967
http://vldb.org/pvldb/vol5/p1040xuanliuvldb2012.pdf
http://vldb.org/pvldb/vol5/p1040xuanliuvldb2012.pdf
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
http://dl.acm.org/citation.cfm?id=2188401
http://dl.acm.org/citation.cfm?id=2188401
http://www.usenix.org/events/nsdi09/tech/full_papers/tran/tran.pdf
https://doi.org/10.1109/MIC.2012.71
https://doi.org/10.1109/TPDS.2013.9
https://doi.org/10.1109/TPDS.2013.9
https://doi.org/10.1109/ICWS.2015.26
https://doi.org/10.1109/ICWS.2015.26
https://doi.org/10.1109/ICWS.2017.39
https://doi.org/10.1109/ICWS.2017.39


134 B. Ye et al.

26. Yu, H., Gibbons, P.B., Kaminsky, M., Xiao, F.: Sybillimit: a near-optimal social network
defense against sybil attacks. IEEE/ACM Trans. Netw. 18(3), 885–898 (2010). https://doi.
org/10.1109/TNET.2009.2034047

27. Yu, H., Shen, Z., Miao, C., An, B.: Challenges and opportunities for trust management in
crowdsourcing. In: Proceeding of the 2012 IEEE/WIC/ACM International Conferences on
Intelligent Agent Technology, IAT 2012, Macau, China, pp. 486–493 (2012). https://doi.org/
10.1109/WI-IAT.2012.104

28. Yuen, M., King, I., Leung, K.: A survey of crowdsourcing systems. In: 2011 IEEE Confer-
ence on Privacy, Security, Risk and Trust (PASSAT) and on Social Computing (SocialCom),
Boston, MA, USA, pp. 766–773 (2011). https://doi.org/10.1109/PASSAT/SocialCom.2011.
203

https://doi.org/10.1109/TNET.2009.2034047
https://doi.org/10.1109/TNET.2009.2034047
https://doi.org/10.1109/WI-IAT.2012.104
https://doi.org/10.1109/WI-IAT.2012.104
https://doi.org/10.1109/PASSAT/SocialCom. 2011.203
https://doi.org/10.1109/PASSAT/SocialCom. 2011.203


QoS Value Prediction Using
a Combination of Filtering Method
and Neural Network Regression

Soumi Chattopadhyay1(B) and Ansuman Banerjee2

1 Indian Institute of Information Technology, Guwahati, India
soumi61@gmail.com

2 Indian Statistical Institute, Kolkata, India

Abstract. With increasing demand and adoption of web services in the
world wide web, selecting an appropriate web service for recommendation
is becoming a challenging problem to address today. The Quality of Service
(QoS) parameters, which essentially represent the performance of a web
service, play a crucial role in web service selection. However, obtaining the
exact value of a QoS parameter of service before its execution is impossible,
due to the variation of the QoS parameter across time and users. Therefore,
predicting the value of a QoS parameter has attracted significant research
attention. In this paper, we consider the QoS prediction problem and pro-
pose a novel solution by leveraging the past information of service invoca-
tions. Our proposal, on one hand, is a combination of collaborative filtering
and neural network-based regression model. Our filtering approach, on the
other hand, is a coalition of the user-intensive and service-intensive mod-
els. In the first step of our approach, we generate a set of similar users on a
set of similar services. We then employ a neural network-based regression
module to predict the QoS value of a target service for a target user. The
experiments are conducted on theWS-DREAMpublic benchmarkdataset.
Experimental results show the superiority of our method over state-of-the-
art approaches.

1 Introduction

With the proliferation of emerging technologies in the era of Internet-of-Things
(IoT), the number of web services is increasing day by day. The existence of a
large number of competing, functionally equivalent web services in world wide
web, makes the problem of recommending an appropriate service for a specific
task, quite challenging in recent times. A number of different factors may actually
influence the process of recommendation [4,19,20]. The QoS parameter (e.g.,
response time, throughput, reliability, availability) being the representative of
the performance of a web service is one of the key factors that may have an
impact on service recommendation. However, the value of a QoS parameter of
a web service varies across time and users. Therefore, obtaining the exact QoS
that a user will witness during invocation is a difficult task. Prediction plays an
important role in this context to obtain a close enough approximate QoS value

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 135–150, 2019.
https://doi.org/10.1007/978-3-030-33702-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_11


136 S. Chattopadhyay and A. Banerjee

for recommendation. Quite evidently, the task of prediction is recognized as one
of the fundamental research challenges in the domain of services computing.
In this paper, we address the problem of predicting the QoS value of a service for
a given user by leveraging the past user-service QoS invocation profiles consisting
of the QoS values of a set of services across different users. A significant number
of research articles exist in literature which deal with this problem. Collaborative
filtering [3,15] is one of the most popular methods adopted in this domain to
predict the missing value. The collaborative filtering technique is classified into
two categories: memory-based and model-based. The memory-based collabora-
tive filtering comprises the computation of either the set of similar users [3] or
the set of similar services [14] or the combination of them [25] followed by the
computation of average QoS values and the computation of the deviation migra-
tion. However, these approaches suffer from the problem of the sparsity of the
user-service invocation matrix. Therefore, model-based collaborative filtering is
used which can deal with the sparsity problem. Matrix factorization [9,10,23]
is a class of model-based collaborative filtering technique used for this problem.
Though the contemporary approaches are able to predict the missing QoS value
of a service for a target user, however, the prediction accuracy still is not quite
satisfactory. Therefore, there is a scope for improving the prediction accuracy.

In this paper, we propose a new approach for predicting the QoS value of
a service for a target user. Our method combines two primary techniques, i.e.,
collaborative filtering with a regression method, to come up with a solution.
We first use the collaborative filtering technique to filter the set of users and
services. Our filtering method is again a combination of the user-intensive and
service-intensive filtering models. In user-intensive (service-intensive) filtering,
we first find a set of similar users (services) from the given user-service invoca-
tion profile. We then find a set of similar services (users) from the user-service
invocation profile corresponding to the set of users (services) obtained earlier.
Once the filtering is done, we combine the results for further processing. Instead
of computing the average QoS value and the deviation migration as done in the
collaborative filtering approach, in our final step, we employ a neural network-
based regression module to predict the QoS value of a service for a target user.
We have shown the significance of each step of our proposal experimentally.

We have implemented our proposed framework and tested the performance
of our approach on a public benchmark dataset, called WS-DREAM [24]. We
have compared our method with state-of-the-art approaches. The experimental
results show that our method achieves better performance in terms of accuracy
as compared to others.

The contributions of this paper are summarized below:
(i) We propose a new approach for QoS prediction. On one side, our approach

leverages the principle of collaborative filtering. On the other side, our app-
roach takes advantage of the power of a neural network-based regression
method.

(ii) We propose a filtering method, which is a combination of user-intensive and
service-intensive models.

(iii) To find the set of similar users (and services), we propose a method based
on unsupervised learning.



QoS Value Prediction Using a Combination of Filtering Method 137

(iv) We have implemented our framework. A rigorous experiment has been con-
ducted on the WS-DREAM dataset to establish our findings. The exper-
imental results demonstrate that our method is more efficient in terms of
prediction accuracy as compared to its contemporary approaches.

2 Related Work

A number of work [2,5,12,13,17] has been carried out in literature to address
the problem of QoS value prediction. Collaborative filtering [15,16,21] technique
is one of the key techniques used for the prediction. The collaborative filtering
approach can be of two types: memory-based and model-based. The memory-
based collaborative filtering approach uses the user-service invocation profile to
find the set of similar users or services. Depending on the similarity finding
method, the memory based collaborative filtering is again classified into two
categories: user-intensive and service-intensive. In the user-intensive collabora-
tive filtering method [3], a set of users similar to the target user is computed,
while in the service-intensive filtering method [14], a set of services similar to the
target service is computed. There are some research works [22,25] in literature,
which combine both the user-intensive and service-intensive filtering techniques
to obtain the predicted value. The main disadvantage of this approach is that the
prediction accuracy decreases as data gets sparse. One possible solution to this
problem is to employ model-based collaborative filtering. One such approach is
matrix factorization [9,10,20,23], which is widely used to predict the QoS value
of a service. In matrix factorization, the user-service QoS invocation matrix is
decomposed into the product of two lower-dimensional rectangular matrices to
improve the robustness and accuracy of the memory-based approach.

Although state-of-the-art approaches can predict the missing QoS values,
however, they fail to achieve satisfactory prediction accuracy. Therefore, in this
paper, we propose a novel approach to improve the prediction accuracy.

3 Overview and Problem Formulation

In this section, we formalize our problem statement. We begin with defining two
terminologies as follows.

Definition 1 (QoS Invocation Log). A QoS invocation log is defined as a
3-tuple (ui, sj , qi,j), where ui is a user, sj is a web service and qi,j denotes the
value of a given QoS parameter q when the user ui invoked the service sj. �

Once a user invokes a service, the corresponding invocation log is recorded.
The QoS invocation logs are stored in the form of a matrix. We now define the
concept of a QoS invocation log matrix.

Definition 2 (QoS Invocation Log Matrix). The QoS invocation log matrix
Q is a matrix with dimension n×k, where n is the number of users and k is the
number of web services. Each entry of the matrix Q(i, j) represents qi,j. �



138 S. Chattopadhyay and A. Banerjee

QoS Invocation Log

Historical
Information

Target user, Target service

Predicted QoS value
for the target user and the target service

Get similar set of users
on a similar set of services

based regression

Prediction
using neural network

Get similar set of users

Get similar set of services

Get similar set of services

Get similar set of users

User-intensive filtering

Service-intensive filtering

Fig. 1. Our proposed framework

Example 1. Consider U = {u1, u2, u3, u4, u5, u6} be a set of 6 users and S =
{s1, s2, s3, s4, s5, s6} be a set of 6 web services. Table 1 represents the QoS invo-
cation log matrix Q for the set of users U and the set of services S. Q(i, j)
represents the value of the response time (in millisecond) of sj ∈ S during the
invocation of sj by ui ∈ U . Our objective, here, is to predict the value of the QoS
parameter of a service for a user, where the user has never invoked the service
in past. For example, here, we want to predict the value of q1,3, which is marked
by ? symbol.

Table 1. Example of QoS invocation log matrix

S
U s1 s2 s3 s4 s5 s6

u1 0.25 0.3 0 ? 0.301 0 0.01

u2 0.25 0.33 0.32 0.322 0.1 0

u3 0.22 0.31 0.29 0 0.22 0.01

u4 0 0 0.31 0.311 0.4 0.15

u5 0.8 0 0 0.15 0.7 0.99

u6 0 0 0 0.1 0 0.9

It may be noted that each entry of this matrix essentially represents a QoS
invocation log. For example, consider the colored cell, which represents the QoS
invocation log (u3, s3, 0.29), i.e., the value of the response time of s3 is 0.29
during the invocation of s3 by u3. �

It may be noted that if a user ui has never invoked a service sj , the cor-
responding entry in the QoS invocation log is (ui, sj , 0). In other words, if
Q(i, j) = 0, this implies the user ui has never invoked the service sj . We now
formulate our problem of QoS prediction. We are given the following:



QoS Value Prediction Using a Combination of Filtering Method 139

– A set of users U = {u1, u2, . . . , un}.
– A set of web services S = {s1, s2, . . . , sk}.
– For each user ui, a set of invoked services Si ⊆ S.
– For each service si, a set of users that invoked si, U i ⊆ U .
– The QoS invocation log matrix Q for a given QoS parameter q.
– A target user ux and a target web service sy.

The objective of this problem is to predict the value of qx,y. In the next section,
we demonstrate our solution methodology in detail.

4 Detailed Methodology

Figure 1 illustrates the framework proposed in this paper. Our framework con-
sists of 4 basic modules: (a) a user-intensive filtering module, (b) a service-
intensive filtering module, (c) a module for combining the results obtained from
the previous steps and (d) a neural network based regression module. Each of
the user-intensive and the service-intensive filtering modules again consist of
two submodules. Given a target user ux and a target service sy, in user intensive
module, we first generate a set of users similar to ux, say USIM(ux). In the next
stage, we find a set of services similar to sy on USIM(ux), say SSIM(ux, sy).
Similarly, in the service-intensive filtering module, we first generate a set of ser-
vices similar to sy, say SSIM(sy), followed by a set of users similar to ux on
SSIM(sy), say USIM(sy, ux). Once we generate, USIM(ux), SSIM(ux, sy),
SSIM(sy) and USIM(sy, ux), in our third module, we combine all of them to
generate our final user-service QoS invocation log matrix QSIM . In the final mod-
ule, we employ a neural network based regression method on QSIM to predict
the value of qx,y. In the following subsections, we discuss each of these modules.

4.1 User-Intensive Filtering

This is the first module of our framework. In this module, we first find a set
of users similar to the target user and then find a set of services similar to the
target service on the previously computed user-set. We now discuss these two
steps in detail.

Find Similar Users. Given a target user ux, the objective of this step is to
find a set of users similar to ux. Since we do not have any contextual information
about a user, the similarity between two users ui and uj is calculated from their
service-invocation profiles. The key factors that are responsible for measuring
the similarity between two users are enlisted below:

(i) The set of web services invoked by either the user ui or the user uj , i.e.,
(Si ∪ Sj).

(ii) The set of common services invoked by the user ui and the user uj , i.e.,
(Si ∩ Sj).



140 S. Chattopadhyay and A. Banerjee

(iii) The correlation among the QoS values of the services in (Si ∩ Sj).

Cosine similarity measure [3] is one such measure which takes all the above
factors into account. We now define cosine similarity between two users.

Definition 3 (User Cosine Similarity SIMCS(ui, uj)). The cosine similar-
ity between two users ui and uj is defined as follows:

SIMCS(ui, uj) =

∑

sk∈Si,j

qi,k qj,k

√ ∑

sk∈Si

q2i,k

√ ∑

sk∈Sj

q2j,k

(1)

Where Si,j = Si ∩ Sj. �

It may be noted that the numerator of the above expression is calculated on the
set of common services invoked by ui and uj , while the denominator is calculated
on the individual service invocation profiles of ui and uj . The overall expression
essentially measures the QoS similarity between two users. Therefore, altogether
the cosine similarity measure takes care of all the factors discussed above to
compute the similarity between two users.

Given a target user ux, we now discuss our algorithm to find the set of users
similar to ux. Algorithms 1 and 2 demonstrate our method of finding the similar
users.

Algorithm 1. Find Similar Set of Users
1: Input = U , S, Q, ux

2: Output = USIM(ux)
3: for each ui and uj ∈ U do
4: Calculate SIMCS(ui, uj) and store it in a matrix called CosineUser(i, j);
5: end for
6: USIM(ux) = ClusterUsers(CosineUser, t);
7: return USIM(ux);

In the first step of Algorithm 1, we compute the similarity between each pair
of users ui and uj in U using cosine similarity measure as defined in Definition
3. It may be noted, the above definition is commutative, i.e., SIMCS(ui, uj) =
SIMCS(uj , ui). We then perform a clustering to find the set of users similar to
ux. Our proposed clustering algorithm, i.e., Algorithm 2, is a variant of the classi-
cal DBSCAN algorithm [8]. The clustering method takes a threshold parameter
t as an input. This threshold is a tunable parameter, which is used to decide
whether two users are similar. If the similarity measure between ui ∈ U and ux

is more than t, we consider them as similar users and add ui in USIM(ux).
Here, USIM(ux) represents the set of users similar to ux. The transitive simi-
larity between users is also considered in this algorithm. If a user ui is similar to
ux and another user uj is similar to ui, we then add uj to USIM(ux), since uj is
transitively similar to ux. The main motivation behind considering the transitive
similarity between users is as follows. The similarity between two users ui and



QoS Value Prediction Using a Combination of Filtering Method 141

uj is highly dependent on the set of common services they invoked. If ui and
uj do not invoke any common service, the similarity measure between ui and uj

becomes 0. However, it may so happen uj is not similar to ux, because of less
number of common service invocations. Again uj is highly similar to uk, which
is similar to ux. In that case, we should consider uj as well.

Algorithm 2. ClusterUsers
1: Input = CosineUser, t
2: Output = USIM(ux)
3: Add ux in USIM(ux);
4: repeat
5: for each new ui ∈ USIM(ux) not considered earlier do
6: for each uj ∈ U do
7: if USIMCS(ui, uj) ≥ t then
8: Add uj in USIM(ux), if not already added;
9: end if
10: end for
11: end for
12: until no new user is added in USIM(ux);
13: return USIM(ux);

Example 2 Consider Example 1, where we want to predict the value of q1,3.
Table 2 shows cosine similarities between each pair of users in U .

Table 2. Example of finding similar users in user-intensive filtering

U
U u1 u2 u3 u4 u5 u6

u1 1 0.84 0.578 0.31 0.35 0.08

u2 1 0.83 0.62 0.35 0.06

u3 1 0.56 0.44 0.02

u4 1 0.53 0.3

u5 1 0.69

u6 1

Consider the value of t = 0.6. Initially, USIM(u1) contains only u1. Using
the clustering algorithm discussed above, u2 is added in USIM(u1), since
SIMCS(u1, u2) = 0.84 > 0.6. The similarity between u2 and other users are
checked further. Depending on the similarity measures, u3 and u4 are added
further in USIM(u1). Therefore, USIM(u1) = {u1, u2, u3, u4}. �

In the next step of user-intensive filtering, we deal with USIM(ux) instead of
U , where USIM(ux) ⊆ U . Similarly, instead of dealing with the entire QoS
invocation log matrix, we now consider Qu. Qu is a sub-matrix of Q, containing
the rows for the users in USIM(ux).



142 S. Chattopadhyay and A. Banerjee

Find Similar Services. This is the second step of the user-intensive filtering
module. Given a target service sy, the objective of this step is to remove the set
of services dissimilar to sy. The similarity between two services si and sj can be
inferred from the following information:

1. The set of common users who invoked si and sj , i.e., (U i ∩ Uj).
2. The correlation among the QoS values of si and sj when invoked by the users

in (U i ∩ Uj).

We use Pearson Correlation Coefficient (PCC) [25] to measure the similarity
between the services, since it takes care of all the above factors. We now define
PCC similarity below:

Definition 4 (Service PCC Similarity SIMPS(si, sj)). The PCC similarity
between two services si and sj is defined as follows:

SIMPS(si, sj) =

∑

uk∈Ui,j
(qk,i − q̄i)(qk,j − q̄j)

√ ∑

uk∈Ui,j

(qk,i − q̄i)2
√ ∑

uk∈Ui,j

(qk,j − q̄j)2
(2)

where Ui,j = Ui ∩ Uj; q̄i = 1
|USIM(ux)|

∑

uk∈USIM(ux)

qk,i. �

It may be noted, the above definition is commutative, i.e., SIMPS(si, sj) =
SIMPS(sj , si).

We now use the same clustering technique as discussed above to find the set
of services similar to sy on the basis of Qu. The clustering algorithm generates
SSIM(ux, sy) as output, where SSIM(ux, sy) represents the set of services simi-
lar to sy. It may be noted that after this step, we have to deal with SSIM(ux, sy)
instead of S. Accordingly we change the QoS invocation log matrix. We now
consider Qus instead of Qu. Qus is a sub-matrix of Qu, containing the columns
corresponding to the services in SSIM(ux, sy). It may be noted, the size of Qus

is |USIM(ux)| × |SSIM(ux, sy)|.

4.2 Service-Intensive Filtering

This is the second module of our framework. In this step, we first find a set of
services similar to the target service and then find a set of users similar to the
target users on the previously calculated service-set. This method is philosophi-
cally similar to the user-intensive filtering method. Below, we discuss the steps
of this method briefly.

Find Similar Services. Given a target service sy, the aim of this step is
to find a set of services similar to sy. Since we do not have any contextual
information about a web service, the similarity between two services si and sj is
measured from their user-service invocation profiles. As in the case of the user-
intensive filtering method, we use the cosine similarity measure [3] to calculate
the similarity between two services. We now define cosine similarity between two
services as follows.



QoS Value Prediction Using a Combination of Filtering Method 143

Definition 5 (Service Cosine Similarity SIMCS(si, sj)). The cosine simi-
larity between two services si and sj is defined as follows:

SIMCS(si, sj) =

∑

uk∈Ui,j

qk,i qk,j

√ ∑

uk∈Ui
q2k,i

√ ∑

uk∈Uj

q2k,j

(3)

where Ui,j = Ui ∩ Uj. �

Once we calculate the cosine similarity between each pair of services in S, we
use the same clustering technique as discussed in Subsection 4.1 to find the set
of services similar to sy. The clustering algorithm returns SSIM(sy) as output,
which is used in the next step of the service-intensive filtering method. It may
be noted that SSIM(sy) ⊆ S represents the set of services similar to sy. Like
earlier, we change the QoS invocation log matrix as well. Instead of considering
the entire QoS invocation log matrix Q, we now consider Qs. It may be noted,
Qs is a sub-matrix of Q, containing the columns corresponding to the services
in SSIM(sy).

Find Similar Users. Given a target user ux, the objective of this step is to
remove the set of users dissimilar to ux. As in user-intensive filtering, we use
Pearson Correlation Coefficient (PCC) [25] to measure the similarity between
two users. We now define PCC similarity measure between two users as follows:

Definition 6 (User PCC Similarity SIMPS(ui, uj)). The PCC similarity
between two users ui and uj is defined as follows:

SIMPS(ui, uj) =

∑

sk∈Si,j

(qi,k − q̄i)(qj,k − q̄j)

√ ∑

sk∈Si,j

(qi,k − q̄i)2
√ ∑

sk∈Si,j

(qj,k − q̄j)2
(4)

where Si,j = Si ∩ Sj and q̄i = 1
|SSIM(sy)|

∑

uj∈SSIM(sy)

qi,j. �

The remaining procedure to find the set of users similar to ux on the basis of
Qs is same as earlier. The clustering algorithm returns USIM(sy, ux) as output,
where USIM(sy, ux) represents the set of users similar to ux. It may be noted
that after this step, we have to deal with USIM(sy, ux) instead of U . Accordingly
we change the QoS invocation log matrix. We now consider Qsu instead of Qs.
Qsu is a sub-matrix of Qs, containing the rows for the users in USIM(sy, ux).
It may be noted, the size of Qsu is |USIM(sy, ux)| × |SSIM(sy)|.

4.3 Find Similar Set of Users on a Similar Set of Services

The objective of the third module of our framework is to combine the outputs of
the user-intensive and service-intensive filtering methods. We take the intersec-
tion of the outputs to generate the final result. Consider SIM(ux) and SIM(sy)
represent the final set of similar users and the final set of similar services respec-
tively. These two sets are calculated as follows:



144 S. Chattopadhyay and A. Banerjee

SIM(ux) = USIM(ux) ∩ USIM(sy, ux) (5)

SIM(sy) = SSIM(ux, sy) ∩ SSIM(sy) (6)

Finally, we consider the QoS invocation log matrix as QSIM , which consists of
the rows and columns corresponding to the users in SIM(ux) and the services
in SIM(sy) respectively.

4.4 Prediction Using Neural Network Based Regression

This is the final module of our framework. Once we obtain the set of similar
users SIM(ux) and the set of similar services SIM(sy), we employ a neural
network based regression module [1] to predict the QoS value of the target ser-
vice for the target user. Before feeding our data into the neural network, we
preprocess the data. In the preprocessing step, we substitute all the 0 entries in
QSIM by the corresponding column average, except the position that is going
to be predicted. The main intuition behind this preprocessing step is as follows.
Firstly, QSIM (i, j) = 0 implies that the user ui has never invoked the service
sj . Therefore, the 0 entry in QSIM does not actually depict the true value of
QSIM (i, j). Secondly, the column average presents the average QoS values of sj
across all users in SIM(ux). Therefore, the average value is a better represen-
tative value than 0 for QSIM (i, j). The modified QoS log matrix is represented
by Q′

SIM (i, j).

U , S, Q
syux

sy

USIM(ux), S, Qu

USIM(ux), SSIM(ux, sy), Qus

ux

U , SSIM(sy), Qs

USIM(sy , ux), SSIM(sy), Qsu

SIM(ux), SIM(sy), QSIM

qx,y

SIM(ux), SIM(sy), Q′
SIM

User-intensive filtering Service-intensive filtering

Neural network based

Input

Output

Combined step

regression module

Fig. 2. Data flow in our framework

Finally, Q′
SIM is fed into the neural network. We train the neural network

with the service invocation profiles of the following users: SIM(ux)\{ux}. It may



QoS Value Prediction Using a Combination of Filtering Method 145

be noted that each training data corresponds to the service invocation profile
of a specific user. For each training data, the input layer of the neural network
consists of the QoS values of the services in SIM(sy) \ {sy}, and the output is
the QoS value of sy for the specific user. The objective is now to obtain the QoS
value of sy for ux, given the service invocation profile (i.e., the QoS values of the
services in SIM(sy) \ {sy}) of ux as input. Figure 2 shows the data flow in our
framework.

We now describe the neural network-based regression module [7] used in
this paper. We use a linear regression to predict the missing QoS value, i.e.,
estimating Y , given X by formulating the linear relation between X and Y , as
follows, Y = wX + β. To fit the linear regression line among data points, the
weight vector w and bias β are tuned using a neural network architecture [6].
Here, we employ a feed-forward neural network with back propagation, where
the weight values are fed forward, and the errors are calculated and propagated
back. We use the traingdx as training function, since it combines the adaptive
learning rate with gradient descent momentum training. Learngdm is employed
as an adaptive learning function. The Mean Squared Error (MSE) measures the
performance of the network to assess the quality of the net. Hyperbolic tangent
sigmoid is used as the transfer function. The experimental setup of this neural
network-based regression module is further discussed in Sect. 5.4.

5 Experimental Results

In this section, we demonstrate the experimental results obtained by our frame-
work. We have implemented our framework in MATLAB R2018b. All experi-
ments were performed on a system with the following configuration: Intel Core
i7-7600U CPU @ 2.8 GHz with 16 GB DDR4 RAM.

5.1 DataSets

We use the WS-DREAM [24] dataset to analyze the performance of our app-
roach. The dataset comprises of 5,825 web services across 73 countries and 339
web service users across 30 countries. The dataset contains 2 QoS parameters
response time and throughput. For each QoS parameter, a matrix with dimension
339 × 5825 is given. We use the response time matrix to validate our approach.

Training and Testing DataSet. We divide the dataset into two parts: training
set and testing set. We use a given parameter d(0 ≤ d ≤ 1), called density, to
obtain the training set. The density is used to denote the proportion of the QoS
invocation logs used as the training dataset. For example, if the total number of
QoS invocation logs is x and d is the density, the size of the training set then
equals to x × d, which is lesser than x. The remaining QoS invocation logs, i.e.,
x × (1 − d), are used as the testing dataset.

Each experiment is performed 5 times for each density value. Finally, the
average results are calculated and shown in this paper.



146 S. Chattopadhyay and A. Banerjee

5.2 Comparative Methods

We compare our approach with the following approaches from the literature:

– UPCC [3]: This method employs a user-intensive collaborative filtering app-
roach for QoS prediction.

– IPCC [14]: This approach employs service-intensive collaborative filtering for
QoS prediction.

– WSRec [22]: This method combines UPCC and IPCC.
– NRCF [16]: This method employs classical collaborative filtering to improve

the prediction accuracy.
– RACF [21]: Ratio based similarity (RBS) is used in this work and the result

is calculated by the similar users or similar services.
– RECF [25]: Reinforced collaborative filtering approach is used in this work

to improve the prediction accuracy. In this method, both user-based and
service-based similarity information are integrated into a singleton collabora-
tive filtering.

– MF [11]: Matrix factorization based approach is used here for prediction.
– HDOP [18]: This method uses multi-linear-algebra based concepts of tensor

for QoS value prediction. Tensor decomposition and reconstruction optimiza-
tion algorithms are used to predict QoS value.

As discussed earlier in this paper, we propose a collaborative filtering approach
followed by the neural network-based regression model (CNR). To show the
necessity of each step of our approach, we further compare our method with the
following approaches.

– NR: In this approach, we only consider the neural network-based regression
model, without using any collaborative filtering method.

– CR: In this approach, we use the same collaborative filtering method as
demonstrated in this paper. However, instead of using a neural network-based
linear regression model, a simple linear regression module is used here to pre-
dict the QoS value.

– UCNR: In this approach, we use the user-intensive collaborative filtering
method along with the neural network-based regression model.

– SCNR: In this approach, we use the service-intensive collaborative filtering
method along with the neural network-based regression model.

– CNRWoV: This approach is same as CNR. The only difference here, we do
not substitute the 0 entries in QSIM by the corresponding column average.

– CNRCC: In this approach, we use cosine similarity measure to find similar
users and services for both user-intensive and service-intensive filtering meth-
ods.

5.3 Comparison Metric

We use Mean Absolute Error (MAE) [25] to measure the prediction error in
our experiment. It may be noted that lower the value of MAE, better is the
prediction accuracy.



QoS Value Prediction Using a Combination of Filtering Method 147

Definition 7 (Mean Absolute Error (MAE)). MAE is defined as follows:

MAE =

∑

qi,j∈TD

|qi,j − q̂i,j |

|TD|

where, qi,j represents the ground truth QoS value of the jth service for the ith

user in the testing dataset TD. q̂i,j represents the predicted QoS value for the
same. �

5.4 Configuration of Our Experiment

To generate the set of similar users and services, empirically we chose the user-
threshold value between 0.5 to 0.6 and service-threshold value between 0.4 to
0.5 for our clustering methods. Later in this section, we show how the change of
the threshold value impacts on the prediction quality.

For the neural network-based regression model, we used the following config-
uration in our experiment. We considered 2 hidden layers in the neural network.
We varied the number of neurons in each hidden layer within the range [4, 128].
Finally, we obtained the best results for 16 neurons in the first hidden layer and
8 neurons in the second hidden layer. Among the hyper-parameters, the learning
rate was set to 0.01 with momentum 0.9. The training was performed up to 1000
epochs or up to minimum gradient of 10−5.

Table 3. Comparative study (MAE) on different prediction methods

Density UPCC IPCC WSRec NRCF RACF RECF MF HDOP CNR

0.10 0.6063 0.7000 0.6394 0.5312 0.4937 0.4332 0.5103 0.3076 0.2597

0.20 0.5379 0.5351 0.5024 0.4607 0.4208 0.3946 0.4981 0.2276 0.1711

0.30 0.5084 0.4783 0.4571 0.4296 0.3997 0.3789 0.4632 0.1841 0.0968

We present partial comparative study from Fig. 3(a) due to space constraint

5.5 Analysis of Results

Figure 3(a) and (b) show a comparative study for QoS prediction by different
approaches. Table 3 shows partial comparative results of Fig. 3(a) in a more quan-
titative way. From our experimental results, we have the following observations:

(i) It is evident from Table 3 and Fig. 3(a) that among all the approaches, our
proposed approach (CNR) produces the best result in terms of the prediction
accuracy, as CNR has the lowest MAE value among all the approaches for
each density value.

(ii) It can also be observed from Table 3 and Fig. 3(a) and (b) that as the density
increases, the value of MAE decreases. This is mainly because of the fact
that as the density increases, the number of QoS invocation logs in the
training dataset increases and thereby, the prediction accuracy increases.



148 S. Chattopadhyay and A. Banerjee

(iii) Figure 3(b) shows the requirement of each step of our proposal. As is evident
from the figure, CNR is better than NR, which explains the requirement of
the collaborative filtering approach. CNR is also better than CR, which
confirms the importance of the neural network-based regression model. On
one side, CNR is better than UCNR, on the other side, CNR is better
than SCNR, which indicates the necessity of our combine step. Further, we
compare CNR with CNRWoV, which shows the significance of replacing 0
entries in QSIM by the corresponding column average.

In CNR, we use the cosine similarity measure followed by PCC (i.e., cosine +
PCC). We have, therefore, further experimented our framework with other
combinations of similarity measures, such as cosine+cosine, PCC+PCC,
PCC+cosine, which did not work well in comparison with the cosine + PCC.
In Fig. 3(b), we present only the result of CNRCC (i.e., cosine+cosine),
which worked the second best.

(a) (b)

Fig. 3. Comparative study on different prediction methods

5.6 Impact of the Tunable Parameters on Our Experiment

In this subsection, we discuss the impact of the tunable parameters on the results
obtained by our proposed method. We used 4 tunable threshold parameters in
our experiments, i.e., a threshold value required to cluster the users and services
in the user-intensive and service-intensive filtering steps. However, we used the
same threshold value to cluster the users (services) in both the user-intensive
and service-intensive filtering steps.

Figure 4(a) shows the variation of MAE (along the y-axis) with respect to
the threshold (along the x-axis) required to cluster the services for a constant
threshold (shown as legends in the graph) required for user clustering. Similarly,
Fig. 4(b) shows the variation of MAE (along the y-axis) with respect to the the
threshold (along the x-axis) required to cluster the users for a fixed threshold
(shown as legends in the graph) required for service clustering.
From Fig. 4 (a) and (b), we have the following observations:

(i) As evident from both the figures, for the threshold value between 0.4 to 0.6,
we obtain better results in terms of prediction accuracy.



QoS Value Prediction Using a Combination of Filtering Method 149

(a) (b)

Fig. 4. Variation of MAE across the threshold used for (a) user clustering, (b) service clustering

(ii) For a very low value of the threshold, we may end up having the entire QoS
logs in the training dataset. In this case, we obtain the same results as NR
method.

(iii) For a very high threshold value, we end up having very less number of similar
users and similar services which are insufficient to train the neural network-
based regression model and thereby the prediction accuracy decreases.

In summary, as evident from our experiment, our proposed method outperformed
the major state-of-the-art methods in terms of prediction accuracy.

6 Conclusion

In this work, we propose a method to predict the value of a given QoS parameter
of a target web service for a target user. We leverage the collaborative filtering
approach along with the regression method. We conducted our experiments on
the WS-DREAM dataset. The experimental results show that our method is
more efficient in terms of prediction accuracy than the past approaches. However,
in this paper, we do not consider the fact that QoS parameters vary across
time as well. Even for a single user, the QoS value of a service can be different
across time. We wish to take up this task of QoS value prediction in a dynamic
environment going ahead.

References

1. Adamczak, R., et al.: Accurate prediction of solvent accessibility using neu-
ral networks-based regression. Proteins Struct. Funct. Bioinform. 56(4), 753–767
(2004)

2. Amin, A., et al.: An approach to forecasting qos attributes of web services based
on arima and garch models. In: ICWS, pp. 74–81. IEEE (2012)

3. Breese, J.S., et al.: Empirical analysis of predictive algorithms for collaborative
filtering. In: Uncertainty in Artificial Intelligence, pp. 43–52. Morgan Kaufmann
Publishers Inc. (1998)

4. Chattopadhyay, S., et al.: A framework for top service subscription recommenda-
tions for service assemblers. In: IEEE SCC, pp. 332–339 (2016)



150 S. Chattopadhyay and A. Banerjee

5. Chen, X., et al.: Personalized qos-aware web service recommendation and visual-
ization. IEEE TSC 6(1), 35–47 (2013)

6. Daniel, G.: Principles of Artificial Neural Networks, vol. 7. World Scientific, Sin-
gapore (2013)

7. Demuth, H., Beale, M.: Neural Network Toolbox, vol. 4. The MathWorks Inc.,
Boston (2004)

8. Ester, M., et al.: A density-based algorithm for discovering clusters in large spatial
databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

9. Li, S., Wen, J., Luo, F., Ranzi, G.: Time-aware QoS prediction for cloud service rec-
ommendation based on matrix factorization. IEEE Access 6, 77716–77724 (2018)

10. Li, S., et al.: From reputation perspective: a hybrid matrix factorization for QoS
prediction in location-aware mobile service recommendation system. Mob. Inf.
Syst. 2019, 8950508:1–8950508:12 (2019)

11. Lo, W., et al.: An extended matrix factorization approach for qos prediction in
service selection. In: IEEE SCC, pp. 162–169. IEEE (2012)

12. Ma, Y., et al.: Predicting QoS values via multi-dimensional QoS data for web
service recommendations. In: ICWS, pp. 249–256. IEEE (2015)

13. Qi, K., et al.: Personalized QoS prediction via matrix factorization integrated with
neighborhood information. In: SCC, pp. 186–193. IEEE (2015)

14. Sarwar, B.M., et al.: Item-based collaborative filtering recommendation algorithms.
WWW 1, 285–295 (2001)

15. Shao, L., et al.: Personalized qos prediction for web services via collaborative fil-
tering. In: IEEE ICWS, pp. 439–446 (2007)

16. Sun, H., et al.: Personalized web service recommendation via normal recovery col-
laborative filtering. IEEE TSC 6(4), 573–579 (2013)

17. Tang, M., et al.: Location-aware collaborative filtering for QoS-based service rec-
ommendation. In: ICWS, pp. 202–209. IEEE (2012)

18. Wang, S., et al.: Multi-dimensional QoS prediction for service recommendations.
IEEE TSC 12, 47–57 (2016)

19. Wu, C., Qiu, W., et al.: Time-aware and sparsity-tolerant QoS prediction based
on collaborative filtering. In: IEEE ICWS, pp. 637–640 (2016)

20. Wu, H., et al.: Collaborative QoS prediction with context-sensitive matrix factor-
ization. Future Gener. Comp. Syst. 82, 669–678 (2018)

21. Wu, X., et al.: Collaborative filtering service recommendation based on a novel
similarity computation method. IEEE TSC 10(3), 352–365 (2017)

22. Zheng, Z., et al.: QoS-aware web service recommendation by collaborative filtering.
IEEE TSC 4(2), 140–152 (2011)

23. Zheng, Z., et al.: Collaborative web service QoS prediction via neighborhood inte-
grated matrix factorization. IEEE TSC 6(3), 289–299 (2013)

24. Zheng, Z., et al.: Investigating qos of real-world web services. IEEE TSC 7(1),
32–39 (2014)

25. Zou, G., Jiang, M., Niu, S., Wu, H., Pang, S., Gan, Y.: QoS-aware web service
recommendation with reinforced collaborative filtering. In: Pahl, C., Vukovic, M.,
Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 430–445. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03596-9 31

https://doi.org/10.1007/978-3-030-03596-9_31


Harmonia: A Continuous Service
Monitoring Framework Using DevOps
and Service Mesh in a Complementary

Manner

Haan Johng1(B), Anup K. Kalia2, Jin Xiao2, Maja Vuković2,
and Lawrence Chung1

1 University of Texas at Dallas, Richardson, TX 75080, USA
{haanmo.johng,chung}@utdallas.edu

2 IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
{Anup.Kalia,jinoaix,maja}@us.ibm.com

Abstract. Software teams today are required to deliver new or updated
services frequently, rapidly and independently. Adopting DevOps and
Microservices support the rapid service delivery model but leads to push-
ing code or service infrastructure changes across inter-dependent teams
that are not collectively assessed, verified, or notified. In this paper, we
propose Harmonia - a continuous service monitoring framework utilizing
DevOps and Service Mesh in a complementary manner to improve coor-
dination and change management among independent teams. Harmonia
can automatically detect changes in services, including changes that vio-
late performance SLAs and user experience, notify the changes to affected
teams, and help them resolve the changes quickly. We applied Harmo-
nia to a standard application in describing Microservice management to
assist with an initial understanding and strengths of Harmonia. During
the demonstration, we deployed faulty and normal services alternatively
and captured changes from Jenkins, Github, Istio, and Kubernetes logs
to form an application-centric cohesive view of the change and its impact
and notify the affected teams.

Keywords: DevOps · Service Mesh · Microservice · Monitoring ·
Enterprise Cloud Management

1 Introduction

Software teams today are required to deliver new or updated services frequently,
rapidly and independently. They look to DevOps to increase speed and fre-
quency of service delivery by automating testing and deployment of services.
Microservices, an architectural concept consisted of small-sized services that are
independently deployable, scalable, and manageable, further helps the software
teams to deliver services in a more rapid, incremental, and independent manner.

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 151–168, 2019.
https://doi.org/10.1007/978-3-030-33702-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_12


152 H. Johng et al.

For example, Amazon and Netflix deploy thousands of times per day by using
DevOps and Microservices [6,15].

Although adopting DevOps and Microservice design brings the aforemen-
tioned benefits, it also brings communication and collaboration challenges among
independent software teams collectively contributing to changes in services over
time. As each team pushes code or service infrastructure changes into the envi-
ronment, its impacts on inter-dependent teams are not collectively assessed, noti-
fied, or verified. Rather they are present ad hocly across multiple data sources:
code changes and commits can be detected through git, deployment configura-
tion changes are visible through DevOps pipeline, runtime performance issues
can be reported by Istio or Kubernetes depending on what is monitored. How-
ever, there is no correlation across changes in an application code, its configu-
ration and runtime performance, especially when multiple independent services
and development teams are involved. As a result, integration errors, misconfigu-
rations, and security exposures may occur that are difficult to detect and trace
across teams and resolve in a timely manner. Today’s approach to detect and
diagnose issues caused by changes through performance diagnosis or root-cause
analysis is therefore time-consuming and reactive.

In this paper, we propose Harmonia1 - a continuous service monitoring frame-
work utilizing DevOps and Service Mesh in a complementary manner, as among
the first of its kind to the best of our knowledge, to improve coordination and
change management among independent teams. Harmonia can automatically
detect code and infrastructure changes in services, including changes in code,
configuration, deployment, and application performance. Furthermore, Harmo-
nia can assess the impact of the changes to other services, and notify the changes
to affected teams, whereby helping software teams resolve the changes quickly.
More specifically, Harmonia offers an ontology alignment between DevOps logs
and Service Mesh logs to utilize service deployment information from DevOps
together with service run-time interaction information from Service Mesh. Har-
monia supports declarative rules for detection and notifications to define what
to detect and notify and whom to be notified. Thus, Harmonia takes a proactive
approach to change management whereby defects and performance issues are
detected as they occur, their impact across service components are assessed, and
actions are taken by notifying both the teams (or team members) accountable
for the change as well as impacted by the change.

To demonstrate Harmonia, we have built a capability to correlate logs from
Github and Jenkins for DevOps and logs from Istio and Kubernetes for Ser-
vice Mesh. We applied Harmonia to the Bookinfo application, which is a stan-
dard application in describing Istio for Microservices management and ran a
simulation to comprehend the applicability of Harmonia and its strengths. Dur-
ing the simulation, we deployed faulty and normal services at regular intervals
to observe whether Harmonia is able to capture the changes and notify them
to the impacted teams correctly automatically. Our demonstration shows that,
compared to existing DevOps and Service Mesh frameworks, Harmonia offers a

1 Harmonia is the goddess of harmony and concord in Greek mythology.



Harmonia: A Continuous Service Monitoring Framework 153

better interpretability for software teams regarding service changes, the impact
of the changes, and source of the changes in a timely manner, by representing
service changes both in service deployment phase and in the run-time phase in
a single view.

The rest of the paper is organized as follows, Sect. 2 provides related work,
and Sect. 3 describes Harmonia. Section 4 presents our demonstration, followed
by observations and discussions. In the end, a summary of contributions and
future work are described.

2 Related Work

We discuss the related work on monitoring and root-cause analysis on microser-
vices and DevOps.

In terms of monitoring, Heinrich et al. [9] highlight research directions in
microservices with respect to performance-aware testing, monitoring and mod-
eling services. Specifically they emphasize that due to frequent releases, extensive
system and integration tests are not possible. Although canary deployments take
care some aspect of the problem by releasing the deployment to a few set of users,
however, such deployment process can be expensive and time-consuming. Pina
et al. [19] propose an approach to monitor microservices by decoupling moni-
toring functionalities from function-oriented microservices. For monitoring they
use Zuul an adapted gateway from Netflix. Fadda et al. [4] provide an approach
to support microservices deployment in multi-cloud environments emphasizing
on the quality of monitoring. Their proposed approach creates a knowledge base
that mediates between the perspectives of the cloud provider and the application
owner and a Bayesian network that enhances the provider’s monitoring capa-
bilities. Haselböck and Weinreich [8] propose guidance models for monitoring
microservices. The models are derived from literature, previous work on mon-
itoring distributed systems and microservice-based systems. Phipathananunth
and Bunyakiati [18] provide Pink a framework that monitors microservices to
assess non-functional properties such as session management, caching and secu-
rity. The major focus with such monitoring base contributions is primarily tied
to monitoring a service mesh. Such contributions do not connect service mesh
with DevOps that have additional information on deployment. In case of service
anomalies or abnormalities, such approaches may not trace microservices that
might get impact nor can notify the teams in charge of the services together with
recent deployment and program code change history on the services to help the
teams to plan mitigation actions instantly.

In terms of root cause analysis, Lin et al. [16] propose Microscope to detect
abnormal services with a ranked list of possible root causes. Wang et al. [20]
propose CloudRanger that constructs causal graphs to determine the culprit
services that are responsible for cloud incidents. Myunghwan et al. [14] provide
MonitorRank that monitors historical and current time-series metrics of each
sensor as its input along with the call graphs generated between the sensors to
create an unsupervised model for ranking. Chen et al. [3] propose CauseInfer



154 H. Johng et al.

that creates a two-layer hierarchical causality graph from a distributed system
to infer the root causes along the causal paths. Jayathilaka et al. [10] propose
Roots that monitors a full-stack application to determine the root cause for an
anomaly. It does so by analyzing previous workload data of the application and
the performance of the internal PaaS services on which the application depends.
Existing approaches to determine root causes are reactive based approaches,
i.e., they identify a root cause after an anomaly has occurred. Also the current
approaches do not consider logs generated from DevOps to pin point who is
accountable for the root cause.

In DevOps, most of the contributions emphasize on utilizing microservices
that facilitate rapid deployments of services. For example, Balalaie et al. [1]
emphasize on how monolithic architecture can be broken down in to microser-
vices considering microservices can quickly adapt to technological changes,
reduce time-to-market and provision a better development team structuring
around services. Zhu et al. [22] describe how DevOps can reduce time between
committing a change to a system and the change being productionized ensuring
high quality. Brunnert et al. [2] provide performance-relevant aspects of DevOps
concept. Fitzgerald and Stol [5] propose BizDev that continuously assess busi-
ness strategy and software development. Gupta et al. [7] propose an approach
to automatically discover execution behavior models for the deployed and the
new version using the execution logs. However, there seems a lack of studies on
DevOps using service mesh that provides monitoring information of microser-
vices and interactions among them. Without monitoring information, it is chal-
lenging to estimate the potential degree of impacts on other services before
deploying updates and analyze the actual impacts after the deployment.

3 Harmonia - A Continuous Service Monitoring
Framework

Harmonia is a continuous service monitoring framework that aims to reduce
delays in communications among independent software teams regarding changes
in services and impacts of the changes. Figure 1 shows the ontology of Harmonia.
By using DevOps and Service Mesh in a complementary manner, Harmonia
monitors changes in services by detecting violations of service level agreements
(SLAs, e.g., latency SLA) together with impacted services after the changes
are pushed. Harmonia further notifies software teams to assist them to take
appropriate actions to remediate their services from the impact. The Harmonia
rules define the following: what to detect and notify and whom to be notified.
Each rule acts as a reference to let software teams customize the rule for their
applications.

The underlying process in Harmonia consists of three steps as described in
Fig. 2. In the first step, Harmonia aligns the ontologies obtained from the service
deployment information i.e., from DevOps logs with run-time service interaction
information obtained from Service Mesh logs to create an integrated body of
knowledge. In the second step, once Harmonia detects changes in services from



Harmonia: A Continuous Service Monitoring Framework 155

Fig. 1. The ontology of Harmonia for detecting and notifying changes in services.

DevOps logs, it traces the dependent services that might have recently inter-
acted with the changed services. Harmonia does so by monitoring Service Mesh
logs. Based on the detected changes, Harmonia notifies the changes to associ-
ated software teams that own the dependent services. In the third step, Har-
monia detects SLA violations on services by monitoring Service Mesh logs after
changes are pushed. Then, Harmonia traces recent changes on the problematic
services, which are potential causes of the SLA violations, and notifies the change
information to associated software teams.

Fig. 2. The underlying process in Harmonia for detecting and notifying changes in
services.

3.1 Ontology Alignment Among DevOps and Service Mesh Logs

DevOps is a framework to automate deployment and testing of services from
development environments to production environments. Service Mesh is a frame-
work for monitoring and managing interactions among (micro-) services. DevOps
logs contain service deployment information such as logs for code push and ser-
vice deployment. However, such logs do not include run-time service interaction
information such as communications among services, latency between services
and so on. On the other hand, Service Mesh logs contain run-time service inter-
action information but do not contain service deployment information. Without
having the deployment information and run-time interaction information in a
single view, software teams as of now manually inspect the impacts of changes,
e.g., latency SLA violation, the source of such changes, software teams that
might be impacted by the changes, their contacts, and notify them accordingly.
Overall such process is time-consuming and the resultant delay in communica-
tion to appropriate software teams might delay the possible mitigation, thereby
hurting the goal of frequent service delivery to production environments.



156 H. Johng et al.

To create an integrated body of knowledge from DevOps and Service Mesh
logs, we extract ontologies from both the logs and align them by common
attributes. Work on log mining has researched in various domains [17]. For utiliz-
ing logs, it is essential to extract ontology, which is a set of important concepts,
relationships among the concepts, and constraints, to understand what knowl-
edge to utilize from the logs [11–13,21].

We extract the DevOps ontologies from Jenkins logs and the Service Mesh
ontologies from Istio logs as shown in Fig. 3. Note that different DevOps and
Service Meshes can produce different ontologies. Thus, the ontology is a ref-
erence ontology and may not generalize to other frameworks. Nonetheless the
underlying methodology to extract and align the onotologies remains the same.

Fig. 3. The ontology alignment among DevOps and Service Mesh logs.

In DevOps logs are generated based on specific tasks such as code push and
service deployment as stated earlier. We consider the code push task as pushing
code to Github (a source code repository), containerizing the code to generate
an image, and then pushing the image to Docker Hub (a container image repos-
itory). While pushing code to Github, the changed files and the committer’s ID
(email address) are recorded. The service deployment task is defined as accessing
a server using a server IP via Secure Shell (SSH) and deploying a container image
on a server. The logs of the code push task and the logs of service deployment
task are aligned by a common attribute “Container Name”.

The Service Mesh logs contain service instance information and interaction
information among service instances. The service instance information contains
a service name, an IP address, a port number and a container name. The inter-
action information contains an interaction date, a source service, a destination
service, the latency of the interaction, and an end user who requested the inter-
action.

We align the ontologies (information) from DevOps and Service Mesh based
on a common attribute “Container Name”. By aligning the ontologies of DevOps
and Service Mesh, we integrate service deployment and service interaction infor-
mation. For example, if latency SLA is violated during interacting between two



Harmonia: A Continuous Service Monitoring Framework 157

services, the destination service IP is mapped onto the IP of a deployment task.
Then, the image name of the deployment task is mapped onto the image name
of the code push task. From the code push task, we can trace the email address
of the code committer.

3.2 Proactive Change Detection and Notification

For assisting in fast communication and collaboration among the independent
software teams regarding changes in services, Harmonia automates detecting
changes in services, tracing the dependent services that can be impacted by the
changes, notifying the changes to appropriate teams.

To determine what to detect and notify and whom to be notified, Harmonia
follows predefined detection and notification (reference-) rules. Each rule consists
of a detection condition (C) and a notification action (A). We define each rule
as C → A. Either the condition or the action can be specialized to customize
the rules as (C’ → A) or (C → A’ )

Suppose Team A in Fig. 4, is responsible for the Review service and deploys
the Review service after changing the code, Harmonia detects the deployment
change from the deployment task logs and changed files from the code push task
logs. We consider Review service as a depender service. We assume that there
are services that might be impacted by the changes in the depender service. We
refer such services as the Dependee services. The dependency can be extracted
from recent service interaction logs of Service Mesh. For example, in the Fig. 4,
the Product Page service that recently sent requests to the Review service is
considered as the dependee service. By tracing the deployment information of the
dependee (Product Page service), Harmonia notifies the changes of the depender
(Review service) to the committer of the dependee (Product Page service).

Fig. 4. Detecting changes and deployments of services and notifying to appropriate
software teams.

We provide a reference rule (R1) for the example scenario above as the
following:

– Condition (C1): The depender service (s) is deployed.



158 H. Johng et al.

– Action (A1): Notify the deployment and the change information of the depen-
der service (s) to other teams responsible for the dependee services (d).

R1 : deployed(s)C1
→ ∀d ∈ dependee(s), notify(d, s)A1

(1)

Below, we refine the reference rule 1 (R1) further. For example, if software
teams responsible for the critical services (c), which are not direct dependees
but had frequent interactions with the dependees, needs to be notified. Thus, we
refine the rule as follows:

– Condition (C1): The depender service (s) is deployed.
– Action (A2): Notify the deployment and change information of the depender

service (s) to teams responsible for the critical dependee services (c).

R2 : deployed(s)C1
→ (∀d ∈ dependee(s), notify(d, s)A1

)

∧ (∀c ∈ (¬dependee(s) ∧ dependee(d) ∧ is critical(s, c)), notify(c, s)A2
)

(2)

To implement the reference rules, we define (reference-) heuristic transla-
tion algorithms associated with the rules in Algorithm1 and 2. The deployed
procedure describes the steps of detecting changes and deployments of services
by using DevOps logs and Service Mesh logs in a complementary manner. We
assume that the logs are represented in the JSON format. The deployed pro-
cess takes logs from code push, deployment and run-time interaction, notifies
the change and deployment information to dependees, and then returns a list
of deployments including change information. The deployed process shows a
forward tracing from code push logs to run-time interaction logs to get the
dependees of the newly deployed services.

The notify procedure describes a backward tracing from service interaction
logs to code push logs to extract contact email addresses of the dependee ser-
vices. The notify process takes a list of dependees as notification targets and the
deployment information of a depender service. Then it notifies the changes of
the depender to dependees.

Transitive Impact Assessments. In addition to analyzing the impacts of
changes on direct dependee services described earlier, Harmonia assesses two
types of potential transitive impacts of service changes on other services. One is
assessing impacts on a competitive service in using a common service as described
in Fig. 5. The other one is assessing impacts on the other services invoked by the
changed services implicitly as depicted in Fig. 6.

The difference between existing root-cause analysis approaches and our tran-
sitive impact assessment is the proactive change detection and notification.
The root-cause analysis based approaches pinpoint the root-causes when mul-
tiple abnormal services are detected. In contrast, Harmonia considers newly
changed services as root-causes and proactively infers the transitive impacts
of the changes on other services.



Harmonia: A Continuous Service Monitoring Framework 159

Algorithm 1. A Heuristic Translation of deployed Condition to Code
1: pushedList ← read(pushed.json); � Obtained from Jenkins and Github Logs
2: deployedList ← read(deployed.json); � Obtained from Jenkins Logs
3: interactionList ← read(interaction.json); � Obtained from Istio Logs
4: namespaceList ← read(kubernetes.json); � Obtained from Kubernetes Logs
5: procedure deployed( ) � Called regularly. Forward Tracing of Logs
6: deployments, dependeeList, pushedList;
7: for each deployed ∈ deployedList do� 1. Get recent changes and deployments
8: for each pushed ∈ pushedList do
9: if pushed.containerName == deployed.containerName then

10: if pushed.date < deployed.date then
11: pushedList.add(pushed);

12: deployed.put(”changes”, pushedList);
13: for each namespace ∈ namespaceList do � 2. Get service names in

production
14: if deployed.containerName == namespace.containerName then
15: deployed.put(”serviceName”, namespace.instanceName);

16: for each interaction ∈ interactionList do � 3. Get dependees
17: if interaction.destination == deployed.serviceName then
18: dependeeList.add(interaction.source);

19: deployed.put(”dependees”, dependeeList);
20: deployments.put(”deployments”, deployed);
21: notify(dependeeList, deployed); � 4. Notify the changes and deployments

to dependees

22: return deployments � A set of deployments

To assess the potential transitive impacts of service changes, we further define
notations and rules for detecting and notifying service changes as below.

I = ({Ssrc}, {Sdst}, l, t), S = (n, {D}), D = (ct, cc, ci) (3)

The I is a set of individual interactions (i) within a time slot (T t
t−1). Each

interaction (i) consists of a source service (Ssrc), a destination service (Sdstc), an
interaction latency (l), and a timestamp (t). Each service (S) is composed of a
service name (n) and deployment information (D). The deployment information
(D) involves a changed time (ct), changed code information (cc), and changed
infrastructure information (ci). The latency of a service interaction can be caused
either by the changes in the source service or the changes in the destination
service.

Figure 5 depicts a transitive impact assessment among competitive services.
In this scenario, the service (S3) and the service (S5) are competing in invok-
ing the common service (S4), such as using a common API. A faulty change in
the service (S3) that occupies the service (S4) with a longer period can impact
the service (S5). Harmonia detects the transitive relationship between competi-
tive services by checking invoking sequences and latency propagations and then
notifying service changes among the competitive services as described below:



160 H. Johng et al.

Algorithm 2. A Heuristic Translation of notify Action to Code
1: procedure notify(tagets, deployed) � Backward Tracing of Logs
2: for each target ∈ targets do
3: for each namespace ∈ namespaceList do � 1. Get container names of

dependees
4: if namespace.serviceName == target then
5: target.put(”containerName”, namespace.containerName);

6: for each pushed ∈ pushedList do � 2. Get contacts of the dependees
7: if pushed.containerName == target.containerName then
8: sendEmail(pushed.email, deployed); � 3. Send an Email with

Deployment Information

Fig. 5. A transitive impact assessment among competitive services.

– Condition (C2): The interaction ij (from Sj to Sm) and the interaction
ik (from Sk to Sm) have occurred within a time slot T t

t−1. Service(Sj) and
service (Sk) are competitive services that can impact each other in invoking
the other service (Sm).

– Condition (C1.1): Service (Sj) is deployed, which is an instance of C1.
– Condition (C1.2): Service (Sm) is deployed, which is an instance of C1.
– Action (A1.1): Notify the deployment and change information of service (Sj)

to service (Sk) and service (Sm), which is an instance of A1.
– Action (A1.2): Notify the deployment and change information of service (Sm)

to service (Sj) and service (Sk), which is an instance of A1.

R3 : (∀ij , ik ∈ Itt−1, (ij .Sdst = ik.Sdst) ∧ (ij .t < ik.t) ∧ (ik.l > ij .l))C2
→

((ij .Ssrc.Dct ∈ T t
t−1)C1.1

→ (notify(ij .Ssrc.D, ij .Sdst) ∧ notify(ij .Ssrc.D, ik.Ssrc))A1.1
)∨

((ij .Sdst.Dct ∈ T t
t−1)C1.2

→ (notify(ij .Sdst.D, ij .Ssrc) ∧ notify(ij .Sdst.D, ik.Ssrc))A1.2
)

(4)

Figure 6 shows a scenario of a transitive impact assessment for services invok-
ing the other services implicitly. In this scenario, the service (S3) is not a direct
dependee of the service (S2) but implicitly invokes the service (S2). If a change
in the service (S2) increases the interaction latency between the service (S1) and
the service (S2), the service (S3) can be impacted. Harmonia captures the tran-
sitive impacts for services invoking other services implicitly by checking invoking
sequences and latency propagations and then notifying service changes among
the competitive services as described below:



Harmonia: A Continuous Service Monitoring Framework 161

Fig. 6. A transitive impact assessment for services invoking the other services implic-
itly.

– Condition (C3): The interaction ij (from Sj to Sk) implicitly invokes the
interaction ik (from Sk to Sm).

– Condition (C1.3): Service (Sm) is deployed, which is an instance of C1.
– Action (A

′
1.1): Notify the deployment and change information of service(Sm)

to service (Sj) and service (Sk), which is an instance of specialization of A1.

R4 : ∀ij , ik ∈ I
t
t−1, ((ij .Sdst = ik.Ssrc) ∧ (ij .t < ik.t))C3

∧ (ik.Sdst.D ∈ T
t
t−1)C1.3

→
notify(ik.Sdst.D, ik.Ssrc) ∧ notify(ik.Sdst.D, ij .Ssrc))

A
′
1.1

(5)

The proactive detection and notification rules aim to provide forewarning
among independent software teams. If the systems are sensitive for reliability,
the forewarning would help the independent software teams in communicating
and collaborating with richer information before an abnormality on the system
is detected.

3.3 Reactive Change Detection and Notification

DevOps software teams are required to deliver services more frequently and inde-
pendently to production environments, thereby increasing complexity in com-
munication and collaboration among the teams. For example, if SLA violations
occurred after deploying services independently, it is timing consuming to pin-
point causes of the SLA violations and impacted services and to notify the causes
to appropriate teams.

Consider the Product page service experiences a 3 s delay after the Team A
has deployed a new Review service as shown in Fig. 7. Harmonia automatically
detects the violations of the latency SLA when the Product Page service sents
a request to the Review service, tracking recent changes in the Review service,
and notifying the recent changes to the teams responsible for the Product Page
service to assist them react to the violation of latency SLA and remediate it.

A reference rule (R3) for the example scenario above is defined as below:

– Condition (C2): The latency of interaction from a source service (ssrc) to a
destination service (sdst) is higher than a latency SLA (lSLA).

– Action (A2): Notify the recent changes in the destination service (sdst) to
the teams responsible for the service (sdst) and dependee services (d).



162 H. Johng et al.

Fig. 7. Detecting SLA violations and impacted services and notifying recent changes
in services to appropriate teams.

R5 : ∀sdst ∈ (latency(ssrc, sdst) > lSLA)C2
) →

notify(sdst, sdst)A2
∧ (∀d ∈ dependee(sdst), notify(d, sdst)A2

)
(6)

The latency of an interaction between two services can occur due to both
changes in the source service and changes in the destination service. If dependees
of the source service and the destination service need to be notified with the
changes in source service and the destination service respectively, the reference
rule 3 can be refined as below:

– Condition (C2): The latency of interaction from a source service (ssrc) to a
destination service (sdst) is higher than a latency SLA (lSLA).

– Action (A′
2): Notify the recent changes in the source service (ssrc) and

destination service (sdst) to the teams responsible for the dependees of source
(dsrc) and dependees of destination (ddst).

R6 : ∀sdst ∈ (latency(ssrc, sdst) > lSLA)C2
) →

∀ddst ∈ dependee(sdst), notify(ddst, sdst)A2
) ∧ notify(sdst, sdst)A2

∧ ∀dsrc ∈ dependee(ssrc), notify(dsrc, ssrc)A′2) ∧ notify(ssrc, ssrc)A′2

(7)

In Algorithm 3 for the rule R4, the process for detecting violations of latency
SLA and notifying appropriate teams, shows a backward tracing from run-time
interaction logs to code push logs. The process assumes that the SLA specifica-
tion is documented in the JSON. The process gets recent changes in the source
and destination and then notify the changes to dependees of the source and
destination.

Transitive Impact Assessments. In the transitive impact assessment phase,
Harmonia pinpoints the root-causes of abnormal interactions, similar to the



Harmonia: A Continuous Service Monitoring Framework 163

Algorithm 3. A Heuristic Translation of latency Condition to Code
1: SLA ← read(SLA.json);
2: procedure latency( )
3: deployments ← depolyed();
4: for each interaction ∈ interactionList do
5: if interaction.latency > SLA.latency then
6: for each namespace ∈ namespaceList do
7: if deployment.serviceName == interaction.destination then
8: notify(interaction.destination, deployment);
9: notify(interaction.destination.dependees, deployment);

10: if deployment.serviceName == interaction.source then
11: notify(interaction.source, deployment);
12: notify(interaction.source.dependees, deployment);

existing root-cause analysis based approaches. However, Harmonia goes beyond
by providing richer information to software teams with an understanding of
potential reasons why such abnormal interactions occurred. Harmonia addition-
ally pinpoints and notifies recent code changes and infrastructure changes in
abnormal services as a starting point of inspection, towards facilitating commu-
nication and collaborations among independent teams and fixing the issues more
quickly.

For assessing the actual impacts among competitive services, Harmonia uti-
lizes the rule (R3) defined during the proactive detection and the notification
phase. In the scenario described in Fig. 5, if the latency (l) of the interaction
(ij) (from service S3 to service S4) violates the latency SLA (lSLA), Harmonia
detects the code or infra changes and notifies to impacted teams. The detection
and notification rules are specialized from the rule (R3) and defined as below:

– Condition (C2.1): The latency of interaction from a source service (Ssrc)
to a destination service (Sdst) is higher than a latency SLA (lSLA) in an
interaction (ij).

– Condition (C2.2): The latency of interaction from a source service (Ssrc)
to a destination service (Sdst) is higher than a latency SLA (lSLA) in an
interaction (ik).

R7 : ∀ij , ik ∈ It
t−1, C2 ∧ (ij .l > lSLA)C2.1

∧ (ik.l > lSLA)C2.2
→ A1.1 ∧ A1.2 (8)

Similarly, Harmonia utilizes the rule (R4) for the detection and notification
rule for services invoking the other services implicitly. In the scenario described
in Fig. 6, if the interaction between the service (S1) and the service (S2) violates
the latency SLA due to a change in service (S2), Harmonia detects the latency
violations and notifies the change to impacted teams as defined below:

R8 : ∀ij , ik ∈ Itt−1, C3 ∧ C1.3 ∧ (ij .l > lSLA)C2.1
∧ (ik.l > lSLA)C2.2

→ A1.1 (9)



164 H. Johng et al.

4 Harmonia in Action

To assist with an initial understanding of the applicability of Harmonia, we
applied Harmonia to the Bookinfo application2, which is adopted as an official
sample application to describe the Istio framework, and compared the informa-
tion collected from Harmonia with the information obtained from existing frame-
works. The Bookinfo application displays the information of a book, including
a description of the book, book details (ISBN, number of pages, etc.), and book
reviews. The Bookinfo composed of four separate microservices - Product Page,
Detail, Review, and Rating. Jenkins is adopted in our demonstration to build
a sample DevOps pipeline, which consists of jobs for pushing code to Github,
building and containerizing the code, and deploying the container.

4.1 Experimentation Setting

Four Github accounts are assigned to the Review service, the Detail service, and
the Rating service. Each account is considered as a contact point of a software
team that is responsible for a service. A total of 1200 visitors to the Bookinfo
application are simulated. Sixty visitors per second are generated and access the
Bookinfo application through a gateway service. Two types of Rating service
are alternatively deployed every 10 s. We injected faulty code for causing delays
from one second to seven seconds in communicating with the review service to
one of the rating services. The other rating service works without causing delays.
Harmonia collected the service deployment information and service interaction
information every 10 s, detected violations of latency SLA, source of changes,
and impacted services, notified the violations and changes to the four contacts.
The latency SLA is given as one second. Then, we collected and compared the
information from Harmonia, Github, Jenkins, Kubernetes, and Istio.

4.2 Observation and Discussion

Table 1 summarizes the experimentation results, showing a quantitative compar-
ison with existing frameworks that measure the types of available information
regarding service changes.

The Github logs captured the 20 times of code changes, including lines of
changed code. The Jenkins logs captured the 20 times of code commitment
history, containerization history of the code, and deployment history of the con-
tainer. However, both Github and Jenkins have a lack of service run-time infor-
mation after the deployments. The Kubernetes logs captured the 20 times of
service container deployment history, and the Istio logs captured the number
of visitors to the Bookinfo application, the total number of interactions among
services, and the latency of the interactions. However, the Kubernetes and Istio
do not capture the information of changes in the service containers that are
newly deployed. Harmonia bridged the dichotomy between the DevOps tools

2 https://istio.io/docs/examples/bookinfo/.

https://istio.io/docs/examples/bookinfo/


Harmonia: A Continuous Service Monitoring Framework 165

Table 1. A quantitative comparison with existing frameworks.

Code

changes

Service

deployments

Problematic

deployments

Visitors Service

interac-

tions

SLA

violations

Identified

root-cause

Identified

impact

Total # of

Changes

20 20 10 1,200 10,753 932 220 712

Harmonia 20 20 10 1,200 10,753 932 220 712

Github 20 - - - - - - -

Jenkins 20 20 - - - - - -

Kubernetes - 20 - - - - - -

Istio - - - 1,200 10,752 932 - -

and Service Meshes by extracting and aligning the logs from the tools. Addition-
ally, based on the logs, Harmonia deduced ten problematic service deployments,
220 root-cause interactions that caused by problematic deployments, and 712
impacted interactions and notified the source of code changes and deployments
that cause the violations. To evaluate whether root-cause of changes can be iden-
tified, refer to Fig. 6, we injected a faulty code in the rating service (S2) (i.e.,
the root cause) which introduces delays in the interaction between the review
service (S1) and the rating service (S2). The interaction impacts on the other
interaction between the product page service(S3) and the review service (S1).
Among the total of 932 abnormal interactions that violate the latency SLA, Har-
monia detects the 220 interactions between the rating (S2) and review (S1) as
root-cause interactions. The 712 impacted interactions represent the interactions
between the product page (S3) and the review page (S1).

Fig. 8. AS-IS visualizations of a DevOps pipeline and a service mesh

Figures 8 and 9 show a visual comparison between Istio, Jenkins, and Harmo-
nia. The Jenkins pipeline described in Fig. 8a contains service deployment infor-
mation, such as deployment date, code changes, etc., but rarely involves run-time
service information after the deployments. On the other hands, as depicted in
Fig. 8b, Istio visualizes the run-time interactions and latencies among services
but has a lack of understanding about what kinds of service changes cause the
latency variations.

As described in Fig. 9, Harmonia visualizes the service deployment infor-
mation and run-time interaction information in a single view for helping inde-
pendent software teams in understanding the impact of changes in services.



166 H. Johng et al.

Fig. 9. A visualization of harmonia prototype

The Rating is colored red as the deployments of the Rating violated the latency
SLA. The interaction between the Review and the Rating colored red with a
solid line as it is a root-case interaction. The impacted interactions colored red
with dotted lines.

4.3 Threats to Validity

Currently, as Harmonia understands an integrated body of knowledge from spe-
cific logs of Github, Jenkins, Istio, and Kubernetes, the Harmonia ontology is
limited to be generalized. The Harmonia reference rule set for detection and noti-
fication is limited and straightforward yet to apply Harmonia to more diverse
domains. In addition, Harmonia utilizes a centralized point of a knowledge base,
whereas microservices build on independent teams with separation of concerns.
It would be necessary to decentralize the knowledge base appropriately in terms
of access control, ownership, and trust.

5 Conclusion

In this paper, we presented Harmonia - a continuous service monitoring frame-
work using both DevOps and Service Mesh in a complementary manner, as
among the first of its kind to the best of our knowledge, to facilitate commu-
nication and collaborations among DevOps software teams independently con-
tributing to service changes. Harmonia offers a reference ontology alignment of
DevOps logs and Service Mesh logs to have an integrated body of knowledge
between service deployment information from DevOps that includes code and
infrastructure changes of services and run-time service information from Service
Mesh that captures run-time interactions among service along with its latency.
Harmonia also offers detection and notification rules to enhance the understand-
ability of the changes in services and impacts of the changes.

To generalize our approach, we are planning to expand the ontology to cover
other DevOps and Service Mesh frameworks, such as Puppet, Chef, or Linke rd.
To enhance the Harmonia reference rule set, we are also planning to consider



Harmonia: A Continuous Service Monitoring Framework 167

more complex cases based on studying real application services in cloud-native
production environments. We would also like to further evaluate to what extent
can Harmonia notifications help development teams performing change manage-
ment and diagnosis.

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
DevOps: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

2. Brunnert, A., et al.: Performance-oriented DevOps: a research agenda. CoRR
abs/1508.04752 (2015). http://arxiv.org/abs/1508.04752

3. Chen, P., Qi, Y., Hou, D.: CauseInfer: automated end-to-end performance diagnosis
with hierarchical causality graph in cloud environment. IEEE Trans. Serv. Comput.
12(2), 214–230 (2019)

4. Fadda, E., Plebani, P., Vitali, M.: Monitoring-aware optimal deployment for appli-
cations based on microservices. Trans. Serv. Comput. 1–1 (2019)

5. Fitzgerald, B., Stol, K.J.: Continuous software engineering and beyond: trends and
challenges. In: Proceedings of the 1st International Workshop on Rapid Continuous
Software Engineering, pp. 1–9. ACM, Hyderabad (2014)

6. Forsgren, N., Kim, G., Kersten, N., Humble, J., Brown, A.: 2017 state of devops
report. Puppet+ DORA

7. Gupta, M., Mandal, A., Dasgupta, G., Serebrenik, A.: Runtime monitoring in
continuous deployment by differencing execution behavior model. In: Pahl, C.,
Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 812–827.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9 58

8. Haselböck, S., Weinreich, R.: Decision guidance models for microservice moni-
toring. In: Proceedings of the International Conference on Software Architecture
Workshops (ICSAW), pp. 54–61. IEEE (2017)

9. Heinrich, R., et al.: Performance engineering for microservices: research challenges
and directions. In: Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion, pp. 223–226. ACM, L’Aquila (2017)

10. Jayathilaka, H., Krintz, C., Wolski, R.: Performance monitoring and root cause
analysis for cloud-hosted web applications. In: Proceedings of the 26th Interna-
tional Conference on World Wide Web, pp. 469–478. International World Wide
Web Conferences Steering Committee, Perth (2017)

11. Johng, H., Kim, D., Hill, T., Chung, L.: Estimating the performance of cloud-based
systems using benchmarking and simulation in a complementary manner. In: Pahl,
C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 576–591.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9 42

12. Johng, H., Kim, D., Hill, T., Chung, L.: Using blockchain to enhance the trustwor-
thiness of business processes: a goal-oriented approach. In: 2018 IEEE International
Conference on Services Computing (SCC), pp. 249–252. IEEE (2018)

13. Kalia, A.K., Xiao, J., Bulut, M.F., Vukovic, M., Anerousis, N.: Cataloger: catalog
recommendation service for IT change requests. In: Maximilien, M., Vallecillo, A.,
Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 545–560. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 40

14. Kim, M., Sumbaly, R., Shah, S.: Root cause detection in a service-oriented archi-
tecture. In: Proceedings of the ACM SIGMETRICS/International Conference on
Measurement and Modeling of Computer Systems, pp. 93–104. ACM, Pittsburgh
(2013)

http://arxiv.org/abs/1508.04752
https://doi.org/10.1007/978-3-030-03596-9_58
https://doi.org/10.1007/978-3-030-03596-9_42
https://doi.org/10.1007/978-3-319-69035-3_40


168 H. Johng et al.

15. Len Bass, I.W., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Old Tappan (2015)

16. Lin, J., Chen, P., Zheng, Z.: Microscope: pinpoint performance issues with causal
graphs in micro-service environments. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q.
(eds.) ICSOC 2018. LNCS, vol. 11236, pp. 3–20. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03596-9 1

17. Motahari, H., Benatallah, B., Saint-Paul, R., Casati, F., Andritsos, P.: Process
spaceship: discovering and exploring process views from event logs in data spaces.
Proc. VLDB Endow. 1(2), 1412–1415 (2008)

18. Phipathananunth, C., Bunyakiati, P.: Synthetic runtime monitoring of microser-
vices software architecture. In: Proceedings of 42nd Annual Computer Software
and Applications Conference (COMPSAC), vol. 02, pp. 448–453 (2018)

19. Pina, F., Correia, J., Filipe, R., Araujo, F., Cardroom, J.: Nonintrusive monitoring
of microservice-based systems. In: Proceedings of the 17th International Sympo-
sium on Network Computing and Applications (NCA), pp. 1–8. IEEE (2018)

20. Wang, P., et al.: Cloudranger: root cause identification for cloud native systems.
In: Proceedings of 18th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), pp. 492–502 (2018)

21. Xiao, J., Kalia, A.K., Vukovic, M.: Juno: an intelligent chat service for IT service
automation. In: Liu, X., et al. (eds.) ICSOC 2018. LNCS, vol. 11434, pp. 486–490.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17642-6 49

22. Zhu, L., Bass, L., Champlin-Scharff, G.: Devops and its practices. IEEE Softw.
33(03), 32–34 (2016)

https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1007/978-3-030-17642-6_49


Services and Data



ESDA: An Energy-Saving Data Analytics
Fog Service Platform

Tiehua Zhang1(B), Zhishu Shen2, Jiong Jin1, Atsushi Tagami2, Xi Zheng3,
and Yun Yang1

1 School of Software and Electrical Engineering, Swinburne University of Technology,
Melbourne, Australia

{tiehuazhang,jiongjin,yyang}@swin.edu.au
2 KDDI Research, Inc., Fujimino-shi, Japan

{shen,tagami}@kddi-research.jp
3 Department of Computing, Macquarie University, Sydney, Australia

james.zheng@mq.edu.au

Abstract. The volume of heterogeneous data collected through a vari-
ety of sensors is growing exponentially. With the increasing popularity
of providing real-time data analytics services at the edge of the network,
the process of harvesting and analysing sensor data is thus an inevitable
part of enhancing the service experience for users. In this paper, we pro-
pose a fog-empowered data analytics service platform to overcome the
frequent sensor data loss issue through a novel deep autoencoder model
while keeping the minimum energy usage of the managed sensors at the
same time. The platform incorporates several algorithms with the pur-
pose of training the individual local fog model, saving the overall energy
consumption, as well as operating the service process. Compared with
other state-of-the-art techniques for handling missing sensor data, our
platform specialises in finding the underlying relationship among tem-
poral sensor data series and hence provides more accurate results on
heterogeneous data types. Owing to the superior inference capability,
the platform enables the fog nodes to perform real-time data analytics
service and respond to such service request promptly. Furthermore, the
effectiveness of the proposed platform is verified through the real-world
indoor deployment along with extensive experiments.

Keywords: Fog computing · Service-oriented networking · Deep
autoencoder · Energy-saving algorithm

1 Introduction

The rapid development of the Internet of Things (IoT) technologies has
unleashed the immense potential of large-scale data analytics. In the meantime,
the deluge of IoT data produced by these interconnected IoT objects becomes
one of the critical enablers for enhancing the intelligent human living environ-
ments [17]. The ultimate goal of aiding ambient living experience and improving
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 171–185, 2019.
https://doi.org/10.1007/978-3-030-33702-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_13


172 T. Zhang et al.

quality of life continues to drive the success in the intersected field of IoT and
service-oriented computing.

As the core component of IoT that are generally located at the edge of
the network, various sensors take most of the credits in terms of forming the
intelligent living environment. These massively heterogeneous, dynamic sensor
data are facilitating a myriad of IoT applications in order to offer real-time,
context-aware, and highly personalised service. Moreover, there is no doubt that
in conjunction with the prosperity of IoT technology, the number of sensors is
growing exponentially as well.

In the act of being an integral part of the IoT network, heterogeneous sen-
sors always play an indispensable role in some prevailing IoT implementations
including smart city, agriculture and building, etc. [6]. However, the amount
of energy consumed by a large number of sensors is not negligible and thus
attracts the attention from both academia and industry to come up with differ-
ent energy conserving algorithms and frameworks to deal with this long-standing
problem, yet converging to the common goal - to improve the sustainability of
the IoT network involved heavily with sensors [5,13,18]. Apart from that, data
loss is inevitable in IoT network due to sensors’ inherent characteristics such
as malfunction or battery exhaustion. This phenomenon severely compromises
the quality of service (QoS) in some data-driven applications and poses a big
challenge [1].

Most of the IoT applications are in favour of providing the data analytics
service to some extent, taking advantage of the mature cloud computing is thus
a preferable option. However, as the most commonly used approach nowadays,
the colossal amount of data collected in the IoT network is simply transferred
to the cloud servers for further processing and analysing, which has severe side
effects on network performance and further causes communication overhead and
network congestion. Also, the majority of IoT applications deployed on the cloud
starts to concern the QoS being returned to the interested users, in which the
service transmission latency contributes a significant part in service consumers’
perception with regard to the overall performance of the service invocation.
Apart from that, the arising challenges like cloud energy waste and data privacy
issues also suggest that the reliance on traditional IoT-Cloud schema alone to
provide various IoT services is no longer effective and efficient, and an alternative
computing paradigm that could seal the gap between IoT devices and cloud to
provide better quality of service is needed [6].

Fog computing is emerged under this circumstance to complement the inad-
equacy of the IoT-Cloud schema. The idea of extending the cloud to the edge
of network closer to end users is considered as an alternative with the over-
arching goal of “off-loading” from the cloud where fog, as the proxy, could
be equipped with not only computation power, but also storage and network-
ing resources to accommodate various IoT applications. Most importantly, IoT
applications could be deployed in fog rather than the conventional approach on
either resource-constrained IoT devices or the remote cloud. In this regard, fog
and cloud complement each other and encompass other IoT devices to form a



ESDA: An Energy-Saving Data Analytics Fog Service Platform 173

seamless cloud-fog-things service continuum in which service could be dissemi-
nated [19].

Machine learning technologies, especially deep learning, have celebrated mas-
sive successes in domains of IoT and service-orientated computing owing to their
adoptions in a wide range of IoT applications. The deployment of ubiquitous
sensors has played a crucial role in IoT infrastructure to empower various real-
time data analytic services such as health care monitoring, intrusive detection
and smart building, etc. Applications provisioning such services require to col-
lect, process, analyse and communicate enormous amount of sensor data consis-
tently in order to provide the highly customisable services related to the sensed
phenomena. However, these data-thirsty tasks are often plagued by the miss-
ing sensor data issue, which consequently compromises the performance of any
learning algorithms [10]. While most of the data complementing algorithms and
frameworks commonly fail to interpret underlying temporal data correlations
and underestimate the high complexity of predicting multi-type sensor data [3],
it is imperative to discover a powerful approach that could not only cope with
the missing data but also respond to such service request promptly.

In this paper, we present a novel energy-saving data analytics fog service
platform, namely ESDA, which serves the purpose of providing real-time, multi-
type and large-scale data analytics services for IoT devices. More specifically,
under the control of fog nodes, sensors no longer need to be constantly turned
on to transmit sensed data upwards. Fog, instead, will initiate the in-fog learning
process and use the trained local model to predict missed multi-type sensor data
that are substantial for many service requesters. More importantly, the platform
will automate the process of conserving energy cost of the platform by turning
sensors into the sleep mode during the service operation.

The main contributions of this paper are as follows:

1. To better serve real-time services in IoT context, a fog-empowered energy
saving data analytics platform is proposed. The fog can utilise dedicated
computation and storage resources to facilitate real-time data analytics ser-
vices. Besides, the platform offers a flexible deployment options through the
selection of different energy saving patterns.

2. Taking advantage of the recurrent neural network (RNN), a novel fog-based
deep encoder architecture is proposed to improve the accuracy of multi-type
sensor data prediction, which takes the internal time-series correlation into
account to enhance the inference accuracy.

3. An in-fog learning and predicting algorithm is designed and run at the fog
layer, where each fog node will train the local model and ensure an acceptable
data prediction accuracy to satisfy the need of data analytics services. Apart
from that, an energy conserving algorithm is incorporated to minimise the
overall energy consumption of the platform during the service operation.

4. Advantages of adopting the proposed platform are evaluated experimentally
through a real-world indoor deployment, along with its effectiveness and
applicability for many use cases in IoT environment empowered by fog com-
puting.



174 T. Zhang et al.

The remainder of the paper is organised as follows. We review the related
work on sensor data prediction and acquisition, deep learning based real-time
data analytics and energy-saving approach in Sect. 2. In Sect. 3, we introduce the
proposed fog service platform architecture followed by the detailed explanation
of fog-enabled deep autoencoder (FEDA) and integrated algorithms. We then
present the deployment of our real-world indoor testbed as well as the compre-
hensive experiments conducted in Sect. 4, and we draw the conclusion and point
out the future work in Sect. 5.

2 Related Work

There are several previous efforts made towards developing methods in com-
plementing missing sensor values and saving energy consumption in the IoT
environment to fulfil different service needs.

The approaches to fill the incomplete data are actively studied in the area of
image processing. The authors in [12] presented an unsupervised visual feature
learning algorithm for image inpainting. By analogy with auto-encoders, this
algorithm utilises convolutional neural networks (CNN) to generate the incom-
plete region of another arbitrary image based on the surrounding context of the
incomplete part. In [8], the authors proposed a denoising autoencoder named
Multimodal Autoencoder (MMAE) to handle the missing multimodal data. This
method is an unsupervised learning technique using the deep neural network
(DNN). The empirical evaluation verified that the MMAE could outperform the
traditional principal components analysis (PCA) in prediction accuracy of the
feature values from multiple missing modalities in the scale between 0 and 1.

Satisfactory performance of data prediction can eliminate the demand to
periodically sending the original raw data to the cloud. The sensors whose data
can be accurately predicted are permitted to sleep as long as possible during
the network operation. Conceptually, the longer sleep time window that sensors
are allowed to have, the more energy can be saved for the network. The critical
task is how to precisely predict these incomplete data from sleeping or malfunc-
tioning sensors [2]. For this reason, recently there are several works focusing on
data prediction using machine learning for the IoT network: the authors in [11]
developed a data prediction algorithm with an error-correction learning scheme.
This algorithm is developed from recursive least squares (RSL) and is used to
improve the value which is initially predicted by using a small number of data.
The authors in [13] proposed a derivative-based prediction that uses a linear
model to observe the trends of data in recently captured data to predict the
future data. By analysing the latest data, this approach can produce a satisfac-
tory model for predicting data in the short-term. However, frequent updates on
trainable parameters of the model are required for holding this high accuracy in
predicting long-term data trends. The authors in [15] introduced CNN to learn
the correlation of the neighbouring sensor data to decide the sensors active/sleep
status, i.e., the sensors whose data can be accurately predicted will be turned
into the sleep mode in priority.



ESDA: An Energy-Saving Data Analytics Fog Service Platform 175

Fig. 1. Fog service architecture

However, with the rapid increase of the number of devices in the IoT envi-
ronment, the heavy traffic volume generated by these sensors increases the pro-
cessing burden on the cloud. Moreover, the expected connection latency leads to
a degradation of the expectation of real-time data service. A potential solution
is to place the service providers closer to end devices/users’ side for the timely
service provision process and reduce the redundant data communication to the
cloud. For instance, the work [14] proved that for IoT environment like building
energy management system, by utilising a collaborative fog platform for deliv-
ering data processing service in a real-time manner, a significant reduction of
traffic volume to the cloud could be realised. Some works shift their attention
to using resource-constrained IoT devices to fulfil the allegedly computation-
intensive mission. For instance, the authors in [9] developed a light-weight, tree-
based classification algorithm for data prediction on IoT devices. This algorithm
learns a single, shallow, spare tree to reduce the required model size while form-
ing a small number of prototypes data representing the entire data sets. This
algorithm achieves high prediction accuracy while it can be executed on resource-
constrained IoT devices, i.e., Arduino Uno board. Similarly, to reduce the data
learning complexity, the authors in [4] proposed a k-nearest neighbour (k-NN)-
based algorithm by using a spare projection matrix that projects all data sets
into lower-dimension. One common issue for these two algorithms is that the
model trained on a resource-scarce device is merely meant for the individual
device, thus not suitable for providing data analytics service at a reasonable
scale.



176 T. Zhang et al.

To the best of the authors’ knowledge, this is the first work to propose a
novel fog service platform to achieve prominent real-time data analytics in an
energy-saving style.

3 Overview of the ESDA Fog Service Platform

A multi-tier fog service architecture can be observed in Fig. 1. Under this struc-
ture, end things/users act as the service requester/receivers, and fog nodes, on
the other hand, are equipped with the computational and storage capability to
enable a variety of real-time IoT services that can be activated on demand and
delivered to the destination in a timely manner. In the service-oriented comput-
ing perspective, fog thus performs the role of the service provider. Besides, as
the traditional service provider in IoT-Cloud schema, the cloud could still be
the placeholder for a particular category of applications providing delay tolerant
services, e.g., large-scale data backup service. This figure also well demonstrates
what a hierarchical service continuum composed of IoT users/devices, fog and
cloud visually looks like in the IoT network.

Since the service transmission latency drops with the shortening of the geo-
graphical distance between deployed service providers and end things/users (ser-
vice requester/receiver), fog node could be placed in the vicinity of the raw data
source in any autonomous environment. In a smart building scenario, multi-type
sensors could interact directly with fog node in that area and feed raw data
to the analytical applications running at the fog layer. Fog, at the same time,
continually monitors the energy consumption status of each sensor to which it is
connected, and utilises the energy-saving algorithm to put sensors to the sleep
mode to extend their lifespan.

In the proposed ESDA fog service platform, a novel fog-enabled deep autoen-
coder model (FEDA), built on top of the long short term memory (LSTM)-based
sequence-to-sequence structure [16], is adopted as the core part of the data ana-
lytics application to satisfy the real-time data service enquiries. The name “fog-
enabled” comes from the fact that the whole training and inference process rely
heavily on the support of the local fog nodes. Also, this platform fills in the gap
concerning the missing sensor data when sensors are put into the sleep mode,
recharging or malfunction. Afterwards, fog could respond to relevant IoT devices
that depend on the returned service results to trigger corresponding actions, such
as temperature change by air conditioner or luminous intensity adjustment by
light controller.

Other than providing the reliable data analytics service, the platform also
aims to accomplish the sustainability by taking an efficient energy utilisation.
Both the in-fog learning algorithm for training the FEDA and the energy-saving
algorithm are incorporated into the platform and explained in the following
subsections.



ESDA: An Energy-Saving Data Analytics Fog Service Platform 177

Fig. 2. FEDA model structure

3.1 Fog-Enabled Deep Autoencoder (FEDA)

An autoencoder is generally referred to as an unsupervised learning approach
where a deep neural network tries to reconstruct an input X after the reconstruc-
tion error between the ground truth X and network output’s X ′ is minimised
through an optimizer. In this circumstance, the embedding layer is often pre-
sented in the compressed format and used as the compact representation of the
data. One limitation of the traditional autoencoder is that the length of X ′ tends
to be the same as X, which is not ideal for predicting the temporal data series
that could end up being arbitrary length. Henceforth, we tend to leverage the
LSTM-based sequence-to-sequence architecture as the fundamental part of our
deep autoencoder owing to the capability of handling variable-length time series
input and output another variable-length time series data.

The LSTM originally proposed in [7], enable several state variables, includ-
ing hidden/control state ht and memory cell state ct to sustain the underlying
correlation among temporal data, where t means a certain timestamp. A single
LSTM unit’s operations can be expressed as:

it = σ (Wxixt + Whiht−1 + bi)
ft = σ (Wxfxt + Whfht−1 + bf )
ot = σ (Wxoxt + Whoht−1 + bo)
gt = φ (Wxgxt + Whght−1 + bg)
ct = ft � ct−1 + it � gt

ht = ot � φ (ct)

(1)

where σ is the sigmoidal non-linearity, φ is the tangent non-linearity and � is the
element-wise dot product. The weights and biases metrics for computing each
gate values are represented as Wi,j and bj , respectively.



178 T. Zhang et al.

Figure 2 presents the graphical representation of FEDA model structure. We
apply LSTM in both encoder and decoder parts of the RNN, and the principal
philosophy of this model is that, for both encoder and decoder, the value at
xt+1 timestamp depends on previous state ht and previous output value xt to
learn the underlying time series correlation. In order to encompass the flexibility
required to predict the arbitrary missing sensor data given any previous time
window, we convert the variable-length input data up until timestamp t into a
fixed length embedding layer first, which afterwards will be fed into the encoding
part on the left. The last state generated by the encoding phase is then passed to
the right - the decoding phase, where the output starting from t+1 is predicted
for each forthcoming time step.

There are several points worth noting in the decoder part of the model.
Firstly, since it could be multiple LSTM units (circles in each rectangle in Fig. 2)
in each LSTM cell (rectangles in Fig. 2) throughout the network, in the decoding
phase, the results generated by a number of LSTM units from a single LSTM
cell, say n, is used as a mini-embedding vector whose size is equivalent to n.
These mini-embedding vectors are then multiplied and added with their dedi-
cated weight matrix Wt+1 and bias bt+1, respectively, to generate a single value
(ot+1) for that timestamp. Apart from that, the model generalises the coexistence
of heterogeneous sensor data types, i.e., a multi-functional sensor can detect the
value of temperature, humidity level, air pressure and luminous intensity at
the same time in real world, and this sensor then produces four types of data
repeatedly as the time elapses. To cope with that, each ot+1 is equipped with a
trainable scalar variable st+1 to scale the value of a specific data type up to its
original magnitude as close as possible.

3.2 Integrated Algorithms

There are two main algorithms integrated into the platform designed with dif-
ferent purposes. The first one controls the process of fetching the preliminary
trained model from the cloud based on historical backup data, communicating
the controlled sensors to collect training data, and initiating the training pro-
cess on each local fog node. The second one, on the other hand, focuses on the
management of connected sensors per fog node, as well as carries out service
operations from various service requesters. The details are broken down sepa-
rately as Algorithms 1 and 2.

Algorithm 1 consists of two phases. Every fog node i (i ∈ F) in phase one
firstly checks the availability of local model M(i), then it might use the prelim-
inary pre-trained model from the cloud and restore it (lines 1–5 in Phase 1).
As the preliminary model from the cloud is trained based on historical backup
sensor data stored on the cloud, it does not reflect the real-time sensor reading in
the environment and thus needs to be refined. The refinement process, in other
words, can be addressed as the continuous in-fog training for the preliminary
model. Each fog node collects sensor’s reading in its managed area, then creates
dataset D (lines 1–6 in Phase 2). To train the FEDA model used by each fog node,
D needs to be split into two time series parts Ds and De randomly, where Ds is



ESDA: An Energy-Saving Data Analytics Fog Service Platform 179

fed into the model as variable-length input mentioned in Sect. 3.1. In contrast,
Dp corresponds to the predicted data series, and the reconstruction error E(i) is
calculated between Dp and De using a distance error measurement (lines 7–9),
e.g., Root Mean Square Error (RMSE) used here. It is worth noting the relation
between error E(i) and hyperparameter θ, where θ is a system-level parameter
defined to balance the trade-off between data reconstruction volume and energy
consumption amount. It could be explained as error tolerance threshold. Fog
will stop training the local model until the error is no greater than threshold θ
(lines 10–13). The pick-up strategy of the threshold value will be demonstrated
in Sect. 4.2.

Algorithm 1. In-fog learning algorithm

Phase 1: Preliminary Model Fetch

1: fog fi (i ∈ F) fetches the preliminary model M from the cloud
2: if M(i) not exists then
3: M(i) ← M
4: end if
5: restore local model M(i)

Phase 2: Local Model Refinement

1: D ← ∅
2: S ← sensors managed by fog fi
3: repeat
4: for ∀s ∈ S do
5: D.add(current reading of s)
6: end for
7: Separate D into two time series parts Ds and De

8: Dp ← M(i)(Ds)

9: E(i) ←
√

1
n

∑n
t=1(Dp,n − De,n)2

10: if E(i) > θ then
11: Feed D into M(i) to continue training
12: end if
13: until E(i) ≤ θ

Pseudocode in Algorithm 2 concerns on inactivating managed sensors in a
time period to reduce the overall energy consumption of the platform, as well
as resolving data analytics service request. To start with, fog nodes are aware of
the local model M(i) trained from Algorithm 1 and system-level hyperparame-
ter θ. Based on the selection of threshold θ, the platform is assigned with the
corresponding energy-saving pattern P , which is used to calculate sensor’s sleep
time T . In addition, variables tstarti and tendi are adopted as the indicator of
the sleep window (lines 1–6). During the service operation process, fog would



180 T. Zhang et al.

receive periodic service request regarding the type and value of current sensor
reading from different IoT equipments in every time interval t (lines 8–9). If a
service request received falls into the sleep window of sensors, fog leverages M(i)

substantially to conduct the analytics service so that applicable results are able
to be returned back regardless (lines 11 and 12). For example, inside a building,
fog nodes may receive the temperature reading request from the air conditioner
operating in the controlled area every minute to attain the thermal comfort. The
sleep window needs to be re-calculated with the change of threshold θ along with
energy-saving pattern P (line 17).

Algorithm 2. Energy-saving and service operating algorithm
1: Energy-Saving for ∀fi ∈ F
2: M(i) ← local model trained by fog fi
3: P ← energy-saving pattern based on threshold value θ
4: Si ← sensors managed by fog fi
5: T ← sleep time calculated based on P
6: (tstarti , tend

i ) ← fog fi de-activates Si for T and records the sleep window
7: Service Operation for ∀fi ∈ F
8: Repeat at every interval t
9: R(i) ← service requests sent to fog fi at current interval t

10: for ∀r ∈ R(i) do
11: if t falls into window between (tstarti , tend

i ) then
12: fi employs M(i) to conduct analytic service regarding r
13: else
14: fi retrieves current sensor reading regarding r
15: end if
16: end for
17: Until θ changes

4 Experiments

We present the real-world experimental settings in an indoor deployment as well
as evaluation results in this section.

4.1 Experimental Setting

We introduce the building energy management system (BEMS) as the use case
to evaluate our proposed platform. Figure 3 illustrates a deployment example of
a BEMS application. The main objectives of BEMS include: 1. monitoring and
managing the overall energy consumption; 2. constantly checking the indoor
environment conditions (e.g., temperature, humidity) to ensure the comfort of
occupants. Fog, as the placeholder of the application, acts as a real-time data
analytics service provider to respond requests coming from various IoT devices.



ESDA: An Energy-Saving Data Analytics Fog Service Platform 181

Fig. 3. Floor plan of real-world indoor deployment

Table 1. Setup parameters for experimental network

Parameters Values

Sensor number 18

Network area size 162 m2

Data collection interval 1 min

Data collection period 1 year

Data type Temperature (Celsius), humidity (%), luminous
intensity (Candela), barometric pressure (Pascal)

As mentioned earlier, the platform allows on setting of different energy-saving
patterns aligned with the system-level parameter θ for versatile deployment
scenarios, and such system-level parameters are controlled by system admin
(demonstrated in Fig. 3). Apart from that, fog nodes remain connected to both
sensors and other IoT devices such as humidifier, air conditioner and light, etc.
to complete the service continuum. For example, in Fig. 3, as shown by blue
arrows, fog nodes can send the analytics results straight to the air conditioning
and lighting systems for adjusting the current status. It is worth mentioning that
this real-world deployment happens inside an office building. The sensor (Texas
Instruments CC2650 SensorTag) placement information is shown in Fig. 3, and
the parameter details of the network topology are listed in Table 1.

4.2 Evaluation Results

It is of importance for applications such as BEMS deployed in the fog to pro-
vide real-time data analytics results as accurate as possible on which IoT ser-
vice requester like air conditioner could faithfully rely and adjust the behaviour
accordingly. We thus verify the effectiveness of the proposed platform through
comprehensive experiments. To assess the performance of FEDA, three other
state-of-the-art autoencoder variants are used as the benchmarks, including CNN
encoder, DNN encoder as well as vanilla RNN. Two forms of comparisons are
demonstrated here: real-world multi-type sensor data reading prediction at each



182 T. Zhang et al.

Fig. 4. Prediction on multi-type sensor reading (4 data types) (Color figure online)

time point, and the continuous single data type prediction in a given period.
In addition, the experiment with regard to saving energy while retaining a sat-
isfactory prediction result is demonstrated at last. In order to ensure a fair
comparison, the Adam optimizer [8] is used across different learning techniques
with the learning rate 0.001, which is observed to learn the fastest during the
experiments.

Figure 4 displays the prediction results for multi-type sensor data reading at
each time point. As stated in Table 1, each fog node collects managed sensor
readings in 1 min interval for all four data types. To realise the test on the
adopted learning model in terms of predicting heterogeneous data types all at
once given a random length input, sensor reading in one time period has been
randomly masked off indicating the loss of the data, and each model predicts
on the lost heterogeneous data values, respectively. For each time interval (from
1 min to 6 min) in Fig. 4, sensors are set to read the surrounding phenomena
in the order of temperature, humidity, barometric pressure, and then luminous
intensity (four points connected into a line segment at every minute). The greyed-
out area indicates the period when the mimic data loss happens (sensors in
sleep or fault conditions), and the dashed-vertical line aligns with the prediction
results for that data type generated among different models, e.g. dashed grey
circle highlights on the prediction results on luminous intensity data type by
different models at 2nd min. It could be observed that the green line with up-
triangles markers (FEDA) generally have a closer distance to the ground truth
sensor reading (black line with dots) on each data type at every time stamp
compared with the other three.

Figure 5 amplifies the prediction results on each of the four data types in a
40 min time window, in which sensor data is mimicked to be missing from 10 to
30 mins. It is evident that for temperature, humidity and air pressure, the FEDA
clearly outperforms other competitors, and even in the extreme case of luminous
intensity where the value becomes 0 at some time point due to the office light



ESDA: An Energy-Saving Data Analytics Fog Service Platform 183

Fig. 5. Prediction on individual data type

being turned off at night, our model reserves a conservative prediction following
the trend of the true sensor reading line. In general, both figures mentioned above
verify that the novel FEDA model adopted in our proposed platform excels in
delivering more accurate data analytics service from which the connected IoT
service requesters could primarily benefit with better QoS.

The experiment result regarding the relation between the system-level error
tolerance threshold θ and the total energy consumption in BEMS is shown in
Fig. 6. The left y-axis in the graph represents the different values of θ after
applying logarithm for better visualisation purpose, whereas the right y-axis
tells the energy consumption by percentage (when energy consumption is 100%,
all sensors are activated during the whole service operation period). The values
of θ are derived from the calculated prediction errors using the test dataset.
We conduct a grid search on θ and utilise four of them (errors calculated when
80%, 60%, 40% and 20% of total inactive times of all sensors, respectively) to
form the corresponding energy-saving patterns (P1–P4), which is shown as the
shared x-axis in the graph. It is as expected that the more sensors that are put
into the sleep mode longer, the more reconstruction errors will be encountered,
yet the less energy will be consumed for the whole system. We observe that
the decrease of the θ is not strictly linear, and the slope between P2 and P3
is greater than other segments of the line. Henceforth, we adopt the threshold
defined in P3 for both Algorithms 1 and 2, which empowers our platform to save
energy consumption up to 40% while keeping an acceptable error tolerance. It is
worth mentioning that the selection of patterns depends entirely on different use
cases and deployment scenarios. For instance, if the platform is adopted in the
smart agriculture use case where sensors and fog are placed in the geographically
remote area, then the energy saving could come to the priority so as to extend
the lifespan of energy-scarce sensors to a large extent, then the use of P1 might
be more appropriate than others.



184 T. Zhang et al.

Fig. 6. Energy consumption and error tolerance threshold

5 Conclusion and Future Work

Our ESDA fog service platform is a low energy-cost IoT platform that provides
real-time data analytics service and can be deployed in many scenarios. With
the help of FEDA and in-fog learning, energy-saving algorithms, this platform
could extend the lifespan of managed sensors without deteriorating much of
the QoS thanks to the accurate data forecasting capability. We have deployed
the platform into a real-world indoor IoT testbed and adopted BEMS to verify
its effectiveness. The comprehensive experiment results demonstrate the supe-
riority of the platform. The platform also enhances the flexibility by allowing
to customise the error tolerance threshold θ to cater for different deployment
requirements. Moving forward, we will investigate the possibility of using collab-
orative learning schema in this platform, where fog leverages each other’s power
to reach the consensus on the learning model.

Acknowledgements. This work is partly supported by Australian Government
Research Training Program Scholarship, Australian Research Council Discovery
Project Grant DP180100212 and NICT (Contract No. 19103), Japan.

References

1. Aldossary, S., Allen, W.: Data security, privacy, availability and integrity in cloud
computing: Issues and current solutions. Int. J. Adv. Comput. Sci. Appl. 7(4),
485–498 (2016)

2. Dias, G.M., Bellalta, B., Oechsner, S.: A survey about prediction-based data reduc-
tion in wireless sensor networks. ACM Comput. Surv. 49(3), 58 (2016)

3. Gao, Z., Cheng, W., Qiu, X., Meng, L.: A missing sensor data estimation algorithm
based on temporal and spatial correlation. Int. J. Distrib. Sens. Netw. 11(10),
435391 (2015)

4. Gupta, C., et al.: ProtoNN: compressed and accurate kNN for resource-scarce
devices. In: Proceedings of the 34th International Conference on Machine Learning,
pp. 1331–1340. JMLR.org (2017)

5. Harb, H., Makhoul, A., Laiymani, D., Jaber, A.: A distance-based data aggregation
technique for periodic sensor networks. ACM Trans. Sens. Netw. 13(4), 32 (2017)



ESDA: An Energy-Saving Data Analytics Fog Service Platform 185

6. He, J., Wei, J., Chen, K., Tang, Z., Zhou, Y., Zhang, Y.: Multitier fog computing
with large-scale IoT data analytics for smart cities. IEEE Internet of Things J.
5(2), 677–686 (2018)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

8. Jaques, N., Taylor, S., Sano, A., Picard, R.: Multimodal autoencoder: a deep learn-
ing approach to filling in missing sensor data and enabling better mood prediction.
In: Proceedings of the 7th International Conference on Affective Computing and
Intelligent Interaction, pp. 202–208. IEEE (2017)

9. Kumar, A., Goyal, S., Varma, M.: Resource-efficient machine learning in 2 KB
RAM for the Internet of Things. In: Proceedings of the 34th International Confer-
ence on Machine Learning, pp. 1935–1944. JMLR.org (2017)

10. Li, H., Ota, K., Dong, M.: Learning IoT in edge: deep learning for the Internet of
Things with edge computing. IEEE Netw. 32(1), 96–101 (2018)

11. Luo, X., Zhang, D., Yang, L.T., Liu, J., Chang, X., Ning, H.: A Kernel machine-
based secure data sensing and fusion scheme in wireless sensor networks for the
cyber-physical systems. Future Gener. Comput. Syst. 61, 85–96 (2016)

12. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context
encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

13. Raza, U., Camerra, A., Murphy, A.L., Palpanas, T., Picco, G.P.: Practical data
prediction for real-world wireless sensor networks. IEEE Trans. Knowl. Data Eng.
27(8), 2231–2244 (2015)

14. Shen, Z., Zhang, T., Jin, J., Yokota, K., Tagami, A., Higashino, T.: ICCF: an
information-centric collaborative fog platform for building energy management sys-
tems. IEEE Access 7, 40402–40415 (2019)

15. Shen, Z., Yokota, K., Tagami, A., Higashino, T.: Development of energy-efficient
sensor networks by minimizing sensors numbers with a machine learning model.
In: Proceedings of the IEEE International Conference on Pervasive Computing and
Communications Workshops, pp. 741–746. IEEE (2018)

16. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

17. Tortonesi, M., Govoni, M., Morelli, A., Riberto, G., Stefanelli, C., Suri, N.: Tam-
ing the IoT data deluge: an innovative information-centric service model for fog
computing applications. Future Gener. Comput. Syst. 93, 888–902 (2019)

18. Trihinas, D., Pallis, G., Dikaiakos, M.D.: ADMin: adaptive monitoring dissem-
ination for the Internet of Things. In: Proceedings of the IEEE Conference on
Computer Communications, pp. 1–9. IEEE (2017)

19. Zhang, T., Jin, J., Yang, Y.: RA-FSD: a rate-adaptive fog service delivery platform.
In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp.
246–254. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9 16

https://doi.org/10.1007/978-3-030-03596-9_16


Leveraging AI in Service Automation
Modeling: From Classical AI Through
Deep Learning to Combination Models

Qing Wang1(B), Larisa Shwartz1 , Genady Ya. Grabarnik2 ,
Michael Nidd3 , and Jinho Hwang1

1 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
qing.wang1@ibm.com, {lshwart,jinho}@us.ibm.com

2 Department of Math and Computer Science, St. John’s University,
Queens, NY 11439, USA
grabarng@stjohns.edu

3 IBM Research–Zurich, 8803 Rueschlikon, Switzerland
mni@zurich.ibm.com

Abstract. With the advent of cloud, new generations of digital ser-
vices are being conceived to respond to the ever-growing demands and
expectations of the market place. In parallel, automations are becoming
an essential enabler for successful management of these services. With
such importance being placed on digital services, automated manage-
ment of these services – in particular, automated incident resolution
– becomes a key issue for both the provider and the users. The chal-
lenge facing automation providers lies in variability and the frequently
changing nature of the monitoring tickets that provide the primary input
to automation. Despite the value of the correct automation at the cor-
rect time, it is also important to remember that triggering an incorrect
automation may damage the smooth operation of the business. In this
paper, we discuss AI modeling for automation recommendations. We
describe a wide range of experiments which allowed us to conclude an
optimal method with respect to accuracy and speed acceptable to service
providers.

Keywords: Classical and deep learning models · Combination
models · Multiclass text classification · AI for service automation

1 Introduction

Providing Service Management at scale requires automation. For decades, sys-
tem administrators have had scripts to automate routine repairs, and have also
employed automated monitoring systems to raise alerts when repair is called
for. While some of these alert conditions require individual expert attention,
service delivery professionals have confirmed that many of these conditions can
be handled with the execution of the correct well-written script. These scripts
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 186–201, 2019.
https://doi.org/10.1007/978-3-030-33702-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_14&domain=pdf
http://orcid.org/0000-0001-5878-0765
http://orcid.org/0000-0001-8068-0920
http://orcid.org/0000-0001-7379-2852
http://orcid.org/0000-0001-8595-7431
https://doi.org/10.1007/978-3-030-33702-5_14


Leveraging AI in Service Automation Modeling 187

are combined into automation library for IBM Automation service. The first step
in managing alert conditions is to filter and collect the alerts into the “trouble
tickets” that act as work orders for repair. IBM service delivery teams have
libraries of regular expressions that match ticket details to automation that may
solve the problem. These regular expressions are applied to ticket raised by mon-
itoring systems, which encode both specific fields (machine address, timestamp,
severity, etc.) and also “free text” summary information.

In the normal course of business, new monitor systems are added, either
through organic growth or by mergers and acquisitions. These new systems
will usually be generating tickets about similar issues, so existing automation
would often be appropriate for its resolution, but ticket formats may be suf-
ficiently different to not match the corresponding regular expression. Figure 1
shows an example of two different ticket problems that were detected and auto-
ticketed by the monitoring system, and subsequently successfully closed by the
same automation. Over the course of several years IBM Global Services estab-
lished around 25,000 regular expressions. This approach is very effective, but it
is difficult to maintain. To assist IBM automation services we created “match-
ing service” that utilizes artificial intelligence for choosing an automation for a
monitoring ticket with ensuring the following challenge:

How does the matcher service effectively achieve and maintain high accu-
racy on noisy tickets while automatically adapting to an introduction of a new
or changed ticket contents? Since executing an inappropriate automation on a
server may cause damage, our recommendation has to be highly accurate. Infor-
mative, discriminating and independent features can greatly promote the perfor-
mance of classification or regression algorithms, while irrelevant features decrease
it. Unfortunately, real-world tickets (seen in Fig. 1) contain various time-format,
numeric and domain-specific terms, and unknown text snippets that make them
too noisy to be interpretable. Thus, effective feature-selection [1] often involv-
ing immense efforts on text preprocessing becomes a crucial step to make this
learning task more efficient and accurate. Feature selection is performed manu-
ally for classical classification solutions [2], but the changes in ticket style and
content over time means that optimal feature-selection will also change, leading
to degraded performance. Reasonable techniques to address this issue include
the direct use of deep neural networks [3–5] without manual feature-selection,
or using convolutional neural networks as input for classical AI models (i.e.,
combination models) to automatically learn a generic feature representation.

In the course of our work with service delivery teams to improve automation,
we have studied the use of Machine Learning (ML) to identify methodology that
would help us to address the tickets that were not recognized by the existing
rules. We have conducted a comparative study on a wide range of machine learn-
ing approaches including classical AI, deep learning and combination methods.
They are described in details in Sect. 3. We have large volume of tickets from
IBM Services which were successfully and automatically remediated, so we have
large amount of task specific labeled dataset for our experiments.



188 Q. Wang et al.

AUTOMATION Disk Path CheckerALERT_KEY XXX_logalrt_x072_aix

AGENT CUSTOMER_CODE ALERT_GROUP COMPONENT OSTYPE

EIF Probe on xxxxxx XXX ITM_XXX_LOGFILEMO
NITOR_LOG_FILE Computer System Generic

TICKET_GROUP PRIORITY HOSTNAME IP_ADDRESS SUBCOMPONENT

I-XXX-XXX-DS PX XXX XXX.XXX.XXX.XXX Log

TICKET
SUMMARY

LogEvent: Thu Apr 4 02:00:01 
EDT2019,xxxxxx,pcmpath,disk,fib
er adapters missing or failed on 
server

TICKET
DESCRIPTION

4 xxxxxx GENERIC LOG 
/TMP/xxxxxx.LOG AIX is CRITICAL 
**

AUTOMATION Disk Path CheckerALERT_KEY XXX_erp_xlo2_std

AGENT CUSTOMER_CODE ALERT_GROUP COMPONENT OSTYPE

EIF Probe on xxxxxx XXX ITM_XXX_LOGFILEEV
ENTS Operating System AIX

TICKET_GROUP PRIORITY HOSTNAME IP_ADDRESS SUBCOMPONENT

NUSN_XXDISTOPS PX XXX XXX.XXX.XXX.XXX ErrorReport

TICKET
SUMMARY

Errpt log entry: xxxxxx 0404051519 
P H - PATH HAS FAILED - hdisk21

TICKET
DESCRIPTION

xxx.xxx.xxx.IBM.COM AIX 
ERRORREPORT 
/VAR/ADM/RAS/ERRLOG.HDISK2
1 UNIX is CRITICAL **

Fig. 1. Two different monitoring tickets and the same matching automation.

As we present in this paper, our initial solutions have performed extremely
well on the labeled test data. A significant challenge when evaluating recom-
mendations, however, is that this data is all taken from the tickets that were
automated through regular expression match. When we apply these models to
tickets that did not match any of those expressions, the only way to evaluate
the recommendation is for a subject matter expert (SME) to review it. We have
done this and, as we will present here, the results are very promising.

We have incorporated these models into “matching service” for IBM service
delivery: automation service makes a call to matching service for the tickets
that do not match any of the handcrafted rules. If our system identifies a ticket
that our model strongly associates with an existing automation (for an audited
set of automations that are deemed “safe” enough to run prospectively), that
automation will be run. After it is run, the ticket condition is reevaluated, and
the ticket is either resolved automatically or escalated.

This “matching service” is part of Cognitive Event Automation (CEA) frame-
work [6] that focuses on service management optimization and automation with
the goal of transforming the service management lifecycle to deliver better busi-
ness outcomes through a data-driven and knowledge-based approach. The frame-
work relies on novel domain specific techniques in data mining and machine
learning to generate insights from operational context, among them generation
of predictive rules, deep neural ranking, hierarchical multi-armed bandit algo-
rithms, and combination models for the automation matching service that is the
focus of this paper.

This paper presents the comprehensive performance comparison on a wide
range of popular classical AI, deep learning and combination classifiers that has
guided us in model selection for an IBM automation service implementation. We
have established that under the time constraint, classical AI models perform best
when size of training data is small but with the drawback that features must
be hand-crafted. Deep learning models will also perform well when the training



Leveraging AI in Service Automation Modeling 189

data is large enough, but combination models have the best performance for
large dataset size and without a need for manual feature-engineering.

The remainder of this paper is organized as follows. An overview of the CEA
system is presented in Sect. 2. In Sect. 3, we provide the mathematical formal-
ization of the problem and methodologies. Section 4 describes a comparative
study conducted over real-world ticket data to show the performance of the pro-
posed methodologies. Finally, a systematic review of related work is presented
in Sect. 5, and Sect. 6 concludes the work and provides directions for future
research.

2 System Overview

2.1 Service Management Workflow

A typical workflow for service management usually includes six steps. (1) An
anomaly is detected, causing the monitoring system to emit an event if the
anomaly persists beyond a predefined duration. (2) Events from an entire envi-
ronment are consolidated in an enterprise event management system, which
makes the decision whether or not to create an alert and subsequently an inci-
dent ticket. (3) Tickets are collected by an IPC (Incident, Problem, and Change)
system [7]. (4) A monitoring ticket is identified by automation services for poten-
tial automation (i.e., scripted resolution) based on the ticket description. If the
automation does not completely resolve the issue, this ticket is then escalated
to human engineers. (5) In order to improve the performance of automation ser-
vices and reduce human effort on escalated tickets, the workflow incorporates an
enrichment system like CEA that uses Machine Learning techniques [8–10] for
continuous enhancement of automation services. Additionally, the information
is added to a knowledge base, which is used by automation services as well as in
resolution recommendation for tickets escalated to human engineers. (6) Manu-
ally created and escalated tickets are forwarded to human engineers for problem
determination, diagnosis, and resolution, which is a very labor-intensive process.

2.2 System Architecture

The microservice is a new computing paradigm that overcomes the limitations
of the monolithic architectural style. The microservice architecture consists of
a collection of loosely coupled services, each of which implements a business
function. The microservice architecture enables scalability, flexibility, and also
continuous devops (development and operations) of large, complex applications.
We use the microservices framework to support our data processing components.

Figure 2 illustrates the CEA system architecture. In general, the system con-
sists of two types of services: offline processing services build a knowledge corpus
and models; and inline processing services apply reasoning to gathered runtime
data, using the models and knowledge corpus built offline. The offline processing
services take advantage of AI that incorporates feedback loop analysis, auto-
matically re-training models periodically or on demand if the monitoring system



190 Q. Wang et al.

undergoes a significant change. The system continuously improves recommen-
dations for automated resolution of monitoring tickets. The inline system has a
number of services: Correlation and Localization Service (CLS) identifies clusters
of symptoms attributable to a complex incident; Disambiguation of Root Causes
(DRC) is built as a recommender system that enriches ticket data with possi-
ble root causes, identifies steps necessary for full diagnosis and provides optimal
sequence of diagnostics and remediation steps using AI planning service. Finally,
the ticket-automation matching service provides a service to identify the correct
automation for a given ticket. The model built in this work allows the system to
trigger the correct automation, despite the challenge of external influences that
change ticket content and style over time.

Fig. 2. CEA system architecture

3 Problem Definition and Methodology

In this section, we provide a mathematical formulation of the service automation
modeling problem, followed by the description of proposed methodologies.

Based on a ticket’s content, finding the best automation can be intuitively
viewed as a multiclass text classification problem. A general framework for sta-
tistical learning (in particular for supervised learning) is as follows: a set of
labeled training data D = {(xt, yt)}N

t=1 is drawn independently according to a
distribution P (x, y) on (Rd, Y ), where x, xt ∈ R

d, y, yt ∈ Y = {1, 2, · · · ,K} is
the ground truth class label for xt. For example, a ticket (seen in Fig. 1) can be
represented by a set of features x using NLP techniques [11] and a known class
label y = {Disk Path Checker}. We assume that g(x) : Rd �→ Y be a prediction
function.

A loss function � : Y × Y �→ R, usually a positive function, measures error
between prediction and actual outcomes. Cross entropy loss (log loss), mean
absolute error (L1 loss), and mean squared error (L2 loss) are three popular
loss functions that calculate the error in different ways. Expectation L of � by
measure P is called expected loss:

L(g) = E(x,y)∼P [�(g(x), y)].



Leveraging AI in Service Automation Modeling 191

The prediction function g is usually found from minimization of expected loss L:

g = arg min
g

L(g). (1)

Sometimes we choose g from a family of functions g(Θ), where Θ is a set of
parameters. Equation 1 in this case becomes Θ∗ = arg minΘ L(g(Θ)).

Let p(k|x) = P (Y = k|X = x) be the conditional probability of getting label
k given X = x, k = 1, . . . , K. For equal misclassification costs the loss function
�(y, g(x)) = χ(y �= g(x)), with χ being indicator function of the set {y �= g(x)}.
Then the best classification (Bayes) rule minimizes expected misclassification

gB(x) = arg min
k=1,...,K

[1 − p(k|x)] = arg max
k=1,...,K

p(k|x).

In order to solve the real-world challenge, we have conducted a comparative
study on a wide range of machine learning approaches including classical AI, deep
learning and combination methods. Figure 3 shows an overview of how different
models are used to address multiclass text classification problem. In order to use
classical AI models for this classification task, a feature extraction step must first
transform the raw text data into informative feature vectors. In comparison, deep
learning models can automatically perform feature engineering and classification
tasks. Combination models unite the broad applicability of classical AI models
with the automatic feature engineering of deep learning models to improve the
performance. As background for the experimental design of Sect. 4, we will first
outline a few classical AI learning algorithms, like support vector machines,
ensemble methods, and deep learning approaches.

DEEP LEARNING 
MODELS

PREDICTED
CLASSIFICATION

TEXT
DATA

CLASSICAL
AI 

MODELS

COMBINATION MODELING

DEEP
LEARNING 
MODELS

LEARNED
FEATURES

FEATURE
EXTRACTION FEATURES

CLASSICAL
AI 

MODELS

CLASSICAL MODELING

DEEP LEARNING MODELING

Fig. 3. Using modeling for the multiclass text classification: classical AI vs deep learn-
ing vs combination.

3.1 Classical AI: Support Vector Machines

Support Vector Machines (SVMs) are often considered as an efficient, theoret-
ically solid and strong baseline for text classification problems [2]. SVMs were



192 Q. Wang et al.

designed for binary classification. There are two main approaches for multi-
class classification: one-vs.-all classifiers (OVA) [12] and multiclass SVMs [13].
One-vs.-all classifications simply construct K SVMs, where K is the number of
classes, training k-th SVM with all of the training examples in the k-th class
with positive labels, and all other examples with negative labels. In other words,
the k-th SVM tries to find a hyperplane that satisfies the following constrained
optimization problem:

min
ωk,bk,ξk

1
2
(ωk)T (ωk) + C

N∑

t=1

ξk
t ,

subject to:
(ωk)T φ(xt) + bk ≥ 1 − ξk

t , if yt = k,

(ωk)T φ(xt) + bk ≤ −1 + ξk
t , if yt �= k,

ξk
t ≥ 0, t = 1, 2, · · · , n,

where ω is the weight vector, b is the intercept of the hyperplane, φ(•) is the
function mapping the feature vector xt to a higher dimensional space and C is
the penalty parameter. For a new text x, the predicted ŷ can be calculated as
follows:

ŷ = arg max
k=1,2,··· ,K

((ωk)T φ(x) + bk).

3.2 Classical AI: Ensemble Methods

Ensemble methods [14] are learning algorithms that train multiple classifiers, and
then typically apply voting (weighted or unweighted) to make predictions for new
data. It is well known that an ensemble method is generally more accurate than
any single classifier. Useful categories of ensemble methods include Bagging and
Boosting. In this review, we are considering Random Forests as an example of
Bagging, and eXtreme Gradient Boosting as the one of Boosting.

Random Forests [15–17] is a highly accurate and robust machine learning
algorithm, capable of modeling large feature spaces. A random forests is an
ensemble of H decision trees {f1, f2, · · · , fH}, with each tree grown by randomly
subsampling with replacement of the entire forest training set D = {(xt, yt)}N

t=1,
xt ∈ R

d, and yt ∈ {1, 2, · · · ,K}.
There are two types of nodes in a binary decision tree [18]. The leaf nodes

of each tree are the estimates of posterior distribution pk for all classes. Each
internal node (i.e., split node) is associated with a test function Θ that best splits
the space of training data. Often, Gini-impurity is used to choose the best test
function Θ∗. During the training, each tree selects appropriate test functions and
labels leaf node probabilities. For the evaluation, a test sample x is propagated
through each tree leading to a classification probability pt(k|x) of the t-th tree.
A forest’s joint probability can be represented as follows:

p(k|x) =
1
H

H∑

h=1

ph(k|x)



Leveraging AI in Service Automation Modeling 193

Therefore, given x, the predicted class ŷ is:

arg max
k=1,2,··· ,K

p(k|x)

eXtreme Gradient Boosting [19] has been widely recognized in many
machine learning and data mining challenges and provided state-of-art results
on many standard classification benchmarks. It is a tree ensemble model based
on Gradient Boosting Machine and a set of Classification and Regression Trees
(CARTs). Similar to RF, the final output is the sum of prediction of each tree
with the given dataset D.

ŷ =
H∑

h=1

fh(x), fh ∈ F ,

where K is the number of trees, F is the space of all possible CARTs, and f is an
additive function in the functional-sapce F . In order to learn the set of functions
in the model, the objective function with a regulation term can be written as:

L =
N∑

t=1

l(yt, ŷt) +
H∑

h=1

Ω(fh). (2)

The loss function l(•) measures the difference between the target yt and
the prediction ŷt. The regularization function Ω(•) penalizes the complexity of
the model to avoid overfitting. Since the tree ensemble model including these
functions (See Eq. (2)) cannot be easily solved by traditional optimization meth-
ods, XGboost is trained in an additive manner. For the multiclass classification
problem, we construct K binary classifiers using XGBoost model [20] and sub-
sequently apply OvA.

3.3 Deep Learning: Convolutional Neural Networks

In recent years, deep neural networks have brought about a striking revolution
in computer vision, speech recognition and natural language processing.

Convolutional neural networks (CNNs), one of the most promising deep learn-
ing network methods, has achieved remarkable results in computer vision. It also
has been shown to be effective in many NLP tasks, such as text categorization,
spam detection, and sentiment analysis [4]. CNN performs well feature extrac-
tion and classification tasks without any preconfiguration (i.e., without selecting
features manually).

For an m-word input text (padded where necessary) st = {w1, w2, · · · , wm}
with a label yt, t = 1, 2, · · · , n, and yt ∈ {1, 2, · · · ,K}, each word is embedded as
a q-dimensional vector, i.e., word vectors w1, · · ·wm ∈ R

q. The m × q represen-
tation matrix is fed into a convolutional layer with a filter α ∈ R

l×q sliding over
the text to produce a feature map. Let wi:i+l−1 denotes the concatenation of
words wi, wi+1, · · · , wi+l−1 with a length l. A convolution feature is calculated



194 Q. Wang et al.

as follows. ci = f(α ·wi:i+l−1 +β), where β ∈ R ia a bias term and f(•) is a non-
linear function. This filter α slides over the text {w1:l, w2:l+1, · · · , wm−l+1:m}
resulting in a convolution feature map cα = [c1, c2, · · · , cm−l+1]. A maxpool-
ing layer is followed to capture the most important feature ĉα = max{c} as
the feature corresponding to the particular filter α. In practice, numerous fil-
ters with varying window sizes are used to obtain multiple convolution features.
Extracted features are passed to a fully connected softmax layer, whose output
is the probability distribution over classification classes o = {o1, o2, · · · , oK}.
The predicted class is

ŷ = arg max
k=1,2,··· ,K

{o}.

To avoid overfitting, dropout is employed.
In order to learn the parameters in this model, the objective loss function for

mutlclass text classification is needed to be defined. Herein, we use the cross-
entropy loss function:

min
Θ

− 1
N

N∑

t=1

K∑

k=1

yt,k log(pt,k),

where Θ denotes the parameters of the CNN model, yt,k is a binary indicator
if class k is the correct classification for the t-th text, and pt,k is the predicted
probability of text t is of class k through a softmax activation.

pt,k =
exp(g(st; θk))

∑K
k=1 exp((g(st; θk))

,
K∑

k=1

pt,k = 1.

3.4 Combination Models

Figure 4 shows the overall architecture of combination models for multiclass text
classification tasks. CNN is used for learning feature representation in many
applications. Convolution feature filters with varying widths can capture several
different semantic classes of n-grams by using different activation patterns [4]. A
global maxpooling function induces behavior that separates important n-grams
from the rest. We propose a combination model that replaces the softmax layer of
CNN with classical AI models for multiclass text classification problems. In this
model CNNs perform as an automatic feature extractor to produce the learned
(i.e., not hand-crafted) feature vectors from large text data. These feature vectors
used in the classical classification models to provide more precise and efficient
classification performance [21].

When comparing methods, it is important to remember the preprocessing and
feature extraction effort. The classical methods in Subsects. 3.1 and 3.2 require
considerable effort for text preprocessing and feature extraction [5]. Ensemble
methods also require either automatic feature extractors or manual selectors to
transform the raw data into suitable internal feature vectors for further pat-
tern recognition and classification [22]. These additional steps are not required
for deep learning and combination models. Ability to evade preprocessing steps
constitutes an important differentiation from classical methods.



Leveraging AI in Service Automation Modeling 195

4 Experiments

Executing an incorrect automation is potentially harmful to the service, so a
classifier’s recommendation has to be highly accurate.

DB2
inactive

process
using
high
cpu
(98%)
w3wp
wins
p3

Sentence input layer and 
word embedding layer.

1D convolutional layer with different 
filter widths and corresponding feature 
maps, relu layer.

Max-pooling 
layer.

Fully connected layer, relu 
layer and dropout layer.

Classical 
Classifiers

Predicted output.

Fig. 4. Architecture of combination models on multiclass text classification tasks.

4.1 Dataset and Experimental Setup

Experimental ticket data is generated by a variety of monitoring systems and
stored in the Operational Data Lake. This dataset contains |D| = 100, 000 tickets
from Jan. 2019 to Apr. 2019, of which 80% is the training dataset, while the
remaining are used for validation. There are 114 scripted automations (i.e., 114
classes/labels) in the dataset and a vocabulary V of size |V | = 184, 936. To ensure
validity of training, our ground truth dataset contains only tickets for which an
automation was not only selected, but it also run and successfully resolved the
ticket. Ticket information together with the automation name associated with
the ticket constitutes the labeled dataset for training and testing.

The first step of preparing input data for the classical AI classifiers uses
the bag of words method to represent feature vectors of each ticket after text
preprocessing (stemming, lemmatization, stop words removal, etc.). Classical AI
models usually work with relatively low-dimension attribute spaces, necessitating
well-defined and highly informative attributes as coordinates of feature vectors.
We use domain experts’ assistance to determine such attributes for the dataset.

It is common to initialize deep learning models for NLP by using pre-trained
word embeddings. This practice reduces the number of parameters that a neural
network needs to discover from scratch. For the deep learning and combination
models, it is a prevalent method to initialize pre-trained word vectors from an
unsupervised neural language model to improve performance.

A weakness of this method lies with its ability to handle unknown or out-
of-vocabulary (OOV) words. Our dataset (see Fig. 1) contains critical domain
specific information such as various machine address, domain-specific terms,
and unknown technical script snippets for which there are no pre-trained data.



196 Q. Wang et al.

A multilayer perceptron (MLP) is a deep artificial neural network composed
of input layer, output layer and some number of hidden layers in between. In
our case the layers are word embedding layer, fully connected layer and
dropout layer. The introduction of a dropout layer is a regularization tech-
nique that reduces overfitting. CNN has an additional convolutional layer.
Rectified Linear Unit (ReLU) is a commonly used activation function in deep
learning models.

After some preliminary testing, we designed our primary experiments to ran-
domly initialize all word vectors with a dimension of 300. We use filter size of
4, 5 with 64 feature maps each (for CNN only), dropout rate of 0.25, mini-batch
size of 128, and epoch number of 20.

4.2 Evaluation Metrics

The accuracy (ACC) and F1-score (F1) are widely applied metrics for evaluating
multiclass classifiers. We provide expression for the evaluation metrics in terms
of Sect. 3, the problem definition, where D = {(xt, yt)}N

t=1, yt is one of K classes,
and g(•) is the classifier. Multiclass accuracy is defined as an average number of
correct predictions: ACC = P(x,y)∼D[g(x) = y]. F1-score for 2 classes of outcome
(0, 1), is the harmonic mean of precision and recall

F1 = (
1
2
(

1
precison

+
1

recall
))−1 =

2C1,1

C1,1 + C0,1 + C1,1 + C1,0
, (3)

where Ci,j is a confusion matrix.
There are multiple ways to generalize Formula (3) to a multiclass F1-score.

Macro-averaged F1-score (F1-macro), which emphasizes each class equally, has
been demonstrated to be unbiased and provides an effective performance measure
in multiclass settings [23]. For a classifier g, its (multiclass) confusion matrix
C[g] ∈ [0, 1]K×K is defined as Cij [g] = P (y = i, g(x) = j). Macro-averaged
F1-score in terms of the confusion matrix can be written as:

F1macro[g] =
1
K

K∑

i=1

2 × Cii[g]
∑K

j=1 Cij [g] +
∑K

j=1 Cji[g]
.

4.3 Results and Discussions

A wide range of strong classifiers across supervised, unsupervised, deep and com-
bination AI models are evaluated for their performance on a real-world multiclass
classification task. To ensure the fairness of comparisons, the accuracy and F1
score for each model are calculated from the average results of 5-fold cross valida-
tion (CV). The comparison of performance of ACC, F1-macro and time cost has
been shown in Table 1, where time cost is defined as the time required to train
a good model on the dataset once for each model. The parameters in XGBoost
are learning rate is 0.1, number of estimators is 100, booster is gradient boosting
tree, and maximum depth is 4. For Random Forests, the number of estimators



Leveraging AI in Service Automation Modeling 197

is 100 as well. All algorithms are implemented using Python 1.8. All empirical
experiments are running on MacOS 10.14 with CPU only.

These results demonstrate that classical classification models such as SVM,
Random Forests, and XGBoost have best performance on small datasets, but
need handcrafted features. The training time for SVM increases exponentially
with data size, while those of Random Forest and XGBoost increase linearly.
Clearly, XGBoost has the best accuracy and F1-macro scores on the 4k dataset
from Table 1.

Table 1. Performance comparison on Accuracy (ACC(in percent %)), F1-macro
(F1(in percent %)), Time Cost (t(in seconds)).

|D| = 4, 000 |D| = 20, 000 |D| = 100, 000

Models ACC(%) F1(%) t(s) ACC(%) F1(%) t(s) ACC(%) F1(%) t(s)

Linear SVM [24] 97.95 88.18 3.60 99.09 92.42 42.81 99.53 93.69 671.97

Decision Tree [25] 97.65 84.71 0.11 98.58 79.96 1.13 98.15 62.74 16.43

KNeighbors [26] 93.75 75.20 0.15 97.39 78.01 3.72 97.80 80.46 99.29

K-Means [27] <50.00 – 78.01 <50.00 – 625.13 <50.00 – 5960.72

Random Forests [15] 97.65 89.26 1.15 99.05 92.28 13.25 99.29 93.39 251.26

XGBoost [19] 98.50 91.79 122.06 99.22 89.97 814.90 99.12 79.85 5345.62

MLP [3] 96.37 82.78 2.62 98.85 88.79 18.38 99.23 93.72 251.35

CNN [4] 97.12 81.10 8.65 98.92 88.40 52.87 99.39 93.16 601.11

CNN-SVM [21] 98.77 87.46 145.13 99.48 92.54 403.25 99.79 96.07 3019.69

CNN-Random Forests 98.75 87.92 148.24 99.54 90.01 148.24 99.80 95.90 1939.16

CNN-XGBoost [28] 93.50 67.41 260.19 97.70 72.15 1804.07 98.75 82.53 14035.91

Deep learning models perform better when the dataset is large, with the
additional benefits that the models have a relatively short training time, and do
not require feature engineering. Between deep learning models, CNN required
more training time than MLP. And this can be attributed to the larger number
of its parameters to learn.

Combination models have no need for handcrafted features, which allows them
to support evolving sets of ticket templates and styles without the direct interven-
tion of experts. Most of the combination models considered, CNN-SVM and CNN-
Random Forests have better accuracy and F1-macro scores than SVM and Ran-
dom Forests. This confirms that CNN models are good at automatically learning
feature representation from a text data. CNN-Random Forest has the best overall
performance among all the models including training time on a large dataset.

To summarize, we have explored a wide range of AI models and conducted
a comparative study on our real-life data, aiming to provide guidance for model
selection. While we find that all methods perform fairly well on different size
datasets, the following insights have been learned from the experimental results:

1. Classical AI models perform well when the data size is small but they require
handcrafted features.

2. Deep learning models achieve a better performance when the training data
is large enough without feature engineerinng.



198 Q. Wang et al.

3. Combination models have the best performance on large dataset with no
requirement for engineered features.

5 Related Work

The automation of service management [29] is largely achieved through the
automation of subroutine procedures. Automated ticket resolution recommenda-
tion presents a significant challenge in service management due to the variability
of services, and the frequently changing styles and formats for monitoring tickets
that provide an input to automation.

Traditional recommendation technologies in service management focus on
recommending the proper resolutions to a ticket reported by the system’s user.
Recently, Wang et al. [30] proposed a cognitive framework that enables automa-
tion improvements through resolution recommendations utilizing the ontology
modeling technique. A deep neural network ranking model [31] was employed
to recommend the best top-n matching resolutions by quantifying the qualify of
each historical resolution. In [8,32], the authors leverage a popular reinforcement
learning model (specifically, the multi-armed bandit model [9,33]) to optimize
online automation through feedback in automation services.

Text classification, including binary text classification (e.g., sentiment clas-
sification and spam detection) and multiclass text classification are the funda-
mental tasks of Natural Language Processing [34]. The aim of text classification
is to assign binary classes or multiple classes m > 2 to the input text. Tradi-
tional approaches of text classification directly use sparse lexical features, such
as bag of words model [35] or n-gram language model [36] to represent each doc-
ument, and then apply a linear or nonlinear method to classify the inputs. Many
machine learning techniques have been developed for the multiclass text classifi-
cation problem, such as Support Vector Machines (SVM), K-Nearest Neighbors
(KNN) and ensemble methods (XGBoost and Random Forests). Most recently,
deep learning models have achieved remarkable success in learning document
representation from large-scale data. Convolutional neural network (CNN) [4]
approach is a very effective to feature extraction, and long short-term memory
(LSTM) [37] is powerful in modeling units in sequence. In [21,28], CNN-XGBoost
and CNN-SVM models are used to improve the performance of image classifi-
cation. We work with raw text data and use CNN in combination models for
feature engineering.

Additional related work is provided in line with descriptions of relevant meth-
ods in Sect. 3.

6 Conclusion and Future Work

This paper addresses the automated management of digital services, more specif-
ically an automated resolution of incidents. In the present context of an explosion
of AI methods of multiple generations, it is important to choose optimal per-
forming methods when implementing production systems.



Leveraging AI in Service Automation Modeling 199

In this paper we evaluate the performance of the three main types of the
AI models: classical, deep learning and combination. Classical models include
regular and ensemble methods. From a vast variety of existing methods, we have
chosen those that are most promising in their class. For each model used, we
have provided a short description and outlined its benefits and disadvantages.

We run wide range of experiments on real life data to find optimal model-
ing with respect to a number of metrics: accuracy, F1-macro score (measuring
precision to recall ratio), running time and necessity of by-hand processing.

Our experimental results clearly show that under the time constraint, clas-
sical AI models perform best when the size of training data is small, and the
combination methods are the best performing methods on large datasets of our
data and they have no requirement for manual feature engineering. Following
this conclusion, a Ticket Automation Matching Service has being implemented
for the IBM Services production system.

For future work, we would like to employ the deep reinforcement learning
method [22], transforming the backend offline model to an online one. Another
important direction will be to build combination services that incorporate both
deep learning and classical system together with common optimization problem
and find global optimal parameters of the model.

References

1. Forman, G.: An extensive empirical study of feature selection metrics for text
classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)

2. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification, arXiv preprint arXiv:1607.01759 (2016)

3. Ruck, D.W., Rogers, S.K., Kabrisky, M.: Feature selection using a multilayer per-
ceptron. J. Neural Network Comput. 2(2), 40–48 (1990)

4. Kim, Y.: Convolutional neural networks for sentence classification, arXiv preprint
arXiv:1408.5882 (2014)

5. Zhang, X., LeCun, Y.: Text understanding from scratch, arXiv preprint
arXiv:1502.01710 (2015)

6. Shwartz, L., et al.: CEA: a service for cognitive event automation. In: Liu, X.,
et al. (eds.) ICSOC 2018. LNCS, vol. 11434, pp. 425–429. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17642-6 37

7. Zeng, C., Li, T., Shwartz, L., Grabarnik, G.Y.: Hierarchical multi-label classifica-
tion over ticket data using contextual loss. In: 2014 IEEE NOMS (2014)

8. Wang, Q., Li, T., Iyengar, S., Shwartz, L., Grabarnik, G.Y.: Online IT ticket
automation recommendation using hierarchical multi-armed bandit algorithms. In:
Proceedings of the 2018 SIAM International Conference on Data Mining, SIAM,
pp. 657–665 (2018)

9. Wang, Q., Zeng, C., Zhou, W., Li, T., Iyengar, S.S., Shwartz, L., Grabarnik, G.:
Online interactive collaborative filtering using multi-armed bandit with dependent
arms. IEEE Trans. Knowl. Data Eng. 31, 1569–1580 (2018)

10. Zeng, C., Wang, Q., Wang, W., Li, T., Shwartz, L.: Online inference for time-
varying temporal dependency discovery from time series. In: 2016 IEEE Interna-
tional Conference on Big Data (Big Data), pp. 1281–1290. IEEE (2016)

http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1502.01710
https://doi.org/10.1007/978-3-030-17642-6_37


200 Q. Wang et al.

11. Kao, A., Poteet, S.R.: Natural Language Processing and Text Mining. Springer,
London (2007). https://doi.org/10.1007/978-1-84628-754-1

12. Bottou, L., et al.: Comparison of classifier methods: a case study in handwritten
digit recognition. In: International Conference on Pattern Recognition, p. 77. IEEE
Computer Society Press (1994)

13. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector
machines. IEEE Trans. Neural Networks 13, 415–425 (2002)

14. Dietterich, T.G.: Machine-learning research. AI Mag. 18(4), 97–97 (1997)
15. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
16. Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R News

2(3), 18–22 (2002)
17. Prinzie, A., Van den Poel, D.: Random multiclass classification: generalizing ran-

dom forests to random MNL and random NB. In: Wagner, R., Revell, N., Pernul,
G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 349–358. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74469-6 35

18. Santner, J., Unger, M., Pock, T., Leistner, C., Saffari, A., Bischof, A.: Interactive
texture segmentation using random forests and total variation. In: BMVC, pp.
1–12. Citeseer (2009)

19. Chen, T., Guestrin, T.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD, pp. 785–794 (2016)

20. Madisetty, S., Desarkar, M.S.: An ensemble based method for predicting emotion
intensity of tweets. In: Ghosh, A., Pal, R., Prasath, R. (eds.) MIKE 2017. LNCS
(LNAI), vol. 10682, pp. 359–370. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-71928-3 34

21. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-
shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)

22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
23. Narasimhan, H., Pan, W., Kar, P., Protopapas, P., Ramaswamy, H.G.: Optimizing

the multiclass f-measure via biconcave programming. In: 2016 IEEE 16th Interna-
tional Conference on Data Mining (ICDM), pp. 1101–1106. IEEE (2016)

24. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal mar-
gin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pp. 144–152. ACM (1992)

25. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
26. Cover, T.M., Hart, P.E., et al.: Nearest neighbor pattern classification. IEEE Trans.

Inf. Theor. 13(1), 21–27 (1967)
27. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J.

Roy. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)
28. Ren, X., Guo, H., Li, S., Wang, S., Li, J.: A novel image classification method with

CNN-XGBoost model. In: Kraetzer, C., Shi, Y.-Q., Dittmann, J., Kim, H.J. (eds.)
IWDW 2017. LNCS, vol. 10431, pp. 378–390. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-64185-0 28

29. Wang, Q.: Intelligent data mining techniques for automatic service management.
In: FIU Electronic Theses and Dissertations. FIU (2018). https://digitalcommons.
fiu.edu/etd/3883

30. Wang, Q., Zhou, W., Zeng, C., Li, T., Shwartz, L., Grabarnik, G.Y.: Constructing
the knowledge base for cognitive it service management. In: 2017 IEEE Interna-
tional Conference on Services Computing (SCC), pp. 410–417. IEEE (2017)

https://doi.org/10.1007/978-1-84628-754-1
https://doi.org/10.1007/978-3-540-74469-6_35
https://doi.org/10.1007/978-3-319-71928-3_34
https://doi.org/10.1007/978-3-319-71928-3_34
https://doi.org/10.1007/978-3-319-64185-0_28
https://doi.org/10.1007/978-3-319-64185-0_28
https://digitalcommons.fiu.edu/etd/3883
https://digitalcommons.fiu.edu/etd/3883


Leveraging AI in Service Automation Modeling 201

31. Zhou, W., et al.: Star: a system for ticket analysis and resolution. In: Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 2181–2190. ACM (2017)

32. Wang, Q., Zeng, C., Iyengar, S., Li, T., Shwartz, L., Grabarnik, G.Y.: AISTAR: an
intelligent system for online IT ticket automation recommendation. In: 2018 IEEE
International Conference on Big Data (Big Data), pp. 1875–1884. IEEE (2018)

33. Zeng, C., Wang, C., Mokhtari, S., Li, T.: Online context-aware recommendation
with time varying multi-armed bandit. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 2025–
2034. ACM (2016)

34. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 1480–1489 (2016)

35. Zhang, Y., Jin, R., Zhou, Z.-H.: Understanding bag-of-words model: a statistical
framework. Int. J. Mach. Learn. Cybern. 1(1–4), 43–52 (2010)

36. Brown, P.F., Desouza, P.V., Mercer, R.L., Pietra, V.J.D., Lai, J.C.: Class-based
n-gram models of natural language. Comput. Linguist. 18(4), 467–479 (1992)

37. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)



A Wearable Machine Learning Solution
for Internet Traffic Classification

in Satellite Communications

Fannia Pacheco1(B), Ernesto Exposito1, and Mathieu Gineste2

1 Univ Pau & Pays Adour, E2S UPPA, LIUPPA, EA3000,
64600 Anglet, France

{f.pacheco,ernesto.exposito-garcia}@univ-pau.fr
2 Business Line Telecommunication, R&D départment, Thales Alenia Space,

31100 Toulouse, France
mathieu.gineste@thalesaleniaspace.com

Abstract. In this paper, we present an architectural framework to per-
form Internet traffic classification in Satellite Communications for QoS
management. Such framework is based on Machine Learning techniques.
We propose the elements that the framework should include, as well as an
implementation proposal. We define and validate some of its elements by
evaluating an Internet dataset generated on an emulated Satellite Archi-
tecture. We also outline some discussions and future works that should
be addressed in order to have an accurate Internet classification system.

Keywords: Internet traffic classification · Machine Learning · Satellite
Communications · Deep packet inspection

1 Introduction

Internet traffic classification is a group of strategies that aims at classifying the
Internet traffic into predefined categories, such as normal or abnormal traffic,
the type of application (streaming, web browsing, VoIP, etc) or the name of the
application (YouTube, Netflix, Facebook, etc). Network traffic classification is
important in Satellite communication principally to manage bandwidth resources
and to ensure Quality of Service (QoS) requirements.

Traffic classification is widely implemented by Deep Parquet Inspection(DPI)
solutions. Most of the commercial solutions use this technology for traffic man-
agement. DPI performs a matching between the packet payload and a set of
stored signatures to classify network traffic. However, DPI fails when privacy
policies and laws prevent accessing the packet content, as well as the case of
protocol obfuscation or encapsulation. In order to overcome the former issues,
Machine Learning (ML) emerged as a suitable solution, not only for the traf-
fic classification task, but also for prediction and new knowledge discovery,
among other things. In this context, statistical features of IP flows are com-
monly extracted and stored from network traces to generate historical data. In
this way, different ML models can be trained with this historical data, and new
incoming flows can be analyzed with such models.
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 202–215, 2019.
https://doi.org/10.1007/978-3-030-33702-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_15


A Wearable Machine Learning Solution for Internet Traffic Classification 203

In satellite networks, Internet traffic management is a key task due to it
allows improving the QoS. Commonly, traffic data is captured from satellite
Internet Service Providers (ISPs). The works in this area aim to classify and to
analyze Internet traffic in large networks [6,12,14]. The principle is to deploy
passive monitoring points in order to perform traffic classification. These mon-
itoring points can be at routers [6] or points of presence (PoPs) [12] of large
ISP networks. Another emerging approach is the use of Software-defined net-
works(SDNs) in satellite-terrestrial networks. In SDNs, traffic classification can
be easily deployed in the SDN’ master controllers as it is exposed in [1,8].

The authors outlined the complete process to achieve Internet traffic classifi-
cation in the survey paper [10]. Therefore, this approach focuses its attention on
developing a framework that can be deployed in a Satellite architecture. Such a
framework comprises all the necessary elements to achieve the goal, as well as,
additional components that should be integrated to assure a robust classification
tool. We propose a hierarchical classification system based on ML, which treats
encryption and flow patterns differently. We deploy the solution in a low level
language that allows having an efficient and fast classification output. We also
compare our approach with a well-known DPI solution called nDPI [2]. Finally,
we set discussions about some important components that are in development;
for instance, the treatment of tunneled connections and the evolution of the
Internet network.

2 QoS Management in Satellite Communications

At this point, we start by introducing the general reference model to provide
Satellite Communications. This model will serve us as guidance to find the
requirements to integrate ML in such architecture. A common reference model of
a multi-gateway Satellite architecture is shown in Fig. 1 [3]. This model is divided
into two main blocks: Satellite access network and Satellite core network. On one
hand, in the Satellite access network, a variety of network typologies can be used
to the connectivity of the elements; these included the Satellite gateways and
terminals. On the other hand, in the Satellite core network, an aggregate network
allows interconnecting with other operators, corporations and Internet Service
Providers (ISPs) through Points of Presence (PoPs).

Two main components of such model are described below:

– Satellite Terminal (ST): its function is to deliver broadband access to end-user
equipment through IP routers and/or Ethernet switches.

– Satellite Gateway (GW): this component is in charge of deploying user plane
functions such as packet routing and forwarding, interconnection to the data
network, policy enforcement and data buffering. These functionalities are
coordinated by the control and management systems of the Satellite net-
work. The GW is composed of forwarding and returning link (FL and RL)
subsystems, and a set of network functions. These network functions include
the Performance Enhancing Proxy (PEP), switching and routing interfaces
for the interconnection with the Satellite core network.



204 F. Pacheco et al.

Fig. 1. Reference model of a multi-gateway Satellite network architecture.

One of the main objectives of this architecture is to provide a reliable com-
munication system between different entities. However, improving the Quality
of Service (QoS) and Quality of Experience (QoE) of their users is of paramount
importance for network administrators. In principle, these last objectives can
be achieved by manipulating the network functions. More specifically, a Policy
Based Network (PBN) Architecture is deployed at this stage to perform traf-
fic management [7]. In order to improve the QoS, one of the most common
and accepted actions is to fulfill a set of requirements that can be executed by
profiling Internet traffic [5,13]. This idea parts from the assumption that some
Internet traffic is more sensitive to information loss and delay such as Internet
calling or video conference. In contrast, Internet browsing or file downloads are
less pruned to be affected by these error conditions.

Following this idea, the main goal of our proposal is to correctly profile the
Internet communications, to later transmit this information to a PBN that will
take the necessary actions for QoS management. Hence, in Fig. 2, we add two new
elements to allow Internet traffic classification: Monitoring and Classification
system. The resulting classification is forwarded to the PBN. In the figure above,
we also show two basic components comprised by the PBN: (i) A Policy Decision
Point (PDP) that takes decisions for itself and for other network elements. These
decisions imply actions for enforcement when the conditions of a policy rule are
met [15], and (ii) Policy Enforcement Point (PEP) which is a logical entity that
enforces policy decisions [15]. Marked Internet traffic can be forwarded to the
PDP, which in turn will identify the associated GWs or STs and determine if
more bandwidth should be assigned. This last decision is sent to the PEP for its



A Wearable Machine Learning Solution for Internet Traffic Classification 205

execution. In addition to this, a QoS server can be deployed to enforcing QoS
for different flows directly, and not to the GWs and STs as the PEP does.

3 Architecture Design

Making an abstraction of the elements in a real Satellite network distribution, the
primary steps to achieve Internet traffic classification in a Satellite Architecture
are:

1. Intercept Internet traffic in the GW and ST through passive monitoring
points.

2. Compute statistical features that define the Internet flows.
3. Send the extracted features to the Classification system and mark the flows

with their QoS classes.
4. Forward the classification to the PDP that will take decisions in order to

improve the QoS. Then the PEP and QoS server will execute those decisions.

In order to design the system, we use a software engineering tool called
Capella1. This tool provides methodological guidance, intuitive model editing,
and viewing capabilities for Systems, Software and Hardware Architects. In
Capella, the Operational analysis and System analysis help finding and defining
the requirements of the system. Whereas, the Logical and Physical architectures
aim at developing the solution. Figure 2 shows a System Analysis viewpoint,
focused on the GW actor, developing the requirement: Provide Internet traffic
classification in Satellite Communications for QoS management. We will discuss
as follows the functions associated to this system analysis.

Fig. 2. System Analysis in the GW.

1 https://www.polarsys.org/capella/.

https://www.polarsys.org/capella/


206 F. Pacheco et al.

3.1 Classification System

Particularly, this system proposes an automatic and logic process to analyze
traffic in a hierarchical manner. The classification system is displayed in Fig. 3.
Briefly speaking, the process starts performing the Offline configuration process
in order to initialize the whole classification system (training process). In an
online manner, the flow features pass through a Flow discriminator 1 (D1) that
will be in charge of disjointing the non-encrypted/Encrypted flows from the
tunneled flows. This separation will allow us to treat each technology differently.
For instance, for the non-encrypted/Encrypted flows, classical ML models or
DPI solutions (denoted as Cl1) can label the flows. Whereas, the tunneled flows
will pass through another Flow discriminator 2 (D2) that separates the unitary
(only one application within the tunnel) and the multiple (several applications
at the same time in the tunnel). Finally, once the classifiers are actively working
the Online configuration component is receiving information that can induce to
change or to add models in the Model repository.

3.2 Monitoring System

Internet packets are captured to be organized into flows F . The construction
of the flow is given in Fig. 4. In principle, all the flows are built matching the
packet’s headers, source (src) and destination (dst) IPs and ports. However,
when D1 detected a multiplexed connection, the flow is broken into chunks of
flows within a time interval, as seen in Fig. 4. Then, statistical based features are

Fig. 3. Classification framework



A Wearable Machine Learning Solution for Internet Traffic Classification 207

computed for each flow in order to describe the communications. In brief, the
properties computed are listed in Table 1. The passive monitoring and feature
extraction processes were studied by the authors in [9,11]. The categorization of
the packets (A, B, C, D, E and F) in Table 1 is obtained by studying the packet
length distributions per class in the dataset.

Fig. 4. Flow reconstruction.

Table 1. Result of the feature extraction process

Feature Metric Additional Information Flow direction Total

pktlen [m] [m] of the packet lengths “m” refers to the metric

Mean, Std, Min and Max

F ,Fsrc and Fdst 12

iat [m] [m] of the inter-arrival

time(iat)

- F ,Fsrc and Fdst 12

pktlen [cat] [m] [m] of the packet lengths per

[cat]

“cat” refers to the type of

packeta
F ,Fsrc and Fdst 72

iat [cat] [m] [m] of the iat per [cat] F ,Fsrc and Fdst 72

bytes [Δt] bytes per [Δt] “Δt” is the time windows F ,Fsrc and Fdst 3

pkt [Δt] packets counts per [Δt] - F ,Fsrc and Fdst 3

Total 174
a A: pktlen <= 170, B: pktlen > 170 and pktlen <= 902, C: pktlen > 902 and pktlen <= 1314,D:
pktlen > 1314 and pktlen <= 1426,E: pktlen > 1426 and pktlen <= 1500, F: pktlen > 1500

3.3 Classification Management

This component implements the offline and online reconfiguration. Regarding the
Online reconfiguration component, this element will be in charge of evaluating
the predictions performed by the classifiers. This is deployed in order to cope with
the evolution of the network. Therefore, in an online manner, this component
will evaluate if the traffic observed belongs to an existing QoS class; if so the
classifier will “evolve” to offer more accurate predictions. This approach can be
translated to a retraining process when new data is generated; nonetheless, there
are another approaches based on clustering that could detect class evolution.

As a final note, the current investigation does not treat the Online configu-
ration and Multiplexed treatment due to they involve more complex tasks that
will be presented in future works.



208 F. Pacheco et al.

4 Implementation Design

The implementation proposal is presented in Fig. 5, with the operational and
physical architecture in the same viewpoint. The subsystems proposed in Fig. 5
will define the way in which the components of the QoS management system
work. For instance, the Offline configuration will be developed by the Training
process and Historical data manager components, the Online configuration by
the Model manager and the Incremental Learning Model(ILM) manager compo-
nents. In addition to this, we define two new physical components that will be
necessary for the implementation: A GW server that will be in charge of taking
the Internet traffic for its further classification, and a Management Server that
will handle offline and online configurations.

It is worth mentioning that the functions of the GW server and the Manage-
ment Server can be comprised in the GW entity. This is modifiable according to
the resources available in the real Satellite Architecture. On the other hand, all
the functions concerning the Classification system are comprised in Framework:
which in turn is a library developed for this aim. For what concerns the sniffer,
we use existing solutions such as Libcap2 for performing the sniffing. Then, we
add the Flow reconstruction and Feature Extraction behaviors. The ML models
D1, Cl1, D2 and Cl2 will be selected in the experimental section.

Fig. 5. System analysis in the GW.

2 https://www.tcpdump.org/.

https://www.tcpdump.org/


A Wearable Machine Learning Solution for Internet Traffic Classification 209

As additional comment, the reader can notice that the proposed implementa-
tion can be easily replicated in the ST component, as well as in different network
components where packet monitoring is feasible.

5 Emulated Satellite Internet Traffic

This data set is a private dataset called SAT data. The model of a multi-gateway
Satellite network in Fig. 6 with one ST and one GW was set over OpenSAND3,
which is a platform to emulate Satellite Communications. In addition to this, a
VPN configuration is disposed between the ST and the GW, with the objective
to emulate tunneled communications. Several applications were launched and
captured by OpenBACH4. The user behavior was mimicked by using Selenium5,
which is a tool to test web applications.

Fig. 6. Traffic emulation platform proposed in a Satellite Architecture.

The applications are launched in three main scenarios on the platform: (i)
Internet traffic without the tunnel (ii) Unitary scenarios with the VPN: only
one application at a time is launched, and (iii) Multiple scenarios with the VPN:
several applications are launched at the same time. Additionally, some network
configurations were imposed on OpenSand. For each scenario, the data collec-
tion process was performed in the GW and ST, before and after the VPN. In

3 http://opensand.org/.
4 https://www.openbach.org/.
5 https://www.seleniumhq.org/.

http://opensand.org/
https://www.openbach.org/
https://www.seleniumhq.org/


210 F. Pacheco et al.

this sense, all the possible transformations that the data perceived is recorded.
The labeling process is performed per file and application launched. However,
for the VPN tunnel, a special treatment was performed: for each packet getting
into the tunnel a flag was used to mark the application launched. Therefore, the
multiplexed connections are correctly labeled. This dataset is still in develop-
ment. In this particular work, we used only the data captured in the GW with
the applications in Table 2. These applications were launched differently to get a
heterogeneous dataset; for instance, different codecs and websites were used for
the VoIP and browsing applications, respectively. In Table 2, we show the flows
captured per application and the amount of packets with and without the VPN.
It is important to mention that the duration varies from 5 min up to 15 min. In
addition to this, the experiments over the VPN were carried by using UDP as
transport protocol.

Table 2. Class, packet and flow distribution of the SAT data in the GW.

Without VPN With VPN

QoS class Application Flows Packets Packets: Unitary Packets: Multiple

VoIP facebook voip 302 227997 74904 522275

skype voip 565 315281 60764 673780

twinkle voip 69 141663 26144 276995

Video skype video 579 925391 318335 2235781

facebook video 357 558880 162822 1000071

Streaming youtube video streaming 760 158177 19619 486141

Browsing web browsing 6852 749979 91705 1824852

Unknown unknown 58 2860 1080 2334

6 Experimental Evaluation

The training process was deployed by dividing the data as in Table 3. The com-
plete data is used to build D1, while for the rest of classifiers the data is adapted
according to their objectives. First at all, in order to build Cl2, we evaluate dif-
ferent time windows Δt to find the most adequate. Afterwards, we build the rest
of the classifiers with different ML approaches. The best approaches are selected,
and their average response time and accuracy are compared with nDPI.

Table 3. Data settings for building the classifiers.

Classifier All data

D1 Without VPN With VPN

Cl1 Unencrypted Encrypted

D2 unitary multiple

Cl2 unitary

MT multiple



A Wearable Machine Learning Solution for Internet Traffic Classification 211

6.1 Classification System Results

Table 4 shows the results after evaluating different time windows for the unitary
tunneled connections. The accuracy increase as Δt does; therefore, we compare
the average number of packets evaluated for each application in Fig. 7. We can
notice that for 5 ms and 10ms, the amount of packets is very low. To avoid this,
the new window will be adjustable in the sense that Δt = 10ms, but we wait
until we have at least 20 packets to process.

Table 4. Accuracy results for Cl2
varying Δt

Δt Num. flow Cl2

5 ms 167097 0.8982

10ms 120395 0.9647

100ms 26634 0.9673

Fig. 7. Average counts of packets for each Δt

On the other hand, the results in Table 5 show a comparison between sev-
eral classifiers: Decision Tree (DT), Random Forest (RF), K Nearest Neighbors
(KNN), Ada Boost, Voting and Extra Trees (ETs). The best performance is
standing up in bold. We picked DTs for the flow discrimination tasks, while RF
for the traffic classification task.

Table 5. Accuracy scores of several ML classifiers.

DT RF KNN AdaBoost Voting ETs

D1 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Cl1 0.8876 0.9186 0.8617 0.7986 0.8941 0.8938

D2 0.9588 0.9646 0.9526 0.9584 0.9636 0.9638

Cl2 0.9321 0.9401 0.9209 0.8333 0.9358 0.9304

Following, the complete framework was implemented in C. The tree based
models are built in sklearn6 and parsed to C for faster Internet classifications,

6 https://scikit-learn.org.

https://scikit-learn.org


212 F. Pacheco et al.

inspired by the work in [4]. These tests were performed on a PC with an i7-
6700HQ CPU and 32 Gb RAM. The response time and accuracy are measured
over the test set. We also evaluate nDPI for traffic classification.

In Table 6, we can notice that the C implemented models maintain their accu-
racy. In the unencrypted case, ML outperforms nDPI; while, for the encrypted
case nDPI is unable to detect the class of an unitary session as Cl2 does. Regard-
ing the response time of the classifiers, in Table 7, we can notice that fast Internet
classifications are possible. It is important to mention that the model response
time differs for each entry depending on how deep they go into the tree’s branches
until a leaf is reached. In addition to this, the packet processing and flow meter-
ing response time varies from 5 ms to 15 ms.

Table 6. Accuracy (Acc) evaluat-
ing the test data

Acc

ML nDPI

Unencrypted D1 0.9999 1

Cl1 0.9186 0.5830

Encrypted D2 0.9588 X

Cl2 0.9401 X

Table 7. Average response time in
μs

Time(µs)

ML nDPI

Unencrypted D1 2.867 1

Cl1 5 6.6460

Encrypted D2 2.717 X

Cl2 5 X

6.2 About the Multiplexed Connections

We were able to divide the multiplexed connections between unitary and non
unitary scenarios. We saw that the unitary scenarios can be classified by clas-
sical ML approaches. The scenario with multiple applications within a tunnel
is challenge in this field. In order to illustrate the problem, we take the unitary
tunneled flows of Skype, YouTube and Browsing; and its equivalent mixed tun-
neled flow. We represent them as a combination of types of packets (A:E from
the source and 1:5 from the destination, using the packet lengths described in
Table 1). We count the average number of packets for each combination within
a time windows of 100ms and plot it into a heatmap. For instance, the flow
“AAB1CAA” has AA:2, AB:1, B1:1 and CA:1. This representation is in Fig. 8.
We can notice that the unitary tunneled connections have distinctively sequence
of patterns that are merged in the mixed tunneled flow. It is important to say
that the Skype pattern is maintained and might be identified. This illustration
gives us an idea of how to decrypt the behavior within the tunneled connections
by looking at the packet’s patterns. However, the complexity grows when more
than three applications are multiplexed in the tunnel.



A Wearable Machine Learning Solution for Internet Traffic Classification 213

(a) Skype (b) YouTube

(c) Browsing (d) Skype,YouTube and Browsing
mixed

Fig. 8. Heatmap representation of the flows with Δt = 100 ms.

6.3 About the Evolution of Internet Traffic

Most of the publicly available datasets do not comprise all the existing appli-
cations on the Internet; in addition, the data collection process is tedious and
expensive as remarked in [10]. One of the main deficiencies of ML in this field
is handling with the evolution of the Internet traffic applications. If we consider
some important QoS classes such as YouTube, NetFlix, Skype or Facebook video;
as new incoming behavior, the classification accuracy might decrease consider-
ably. Our architectural proposal comprises a component that should schedule
retrainings of the models when the network administrators demand it. But also,
an automatic approach can be set to continuously modify the trees of the RFs in
the Model repository component. Such approach can be based on unsupervised
methods for detecting the Internet evolution.

6.4 About the QoS Management

As we previously mentioned, it suffice to place the classification system over
a network appliance that permits traffic monitoring. For instance, in the GW
component, the classification output is forwarded to the PDP in order to perform
the QoS management task. Depending on the classification output, QoS rules
will be applied to trigger actions that will manage the Satellite resources. If a
QoS rule is satisfied the traffic will be shaped as follows:



214 F. Pacheco et al.

– Aggregate flows: the QoS rule is applied over all the incoming packets sharing
the same tuple (IPsrc, IPdst, portsrc, portdst, proto).

– Unitary tunneled flows: all the incoming packets of the unitary tunneled com-
munications will be prioritized. However, this may be updated when the clas-
sification prediction of D2 or Cl2 changes in Δt.

– Multiplexed tunneled flows: we can think about prioritizing the tunnel as the
unitary case. Nevertheless, in parallel, other less sensitive applications will be
also benefited from this action. To avoid this, a classification per packet task
should be designed.

In addition to this, we need to be sure that the QoS requirements are satisfied
on time. For instance, according to [5], VoIP and Interactive video applications
are very sensitive to delivery delays, to be specific they can tolerate around
100ms; whereas, another important class such as Video streaming around 10 s.
We notice that the classification task can be achieved in 15 ms, giving sufficient
time to treat those sensitive classes.

7 Conclusion

This work presented a ML system that can be integrated to Internet traffic archi-
tectures, being the Satellite Architecture our main interest. The proposal can
be comparable with an existing DPI solution, which offers a portable software
solution for Internet traffic inspection. We tested our approach in the GW com-
ponent, with data captured from an emulated Satellite platform. This approach
outperformed in accuracy and time a well-known DPI solution. We displayed
the needs of having components that can deal with the evolution of the Internet
network and the multiplexed connections, these last aspects are in development.
Future works also include implementing the approach in the emulated Satellite
platform, and tuning the framework proposed given different network conditions.

Acknowledgment. We want to thank the Centre National d’Études Spatiales
(CNES), Toulouse, France for allowing us to use the SAT data, which is developed
under the project R&T CNES: Application du Machine Learning au Satcom.

References

1. Bertaux, L., et al.: Software defined networking and virtualization for broadband
satellite networks. IEEE Commun. Mag. 53(3), 54–60 (2015)

2. Deri, L., Martinelli, M., Bujlow, T., Cardigliano, A.: nDPI: Open-source high-
speed deep packet inspection. In: 2014 International Wireless Communications
and Mobile Computing Conference (IWCMC), pp. 617–622 (2014)

3. Ferrús, R., Koumaras, H., et al.: Sdn/nfv-enabled satellite communications net-
works: opportunities, scenarios and challenges. Phys. Commun. 18, 95–112 (2016).
special Issue on Radio Access Network Architectures and Resource Management
for 5G



A Wearable Machine Learning Solution for Internet Traffic Classification 215

4. Garcia, J., Korhonen, T., Andersson, R., Västlund, F.: Towards video flow classi-
fication at a million encrypted flows per second. In: 2018 IEEE 32nd International
Conference on Advanced Information Networking and Applications (AINA), pp.
358–365, May 2018

5. ITU-T: End-user multimedia qos categories. Technical report, TELECOMMUNI-
CATION STANDARDIZATION SECTOR OF ITU (2001)

6. Jin, Y., Duffield, N., Erman, J., Haffner, P., Sen, S., Zhang, Z.L.: A modular
machine learning system for flow-level traffic classification in large networks. ACM
Trans. Knowl. Discov. Data 6(1), 4:1–4:34 (2012)

7. Moore, B., Ellesson, E., Strassner, J., Westerinen, A.: Policy core information
model - version 1 specification, internet Engineering Task Force (IETF). https://
tools.ietf.org/html/rfc3060

8. Ng, B., Hayes, M., Seah, W.K.G.: Developing a traffic classification platform for
enterprise networks with SDN: Experiences & lessons learned. In: 2015 IFIP Net-
working Conference (IFIP Networking), pp. 1–9, May 2015

9. Pacheco, F., Exposito, E., Aguilar, J., Gineste, M., Baudoin, C.: A novel statistical
based feature extraction approach for the inner-class feature estimation using linear
regression. In: 2018 International Joint Conference on Neural Networks (IJCNN),
pp. 1–8, July 2018

10. Pacheco, F., Exposito, E., Gineste, M., Baudoin, C., Aguilar, J.: Towards the
deployment of machine learning solutions in network traffic classification: a sys-
tematic survey. IEEE Communications Surveys Tutorials, p. 1 (2018)

11. Pacheco, F., Exposito, E., Gineste, M., Budoin, C.: An autonomic traffic analy-
sis proposal using machine learning techniques. In: Proceedings of the 9th Inter-
national Conference on Management of Digital EcoSystems, MEDES 2017, pp.
273–280 (2017)

12. Pietrzyk, M., Costeux, J.L., Urvoy-Keller, G., En-Najjary, T.: Challenging statis-
tical classification for operational usage: the adsl case. In: Proceedings of the 9th
ACM SIGCOMM Conference on Internet Measurement, IMC 2009, pp. 122–135
(2009)

13. Siller, M., Woods, J.C.: QoS arbitration for improving the QoE in multimedia
transmission. In: 2003 International Conference on Visual Information Engineering
VIE 2003 (2003)

14. Trestian, I., Ranjan, S., Kuzmanovic, A., Nucci, A.: Googling the internet: profiling
internet endpoints via the world wide web. IEEE/ACM Trans. Networking 18(2),
666–679 (2010)

15. Yavatkar, R., Pendarakis, D., Guerin, R.: A framework for policy-based admis-
sion control, internet Engineering Task Force (IETF). https://tools.ietf.org/html/
rfc2753

https://tools.ietf.org/html/rfc3060
https://tools.ietf.org/html/rfc3060
https://tools.ietf.org/html/rfc2753
https://tools.ietf.org/html/rfc2753


FAME: An Influencer Model
for Service-Oriented Environments

Faisal Binzagr1, Hamza Labbaci2, and Brahim Medjahed1(B)

1 Department of Computer and Information Science,
University of Michigan - Dearborn, Dearborn, USA

{faisalb,brahim}@umich.edu
2 Department of Computer Science, University of Tours, Tours, France

hemza.labbaci@univ-tours.fr

Abstract. We propose FAME (inFluencer Apis in developer coMmuni-
tiEs), a multi-dimensional influencer model for APIs in service-oriented
environments. We define influence as the extent to which an API is
likely to be adopted in mashups and service-oriented applications. The
proposed model helps providers increase the visibility of their APIs
and developers select the best-in-class APIs. We extract more than
eighteen textual and non-textual API features from various program-
ming communities such as GitHub, StackOverflow, HackerNews, and
ProgrammableWeb. We perform sentiment analysis to quantify developers’
opinions towards using APIs. We introduce a cumulative API influence
score to measure the influence of APIs across communities and categorize
APIs into tiers based on their influence. We introduce a linear regression
technique to predict the evolution of influence scores and correlate API
features to those scores. We conduct experiments on large and real-world
data-sets extracted from the above mentioned programming communities
to illustrate the viability of our approach.

Keywords: API · Service-orientation · Mashup · Social content ·
Influencer · Developer community

1 Introduction

Service-oriented computing allows companies to break down capabilities and
business functionalities into individual, autonomous services [5]. The last decade
has seen a surge of services in the form of Web APIs (simply APIs) in a vari-
ety of domains [15]. The API economy is growing rapidly and companies are
making APIs an integral part of their software development strategies. For
instance, the ProgrammableWeb directory lists more than 22,200 APIs (as of
August 2019). APIs enable developers to access hardware and software resources
via Internet and Web-specific protocols. Using APIs accelerates the develop-
ment of value-added applications (e.g., mashups) by providing reusable func-
tionalities out-of-the-box. However, integrating multiple APIs created by diverse
third parties requires a wide array of technical skills such as Web (e.g., REST),
data management (e.g., JSON), programming (e.g., SDKs), and security (e.g.,
authentication) [12,15]. To overcome these challenges, developers often turn to
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 216–230, 2019.
https://doi.org/10.1007/978-3-030-33702-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_16


FAME: An Influencer Model for Service-Oriented Environments 217

programming communities (e.g. GitHub) to share practices, knowledge, experi-
ence, and brainpower in solving intricate problems. For instance, GitHub reports
(as of May 2019) having over 37 million users and 100 million repositories. Gath-
ering and analyzing content about API usage and activities in existing commu-
nities (e.g., number of bugs, developer feedback, number of mashups) provides
opportunities to better understand developers’ interactions with APIs and detect
relationships between APIs and mashups [5,13].

Combining social network analysis with service-oriented computing could
bring novel insights to service selection, recommendation, and composition [4,5].
One particular research area that received significant attention in social comput-
ing is social influence [9]. Influencers have the power to impact the way others in
the entire network behave or think [7]. Considerable work has been conducted to
model influence or identify influencers in social media [6,7,11,16]. The research
proposed in this paper approaches the concept of influencers from an API per-
spective. We define an API as influential if it is widely adopted in mashup and
service-oriented application development. The more influence an API has, the
more interest that API sparks to developers. We perceive API developers (both
consumers and providers) in programming communities as social actors. API
consumers use existing APIs to build mashups and service-oriented applications.
They share experiences, feedback, and opinions about APIs in various ways such
as participating in discussion forums, reporting bugs, and following APIs. API
Providers are the developers that created the APIs available in the community.
They publish important information about their APIs such as tutorials, articles,
SDKs, libraries, new releases, and source code.

Analyzing social content to identify influencer APIs has several advantages.
First, API consumers will be able to integrate the best-in-class APIs. For
instance, the ProgrammableWeb directory lists more than fifty mapping APIs.
Selecting the right API is time-consuming and may have an impact on future
mashup maintenance and development [5]. Second, consumers may have differ-
ent views on what makes an API relevant. Some consumers may value APIs with
the least number of reported bugs. Others may consider the opinions expressed
by peers toward the API as significant. Measuring influence based on various
API features assists consumers in selecting APIs that are most suitable to their
development style, needs, and requirements. Third, identifying influencer APIs
enables providers to increase the visibility of their APIs and set up a strategy
to reach out a larger audience of developers. Providers will be able to compare
their API’s influence with the influence of a competitor’s API and pinpoint a
plan of actions to promote their APIs. Some providers may, for example, decide
to enhance their involvement in discussion forums, while others may choose to
increase the number of articles and tutorials published about their APIs.

Developing an influencer model for service-oriented environments poses sev-
eral research challenges. First, social data are scattered across multiple indepen-
dent platforms and cannot be accurately obtained from one single source. For
instance, the number of applications that use a given API is determined by look-
ing at mashups listed in ProgrammableWeb and repositories hosted in GitHub.
Besides, current platforms return API-related data in heterogeneous formats.



218 F. Binzagr et al.

For example, posts in StackOverflow and commit comments in GitHub are
textual and require natural language processing techniques. News articles in
HackerNews and bug reports in Bugzilla are presented in proprietary for-
mats. Other data such as the number of issues in GitHub, number of posts
in StackOverflow, and number of followers on ProgrammableWeb are returned
as atomic values on different scales. Second, the social content collected from
existing communities deals with various aspects of the APIs. It covers both
technical (e.g., number of SDKs) and non-technical (e.g., number of API follow-
ers) information. This includes information about the API itself (e.g., number of
change logs representing the API’s evolution), API consumption (e.g., number of
projects that use the API), and API social activities (e.g., number of posts and
articles related the API). A multi-dimensional influencer model that captures
various API features is needed. Once API features are gathered and cleaned,
it is important to determine the extent to which an API is influential and the
features that have or do not have an impact on the API influence and, if so,
to what degree. Third, newly developed APIs lack the social content necessary
to assess their overall influence. Therefore, recommender systems based on API
influence scores may omit to return such APIs. This may lead to the starvation
of newly deployed APIs as they lack the required social presence. The proposed
influencer model should allow bootstrapping the influence score of newly created
APIs, hence overcoming the traditional cold start problem.

The identification of influential nodes in social networks has been the subject
of many research efforts [6,7,11,16]. Existing research devoted to influencers in
software ecosystems emphasizes on developers as influencers not APIs [3,10]. In
this paper, we propose FAME (inFluencer Apis in developer coMmunitiEs), an
influencer model for APIs in service-oriented environments. To the best of our
knowledge, FAME is the first approach to consider APIs (instead of developers)
as influencers in building mashups and service-oriented applications. The main
contributions of this paper are summarized below:

– We propose an influencer model that extracts more than eighteen API fea-
tures from multiple programming communities. The extracted features cap-
ture non-technical and technical information about APIs in various formats
such as text, atomic values, and other proprietary structures. We perform
sentiment analysis to quantify developers’ opinions towards using APIs. We
introduce a cumulative API Influence Score (AIS) to assess the influence of
APIs in mashups and service-oriented applications. We also categorize APIs
into tiers based on their influence scores.

– We predict the evolution of the influence scores of newly deployed and existing
APIs using Non Negative Least Square (NLS) linear regression technique. We
conduct an analytical study to determine the degree to which each extracted
API feature impacts the influence score.

– We conduct experiments on four real-world programming platforms: GitHub,
StackOverflow, HackerNews, and ProgrammableWeb. We categorize the
extracted social content in five data-sets depending on the deployment dates



FAME: An Influencer Model for Service-Oriented Environments 219

of the corresponding APIs (between 2005 and 2019). We compute the recall
and precision of each data-set. Experiments reveal that the proposed app-
roach can predict up to 87% influencer APIs with 71% precision.

The rest of this paper is organized as follows. Section 2 gives an overview of
the proposed approach. Section 3 presents the FAME model for identifying and
predicting influencer APIs. We describe experiments to evaluate our approach
in Sect. 4. In Sect. 5, we overview related work. We conclude in Sect. 6.

2 The FAME Approach: An Overview

In this section, we give an overview of the proposed approach. We first introduce
two scenarios to motivate our approach. Then, we describe FAME architecture
for identifying and predicting influencer APIs.

2.1 Motivation

We describe two scenarios that illustrate the benefits and challenges of API
influencer identification for consumers and providers. In both scenarios, we refer
to two weather APIs: Aeris Weather (APIAW ) and World Weather Online
(APIWWO).

Scenario 1 (API Consumers) - Let us consider a developer, Mary, looking
for a weather API to use in a mashup. A search on ProgrammableWeb returns
APIAW and APIWWO. Since Mary has no prior experience programming with
those APIs, she turns to developers in various programming communities to
help her select the right one. Mary first looks at the features of APIAW and
APIWWO on ProgrammableWeb (Table 1). Below is a summary of her findings.
APIAW has more SDKs than APIWWO. The two APIs have approximately the
same number of articles published on the platform. APIWWO has much more
followers than APIAW . Because Mary is interested in mashup development. She
learns that APIWWO is used in more mashups than APIAW . However, she finds
only 2 and 11 mashups for APIAW and APIWWO, respectively. Mary then looks
at the number of projects on GitHub that are relevant to the APIs. She noticed a
much larger number of repositories related to APIWWO than APIAW (39 vs. 6).
Similarly, APIWWO outperforms APIAW in terms of number of Wikis (428 vs.
3). However, less issues are reported by developers about APIAW than APIWWO

(29 vs. 310). Mary is overwhelmed by the number of API features published on
each platform. She is confused about the features to consider in order to decide
about the API to use. She becomes even more frustrated when she parses the
long texts posted under the reported issues and commit comments on GitHub
to get a better idea about her peers’ opinions about the APIs.



220 F. Binzagr et al.

Table 1. Motivating scenarios

Scenario 2 (API Providers) - The provider of APIAW , John, performs a
Google search on APIAW and a competitor’s API, namely APIWWO. A search
by API endpoints returns more than 500,000 additional results for APIWWO.
A second search by API names returned more than 42 million additional hits
for APIWWO. John is concerned about the significant lack of popularity of his
API compared to APIWWO. To increase the visibility of APIAW and promote
its adoption, he looks at some of the features of APIAW and APIWWO on
ProgrammableWeb, GitHub, and StackOverflow (Table 1). The aim is to come
up with an action plan to increase the adoption of APIAW by developers. The
following questions need to be answered as part of John’s action plan: how does
he measure the influence of his API? which features are likely to have a higher
impact on developers across programming communities to adopt APIAW ? how
are the different API features related to each other? which features does he need
to improve in order to enhance APIAW influence?

2.2 Architecture

The FAME architecture is composed of three modules (Fig. 1): Unstructured
Data Extractor (UDE), Structured Data Extractor (SDE), and the FAME Model.
UDE extracts and analyzes unstructured (i.e., textual) API features from devel-
oper communities. Such features include commit comments in GitHub, posts
in StackOverflow, and articles in ProgrammableWeb. UDE conducts sentiment
analysis to quantify textual features as positive, neutral, or negative sentiment
scores. Since the extraction and analysis of textual features is time consum-
ing, UDE tasks are executed periodically and offline. SDE collects quantitative
API features (e.g., number of repositories) from ProgrammableWeb, GitHub, and
HackerNews. These features are extracted online (i.e., on demand) during the



FAME: An Influencer Model for Service-Oriented Environments 221

execution of an API influencer identification or prediction request. Since SDE-
extracted features are measured on different scales, data normalization tech-
niques are applied to adjust those features to a common scale. Once all features
are extracted, cleaned, and normalized, the FAME model aggregates those fea-
tures to determine the API Influence Score (AIS) of each API. The calculated
scores are used to cluster APIs into tiers: nano (least influential), micro, mid-tier,
mega, and celebrity (most influential). The FAME model also uses non-negative-
least-square regression to figure out significant features and associate weights to
those features. Such weights are used to predict the evolution of AIS scores and
tweak API features in order to enhance API influence across communities.

Fig. 1. FAME architecture

3 Influencer Identification and Prediction in FAME

In this section, we give details about the FAME approach for identifying and pre-
dicting influencer APIs. We first introduce the methods to extract both unstruc-
tured (i.e., textual) and structured features from programming community plat-
forms (Sects. 3.1 and 3.2). Then, we describe the techniques for calculating API
Influence Scores (AIS) and organizing APIs into influencer tiers based on AIS
scores (Sect. 3.3). Finally, we present a linear regression-based model for predict-
ing AIS scores (Sect. 3.4).

3.1 Unstructured Data Extractor (UDE)

UDE evaluates developers’ sentiments toward APIs. It analyzes developers’ feed-
back and computes scores of interest in APIs. UDE performs three major tasks:



222 F. Binzagr et al.

data collection, data pre-processing, and sentiment analysis. The data collection
task crawls and collects developers’ textual data from GitHub (commit com-
ments), StackOverflow (posts), and ProgrammableWeb (articles). As each one
of these platforms exports large volumes of data, we define data extraction pat-
terns based on API names, endpoints, and topics to sort out API-related content
and speed-up data collection. The data pre-processing task cleans textual data
from irrelevant information such as code snippets and hyperlinks.

Sentiment analysis is the main UDE task. It evaluates developers’ opinions
toward APIs. We use the Stanford NLP (Natural Language Processing) Parser1.
The parser adopts recursive neural nets, a deep learning technique, to figure out
text polarity (positive, neutral, negative). It returns a sentiment score, sscore ∈
[−1, 1], along with text polarity. An sscore closer to −1 denotes a negative
sentiment. The sentiment is considered as positive if sscore is closer to 1. An
sscore closer to 0 represents a neutral sentiment.

Some textual features may have higher user views than others. For instance,
the sentiment of a post on an API with a large number of views should be given
more importance than the sentiment of another post (on the same API) with a
smaller number of views. Therefore, we associate a weight wi for each textual
feature fi. Each weight value wi correlates to the number of views on fi. We
normalize weights according to the following formula, where viewsnumberi and
Max(viewsnumber) represent the number of fi views and maximum number of
views in all features:

wi =
viewsnumberi

Max(viewsnumber)

Using the weight wi and sentiment score sscorei of a feature fi, we define
the weighted sentiment as follows:

WeightedSentimenti = wi ∗ sscorei

Finally, we define the overall sentiment for a given APIj as the sum of the
weighted sentiment of each extracted feature fi divided by the total number of
such features:

sentiment(APIj) =
∑

WeightedSentimenti
TotalNumberOfExtractedFeatures

3.2 Structured Data Extractor (SDE)

SDE collects structured API features from four programming community plat-
forms: ProgrammableWeb, GitHub, StackOverflow, and HackerNews. By struc-
tured, we mean that the features are well formatted in the platforms and ready to
extract/use. We rely on Selenium WebDriver2, a framework that automates Web
data extraction. The framework allows feature extraction using predefined pars-
ing rules. A rule contains the URLs to load data from and keywords describing
1 https://nlp.stanford.edu/.
2 https://www.seleniumhq.org/projects/webdriver/.

https://nlp.stanford.edu/
https://www.seleniumhq.org/projects/webdriver/


FAME: An Influencer Model for Service-Oriented Environments 223

APIs to filter data with. Data is parsed to extract features using DOM (Docu-
ment Object Model)3. Table 2 summarizes all API features extracted by UDE
and SDE.

Table 2. API features in developer communities

Another important factor that helps assess the influence of an API is its
spread over the internet. A well distributed/spread API is usually indexed on
many search engines, which increases its visibility and eases its access. For exam-
ple, Twitter API is accessible via multiple resources such as tutorials, documen-
tations, and videos. This makes the API more likely to attract developers. We
run two kind of queries on Google search engine to measure the level of spread
of an API. The first query counts the number of entries in the index that contain
a given API name; the second query counts the number of entries containing a
given API endpoint (Table 2).

The features retrieved by SDE are returned on different scales. For example,
the number of issues reported for an API on GitHub may reach several hundreds;
the number of SDKs available for an API on ProgrammableWeb is typically a one
or two-digit value; the number of users interested in an API on GitHub may go
beyond thousands. To normalize features on a common scale, we use the following
formula:

x̂ =
(xmax − xmin) ∗ (rmax − rmin)

(xmax − xmin)
+ rmin

3 https://www.w3.org/TR/WD-DOM/.

https://www.w3.org/TR/WD-DOM/


224 F. Binzagr et al.

Where: x̂ refers to the normalized value; xmax and xmin refer to the fea-
ture maximum and minimum values, respectively; rmax and rmin refer to the
maximum and minimum new range values, 1 and 0 for our case.

3.3 API Influencer Score (AIS)

We define a metric, called API Influence Score (AIS), to model the degree to
which community members use an API to develop mashups and service-oriented
applications. For that purpose, we use the number of mashups and repositories
that adopt the API on ProgrammableWeb and GitHub, respectively. However,
some developers may display negative experiences using an API. To capture
developers’ opinions, the AIS score includes the average weighted sentiment. As
shown in the formula given below, the AIS score is calculated using three of
the API features extracted from community platforms (Table 2). The remaining
extracted features are used to predict the AIS score as shown in Sect. 3.4. The
AIS score is formally defined as follows:

AIS(i) =
∑

#Mi + #Ri + Sentiment(APIi)

Where: #Mi is the number of mashups that use APIi on ProgrammableWeb;
#Ri is the number of repositories that use APIi on GitHub; Sentiment(APIi) is
the overall sentiment on APIi as defined in Sect. 3.1.

Using the computed AIS scores, we define influencer tiers to categorize APIs
according to their influence level. Figure 2b shows the five tiers: Nano, Micro,
Mid-Tier, Mega, and Celebrity. Figure 2a depicts the distribution of all APIs
across the five influence tiers. The Nano tier regroups the least influential APIs.
APIs in this tier have a score below 0.015. This category has the highest pro-
portion of APIs, with about 600 identified APIs. Examples of Nano APIs are
Blinksale, Plunker and MyWot. The Micro tier contains APIs with a score
between 0.015 and 0.15. Hoiio Voice, Kiva and Songkick are examples of APIs
in this category. Mid-Tier refers to APIs with a score in the [0.15, 0.5[ range such

Fig. 2. Influencer tiers



FAME: An Influencer Model for Service-Oriented Environments 225

as LinkedIn, Zillow and Evernote. Mega regroups APIs with a significant influ-
ence score (AIS ∈ [0.5, 1.5[), such as Flickr, Last.fm, and Reddit. Celebrity
represents APIs with the highest influence (AIS > 1.5). Celebrities appear in the
highest number of mashups and repositories. They also subject to positive sen-
timents among developers. Examples of celebrities are Google Maps, Twitter
and YouTube. Figure 2a shows that this tier has the lowest proportion of APIs,
with about 20 identified APIs.

3.4 Influence Score Prediction

We compute the AIS score of an API using three features: number of mashups,
number of repositories, and overall developers’ sentiment. However, it is difficult
for API providers to have direct control on those features to improve the adoption
of their APIs by developers. To help API providers enhance the influence of
their APIs, we conduct a statistical study to identify the most relevant API
features that correlate the most to AIS scores. Once API providers understand
which of the remaining features (other than number of mashups, repositories, and
sentiment) impact the AIS score, they can come-up with a strategy to boost-up
the influence of their APIs.

We use Non-Negative Least Squares (NNLS) regression [8] to learn a weight
value for each API feature. NNLS assigns weights to features according to their
correlation degree to AIS scores. The most relevant features are given high coef-
ficients, while non relevant ones are given negative coefficients. NNLS replaces
negative coefficients by 0. This will automatically get rid of non relevant fea-
tures from the model. Figure 3 summarizes the coefficients assigned to each API
feature. Features with the biggest coefficient values have the highest impact on
AIS scores. For instance, the number of articles in ProgrammableWeb is strongly
related to the AIS score. This shows that more articles published in the developer
community may increase API influence. Figure 3 also states that StackOverflow
features have little impact on AIS scores.

The next step is to define AIS prediction models. These models are useful to
assign initial influence scores for newly deployed APIs, hence dealing with the
traditional cold start problem. They also assist API providers in predicting the
evolution of their API scores. We introduce three prediction models (Table 3). To
evaluate and compare the models, we calculate the adjusted R-squared [14] and
Akaike Information Criterion (AIC) [1]. The adjusted R-squared estimates the
variance between predicted and real scores. AIC measures the goodness of the
fit for the model. The model with the smallest AIC value and highest adjusted
R-square is selected as the best-fitting model.

Table 3 summarizes our three prediction models. Model 1 uses all extracted
features to predict the AIS score. It has a low adjusted R-squared value: 0.5788.
Hence the model does not fit the trend perfectly. This is because AIS scores
depend on developers’ sentiments, which are hard to predict. To deal with this
issue, we introduce the adjusted AIS score (AISadjusted). AISadjusted is a variant
of the original AIS score that eliminates developers’ sentiments. The following
formula computes APIi’s adjusted AIS score.



226 F. Binzagr et al.

Fig. 3. Impact of API features on the AIS score

AISadjusted(i) =
∑

#Mi + #Ri

The second and third models predict the AIS adjusted scores. Model 3 uses
all extracted features. Model 2 omits the features extracted from StackOverflow
since our study shows that StackOverflow has little impact on API adoption
across communities (Fig. 3). Both models display high adjusted R-squared: 0.77
for Model 2 and 0.78 for Model 3. The models also have low AIC values: 1346.347
for Model 1 and 1323.208 for Model 2. This makes both models suitable for
predicting the adjusted AIS score, with a slight advantage to Model 3 as it uses
more API features than Model 2.

4 Experiments

The goal of our experiments is to assess FAME’s ability to accurately predict
influencer APIs. We evaluate the second and third prediction models (Table 3)
using five independent data-sets. The data-sets regroup APIs deployed during
five different periods between 2005 to 2019. For each API, we compute the
adjusted AIS score and use the models (2 and 3) to predict that score. We
then compute the recall and precision for each data-set using both models.

The recall refers to the fraction of influencer APIs that are correctly iden-
tified within each data-set. It is the number of influencers that are successfully
predicted divided by the number of all APIs that are identified as influencers. It
can be also seen as the percentage of influencer APIs that are successfully pre-
dicted. Figure 4a shows that up to 86% and 88% of influencers are successfully
recalled (i.e., predicted) by Model 2 and Model 3, respectively. Both models have
a stable recall, but leveraging more features in Model 3 allows a better prediction
than Model 2.



FAME: An Influencer Model for Service-Oriented Environments 227

Table 3. Prediction models

The precision checks the accuracy with which scores are predicted for APIs.
It is the number of precisely predicted influencer APIs divided by all recalled
APIs. It can be seen as the percentage of precisely recalled influencers. If the
weight difference is less than a threshold value, the influencer is assumed to be
precisely identified. We used 0.03 as a threshold; this value represents the average
of the difference between the predicted and computed scores. Figure 4b shows
that both models identify influencer APIs with up to 71% precision.

Fig. 4. Recall and precision

5 Related Work

The identification of influential nodes in distributed environments such as social
networks and forums has been the subject of many research efforts [6,7,11,16].
Few research proposals [3,10] study influencers in software development. How-
ever, existing research considers developers as influencers not APIs. [11] proposes



228 F. Binzagr et al.

a methodology to identify influencer nodes that are likely to affect other nodes
in social networks. It computes the centrality degree of nodes and analyzes node
activities. [11] focuses on the position of nodes in the network. Our approach
instead leverages both structured (e.g., number of mashups, number of articles)
and unstructured (e.g., user feedback) across multiple developer platforms to
identify influencers. We also show that influencer identification precision gets
better as we leverage a larger number of features. [16] presents a study for find-
ing influential authors on Twitter forums. It combines both user profile infor-
mation and user interaction features with decision tree to identify influencer
authors. Our approach identifies APIs as influencers not users. Moreover, we
use a multi-objective function that combines multiple attributes collected from
various sources. [7] proposes a study to understand influencers who lead develop-
ment and dictate how projects evolve. It shows that analyzing influencer behav-
iors allows understanding the evolution of software ecosystem and even predict
future evolution. The main focus of our approach is to identify influencer APIs
and the attributes that contribute to their emergence, rather than assuming the
existence of those influencers and studying their behavior. [2] shows that influ-
ence score depends on engagement, sentiment, and growth. [6] shows that orig-
inality and uniqueness of user content are crucial factors to identify influencers
in Instagram. [2] and [6] rely mainly on social metrics to determine influencers.
Our approach extends the analysis to encompass attributes from various sources.
Besides, it considers APIs as influencers in programming platforms instead of
users in social networks. [17] computes influence score for users across several
social networks. It evaluates the quantity and quality of reactions a user action
prompted to assess the extent to which the user is influential. [3] and [10] iden-
tify the most influential developers, repositories, technologies and programming
languages in GitHub. [3] shows that the analysis of social networks, particularly
the relations among developers, developers and repositories, and developers and
followers helps identify developers’ influencer index. [10] proposes an approach
to measure user influence in Github. It analyzes relationships between users, as
well as between users and projects. In contrast to our approach, [10] and [3] are
restricted to GitHub and stackOverflow data. In our approach, we show that
using a multi-objective function that combine both structured and unstructured
features from diverse platforms substantially enhances the precision of the influ-
encer identification process. We also introduce models to predict the evolution
of influencer scores for newly developers and existing APIs.

6 Conclusion

We propose FAME (inFluencer Apis in developer coMmunitiEs), a novel app-
roach for the identification and prediction of influencer APIs in service-oriented
environments. To the best of our knowledge, FAME is the first influencer model
that treats APIs as first-class citizens. We define influence as the degree to which
an API is used in mashups and service-oriented applications. We extract and
analyze several structured and unstructured features from various programming
communities. We use the Stanford NLP parser to perform sentiment analysis and



FAME: An Influencer Model for Service-Oriented Environments 229

evaluate developers’ opinions towards using APIs. Such opinions are expressed
through posts in StackOverflow, commit comments in GitHub, and articles in
ProgrammableWeb. We aggregate API features to compute influence scores and
cluster APIs into influencer tiers according to those scores. We use Non-Negative
Least Square (NNLS) regression to identify to most significant API features
and predict the evolution of influence scores for newly deployed and existing
APIs. Finally, we conduct extensive experiments on real-world and large data-
sets extracted from multiple programming community platforms. Experiments
reveal that the proposed approach predicts up to 87% influencer APIs.

References

1. Akaike, H.: A new look at the statistical model identification. In: Parzen, E.,
Tanabe, K., Kitagawa, G. (eds.) Selected Papers of Hirotugu Akaike. Springer
Series in Statistics (Perspectives in Statistics), pp. 215–222. Springer, New York
(1974). https://doi.org/10.1007/978-1-4612-1694-0 16

2. Arora, A., Bansal, S., Kandpal, C., Aswani, R., Dwivedi, Y.: Measuring social
media influencer index-insights from facebook, twitter and instagram. J. Retail.
Consum. Serv. 49, 86–101 (2019)

3. Bana, R., Arora, A.: Influence indexing of developers, repositories, technologies
and programming languages on social coding community github. In: 2018 Eleventh
International Conference on Contemporary Computing (IC3), pp. 1–6 (2018)

4. Binzagr, F., Medjahed, B.: Crowdmashup: recommending crowdsourcing teams for
mashup development. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018.
LNCS, vol. 11236, pp. 679–693. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03596-9 49

5. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-
mun. ACM 60(4), 64–72 (2017)

6. Casaló, L.V., Flavián, C., Ibáñez-Sánchez, S.: Influencers on instagram: antecedents
and consequences of opinion leadership. J. Bus. Res. (2018)

7. Farias, V., Wiese, I., dos Santos, R.P.: What characterizes an influencer in software
ecosystems? IEEE Softw. 36(1), 42–47 (2019)

8. Flammarion, N.: Stochastic approximation and least-squares regression, with appli-
cations to machine learning. PhD thesis, École Normale Supérieure, Paris, France
(2017)

9. Gao, L., Yue, W., Xiong, X., Tang, J.: Discriminating topical influencers based on
the user relative emotion. IEEE Access 7, 100120–100130 (2019)

10. Hu, Y., Wang, S., Ren, Y., Choo, K.-K.R.: User influence analysis for github devel-
oper social networks. Expert Syst. Appl. 108, 108–118 (2018)

11. Kim, E.S., Han, S.S.: An analytical way to find influencers on social networks
and validate their effects in disseminating social games. In: 2009 International
Conference on Advances in Social Network Analysis and Mining, ASONAM 2009,
Athens, Greece, 20–22 July 2009, pp. 41–46 (2009)

12. Labbaci, H., Medjahed, B., Aklouf, Y., Malik, Z.: Follow the leader: a social network
approach for service communities. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S.
(eds.) ICSOC 2016. LNCS, vol. 9936, pp. 705–712. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46295-0 50

https://doi.org/10.1007/978-1-4612-1694-0_16
https://doi.org/10.1007/978-3-030-03596-9_49
https://doi.org/10.1007/978-3-030-03596-9_49
https://doi.org/10.1007/978-3-319-46295-0_50
https://doi.org/10.1007/978-3-319-46295-0_50


230 F. Binzagr et al.

13. Liu, X., Kale, A., Wasani, J., (Cherie) Ding, C., Yu, Q.: Extracting, ranking, and
evaluating quality features of web services through user review sentiment analysis.
In: 2015 IEEE International Conference on Web Services, ICWS 2015, New York,
NY, USA, 27 June–2 July 2015, pp. 153–160 (2015)

14. Miles, J.: R squared, adjusted R squared. Wiley StatsRef: Statistics Reference
Online (2014)

15. Noor, T.H., Sheng, Q.Z., Ngu, A.H.H., Dustdar, S.: Analysis of web-scale cloud
services. IEEE Internet Comput. 18(4), 55–61 (2014)

16. Purohit, H., Ajmera, J., Joshi, S., Verma, A., Sheth, A.: Finding influential authors
in brand-page communities. In: Sixth International AAAI Conference on Weblogs
and Social Media (2012)

17. Rao, A., Spasojevic, N., Li, Z., Dsouza, T.: Klout score: measuring influence across
multiple social networks. In: 2015 IEEE International Conference on Big Data (Big
Data), pp. 2282–2289. IEEE (2015)



Latency-Aware Deployment of IoT Services
in a Cloud-Edge Environment

Shouli Zhang1,2,3(&), Chen Liu2,3, Jianwu Wang4, Zhongguo Yang2,3,
Yanbo Han1,2,3, and Xiaohong Li1

1 Division of Intelligence and Computing, Tianjin University, Tianjin, China
zhangshoulia@163.com, xiaohongli@tju.edu.cn

2 Beijing Key Laboratory on Integration and Analysis of Large-Scale
Stream Data, North China University of Technology, Beijing, China
{liuchen,yangzhongguo,hanyanbo}@ncut.edu.cn

3 Cloud Research Center, North China University of Technology, Beijing, China
4 Department of Information Systems, University of Maryland,

Baltimore County, Baltimore, MD 21250, USA
jianwu@umbc.edu

Abstract. Efficient scheduling of data elements and computation units can help
to reduce the latency of processing big IoT stream data. In many cases, moving
computation turns out to be more cost-effective than moving data. However,
deploying computations from cloud-end to edge devices may face two difficult
situations. First, edge devices usually have limited computing power as well as
storage capability, and we need to selectively schedule computation tasks.
Secondly, the overhead of stream data processing varies over time and makes it
necessary to adaptively adjust service deployment at runtime. In this work, we
propose a heuristics approach to adaptively deploying services at runtime. The
effectiveness of the proposed approach is demonstrated by examining real cases
of China’s State Power Grid.

Keywords: Big IoT stream processing � Edge computing � Data overhead �
Adaptive service deployment

1 Introduction

Today, lots of sensors have been deployed in various fields, producing large-scale
sensor stream data. The typical stream data processing architecture nowadays relies on
cloud-based data storage and processing techniques [1]. Such architecture may conceal
big overhead of data movement and processing, and introduce latency that makes real-
time data processing difficult to be achieved [2]. Edge computing has become attractive
herein. It promotes that sensor data and its processing should be put close to the edge
devices, as many of them have non-negligible computation capabilities [3, 4]. Many
efforts have been made to integrate cloud and edge devices [5–7].

In our previous work [7], motivated by a real application scenario from the State
Grid Corporation of China (SGCC), we tried to realize the cloud-edge integration with

© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 231–236, 2019.
https://doi.org/10.1007/978-3-030-33702-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_17&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_17&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_17&amp;domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_17


proactive data services. Some lightweight services are moved to edge devices. The
services collaborate to finish a task and form a data analysis flow by event routing.
However, the data dependencies and data movement between services [8] introduce
data overhead, both in terms of network traffic necessary to distribute the data, as well
as extra storage space requirements. It can result in extra latency and become an
important factor in making deployment decision. Besides, the data overhead can vary at
runtime due to the uncertainty, fluctuation and spontaneous correlation of IoT streams.
We intend to adapt to the fluctuation flexibly while scheduling composite deployments
and satisfying other resource constraints.

In this paper, we propose an approach to dealing with the distinctive problem of
deploying the variable stream dataflows with our former data service model. We
propose a heuristics approach to adaptively deploying services at runtime through
predicting the fluctuation. Based on the real datasets from SGCC, we evaluate our
approach with two representative baseline approaches with extensive experiments to
demonstrate the effectiveness.

2 Motivation Scenario and Problem

In China State Power Grid, the electric devices are apt to be affected by various
disturbance sources and led to various power quality abnormal events, it is crucial to
detect abnormal events and trigger protection on time. The China State Power Grid has
deployed more than 20,000 sensors to monitor power quality. The real-time sensor
stream data are collected and then transferred to the cloud via multi DATs1. DAT is one
typical kind of edge devices that have remarkable but limited computing, storage and
network capacity. With our previously proposed proactive data service model
(PDS) [9], We have built a cloud-edge platform [7] which can reschedule some PDSs
to DATs for realizing real-time detecting power quality abnormal events.

The service deployment strategy across cloud and edge directly affects the latency
of an IoT application. Figure 1 shows different service deployment strategies for stream
data analysis flow for identifying sources. The average latency of Fig. 1(a) is calculated
as 513 ms, while the average latency of Fig. 1(b) is 350 ms. However, we find out that
the overhead of data movement between services is large due to routing stream data
among services. For example, as shown in Fig. 1(c), during the time range Dt1, s1 and
s5, s2 and s5, s3 and s6, the data overhead between them is 3.1 MB, 3.6 MB, and
3.8 MB respectively. Figure 1(c) is the service deployment strategy by considering the
data overhead. Its latency is about 214 ms. It is smaller than above methods. This is
because that the data overhead will result in latency both in terms of network traffic
necessary to distribute the data, as well as extra storage space requirements. Deploying
services with large data overhead on the same edge device can ignore the impact of this
overhead on latency.

1 DAT is the Data Acquisition Terminal are deployed on the electric transmission lines across the
whole country. DAT is configured with a 32-bit embedded microprocessor, DSP chip, embedded
Linux operation system and embedded JDK, etc.

232 S. Zhang et al.



Furthermore, the data overhead can vary at runtime due to the peculiarities of
uncertainty and fluctuation of sensor streams, which is as shown in Fig. 1(d). For
example, based on service logs, we can predict that, during the time range Dt2, the
average data size between s3 and s6 changed to 0.14 MB, while the average data size
between of s4 and s6 changed to 5.6 MB. The latency of Fig. 1(c) increased to 332 ms.
Under this condition, the service deployment strategy should be reconfigured. A better
deployment at this time is that, (s4, s6) should to be deployed onto DAT2 after (s3, s6)
have been finished. The latency of service redeployment is reduced to 221 ms.

3 The Adaptive Service Deployment Approach

The main idea to solve the problem in this paper is to adaptively deploy the services
across cloud and edge at runtime according to the change of data overhead. The
rationale is shown in Fig. 2.

The service monitoring system generates the real time data overhead of service, it
can accumulate the factual data overhead value as historical data, and periodically
trains the prediction model which is used to learn the change of data overhead. Then we
can predict the data overhead in next time interval by the prediction model. For each
service si, we construct a row vector D sið Þ ¼ d1; d2; . . .dlf g to represent the history of
the data overhead in l consecutive time intervals. Our goal is to predict the values of
D sið Þpre¼ dlþ 1; dlþ 2; . . .dlþ kf g, where k is the number of predicted data overhead in
next time intervals h.

We define a change ratio as g ¼
Pn

i¼1
diþw�dij j
n for the data overhead which is the

decision factor for service redeployment. Where di is the current value, diþw is the
predicted value. If g has exceeded a given threshold value, it is the time to recalculate
the deployment strategy by the deployment algorithm, then to redeploy the services.

<0.4,0.2>

(d) data overhead  over time

s2
s3
s4
s5
s6

s7

s1

time axis
t1 t2 ti

services

...

...

...

...
...

...

...

... ...
<0.4,0.2,3.1>
<0.4,0.2,3.5>
<0.6,0.4,4.2>

<0.4,0.2,1.2>
<0.8,0.8,0.5>

<1.0,1.0,0.01>
<0.6,0.6,0.01>

<0.4,0.2,2.8>
<0.4,0.2,3.2>
<0.6,0.4,0.2>

<0.5,0.6,5.6>
<0.8,0.6,0.4>

<0.6,0.6,0.01>
<1.0,1.5,0.02>

<0.4,0.2,3.6>
<0.4,0.2,4.8>
<0.6,0.4,2.6>

<0.5,0.4,1.5>
<0.7,0.6,0.4>

<0.5,0.5,0.01>
<1.5,2.0,0.03>

...

...

...

...
...

...

...

s2

DAT1

s5 s6s3 s4 s7s1

DAT2 DAT3

<0.4,0.2> <0.6,0.4> <0.4,0.2> <0.8,0.8> <1,1> <0.6,0.6>

<cpu:2,mem:3> <cpu:2,mem:3><cpu:2,mem:2>

<0.4,0.2>

3.1 3.6 3.8

(c) data overhead solution(b) resource-aware solution

s2

DAT1

s5 s6s3 s4 s7s1

DAT2 DAT3

<0.4,0.2> <0.6,0.4> <0.4,0.2> <0.8,0.8> <1,1> <0.6,0.6>

<cpu:2,mem:3> <cpu:2,mem:3><cpu:2,mem:2>

s2

DAT1

s5 s6s3 s4 s7s1

DAT2 DAT3

<0.4,0.2><0.4,0.2> <0.6,0.4> <0.4,0.2> <0.8,0.8> <1,1> <0.6,0.6>

<cpu:2,mem:3> <cpu:2,mem:3>

(a) location-aware solution

<cpu:2,mem:2>

legend
<0.4,0.2>:   <CPU, memory>  <0.6,0.6,0.01> : <CPU, memory,data overhead>    edge device service service deploy 3.8 data overhead

Fig. 1. Service deployment example with different approaches.

Prediction Model

Historical data 
overhead 

Data Overhead  Prediction 
Model Learning

η> threshold 
value 

Calculating the Change 
Ratio :η Redeploying ServicesPredicting Data Overhead

stream of data overhead
...

14.1423 38.1003 46.3975  ...
14.1423 38.1003 46.3975 …
13.6558 14.1006 13.7417  ...

...

Fig. 2. The rationale of the approach.

Latency-Aware Deployment of IoT Services in a Cloud-Edge Environment 233



The service deployment algorithm is realized based on the Genetic Algorithm. we
use the binary coding composed of binary symbols 0 and 1 to encode the deployment
candidates. If the service si can be deployed onto edge device, the yi = 1, else yi = 0.
Thus Yi ¼ y1; y2; . . .yi; . . .ynf g construct a chromosome, and a set of chromosomes
form a population Y ¼ Y0; . . .Yi; . . .;Yp

� �
, p is the population size.

In every generation, an optimization function F gives the fitness value F for the jth

chromosome Yj in the population. In our approach, if the objective is to maximized the
data overhead of subgraph with the constraint on resource consumption, the fitness
function F can be defined as F Yið Þ ¼ 1P

si2S
yixij

, otherwise F Yið Þ ¼ 1P
si2S

yixij
¼ 0.

We use a roulette wheel to compute all the fitness value of chromosomes of the
population. The chromosomes Yj are chosen according to their probability by

revolving a roulette in which the j-th part occupies percentage of it. We use Pr Yj
� � ¼

F Yjð ÞPp

i¼1
F Yið Þ to represent the probability of selecting Yj to produce new chromosomes for

the next generation. We also use a penalty value of log2 1þ cF Yið Þð Þ to each chro-
mosome, for each constraint is violated.

For every generation, we repeat the steps: roulette wheel population selection from
the previous generation’s population; crossover to generate new chromosomes;
mutation of these chromosomes and potential update of the best-fit chromosome based
on fitness values for chromosomes in this population.

To realize the rationale, one challenge is that the cost of moving service from cloud
to edge may be larger when repeatedly redeploying the services in very short time
interval. Thus, we preset a set of candidate services SC onto edge devices through the
specifying by users. Note that, not all services in SC will load for running at the same
time. There are only some services will load at the runtime according to the current
deployment strategy.

4 Experiment

The experiment environment is based on a cloud infrastructure and edge devices.
40 virtual machine (VM) instances interconnected with 1 GBs Ethernet to construct the
cloud. 480 DATs are connected to the cloud with a bandwidth of 100 Mbps. The
dataset in our experiment is the real sensor data collected from the power grid. There
are total 5871 sensors. We have realized 1302 PDSs abstracts on cloud. We construct
three kinds of SAGs using these PDSs: SAG1 containing 10 PDSs as vertexes, SAG2

containing 20 PDSs, SAG3 holding 30 PDSs. We totally instantiate 620 SAGs based on
three kinds of SAG.

We will conduct the following methods for stream processing: the resource-aware
approach (RA), the location-aware approach (LA), and our adaptive service deploy-
ment approach (ASDA). In the experiment, we vary the stream speed of sensors from
100, 200, 400, 800, to 1000 for services. We use the latency as the performance
metrics.

234 S. Zhang et al.



Figure 3 shows the experiment results. The total average latency of ASDA is
32.19% less than RA. And the total average latency of ASDA is 18.35% less than LA.
The experiment results prove that us method is more efficient than RA and LA. The
reason is that ASDA can adaptively reconfigure the service deployment by predicting
the fluctuation of data overhead between services. It helps to reduce the latency of
SAGs by reducing the overhead of transferring and storing of stream data.

5 Conclusion

This paper proposed a distinctive problem of deploying the services in a cloud-edge
environment to support the emerging real-time requirement of IoT applications. We
have proposed a latency-aware approach to adaptively deploy services from cloud onto
edge devices by predicting the fluctuation of data overhead. The effectiveness of the
proposed approach is demonstrated by examining real cases of China’s State Power
Grid.

Acknowledgement. This work is supported by “National Natural Science Foundation of China
(No:61672042), Models and Methodology of Data Services Facilitating Dynamic Correlation of
Big Stream Data”, “National Natural Science Foundation of China (No.61702014)”, and “Beijing
Natural Science Foundation (No. 4192020)”.

References

1. He, B., Yang, M., Guo, Z., et al.: Comet: batched stream processing for data intensive
distributed computing. In: Proceedings of the 1st ACM Symposium on Cloud Computing,
Indianapolis, Indiana, USA, 2010, pp. 63–74. ACM (2010)

2. da Silva Veith, A., de Assunção, M.D., Lefèvre, L.: Latency-aware placement of data stream
analytics on edge computing. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018.
LNCS, vol. 11236, pp. 215–229. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03596-9_14

3. Ahmed, A., Ahmed, E.: A survey on mobile edge computing. In: 10th IEEE International
Conference on Intelligent Systems and Control, Coimbatore, India, pp. 1–8 (2016)

4. Shi, W., Jie, C., Quan, Z., et al.: Edge computing: vision and challenges. IEEE Internet
Things J. 3(5), 637–646 (2016)

5. Xu, X., Huang, S., Feagan, L., et al.: EAaaS: edge analytics as a service. In: 2017 IEEE
International Conference on Web Services (ICWS). IEEE Computer Society (2017)

0

200

400

600

100 200 400 800 1000

La
te

nc
y 

(m
s)

Stream Speed

SAG1
LA RA ASDA

0

200

400

600

100 200 400 800 1000

La
te

nc
y 

(m
s)

Stream Speed

SAG2
LA RA ASDA

0
200
400
600
800

100 200 400 800 1000

La
te

nc
y 

(m
s)

Stream Speed

SAG3
LA RA ASDA

Fig. 3. Latency under different sensor streams

Latency-Aware Deployment of IoT Services in a Cloud-Edge Environment 235

http://dx.doi.org/10.1007/978-3-030-03596-9_14
http://dx.doi.org/10.1007/978-3-030-03596-9_14


6. Varghese, B., Wang, N., Li, J., et al.: Edge-as-a-service: towards distributed cloud
architectures. Adv. Parallel Comput. 32, 784–793 (2017)

7. Zhang, S., Liu, C., Han, Y., et al.: Seamless integration of cloud and edge with a service-
based approach. In: 2018 IEEE International Conference on Web Services (2018)

8. Ravindra, P., Khochare, A., Reddy, S.P., Sharma, S., Varshney, P., Simmhan, Y.: ECHO: An
Adaptive Orchestration Platform for Hybrid Dataflows across Cloud and Edge. In:
Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol.
10601, pp. 395–410. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3_28

9. Han, Y., Liu, C., Su, S., et al.: A proactive service model facilitating stream data fusion and
correlation. Int. J. Web Serv. Res. 14(3), 1–16 (2017)

236 S. Zhang et al.

http://dx.doi.org/10.1007/978-3-319-69035-3_28


Trusted Data Integration in Service
Environments: A Systematic Mapping

Senda Romdhani1, Nadia Bennani2, Chirine Ghedira-Guegan4,
and Genoveva Vargas-Solar3(B)

1 University of Lyon, CNRS, University of Lyon 3, LIRIS, Lyon, France
senda.romdhani@univ-lyon3.fr

2 LIRIS, INSA-Lyon, Villeurbanne, France
nadia.bennani@insa-lyon.fr

3 University Grenoble Alpes, CNRS, Grenoble INP, LIG-LAFMIA,
38000 Grenoble, France

genoveva.vargas@imag.fr
4 University of Lyon, CNRS, IAE - University of Lyon 3, LIRIS, Lyon, France

chirine.ghedira-guegan@univ-lyon3.fr

Abstract. This paper identifies and discusses trends and open issues
regarding the use of trust in data-provisioning service environments,
especially cloud environments. Applying a systematic review method [2],
we propose a classification scheme used to provide a quantitative view
of current trust solutions insisting in open issues. Finally, using analy-
sis results, we give the general lines of an approach for improving data
provisioning in multi-cloud using Service Level Agreement (SLA) and
proposing the notion of multi-level trust.

Keywords: Trust · Data-provisioning services · Service
environments · Multi-cloud · Service level agreement

1 Introduction

In recent years, data-provisioning service environments ranging from Service
Oriented Architectures (SOA) and cloud architectures have become widely used
provisioning environments [1]. The cloud eases the provisioning by providing
dynamically scalable and virtualized resources as services [3] under a pay as you
go model. The process of making data available in trustworthy conditions using
the cloud is significantly challenging. Particularly because services are deployed
under multi-tenant and multi-layer configurations.

In order to illustrate these challenges, let us consider the following e-health
scenario. Assume that, for preparing a surgery, a doctor needs to have informa-
tion about her patient including laboratory analysis, blood pressure etc. This
information is produced by several actors participating in patients medical con-
trol (e.g., chemist, cardiologist, smart devices etc.). Consider that these actors
use different clouds for storing and giving access to their data. A data integration
tool can provide a global vision of these data to the doctor guided by quality

Funded by SUMMIT (http://summit.imag.fr) of the Auvergne Rhone Alpes region.

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 237–242, 2019.
https://doi.org/10.1007/978-3-030-33702-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_18&domain=pdf
http://summit.imag.fr
https://doi.org/10.1007/978-3-030-33702-5_18


238 S. Romdhani et al.

requirements specified in SLA. The challenge lies in consuming and composing
data from cloud services with different SLA properties (e.g., QoS, reliability) and
that provide data under different conditions and quality properties (e.g., timeli-
ness, security). These properties depend on the way data services were developed
and on those added by the clouds where they are deployed (e.g. availability, data
replication, security measures etc.). Besides, the offered QoS specified in SLAs
generally fluctuates due to the uncertainty and dynamics of the cloud and this
explains the need for a quality warranty.

Guiding the data integration process by adding a trust management dimen-
sion as quality warranty should overpass the QoS uncertainty and improve the
integration’s result. Thus, by evaluating the trust level of data provisioning ser-
vices and their composition it is possible to perform a reliable integration process.

The objective of our research being to identify the trends and open issues
regarding trusted data integration, we deem necessary first conducting a com-
prehensive analysis on trust in data-provisioning service environments especially
in the cloud and on the role of SLA in providing trust. In this context, the main
contribution of this paper is a classification scheme that results from applying a
systematic review method [2] which consists of 5 inter-dependant steps includ-
ing: (i) Setting a research scope, (ii) retrieving candidate research papers from
online databases, (iii) selecting relevant papers to answer research questions, (iv)
defining a classification scheme, and (v) Performing statistical analysis. Based
our systematic review study we propose the general lines of aspects to be consid-
ered for providing a trusted data integration solution by composing trustworthy
provisioning services on multi-cloud settings. The remainder of this paper is as
follows: Sect. 2 describes our mapping study. Section 3 gives a quantitative analy-
sis, identifies open issues and present our solution. Section 4 concludes the paper
and discusses future work.

2 Trust Challenges in Service Based Data-Provisioning

The aim of our systematic mapping is to (i) Categorize and quantify research
contributions on trust in service environments and especially cloud computing.
(ii) Categorize the key contributions of SLA-based research works. (iii) Dis-
cover open issues and limitations in existing work. Our study is guided by three
research questions:

RQ1. How have published papers on trust evolved towards the cloud and other
service environments? This question is devoted to identify trust solutions evolu-
tion towards the cloud, the research trends and contributions.

RQ2. What are the most and the least addressed evaluation targets and how are
they combined? Trust can be associated to different entities defined as evaluation
target. This question aims to determine the frequency of addressing entities
implied in the data integration process in service environments and whether
trust has been simultaneously considered for more than one entity.

RQ3. Have SLAs been used and how was it related to trust? The question aims
to determine whether SLA’s have been used to evaluate trust and if so, expose
contributions.



Trusted Data Integration in Service Environments: A Systematic Mapping 239

2.1 Conducting Papers’ Search and Screening

This step consisted in collecting papers from three online databases: IEEE, ACM,
and Science Direct. A set of keywords was chosen using taxonomies and topics
from conferences considered influential in the scientific community. We used the
following general query for searching papers and retrieved a total of 3351 papers.

Trust AND (multi-cloud OR cloud OR service)

As a result of the filtering process specified in the review method, only 446 papers
were included. Note that this study is normally influenced by various factors like
the choice of keywords used to define the query, the way they are combined into
a conjunctive and disjunctive expression and the selection of databases.

2.2 Key-Wording Using Abstracts

This step consists in analyzing selected papers and key-wording using frequent
terms derived from abstracts. First, the frequent terms are considered as facets
and then each facet is organized into dimensions forming a classification scheme.
Our scheme defines 5 facets for classifying trust challenges1:

Evaluation Environment: This facet proposes 3 dimensions to classify data-
provisioning service environments including, single cloud, multi-cloud (e.g.
hybrid cloud, collaborative clouds etc.) and service environment (e.g. SOA).

Evaluation Target: According to our study a (trust) evaluation target can be
a service provider, a service user, a composite service, a service or data.

SLA: Groups dimensions describing the actions performed on SLAs w.r.t trust
evaluation solutions namely works that extend SLA or that propose some trust
evaluation metrics or strategies for computing and monitoring SLA.

Contribution: Groups the dimensions that characterize the type of contri-
butions in papers. It classifies proposals into five dimensions, namely, models,
frameworks, methods, approaches and tools.

Validation Approach: This facet include 5 dimensions namely experiments,
comparisons, benchmarks, scenarios and use cases.

2.3 Data Extraction and Mapping Process: Quantitative Analysis

RQ1. How have published papers on trust evolved towards the cloud and other
service provisioning environments? Combining the facets Contribution, Evalua-
tion Environment and Validation Approach, we observe contributions’ trends on
trust in the cloud (Fig. 1). The resulting bubble chart shows that most research

1 For more information and references please use this link: https://drive.google.com/
drive/folders/17SW e8kbrROtpu0VTjNnqN9u1vQ3scdp?usp=sharing.

https://drive.google.com/drive/folders/17SW_e8kbrROtpu0VTjNnqN9u1vQ3scdp?usp=sharing
https://drive.google.com/drive/folders/17SW_e8kbrROtpu0VTjNnqN9u1vQ3scdp?usp=sharing


240 S. Romdhani et al.

papers propose trust models and that experimentation (77%) is the most used
way for validating models. According to our study, few solutions address trust
in multi-cloud environments (5,8%).

RQ2. What are the most and the least addressed evaluation targets in each
service environment and how are they combined? The facets Evaluation, Envi-
ronment and Evaluation Target (Fig. 2) put the lights on the frequency of
addressing each evaluation target per service environment. We can observe that
most research contributions focused on evaluating the trustworthiness of services
(35% cloud services). The results also show that little attention has been given
to composite services and data and that are mostly addressed for a single cloud
and other service environments. It seems that trust in data integration remains
an open issue when combined with multi-cloud.

Some papers addressed trust evaluation on more than one evaluation target
simultaneously. Nevertheless, this multi-evaluation concerns at best two-levels.

RQ3. Were SLAs used in these publications and how was it related to trust?
According to our quantitative analysis, we found that only 25 papers used SLA
for trust evaluation. The facets SLA and Evaluation Environment give elements
for determining which actions have been applied on SLA in each environment
(Fig. 2). The results shows that about 50% of proposals defined a set of SLA
trust metrics. We can see that 10 papers proposed an SLA monitoring solution.
These contributions are mostly deployed on single cloud. We can conclude from
the results that there is merely no added new dimensions in SLA specific for
trust evaluation and that papers tend to use the standard SLA form.

3 Open Issues and Outlook

Our systematic review shows that trust is an important property considered by
proposals dealing with data provision, services, and the (multi)-cloud. Still, there
are open issues regarding trusted data integration as it remains unexplored in
multi-cloud environments. As explained in our scenario, data integration com-
bines trust issues from data (data providers) and from the integration process
itself which uses composite services and the cloud. Thereby we conclude that
trusted data integration on multi-cloud is important and must consider 3 trust
levels: data, service and cloud. Yet, current trust solutions do not cover the 3
trust levels simultaneously (see Sect. 2). Our work will propose a trusted data
service composition algorithm based on SLA to compute query results consider-
ing all the chain trustworthiness. We also identify as promising research area the
need of enhancing SLA beyond cloud resources quality. To do so, it is important
to identify the set of data integration requirements and the missing information
in SLA that can lead to a three-dimensional trust solution.



Trusted Data Integration in Service Environments: A Systematic Mapping 241

Fig. 1. Contribution trends on trust in the cloud

Fig. 2. Dealing with trust on different evaluation targets using SLA

4 Conclusion and Future Work

A multi-cloud is a collaborative environment where service providers can increase
their access to multiple cloud resources and tune their conditions. This collab-
oration generates the proliferation of data-provisioning services offering to end
users heterogeneous SLAs. This facility may generate doubts for users who dele-
gated data management to the cloud and they may want some trust warranties
(e.g., completeness of data, resource availability etc.).

This paper aimed at presenting a systematic mapping study about trust
in data provisioning environments and especially the cloud. It identified trends
and open issues and presented the general lines of a multi-level trust-based data
integration solution. In our ongoing work, we intend to develop a solution by
focusing on trust in the cloud and also study SLAs in more depth to adapt them
and use them to guide trusted data integration.



242 S. Romdhani et al.

References

1. Carvalho, D.A.S., Neto, P.A.S., Vargas-Solar, G., Bennani, N., Ghedira, C.: Can
data integration quality be enhanced on multi-cloud using SLA? In: Chen, Q.,
Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS,
vol. 9262, pp. 145–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22852-5 13

2. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in
software engineering. In: Ease, vol. 8, pp. 68–77. ACM, Italy (2008)

3. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)

https://doi.org/10.1007/978-3-319-22852-5_13
https://doi.org/10.1007/978-3-319-22852-5_13


CSI2: Cloud Server Idleness Identification
by Advanced Machine Learning

in Theories and Practice

Jun Duan1(B), Guangcheng Li2, Neeraj Asthana1, Sai Zeng1, Ivan Dell’Era1,
Aman Chanana1, Chitra Agastya1, William Pointer1, and Rong Yan2

1 IBM T. J. Watson Research Center,
1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA

{jun.duan,neeraj.asthana,Aman.Chanana,Chitra.S.Agastya}@ibm.com,
{saizeng,ivd,pointer}@us.ibm.com

2 IBM China Research Lab, 8 Dongbeiwang Western Rd, Beijing 100193, China
{liguangc,yanrong}@cn.ibm.com

Abstract. Studies show that virtual machines (VMs) in cloud are easily
forgotten with non-productive status. This incurs unnecessary cost for
cloud tenants and resource waste for cloud providers. As a solution to
this problem, we present our Cloud Server Idleness Identification (CSI2)
system. The CSI2 system collects data from the servers in cloud, performs
analytics against the dataset to identify the idle servers, then provides
suggestions to the owners of the idle servers. Once the confirmation from
the owners are received, the idle servers are deleted or archived. We not
only design and implement the CSI2 system, but also bring it alive into
production environment.

How to accurately identify the idleness in cloud is the challenging part
of this problem, because there is a trade-off between the cost saving and
the user experience. We build a machine learning model to handle this
challenge. In addition to that, we also build an advanced tool based on
Bayesian optimization (BO) to help us finely tune the hyperparameters of
the models. It turns out that our finely tuned models works accurately,
successfully handling the aforementioned conflict, and outperforms its
predecessors with a F1 score of 0.89.

Keywords: Classification · Machine learning · Cloud idleness ·
Bayesian optimization

1 Introduction

Recent study [1] shows that more than 30% of servers in enterprise data centers
are “comatose”, meaning that these servers are not being used for any produc-
tive work in their organizations. A number of techniques have been proposed
to address the challenge of detecting virtual machines that appear to have low
computing resource utilization [2,3] and consolidate them using resource over-
subscription [4,5]. However, resource utilization can be distorted by a couple of

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 243–248, 2019.
https://doi.org/10.1007/978-3-030-33702-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_19&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_19


244 J. Duan et al.

common situations. For example, enterprises invest to make sure their IT infras-
tructures are secured, highly available, and resilient. In order to do that, a set
of IT software/agents are deployed to the target servers to perform IT opera-
tions like virus scan, backup, configurable changes, remediation, etc. Without
any productive workloads deployed or run on the target servers, those tools
can sometimes consume very significant resource and be perceived as “produc-
tive”. On the opposite side, for scenarios like elasticity to scale in and out the
resource, resiliency, high availability, some servers are designed to be in standby
modes with very low resource utilization, but those servers might be (incorrectly)
perceived as “non-productive” if we only look at resource utilization. In order
to correctly classify servers in productive or non-productive usage, we need to
understand the business application related activities, much beyond the resource
consumption.

In order to handle this issue, we present our AI based Cloud Server Idleness
Identification (CSI2) system, which smartly distinguish the productive and non-
productive servers.

2 System Design

In this section, we introduce the high-level design of the entire CSI2 system.
The CSI2 system was firstly released into production environment on October

26th, 2018. The system works with IBM’s internal cloud provisioning platform,
iRIS-IMS, which manages multiple geographically distributed data centers glob-
ally. The system (1) collects data from the virtual machines on the cloud, (2)
accepts end users’ inputs regarding the status of their virtual machines, (3) per-
forms analytics based on the collected data and accepted inputs and provides
suggestions on the idle virtual machines. Therefore, the CSI2 system is composed
of three modules, corresponding to the three functionalities. They are the data
collection, the web portal, and the analyzer, respectively. The data collection
module regularly monitors the virtual machines, actively collect data which is
relevant to the idleness of the machine. The web portal is the interface between

Fig. 1. The overview of the CSI2 system. The CSI2 system is composed of three mod-
ules: the data collection, the web portal, and the analyzer.



CSI2: Cloud Server Idleness Identification by Advanced Machine Learning 245

the CSI2 system and the end users. The analyzer lies at the heart of the CSI2
system. On one hand, the analyzer extracts the features from the data which
is gathered by the data collection module. On the other hand, it accepts the
feedback from the web portal. Next, the accepted feedback is used to label the
extracted features. The three modules of the CSI2 system is illustrated in Fig. 1.

3 Implementation

The features we extracted from the raw data can be roughly classified into three
categories. The first category generally provides basic information of the virtual
machines, such as CPU time, memory consumption, network throughput, etc.
What is unique in the CSI2 system is the other two categories, which provides
insights into the running processes and user activities, respectively. We list a set
of representative features that belong to these two unique categories in Table 1.

Table 1. Representative features in the CSI2 system

Symbol Description

Features regarding running processes

F %MEM IP Memory usage of important processes

F %MEM IP S Memory usage of important processes over that of the server

F %CPU IP CPU usage of important processes

F %CPU IP S CPU usage of important processes over that of the server

Features regarding user activities

F AVGLAHR Average Login durations

F MAXLAHR Max login durations

#DTLA Num of daytime login activities

SSH CONN SSH connections

In order to train the model, we need to select a subset from the 60+ features
that are extracted from the raw data. We use correlation analysis to select a set
of features among the 60+ to train our models. In addition to the automatic
methods, we also manually checkout the selected feature set and make correc-
tions. For example, we manually exclude the feature “TIMESTAMP” from the
selected feature set. Before the CSI2 system is alive, we collect the feedback from
the user surveys, and use the feedback to label the features. After that, we use
the labeled dataset to train our model.

The metric we use to guide the training is based on the business impact of the
CSI2 system. In order to maximize the business impact of the CSI2 system, we
need to identify as many as “real” idle virtual machines, i.e. actual idle virtual
machines that are also predicted as idle virtual machines. The “real” idle virtual
machines are presented in Table 2 as “true negative”.



246 J. Duan et al.

Table 2. The confusion matrix of the machine leaning models

actual active actual idle

predicted active true positive (happy users) false positive (missed)

predicted idle false negative (unhappy users) true negative (identified)

Ideally, we should identify all the actual idle virtual machines, without any
actual idle virtual machines been classified as active. This way, we can achieve
maximized monetary saving. But in practice, a small fraction will be missed
because of misclassification. This portion listed in Table 2 as “false positive”.

Similarly, we should classify all actual active virtual machines as active. Oth-
erwise, a small portion of the users will be bothered by suggestions saying that
their systems are idle but they are actively in use. But in reality, this small frac-
tion almost always exist because of the imperfection of the models. This fraction
is shown in Table 2 as “false negative”.

We know there is always a trade-off between the recall and precision of any
machine learning model. In other words, the false positives and the false negatives
can not be simultaneously minimized. In the CSI2 system, we fight with this
trade-off. We reduce the number of missed actual virtual machines for greater
business impact with moderate degradation of the user experience.

In addition to the tuning of the models by human expertise, we also make
further adjustment of the hyperparameters, using our advanced tuning tool.
We have developed a toolkit named AI Performance Advisor, which uses AI
techniques, specifically Bayesian Optimization ([6]), to automatically identify
optimal parameters set for different workloads including identifying the optimal
hyperparameters for AI workloads, the goal of this tool is to find optimal or
near optimal tunable parameters setting within predefined constrains like time
or iterations. The design of AI performance advisor is quite flexible, it could be
used to tune any application, from AI workloads, simple web servers to complex
distributed micro-service applications. AI performance advisor takes the system
to be optimized as a black box, the only interface between AI performance advi-
sor and the system to be optimized is the evaluation interface: AI performance
advisor will configure the suggested tunable parameters sets to the target system
and will query the performance metrics of different sets of the tunable parame-
ters, but it does not obtain gradient information or any internals of the system
to be tuned.

4 Performance Evaluation

We tuned the models in the analyzer using human expertise first. We then apply
our Bayesian optimization tool to finely tune the models, the performance is
shown as Fig. 2.



CSI2: Cloud Server Idleness Identification by Advanced Machine Learning 247

Fig. 2. The performance of the finely tuned CSI2 models, with 0.90 recall, 0.88 preci-
sion, and 0.89 F1 score.

We compared the performance with other approaches to identify idleness
in cloud environment. For example, graph based approaches [7,8], rule based
approaches [11–13], and AI based approaches [9,10]. We pick some of the most
advanced approaches as the baseline to compare with the CSI2 system, such as
Garbo [8], Pleco [7], and iCSI [9]. It turns out that CSI2 outperforms all these
predecessors, with a F1 score of 0.89. Garbo, Pleco, and iCSI have F1 score of
0.68, 0.74, and 0.85, respectively.

The CSI2 system was first released to production on Oct 26th. The first
launch identified 400+ idle servers. As of Dec 11th, 120 servers were marked for
deletion by server owners which translates to the cost savings between 250 K to
500K. The potential estimated yearly savings is estimated as about 2.2 million
US dollars.

5 Conclusions

Virtual machines are easy to be created and easier to be forgotten, resulting in
considerable non-productive/idle servers in the cloud. In this paper, we proposed
our solution to this problem: the Cloud Server Idleness Identification (CSI2) sys-
tem. We designed, implemented and made it alive for our infrastructure provi-
sioning platform. Lying at the heart of the CSI2 system is the machine learning
model, which is trained by our unique set of features, and then finely tuned
by our home-made Bayesian optimization tool. Equipped with these models,
the CSI2 system successfully handles the conflict between the cost saving and
the user experience. That is, it identifies significant amount of idle servers with
reduced number of false negatives. From theoretical perspective, the models of
the analyzer outperforms its predecessors. From business perspective, the CSI2
system has been running in production environment for a couple of months,
bring real-life monetary cost saving everyday for our globally distributed data
centers.



248 J. Duan et al.

References

1. Koomey, J., Taylor, J.: 30 percent of servers are ‘comatose’. http://anthesisgroup.
com/wp-content/uploads/2015/06/Case-Study DataSupports30PercentComatose
Estimate-FINAL 06032015.pdf

2. Stoess, J., Lang, C., Bellosa, F.: Energy management for hypervisor-based virtual
machines. In: 2007 USENIX Annual Technical Conference on Proceedings of the
USENIX Annual Technical Conference, ATC 2007, USENIX Association, Berkeley,
CA, USA, pp. 1:1–1:14 (2007)

3. Wu, H., et al.: Automatic cloud bursting under fermicloud. In: 2013 International
Conference on Parallel and Distributed Systems (ICPADS), pp. 681–686, December
2013

4. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and gray-box
strategies for virtual machine migration. In: Proceedings of the 4th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI 2007, USENIX
Association, Berkeley, CA, USA, p. 17 (2007)

5. Breitgand, D., Epstein, A.: Improving consolidation of virtual machines with risk-
aware bandwidth oversubscription in compute clouds. In: INFOCOM, 2012 Pro-
ceedings IEEE, pp. 2861–2865, March 2012

6. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: NIPS (2012)

7. Shen, Z., Young, C.C., Zeng, S., Murthy, K., Bai, K.: Identifying resources for
cloud garbage collection. In: 2016 12th International Conference on Network and
Service Management (CNSM), pp. 248–252. IEEE, October 2016

8. Cohen, N., Bremler-Barr, A.: Garbo: Graph-based cloud resource cleanup. In: 2015
ACM Symposium on Cloud Computing (SoCC 2015), Kohala Coast, Hawaii, USA,
August 2015

9. Kim, I.K., Zeng, S., Young, C., Hwang, J., Humphrey, M.: iCSI: a cloud garbage
VM collector for addressing inactive VMs with machine learning. In: 2017 IEEE
International Conference on Cloud Engineering (IC2E), pp. 17–28. IEEE, April
2017

10. Kim, I.K., Zeng, S., Young, C., Hwang, J., Humphrey, M.: A supervised learning
model for identifying inactive VMs in private cloud data centers. In: Proceedings of
the Industrial Track of the 17th International Middleware Conference, p. 2. ACM,
December 2016

11. Zhang, B., Al Dhuraibi, Y., Rouvoy, R., Paraiso, F., Seinturier, L.: CloudGC:
recycling idle virtual machines in the cloud. In: 2017 IEEE International Conference
on Cloud Engineering (IC2E), pp. 105–115. IEEE, April 2017

12. Devoid, S., Desai, N., Hochstein, L.: Poncho: enabling smart administration of full
private clouds. In: LISA, pp. 17–26, November 2013

13. Baek, H., Srivastava, A., Van der Merwe, J.: Cloudvmi: virtual machine intro-
spection as a cloud service. In: 2014 IEEE International Conference on Cloud
Engineering (IC2E), pp. 153–158. IEEE, March 2014

http://anthesisgroup.com/wp-content/uploads/2015/06/Case-Study_DataSupports30PercentComatoseEstimate-FINAL_06032015.pdf
http://anthesisgroup.com/wp-content/uploads/2015/06/Case-Study_DataSupports30PercentComatoseEstimate-FINAL_06032015.pdf
http://anthesisgroup.com/wp-content/uploads/2015/06/Case-Study_DataSupports30PercentComatoseEstimate-FINAL_06032015.pdf


Services in the Cloud



An Energy Efficient and Interference
Aware Virtual Machine Consolidation

Algorithm Using Workload Classification

Rachael Shaw(B), Enda Howley, and Enda Barrett

College of Engineering and Informatics, National University of Ireland,
Galway, Ireland

{r.shaw4,ehowley,enda.barrett}@nuigalway.ie

Abstract. Inefficient resource usage is one of the greatest causes of high
energy consumption in cloud data centers. Virtual Machine (VM) con-
solidation is an effective method for improving energy related costs and
environmental sustainability for modern data centers. While dynamic
VM consolidation can improve energy efficiency, virtualisation technolo-
gies cannot guarantee performance isolation between co-located VMs
resulting in interference issues. We address the problem by introducing a
energy and interference aware VM consolidation algorithm. The proposed
algorithm utilizes the predictive capabilities of a Machine Learning (ML)
model in an attempt to classify VM workloads to make more informed
consolidation decisions. Furthermore, using recent workload data from
Microsoft Azure we present a comparative study of two popular classi-
fication algorithms and select the model with the best performance to
incorporate into our proposed approach. Our empirical results demon-
strate how our approach improves energy efficiency by 31% while also
reducing service violations by 69%.

Keywords: Energy efficiency · Interference aware · Virtual machine
consolidation · Machine Learning · Classification

1 Introduction

Cloud computing offers a pool of elastic resources charged on a pay-as-you-go
basis with the capacity to execute diverse workloads including long running back-
ground jobs to real-time web applications [1,2]. Energy related costs and envi-
ronmental sustainability have been identified as major concerns in the operation
of data centers today. Research has revealed that by 2020 U.S data centers alone
are estimated to consume 140 billion kilowatt-hours yearly, costing 13 billion
dollars per year and generating carbon emissions of 150 million metric tons [3].

R. Shaw—This work is supported by the Irish Research Council through the Govern-
ment of Ireland Postgraduate Scholarship Scheme.

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 251–266, 2019.
https://doi.org/10.1007/978-3-030-33702-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_20&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_20


252 R. Shaw et al.

In particular, research has shown that inefficient resource utilisation is one of
the leading causes of high energy consumption in data center deployments [4].

VM consolidation is one approach that can improve resource management
and data center efficiency by using live migration to optimize the distribution
of VMs across the data center while also satisfying user specified Service Level
Agreements (SLA) [7]. However, one limitation of virtualisation technologies
is that they do not guarantee performance isolation [10]. Consequently, while
energy consumption can be reduced through dynamic VM consolidation algo-
rithms, performance degradation can result from interference effects between
co-located VMs. As a result, balancing energy efficiency and the delivery of
service guarantees through VM consolidation becomes a more complex issue
in multi-tenant environments. Existing approaches need to be adapted to con-
sider the implications of co-located interference effects. While VM consolidation
approaches often have different core objectives the majority of VM consolidation
algorithms focus on minimizing the number of active hosts in the data center,
however, performance interference issues between co-located VMs are not con-
sidered [4,8,11]. These approaches are less effective as they do not accurately
represent performance degradation caused by resource contention between co-
located VMs. Prior to consolidating VMs it would be beneficial to consider the
VM’s resilience to interference from other co-located workloads to improve the
delivery of service guarantees. Other works in the literature propose interference
aware consolidation algorithms which focus on the delivery of service guarantees
but are not specifically energy driven [12,13].

In this paper, we propose a Predictive Interference and Energy Aware (PIEA)
consolidation algorithm to improve both energy efficiency and performance for
multi-tenant cloud environments. Leveraging the predictive capabilities of an
Artificial Neural Network (ANN) our approach attempts to classify VM work-
loads into two groups namely delay-insensitive and interactive based on their
resource usage features. Our algorithm consolidates delay-insensitive VMs more
aggressively, tightly packing them together as they are generally more robust to
interference issues [21], while interactive workloads requiring low response time
and high performance are consolidated in such a way to reduce direct contention
for resources between other similar workloads on the host.

We expect this work to advance the state-of-the-art in three regards:

– Our work focuses on improving the VM consolidation problem by attempt-
ing to classify VM workloads while considering both energy efficiency and
interference issues between co-located VMs.

– We compare the accuracy of two popular classification algorithms namely an
ANN and Support Vector Machine (SVM) and demonstrate their application
in classifying VM workloads to resolve the VM consolidation problem. We
also propose the PIEA consolidation algorithm and show its ability to achieve
improved energy efficiency and performance.

– To the best of our knowledge our work is one of the first to apply ANN and
SVM classifiers to the recent workload data released by the Microsoft Azure’s



Energy and Interference Aware Virtual Machine Consolidation 253

public cloud platform. We also compare our solution to a widely known energy
aware consolidation heuristic which has shown to deliver good results [6].

The remainder of this paper is structured as follows: Sect. 2 discusses related
work and background material. Section 3 formulates the research problem and
the proposed solution. In Sect. 4 we evaluate the accuracy of two popular classi-
fication techniques and select an appropriate model to incorporate into our con-
solidation strategy. Section 5 presents our experimental results. Lastly, Sect. 6
concludes the paper.

2 Related Research and Background

This section discusses related research while also providing the necessary back-
ground material for the classification techniques that have been compared in this
work.

2.1 Virtual Machine Consolidation

Over the last number of years VM consolidation has gained widespread attention
in the literature. Heuristic based methodologies are the most commonly used
due to their simplicity and their ability to deliver good results. Lee et al. [4]
proposed two task consolidation heuristics which seek to maximize resource util-
isation while considering active and idle energy consumption. Verma et al. [5]
presented a power and migration cost aware placement controller which aims to
dynamically minimize energy consumption and migration costs while maintain-
ing service guarantees. Beloglazov et al. [11] proposed the Power Aware heuristic
which allocates VMs to the most power efficient hosts first. Recently, more efforts
have also been made to develop consolidation approaches using sophisticated
ML algorithms. Farahnakian et al. [8] introduced a predictive VM consolida-
tion approach which employs a K-nearest neighbours forecasting methodology.
Nguyen et al. [9] employed Multiple Linear Regression (MLR) to predict over and
under-loaded server capacity and demonstrated how it can be integrated with
existing consolidation solutions to improve energy consumption. Shaw et al. [15]
proposed a predictive anti-correlated VM consolidation algorithm which also
considers optimal data transfer times. These works focus on improving resource
usage and energy efficiency in the data center, however, they do not consider
performance degradation due to interference issues between co-located VMs.
Xu et al. [12] introduced i-Aware, a heuristic based approach which focuses
on minimizing interference during and after migration has occurred. Verboven
et al. [14] proposed an interference aware approach for resource intensive appli-
cations. Their approach uses performance prediction and application clustering.
Jersak et al. [13] proposed an approach that considers adjustable VM interfer-
ence thresholds. While these works advocate the importance of managing per-
formance interference issues when consolidating VMs on a host, energy efficiency
is not the core objective. Our work proposes a novel algorithm which attempts



254 R. Shaw et al.

to improve both energy efficiency and interference issues using predictive mod-
elling to classify workloads for a more holistic approach. Studies which are the
most similar to our approach include the work of Sampaio et al. [10] and Moreno
et al. [1]. Sampaio et al. proposed an interference and power aware heuristic based
solution. Our work differs in two regards. Firstly, our methodology is based on
a ANN learning algorithm which is a state-of-the-art technique for many differ-
ent problems and secondly, we use recent data released from Microsoft Azure’s
public cloud platform to train our ML models. Moreno et al. also attempts to
classify workloads to improve energy consumption and interference. However,
our work provides on evaluation on the performance of two popular classifica-
tion algorithms while also using recent data released from the Microsoft Azure
cloud platform to train our algorithms.

2.2 Classification

Classification techniques have been successfully applied to many areas in the
ML literature including intrusion detection, image classification and text char-
acterization [16]. ANNs and SVMs are two of the most widely used non-linear
classification algorithms known for their predictive accuracy and ability to model
complex real world problems [14,17]. Given the complex relationship between
cloud workloads and resource usage metrics, these two non-linear algorithms are
suitable for our needs. A brief description of these techniques is outlined below.

Artificial Neural Networks are a state-of-the-art learning technique for many
different problems including classification, control and online and offline learn-
ing [18]. One of the most popular ANN classifiers is a feedforward neural net-
work [17]. The network consists of numerous interconnected computational nodes
organized into an input layer, one or more hidden layers and an output layer.
During the training process the network receives data through the input layer.
These values are fed to the neurons in the hidden layer each of which is charac-
terized by a set of weighted connections. The network calculates the sum of the
weighted signals for each neuron uk as given in Eq. (1).

uk =
m∑

j=1

wkjxj . (1)

where {x1 , x2 , ..., xm} are the input signals of neuron k and {wk1 ,wk2 , ...,wkm}
are the connection weights. An activation function is applied to the output signal
of each neuron which transforms the range of the signal to a value between 0 and
1. The most widely used activation function is the sigmoid function as defined
in Eq. (2).

ϕ(uk) =
1

1 + exp(−auk)
. (2)

where a is the slope, uk is the activation value for neuron k and exp() is the
exponential function. Once the signal has been propagated through the network



Energy and Interference Aware Virtual Machine Consolidation 255

it generates the probability of the input features belonging to class A or class
B given that this is a binary classification problem. The output node with the
highest probability is selected and is compared to the target output class to
calculate the error term δk . The popular backpropagation algorithm [18] is used
to propagate the error back through the network in order to update the weighted
connections.

Support Vector Machines. SVM are a popular alternative model to an ANN.
This learning algorithm is capable of modelling complex real world problems
with data that has many input features even if only a relatively small data set
is available to train the model [14]. Unlike an ANN, SVMs seek to find the
optimal hyperplane that maximizes the margin between the two classes using
a subset of the training examples H known as the Support Vectors [19]. These
data points tend to be the most difficult to classify and have a direct influence
on the optimum location of the separation boundary. The optimal hyperplane is
one that satisfies the following equation:

w ∗ x + b = 0. (3)

where w is the weight vector, x are the feature values and b is the bias parameter.
The classification of a sample feature vector xi is denoted below [20]:

yi = sign

( H∑

h=1

αhyhshxi + b

)
. (4)

where αh is the Lagrange multiplier used to find the optimal hyperplane, yh is
the classification of the support vector h, sh is defined as the sample vector for
support vector h and b is the bias. Kernel functions can be used to generate
non-linear SVMs which transforms data into a higher dimensional space, gen-
erating a clearer separation boundary between distinct classes. The non-linear
classification function can now be defined as [20]:

yi = sign

( H∑

h=1

αhyhK(sh, xi) + b

)
. (5)

3 Energy and Interference Aware VM Consolidation

In this work we consider interference issues between co-located VMs as an impor-
tant aspect of the VM consolidation problem. Balancing the distribution of VM
workloads across available hosts in a multi-tenant environment while also seek-
ing improved energy consumption is a challenging issue. Energy efficiency opti-
mization and the delivery of application performance guarantees are conflicting
objectives. By consolidating a large number of VMs on to a smaller number
of hosts energy wastage can be mitigated, however, performance degradation
can also occur due to interference and resource contention between co-located



256 R. Shaw et al.

VMs [10]. To overcome this issue, prior to placing a VM on a host a more plau-
sible consolidation algorithm should consider a VM’s resilience to interference
effects. For example interactive VMs typically require low response times and
high performance while background workloads are generally more robust to such
effects [21]. In our work we present a more effective VM consolidation strategy
which attempts to classify VM workloads using a state-of-the-art ML approach
to foster a more intelligent energy and interference aware approach.

The proposed system model is depicted in Fig. 1. In our system, VMs are ini-
tially allocated on to a Physical Machine (PM) based on the requested resources.
To reduce energy and service violations it is critical to optimize the distribution
of VMs using live migration. In our system architecture the global resource
manager is responsible for managing resource allocation and live migration. It
consists of three key components: the performance monitor, the trained classi-
fier and the proposed PIEA algorithm which provides decision support for VM
consolidation. The performance monitor continuously monitors resource usage
on each host and stores this as historical resource usage data. Next the pop-
ular Local Regression Minimum Migration Time (LR-MMT) algorithm [11] is
used to infer the probability of a host becoming loaded and selects which VMs
to migrate and places them on a migration list. The classification model is then
used to classify the VM workloads in the migration list using their resource usage
features. Based on these classifications the PIEA algorithm makes consolidation
decisions considering potential interference issues between co-located VMs.

Performance
Monitor

VM
Classifier

Resource Allocation

Resource
Requirements

VMM VMM

VMVM2 ...VM1 VM1 VM2 ...

Migration

Required

Workload
  

Classifications
PIEA

Global Resource Manager 

Consolidation
Decision

Resource
Usage

Resource
Usage

PM1 PMm

De
m
an

d

Fig. 1. System model



Energy and Interference Aware Virtual Machine Consolidation 257

3.1 Interference Model

The rate at which interference occurs in a virtualised environment largely
depends on the number and type of workloads being executed [13]. Accord-
ing to a study by Xu et al. [12] interference effects are highly correlated with
the number of VMs running on the host. In particular, they found that inter-
ference effects are roughly linear to the number of VMs executing on a given
host when comparing CPU and memory intensive applications. As a result, the
authors argue that the number of VMs on the host can be used to estimate the
expected interference among co-located VMs. In our work we use these findings
to generate a simple interference model as proof of concept with the proposed
PIEA consolidation algorithm.

In more detail, our work considers heterogeneous workloads which are classi-
fied by our ML model as either interactive or delay-insensitive workloads. Given
that interactive workloads require high performance and low response times we
devise an interference model which results in a exponential rise in the num-
ber of Service Level Agreement Violations (SLAV) depending on the number of
interactive workloads allocated to the host PM ∈ {

pm1 , pm2 , ..., pmm

}
. Delay-

insensitive workloads tend to be more resilient to interference effects. Therefore,
we reflect this in our interference model by using a more linear increase in the
number of SLAV according to the number of delay-insensitive workloads run-
ning on the host. In our performance analysis the level of interference on each
host is calculated to estimate the degree of interference among the VMs in the
entire data center Wj according to Eq. 6. The estimated interference is used in
conjunction with the original SLA violation performance metric computed by
CloudSim.

Wj =
1
M

M∑

j=1

(
N∑

k=1

vkij

)x

+

(
N∑

k=1

vkdj

)x

. (6)

where M is the total number of active hosts in the data center, N defines the
total number of each class of VM, vki denotes VM workloads classified as inter-
active, vkd are workloads classified as delay-insensitive, k denotes the VM index,
j indicates the host index and x is the exponent value set for each class of VM.

3.2 PIEA Consolidation Algorithm

Our proposed PIEA algorithm below has two objectives. It firstly attempts to
allocate VMs to hosts such that interference effects are reduced and secondly it
seeks to minimize the amount of PMs needed to execute the workloads in order
to improve energy efficiency and the delivery of service guarantees. The system
leverages the well known LR-MMT algorithm introduced by Beloglazov et al.
[11]. This algorithm manages host overloaded detection and VM selection, two
fundamental aspects of dynamic VM resource optimization. A VM migration
list is generated by the performance monitor component in our system model as
shown in Fig. 1. Using our trained ML model we generate a classification for each
VM workload in the migration list depending on the type of resources the VM



258 R. Shaw et al.

is using as indicated by the VM’s resource usage features, these classifications
act as input into our PIEA algorithm.

Algorithm 1: PIEA Algorithm
Input: migrationList, hostList & workloadClassifications

foreach Vmk in migrationList do

if Vmk → “interactive” then
interactiveList ←Vmk

end

else
delayInsensitiveList ←Vmk

end

end

foreach Vmk in delayInsensitiveList do
min ← ∞
selectedHost← null

foreach pmm in hostList do
sum ← 0

if pmr
m > Vmd

k then
//estimate co-location interference on destination PM

pmi
m ←

(∑N
k=1 vki

)x
+

(∑N
k=1 vkd

)x

if pmi
m <= min AND

∑N
k=1 vkd >= sum then

selectedHost ← pmm

min← pmi
m

sum ← ∑N
k=1 vkd

end

end

end

allocate Vmi → selectedHost
end

foreach Vmk in interactiveList do
min ← ∞
selectedHost← null

foreach pmm in hostList do
sum ← ∞
if pmr

m > Vmd
k AND pmm �= OFF then

//estimate co-location interference on destination PM

pmi
m ←

(∑N
k=1 vki

)x
+

(∑N
k=1 vkd

)x

if pmi
m <= min AND

∑N
k=1 vki <= sum then

selectedHost← pmm

min← pmi
m

sum ← ∑N
k=1 vki

end

end

end

if selectedHost==null then
TURN ON pmm

selectedHost =pmm

end

allocate Vmi → selectedHost
end



Energy and Interference Aware Virtual Machine Consolidation 259

Our proposed solution firstly sorts the VMs in the migration list using the
predicted classification of each workload to make more informed allocation deci-
sions considering the potential interference effects on each host. The min vari-
able is defined to keep track of the host with the least estimated interference
and is set to infinity at the start while the sum variable is used to track the
number of interactive or delay-insensitive workloads depending on which type of
workloads are being consolidated. Next the algorithm allocates the VMs in the
delay-insensitive list first as they are less sensitive to allocation decisions. The
algorithm first checks that each potential host pmm has enough resources pmr

m

to execute the demand of Vmk denoted Vmd
k . To estimate the degree of poten-

tial interference on the host we utilize the core components of Eq. 6. The algo-
rithm’s strategy is to allocate each VM executing a delay-insensitive workload to
a host that has the least estimated interference denoted pmi

m <= min and the
largest number of delay-insensitive workloads

∑N
k=1 vkd >= sum as these work-

loads are less sensitive to interference issues. Essentially the algorithm packs
these VM workloads more tightly while also making more efficient use of the
available resources. Once all of the delay-insensitive VMs have been allocated
the algorithm generates a mapping for all of the VMs in the interactive list on
to preferably the available hosts. The algorithm first checks that each poten-
tial host pmm in the host list is currently active and not switched off denoted
pmm �= OFF and has enough resources pmr

m to execute the workload of Vmk

denoted as Vmd
k . By firstly considering active hosts we are optimizing the usage

of available resources, preventing valuable resources from being left in an idle
state. Next PIEA estimates the degree of interference on the host denoted pmi

m .
Given the high performance requirements of interactive workloads and their sen-
sitivity to interference between competing workloads, our algorithm attempts to
find a host that has the least interference pmi

m <= min and the smallest possi-
ble number of interactive workloads denoted

∑N
k=1 vki <= sum to reduce direct

contention for similar resources. In a situation where none of the active hosts
are suitable for allocation a new host is turned on and the VM is allocated.

4 Classification Experimental Details and Results

This section presents the experimental analysis and results of the selected clas-
sification models detailed in Sect. 2.2.

4.1 Classification Experimental Setup

Selecting a good network topology for an ANN is important in achieving good
performance for any problem. In this work the number of layers and neurons was
determined using a parameter sweep. By using 2 layers with 50 neurons each it
was found that the network could model more complex non-linear behaviour to
yield better performance. We define inputs to the model as the resource usage
features belonging to each VM in the training data. The network is configured
with two output neurons that corresponds to each class, namely delay-insensitive



260 R. Shaw et al.

or interactive. To train the model the backpropagation algorithm with gradient
descent and momentum was implemented and the network was trained over
3000 epochs. The momentum term considers the gradient in previous steps when
updating the weights to help prevent the algorithm from getting stuck in a local
minimum. An ANN can often be sensitive to the initial weights assigned to the
network, as a result the model was run 10 times and the average was calculated
to ensure reliability. The popular Radial Basis Function (RBF) kernel was used
for the SVM. The settings for gamma and c were determined based on the best
performance output. The accuracy of both models was evaluated using k-fold
cross validation. Table 1 provides a summary of the parameter settings.

Table 1. Summary of experimental parameters

ANN SVM Resource usage features

Learning rate α: 0.05 Kernel: RBF Average CPU

Momentum γ: 0.01 Gamma: 0.01 Max CPU

Training epochs: 3000 C: 1.0 Memory

Number of layers: 2 k-fold: 10 Virtual core hours

Neurons per layer: 50 Subscription ID

k-fold: 10

4.2 Microsoft Azure Dataset

In this work we use real VM profile data recently released for Microsoft’s Azure
public cloud platform [21] to train each classifier to identify the type of workload
executing on a particular VM. The dataset contains resource usage profiles of
over two million VMs running on the Azure platform over 30 consecutive days.
To construct the data to evaluate the performance of the selected prediction
models we firstly removed instances in the data where the category of the VM
was unknown and we selected ten random subscriptions from the dataset. To
successfully train a ML classifier class balance is important, imbalanced data
occurs when the classes are not represented equally in the data and can result in
misleading accuracy. To overcome this problem we under sampled any subscrip-
tion where a particular class was over represented and implemented a stratified
version of k-fold cross validation to preserve the class balance. Overall we obtain
5,816 samples while the average and maximum CPU utilisation, memory usage,
virtual core hours and user subscription ID are the input features provided by
the dataset.

4.3 Error Metrics

To fully evaluate the performance of our models we examine the overall classifi-
cation accuracy, precision and recall metrics. The precision metric is a measure



Energy and Interference Aware Virtual Machine Consolidation 261

of the classifiers exactness while the recall metric is a measure of completeness.
These statistics are defined as follows:

OverallClassificationAccuracy =
CorrectPredictions

TotalPredictions
∗ 100 (7)

Precision =
TruePositives

TruePositives + FalsePositives
(8)

Recall =
TruePositives

TruePositives + FalseNegatives
(9)

4.4 Classification Results

A comparison of the overall accuracy of each of the classification models is
presented in Fig. 2. As shown, both models provide good performance for the
problem generating an accuracy of between 70–74%. In particular, the ANN
performed best overall demonstrating its ability to better model the complex
underlying correlations in the data while also showing its capacity to generalize
to unseen data. However, to fully evaluate the efficacy of the models we must also
examine both the precision and recall metrics to provide more insights into the
expected performance of each model. Table 2 provides the results of both of these
metrics. As shown, for the ANN the proportion of positive identifications that
were correct for the delay-insensitive class was approaching 80%. As indicated
by the recall metric, the proportion of actual positives for this class in the entire
dataset that were identified correctly was approximately 65%. For the interac-
tive samples the ANN generated a precision score of an estimated 71% while the
estimated recall for this class scored 84%. In comparison, the SVM resulted in
precision of nearly 90% for delay-insensitive samples, however, the recall metric
was relatively poor for this class generating a result of a mere 46%. Conversely,
for interactive samples the SVM scored a precision and recall of approximately
64% and 95% respectively. Both of these metrics are important to measure the
expected accuracy of the models on all future data, therefore we aim to strike a
balance between both. Considering the results of all metrics we select the ANN
as the best performer overall, we can generally expect the performance of the
ANN to be between 73.44% and 75.16% given a Standard Deviation (SD) of 0.86.
Furthermore, in our analysis it was also found that the most significant mistake

Table 2. Test data classification accuracy

Class Algorithm Precision Recall

Delay-insensitive ANN 0.795 0.646

Interactive ANN 0.708 0.838

Delay-insensitive SVM 0.897 0.458

Interactive SVM 0.643 0.949



262 R. Shaw et al.

 
50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

Classification Performance 

ANN

SVM

Fig. 2. Overall classification accuracy for ANN and SVM models

incurred by the ANN was that occasionally it classified delay-insensitive work-
loads as interactive. However, for our problem this may not have a significant
impact as delay-insensitive workloads could potentially require high performance
i.e. batch jobs. Therefore, classifying them as interactive could possibly reflect
their performance requirements. Based on our empirical evaluation the ANN will
be used as the classifier for proposed consolidation approach.

5 Cloud Experimental Analysis

In this section we discuss the experimental analysis and cloud simulation results
using the proposed PIEA algorithm.

5.1 Experimental Setup

To evaluate the efficiency of our PIEA algorithm we use the widely used
CloudSim toolkit [11]. In CloudSim we model the problem using a data cen-
ter consisting of 800 physical machines. In particular, the simulator consists of
two types of physical hosts modelled as HP ProLiant ML110G4 (Intel Xeon
3075, 2 cores 1860 MHz, 4 GB) and HP ProLiant ML110G5 (Intel Xeon 3075,
2 cores 2660 MHz, 4 GB). Furthermore, we consider four types of VMs consisting
of High-CPU Medium Instances (2500 MIPS, 0.85 GB), Extra Large Instances
(2000 MIPS, 3.75 GB), Small Instances (1000 MIPS, 1.7 GB) and also Micro
Instances (500 MIPS, 613 MB). We compare the performance of the PIEA con-
solidation algorithm to the PowerAware algorithm proposed by Beloglazov et al.
[6]. Although there exists numerous approaches for the VM consolidation prob-
lem the most well-known and commonly used benchmark is the PowerAware
approach when energy efficiency is one of the core objectives and therefore
this benchmark is an important measure in our work. The PowerAware algo-
rithm considers the heterogeneity of cloud resources and efficiently allocates VM
instances to hosts by selecting the most energy efficient hosts first.

5.2 Cloud Performance Metrics

The key performance metrics used to evaluate the effectiveness of the proposed
algorithm are:



Energy and Interference Aware Virtual Machine Consolidation 263

– Energy Consumption: In our work the energy consumption metric is com-
puted by CloudSim where power consumption of a host is represented by its
CPU utilisation and reported as energy consumption over time (kWh) [11].

– SLAV: A service violation is measured as the performance degradation expe-
rienced by each VM due to both hosts becoming overloaded, the VM migra-
tions incurred by the cloud system and also the level of interference on each
host.

5.3 Simulation Results

The PIEA algorithm was evaluated over a 10 day workload. As shown in Fig. 3,
the PIEA algorithm consistently outperforms the PowerAware algorithm over
the 10 days. Specifically, it resulted in a significant improvement in energy con-
sumption by 31%.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

kW
h

Day

Energy Consumption

PowerAware

PIEA

Fig. 3. Energy generated by the PIEA and PowerAware consolidation algorithms

The predictive capabilities of our ANN classifier enables the PIEA algo-
rithm to reason over the execution of heterogeneous workloads. In particular, it
attempts to make more efficient consolidation decisions, effectively minimizing
the amount of hosts needed to execute the workloads. The algorithm improves
energy efficiency by consolidating workloads classified as delay-insensitive more
aggressively given their general tolerance to interference issues while interactive

 

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1 2 3 4 5 6 7 8 9 10

SL
AV

Day

Service Level Agreement Violations 

PowerAware

PIEA

Fig. 4. SLAV incurred by the PIEA and PowerAware consolidation algorithms



264 R. Shaw et al.

workloads where possible are allocated to an active host. As a result, the PIEA
algorithm generates improved usage of available resources which is a key factor
in causing excessively large energy rates in data centers today.

An important dimension in achieving greater energy efficiency through VM
consolidation is managing the tradeoff between energy and performance. As
shown in Fig. 4, the PIEA algorithm also generates a significant reduction in
the number of SLAV by 69%. This demonstrates the algorithms ability to better
strike a balance between energy and performance in order to deliver an approach
that successfully reduces energy consumption while also improving the delivery
of service guarantees to the users. The ability to classify workloads with some
element of precision enables the PIEA algorithm to make more informed consoli-
dation decisions regarding the expected SLAV for co-located VMs. Furthermore,
a paired t-test confirmed that the results are also statistically significant. The
test resulted in a p-value less that 0.0051 (energy) and a p-value of 0.0001 (SLAV)
with a 95% confidence interval. These results indicate the improved efficiency
achievable through the implementation of the proposed PIEA algorithm.

6 Conclusion

In this work, we presented PIEA, an interference and energy aware VM consol-
idation algorithm for multi-tenant cloud environments. Using the more recent
Microsoft Azure data, we demonstrate how the predictive capabilities of our
ML classifier enable our algorithm to infer the expected level of interference
between co-located workloads while also being cognizant of energy consumption
for a more rigorous and reliable solution. Our results show an improvement in
energy consumption by 31% and SLAV by a significant 69% in comparison to
the popular PowerAware consolidation approach.

Acknowledgments. The primary author would like to acknowledge the ongoing
financial support provided to her by the Irish Research Council.

References

1. Moreno, I.S., Yang, R., Xu, J., Wo, T.: Improved energy-efficiency in cloud data-
centers with interference-aware virtual machine placement. In: 2013 IEEE Eleventh
International Symposium on Autonomous Decentralized Systems (ISADS), pp. 1–
8. IEEE (2013)

2. Shaw, R., Howley, E., Barrett, E.: Predicting the available bandwidth on intra
cloud network links for deadline constrained workflow scheduling in public clouds.
In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS,
vol. 10601, pp. 221–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69035-3 15

3. Whitney, J., Delforge, P.: Scaling up energy efficiency across the data center
industry: evaluating key drivers and barriers. Technical report, Natural Resources
Defense Council (2014)

https://doi.org/10.1007/978-3-319-69035-3_15
https://doi.org/10.1007/978-3-319-69035-3_15


Energy and Interference Aware Virtual Machine Consolidation 265

4. Lee, Y.C., Zomaya, A.Y.: Energy efficient utilisation of resources in cloud comput-
ing systems. J. Supercomput. 60, 268–280 (2012)

5. Verma, A., Ahuja, P., Neogi, A.: pMapper: power and migration cost aware appli-
cation placement in virtualized systems. In: Issarny, V., Schantz, R. (eds.) Mid-
dleware 2008. LNCS, vol. 5346, pp. 243–264. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89856-6 13

6. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future Gener.
Comput. Syst. 28, 755–768 (2012)

7. Shaw, R., Howley, E., Barrett, E.: An advanced reinforcement learning approach
for energy-aware virtual machine consolidation in cloud data centers. In: Proceed-
ings of the 12th International Conference for Internet Technology and Secured
Transactions, pp. 61–66. IEEE, December 2017

8. Farahnakian, F., Pahikkala, T., Liljeberg, P., Plosila, J., Hieu, N.T., Tenhunen, H.:
Energy-aware VM consolidation in cloud data centers using utilisation prediction
model. IEEE Trans. Cloud Comput. 7, 524–536 (2016)

9. Nguyen, T.H., Di Francesco, M., Yla-Jaaski, A.: Virtual machine consolidation
with multiple usage prediction for energy-efficient cloud data centers. IEEE Trans.
Serv. Comput. (2017). https://doi.org/10.1109/TSC.2017.2648791

10. Sampaio, A.M., Barbosa, J.G., Prodan, R.: PIASA: a power and interference aware
resource management strategy for heterogeneous workloads in cloud data centers.
Simul. Model. Pract. Theory 57, 142–160 (2015)

11. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual
machines in cloud data centers. Concurr. Comput. Pract. Exp. 24, 1397–1420
(2012)

12. Xu, F., Liu, F., Liu, L., Jin, H., Li, B., Li, B.: iAware: making live migration of
virtual machines interference-aware in the cloud. IEEE Trans. Comput. 63, 3012–
3025 (2014)

13. Jersak, L.C., Ferreto, T.: Performance-aware server consolidation with adjustable
interference levels. In: Proceedings of the 31st Annual ACM Symposium on Applied
Computing, pp. 420–425. ACM, April 2016

14. Verboven, S., Vanmechelen, K., Broeckhove, J.: Black box scheduling for resource
intensive virtual machine workloads with interference models. Future Gener. Com-
put. Syst. 29(8), 1871–1884 (2013)

15. Shaw, R., Howley, E., Barrett, E.: An energy efficient anti-correlated virtual
machine placement algorithm using resource usage predictions. Simul. Model.
Pract. Theory (2019). https://doi.org/10.1016/j.simpat.2018.09.019

16. Zhang, J., Figueiredo, R.J.: Application classification through monitoring and
learning of resource consumption patterns. In: 20th International Parallel and Dis-
tributed Processing Symposium, IPDPS 2006, pp. 10–20. IEEE (2006)

17. Nikravesh, A.Y., Ajila, S.A., Lung, C.H.: Towards an autonomic auto-scaling pre-
diction system for cloud resource provisioning. In: Proceedings of the 10th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, pp. 35–45. IEEE (2015)

18. Mason, K., Duggan, J., Howley, E.: Evolving multi-objective neural networks using
differential evolution for dynamic economic emission dispatch. In: Proceedings of
the Genetic and Evolutionary Computation Conference Companion, pp. 1287–
1294. ACM, July 2017

19. Meyer, D., Leisch, F., Hornik, K.: The support vector machine under test. Neuro-
computing 55(1–2), 169–186 (2003)

https://doi.org/10.1007/978-3-540-89856-6_13
https://doi.org/10.1007/978-3-540-89856-6_13
https://doi.org/10.1109/TSC.2017.2648791
https://doi.org/10.1016/j.simpat.2018.09.019


266 R. Shaw et al.

20. Dixon, S.J., Brereton, R.G.: Comparison of performance of five common classifiers
represented as boundary methods: Euclidean distance to centroids, linear discrim-
inant analysis, quadratic discriminant analysis, learning vector quantization and
support vector machines, as dependent on data structure. Chemometr. Intell. Lab.
Syst. 95(1), 1–17 (2009)

21. Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fontoura, M., Bianchini, R.:
Resource central: understanding and predicting workloads for improved resource
management in large cloud platforms. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 153–167. ACM, October 2017



Thread-Level CPU and Memory Usage
Control of Custom Code in Multi-tenant

SaaS

Majid Makki(B), Dimitri Van Landuyt, Bert Lagaisse, and Wouter Joosen

imec-DistriNet, Department of Computer Science, KU Leuven, Leuven, Belgium
{majid.makki,dimitri.vanlanduyt,bert.lagaisse,

wouter.joosen}@cs.kuleuven.be

Abstract. Software-as-a-Service (SaaS) providers commonly support
customization of their services to allow them to attract larger tenant
bases. The nature of these customizations in practice ranges from antic-
ipated configuration options to sophisticated code extensions. From a
SaaS provider viewpoint, the latter category is particularly challenging
as it involves executing untrusted tenant custom code in the SaaS pro-
duction environment. Proper isolation of custom code in turn requires
the ability to control the CPU and memory usage of each tenant.

In current practice, OS-level virtualization tools such as hypervisors
or containers are predominantly used for this purpose. These techniques,
however, constrain the number of tenants that a single node can cost-
effectively accommodate.

In this paper, we present a practical solution for thread-level ten-
ant isolation, vis-à-vis CPU and memory usage in presence of tenant-
provided custom code. Both Java Runtime Environment (JRE) bytecode
and tenant code are instrumented with usage control checkpoints which,
based on data gathered using the Java Resource Consumption Manage-
ment API (JSR-284), ensures that CPU and memory usage of tenants
remain within their Service-level Agreements (SLA) limits.

Our experiments show that the tenant accommodation capacity of
single node increases 59 times with the proposed solution instead of con-
tainers. This scalability improvement comes at the average cost of 0.31 ns
performance overhead per control checkpoint.

Keywords: SaaS · Customization · Multi-tenancy · Resource
management · Tenant isolation · JRE

1 Introduction

Multi-tenant systems share a single run-time environment among multiple cus-
tomer organizations (tenants) and consequently require isolation mechanisms
to avoid any interference or disturbance between tenants. For instance, tenant
isolation mechanisms guarantees that tenant Service Level Agreements (SLA)
are respected. In common practice, hypervisors and containers are employed

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 267–282, 2019.
https://doi.org/10.1007/978-3-030-33702-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_21&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_21


268 M. Makki et al.

which perform tenant isolation at the level of virtual machines and OS processes
respectively.

However, as shown in Fig. 1, isolation can also be attained at the higher level
of application threads which increases resource utilization. Allocating a separate
Virtual Machine (VM) or OS process (cf. [1–4]) to each tenant imposes a constant
memory overhead which reduces the number of tenants that a single node can
accommodate.

Fig. 1. Effects of enforcing tenant isolation at different levels.

Due to this con-
stant memory over-
head, other resources
will be underutilized
when some tenants
are idle or almost
inactive. Due to the
lower per-tenant memory overhead of thread-level tenant isolation, the latter
allows accommodating more tenants on a single node and increases resource uti-
lization. Accomplishing tenant isolation at the application level in turn allows
for a more cost-efficient deployment: more tenants can be provisioned with less
resources.

Software-as-a-Service (SaaS) applications commonly allow tenants to cus-
tomize the application behavior through custom code extensions (e.g. [5,6]). For
instance, in SaaS applications driven by business processes, the code of a cer-
tain activity in a workflow may be provided by a tenant instead of the SaaS
provider (Business-process-as-a-service, BPaaS). Application platform as a Ser-
vice (aPaaS) offerings similarly provide application services that can be open to
code extension. In contrast to customizations that have been anticipated and
developed by the SaaS providers, allowing tenant-provided custom code to be
executed creates a number of non-trivial challenges. These code-based customiza-
tions are essentially untrusted and tenants may be incentivized to exploit the
system, hinder other tenants, etc.

In a SaaS context, existing multi-tenancy approaches [7–10] commonly
involve external, black-box measures and techniques to monitor (in terms of
metrics such as throughput, requests/second, etc.) and control (e.g. throttling,
SLA-aware job scheduling and load balancing) the services delivered to tenants.
However, in presence of custom code provided by tenants, these techniques do
not suffice. Enforcing tenant isolation at thread-level requires monitoring and
controlling the CPU and memory usage of the custom code extensions inside the
run-time environment.

In this paper, we present a modified version of the Java Runtime Environ-
ment (JRE) which enables running code provided by untrusted tenants in a
single JRE instance while CPU and memory usage levels are kept within SLA
boundaries. As opposed to experimental Java Virtual Machines (JVM) that tar-
get a similar goal [11–15], our JRE modification mechanism can be applied to
any JRE used by industrialized JVMs. Our main contribution is, then, providing



Thread-Level CPU/Memory Usage Control 269

a portable mechanism for isolating tenants, vis-à-vis CPU and memory usage,
at the level of application threads.

Two challenging obstacles have been addressed. The first obstacle is that Java
threads are directly managed by the OS kernel and it is not possible to pause/re-
sume them once started using the JRE [16,17]. The second obstacle is that no
implementation of the Java Resource Consumption Management API (RCM
API specified in JSR-284 [18]; cf. [19]) allows imposing limits on CPU or mem-
ory usage of threads. Existing implementations such as Oracle HotSpot JVM
are only capable of reporting the CPU and memory usage of each thread.1

Our modified JRE is based on the Oracle HotSpot JVM and is extensively
based on Java bytecode instrumentation driven by call graph analysis [20], for
two main purposes: (i) ensuring that tenants cannot evade usage control check-
points which enforce SLA compliance, and (ii) forcing threads to sleep or stop
when tenant custom code breaks out of the SLA boundaries.

We have validated our implementation using an illustrative batch-processing
application and as such demonstrated that the CPU and memory usage levels
can be controlled without using containers or VMs. Furthermore, the evalua-
tion results show that the proposed solution increases tenant accommodation
capacity with a factor of 59 compared to process-level solution, and only with a
marginal average performance overhead of 0.31 ns per usage control checkpoint.

Section 2 formulates the problem at stake in terms of requirements. Section 3
presents the solution. Section 4 reports on the evaluation results. Section 5 dis-
cusses practical issues and draws perspectives for future work. Section 6 discusses
related work and finally, Sect. 7 concludes the paper.

2 Problem Statement

This section demarcates the problem addressed by this paper as a set of require-
ments. The functional requirements are marked by F whereas quality require-
ments are marked by Q:

F1 While executing the code provided by multiple tenant organizations, the
CPU and memory usage of tenants should be kept below the limits specified
in their SLA.

F2 It is required to allow tenants to use CPU as much as possible within SLA
limits.2

Q1 The number of tenants that can be accommodated on a single node should
be significantly increased compared to OS-level virtualization techniques that
implement tenant isolation at the process level.

Q2 It is required to keep the performance overhead imposed by usage control
and SLA management within acceptable boundaries.

Section 3 explains how these requirements are fulfilled.
1 Storage and network resources are not dealt with in this paper because the Java

RCM API already provides quite straightforward ways to control IO usage.
2 This is specifically required for CPU because fulfilling F1 for the latter is feasible

by suppressing the usage too much.



270 M. Makki et al.

3 Thread-Level Resource Usage Control

In order to address Q1, a single JRE instance is used for running code belonging
to multiple tenants. This entails executing the code of each tenant in separate
threads from each other and the main SaaS service. To enact fine-grained control
over these threads, the platform support is introduced for preventing excessive
memory usage as well as pause, resume and stop operations to throttle CPU
usage (cf. F1, F2). The proposed solution consists of two main parts: (i) principal
components in charge of usage monitoring and control presented in Sect. 3.1,
and (ii) bytecode instrumentation discussed in Sect. 3.2.

3.1 Principal Components

The Java RCM API [18] provides meters for measuring the usage level of all types
of resources, such as network bandwidth and CPU/memory, on a per-thread
basis (cf. F1). Since the only implementation of this API in Oracle HotSpot
JVM is not capable of imposing limits on CPU and memory usage, we have
supplemented it to make it suitable for CPU and memory usage control.

Fig. 2. Usage control components

The four principal components in
charge of resource usage control are
shown in Fig. 2. The Monitoring com-
ponent, which uses the Java RCM
API, provides two meters, namely
CPUMeter and MemoryMeter, count-
ing CPU cycles per second and mem-
ory space in terms of bytes respec-
tively. Both of these meters are
responsible for notifying a central
UsageStatusRegistry when a tenant
exceeds its SLA limit (cf. F1) and also
when the tenant usage level goes back
to normal (cf. F2).

One instance of each meter is ini-
tialized for each tenant, holding the
SLA limits, representing the permitted CPU cycles per second and the per-
mitted number of memory bytes, provided by the SLA Management compo-
nent which reads them from the SLA Store. Tenant meters are grouped in a
ResourceContext and the latter is associated to tenant threads. The Thread
Management component, which is an extension of the Java Concurrency API, is
responsible for associating meters to ControlledThread instances.

For correct and efficient association of the meters to threads, the Thread
Management component employs a multi-tenant thread pool. The multi-tenant
thread pool instantiates and reserves a separate set of (dormant) threads for each
tenant and forbids swapping threads across pools. This ensures that each thread
is only used for a single tenant. Consequently, associating meters to threads,



Thread-Level CPU/Memory Usage Control 271

which incurs a considerable performance overhead, is restricted to the creation
time of threads (cf. Q2).

The Execution Control component is responsible for forcing threads to
sleep or stop (cf. F1) and, in this regard, implements a control method which
is summarized in Listing 1.1. As a tenant can be recovered from excessive CPU
usage by rescheduling threads, threads are forced to sleep in such cases, for a
duration determined in the tenant SLA (lines 5–9). In contrast, excessive memory
usage cannot be healed by passing of time. Hence, in that case, the thread will
be removed from the UsageStatusRegistry and will kill itself by throwing an
OutOfMemoryError (lines 1–4).

1if (memoryExcess) {

2UsageStatusRegistry .removeThread(this);

3throw new OutOfMemoryError (); // kills the thread

4}

5while (cpuExcess) {

6awake = false;

7sleep(duration); // throttles the usage

8awake = true;

9}

Listing 1.1. Thread Control Behavior

Fig. 3. Object interactions for usage control

It is possible that
all threads of a tenant
are eventually put into
the sleep mode. In that
case, the CPUMeter of
that specific tenant is
not updated anymore
and updating the cor-
responding cpuExcess
flag cannot be triggered
by the meter. Therefore,
the Execution Control
component, specifically
its IdleTenantRevivingService which is scheduled to run repeatedly at fixed
intervals, scans for tenants with all threads in sleep mode and resets their
cpuExcess flag. Determining whether all threads of a tenant are in sleep mode
requires (re)setting a specific flag before sleeping and after wakeup (lines 6
and 8 in Listing 1.1). Figure 3 summarizes the mechanism described above.

We call every invocation of the control method a checkpoint. To ensure that
tenants cannot evade the control mechanism (cf. F1), at least one checkpoint
is enforced in each of the following places: (i) every set of methods which can
possibly make a recursion and (ii) every iterative structure such as a for-loop.
Despite its exhaustive nature, this approach does not degrade performance con-
siderably (cf. Q2) because, rather than measuring usage in every checkpoint, the



272 M. Makki et al.

latter basically involves verifying boolean variables which are asynchronously set
every time each individual meter recognizes a change of status.

Inserting a checkpoint in the aforementioned places is performed using Java
bytecode instrumentation which is discussed in the following.

3.2 Bytecode Instrumentation

Checkpoints are not only required in the tenant custom code but also in the JRE
and all cloud service classes accessible for tenants. Inserting usage checkpoints,
hence, occurs at two stages by two distinct components shown in Fig. 4 namely
the Offline Instrumentor and the Tenant Code Instrumentor. These com-
ponents are responsible for instrumenting the JRE bytecode alongside the code
of the cloud service and tenant custom code respectively.

Fig. 4. Bytecode instrumentation compo-
nents

Since Java does not allow replac-
ing the bytecode of certain JRE
classes once they are loaded, instru-
menting the JRE bytecode and that
of the cloud service takes place
offline, i.e. even before starting up
the shared JRE. The Tenant Code
Instrumentor kicks in at class load-
ing time because tenant custom code
may be uploaded at any moment in
time.

The bytecode modifications made by these components are identical. They
first perform static code analysis for detecting all recursions. Afterwards, they
insert a checkpoint in each detected recursion. In addition, the instrumentors
insert a checkpoint in every place that can be used for dynamically building
recursions at runtime. Finally, they scan the body of each method for inserting
a checkpoint in every iteration.

As shown in Fig. 4, the instrumentation components rely on the Recursion
Checkpoints datastore. This datastore contains all the methods where a check-
point is required for ensuring that tenants cannot exploit recursions to circum-
vent the usage control mechanism. To build this datastore, the Call Graph
Analysis component analyzes a large directed graph, CG = (M, I) where M is
the set of all methods and I is the set of all possible invocations as defined in
the following:

I = {< m1,m2 > |m1,m2 ∈ M & invoke(m1,m2)} (1)

where invoke(m1,m2) is true iff m1 may invoke m2 at runtime. The possibility
of polymorphic method invocations are taken into account as well. All simple
cycles in CG are detected and a minimal subset of M is saved into the Recursion
Checkpoints datastore such that each detected cycle has at least one member
in the datastore.



Thread-Level CPU/Memory Usage Control 273

The instrumentation components insert a checkpoint at the beginning of
each method stored in Recursion Checkpoints. However, that is not sufficient
to cover all possible recursions. In addition to the statically-detectable recur-
sions, it is also possible to build recursions dynamically using the Reflection API
or lambdas. To protect the system against exploitation of the Reflection API, a
checkpoint is inserted in the invoke method of the java.lang.reflect.Method.
A lambda expression, when compiled, yields one or more invokedynamic byte-
code instruction(s). The target method of an invokedynamic instruction is deter-
mined at runtime. Therefore, a checkpoint is inserted before every instance of
this instruction.

For inserting checkpoints in every iterative programming structure (e.g. a
for-loop), the instrumentation components scan the body of each method and
look for instructions jumping backward as indicators of iterations. Before every
backward jump instruction, one checkpoint is inserted.

Circumventing the usage control mechanism requires exploiting repetitive
programming instructions, i.e. either recursions or iterations. Our bytecode
instrumentation covers all possible recursions (statically-detectable recursions,
recursions made by the Reflection API, and those made by lambdas) and all
iterations. Therefore, it is ensured that no tenant can evade the usage control
mechanism (cf. F1).

4 Validation and Evaluation

This section presents the results of validating the proposed mechanism in terms
of F1 and F2 and the evaluation results for Q1 and Q2. Section 4.1 details
the technical setup of the experiment environment and the subsequent sections
present the experiments and analyzes the observations and the obtained results
for each of the aforementioned requirements.

4.1 Implementation and Technical Setup

We have implemented the above solution on top of the JRE 1.8 shipped with
Oracle HotSpot JVM.3 Our current implementation is limited for use in a
single-node setup and evaluated on a Windows 10 (64-bit) machine with Intel
Core i7 (3.6 GHz) and 16 GB of memory.

For the experiments, a multi-tenant batch-processing SaaS application is
developed that runs batch jobs involving tenant custom code. Software artifacts of
each tenant are wrapped in an OSGi bundle [21]. These tenant-provided custom
code extensions are instrumented using the mechanism described in Sect. 3.2.

Before each set of experiments reported in the following section, a warmup
task is performed by the multi-tenant application to make sure that the JVM
bytecode optimizations are performed before main experiments start. For exper-
iments validating/evaluating CPU usage control, the JVM OS process running
3 The source code can be downloaded via http://people.cs.kuleuven.be/∼majid.

makki/icsoc-2019/main.html.

http://people.cs.kuleuven.be/~majid.makki/icsoc-2019/main.html
http://people.cs.kuleuven.be/~majid.makki/icsoc-2019/main.html


274 M. Makki et al.

the prototype SaaS application is given realtime priority on exactly 4 CPU cores
out of 8 to ensure that the impact of other OS processes on the obtained results
are kept minimal.

4.2 Validation of F1 for Memory Usage

In this experiment, the code of a tenant, whose SLA specifies a 300 kB memory
limit, aims at instantiating the java.math.BigDecimal class one million times
and keeping the instances in a LinkedList. The tenant custom code is allowed to
instantiate objects and keep them in memory until it exceeds the 300 kB limit.
This functional test shows that the thread running tenant custom code kills
itself at that moment by throwing an OutOfMemoryError and the multi-tenant
application hosting tenant custom code keeps working and serving requests.

4.3 Validation of F1/F2 for CPU Usage

Two specific tenants, whose CPU-related parameters of their SLA are presented
in Table 1, are involved in 9 independent experiments each consisting of 10 con-
current jobs per tenant. Each job performs millions of ADD operations in a loop
and is engineered to have a fixed number of usage checkpoints executed start-
ing at 10 million checkpoints in the first experiment, increased by 10 million
each time up to 90 million checkpoints in the last experiment. The length of
jobs increase linearly with the number of executed checkpoints in these spe-
cific experiments. Therefore, these experiments verify the validity of F1 and F2
independent of the job length.

Table 1. CPU parameters in SLA.

Tenant Limit Sleep duration Max threads

Premium 100MHz 25ms 4

Standard 50MHz 50ms 4

Four parameters are con-
stantly recorded during all
experiments: the start time
of each job, its end time, its
total sleep time, and finally
the number of CPU cycles
recorded by the CPUMeter.4

The average CPU usage of each tenant in every experiment is calculated using
the following equation:

usageavg = (1 − sleepavg
executionavg

) × requestavg (2)

where sleepavg, executionavg and requestavg are the average sleep time, the
average execution time and the average number of CPU cycles requested from
the CPUMeter for each tenant in a specific experiment.

Figure 5 shows the average CPU usage of each tenant in each of the 9 exper-
iments separately. It clearly shows that the Standard tenant is kept below its
50 MHz limit (depicted as a dotted line in Fig. 5) while the Premium tenant is
4 The act of constantly recording these parameters has no impact on the obtained

results.



Thread-Level CPU/Memory Usage Control 275

Fig. 5. Average CPU usage Fig. 6. Sleep ratio

Fig. 7. Load-independent memory usage
compared with containers.

Fig. 8. Tenant accommodation capacity
compared with containers.

allowed to go up to 80 MHz on average, which is below their SLA limit but suf-
ficient for the submitted tasks. Non-zero sleep ratios depicted in Fig. 6 show in
effect that both tenants had tried to exceed their limits at certain time in some
experiments. However, the control mechanism has forced them to sleep and kept
the average CPU usage below the specified limits.

4.4 Evaluation of Q1

The goal is to compare process-level tenant isolation, representative of contain-
ers, with the proposed solution in terms of tenant accommodation capacity. A
single-tenant variant of the experimental application is created on top of the
standard JRE (i.e. no bytecode instrumentation) and executed separately for
each tenant. The multi-tenant application is executed once on top of the mod-
ified JRE but without any tenant. The memory usage of each OS process is
recorded 5 min after startup in absence of any load. For the multi-tenant vari-
ant, the OS process memory usage is also recorded 5 min after each tenant taken
on-board. The above is performed for 5 distinct but identical tenants.

Figure 7 shows the recorded values for both solutions. Not surprisingly, when
tenant isolation is enforced at level of OS processes, the load-independent mem-
ory overhead increases linearly with the number of tenants whereas the same
factor reaches a nearly constant ceiling quite soon in the thread-level solution.
Evidently, the memory usage will increase when load is imposed on the system
but that would even more constrain the tenant accommodation capacity of the
process-level solution.



276 M. Makki et al.

More importantly, the increase in memory usage incurred by the imposed
load does not affect the number of tenants that a single node can accommodate.
Figure 8 presents the ratio of tenant accommodation capacity of both solutions
for different amount of memories available on a single node. The ratios are cal-
culated by projecting the recorded memory usage of the first 5 tenants into
higher orders (i.e. more number of tenants and more available memory). It can
be seen that the ratio approaches 60 when sufficient amount of memory is avail-
able (cf. Q1).

4.5 Evaluation of Q2

The goal of this evaluation is to measure the runtime performance overhead
imposed by the metering and the control mechanisms. It does not reflect the
performance overhead of instrumentation which takes place only once for the
JRE and once for tenant custom code. The normal circumstances, i.e absence of
any excessive usage, is taken as the baseline for comparisons. This is because,
otherwise, the CPU sleep time will be involved in one case but not the other
hence yielding incomparable results. To ensure that no usage excess will occur,
the CPU and memory usage limits are set extremely high in the experiment.

Fig. 9. Performance overhead.

The experiment involves two groups
of 10 independent jobs for a single ten-
ant. The jobs, identical across groups,
consist of tenant custom code engi-
neered to have exactly 100 million up to
1 billion checkpoints, increased by the
factor of 100 million each time. In the
first group of executions, our bytecode
instrumentation is applied whereas the
second group is performed on the stan-
dard JRE without instrumenting neither the cloud service code nor tenant cus-
tom code, and without any meters involved.

The differences between the execution time of each pair of identical jobs are
presented in Fig. 9. Based on the obtained results, the performance overhead
of the control mechanism is on average 0.31 ns per checkpoint with standard
deviation of 0.03 ns.

5 Discussion

This section elaborates on a number of issues concerning further improvement
of the proposed solution as well as its real-world application.

Distribution. Currently, the focus has been on increasing the tenant accom-
modation capacity on a single node. However, coping with load imposed on the
system and realistic cloud deployment will require distributed deployment. Ded-
icated types of orchestration facilities (e.g. SLA-aware load-balancers or thread



Thread-Level CPU/Memory Usage Control 277

schedulers) will be required to ensure that the SLA limits are respected across
all nodes (cf. [22,23]).

Supplementary Building Blocks. Beside resource usage control, a thread-
level tenant isolation solution requires mechanisms for access control and code
restriction facilities (cf. [24]) to avoid problems with static members (cf. [17])
and exploitation of the usage control mechanism by tenants.

Flexible and Adaptive Control. The implemented solution imposes a fixed
and strict limit on tenant usage. In practice, it is possible to allow tenants to
slightly surpass their SLA limits if sufficient resources are available. Hence, sys-
tem health should be monitored and more flexible limit enforcement policies
control the tenant usage levels. For instance, a leniency factor may be used
to determine the extent to which each tenant may go beyond their SLA lim-
its (cf. [24]).

In addition, thread sleeping can be adaptive. Instead of a fixed sleep duration,
specified in the tenant SLA, the latter can be adjusted at runtime based on
previous records of CPU usage. Furthermore, the number of threads forced to
sleep when usage excess is observed can be in function of the transgression rate
while in the current implementation, all threads belonging to the aggressive
tenant are forced to sleep.

Performance Optimization. Our observations shows that a great majority
of checkpoints are inserted in iterations rather than recursions. Therefore, the
overall performance overhead of usage control mechanism can be further reduced
by using a local counter in the iterations for intelligently determining how fre-
quently the checkpoint should actually be involved at runtime instead of the
current brute-force machinery.

Hybrid Approaches. The proposed solution is not incompatible to other tenant
isolation approaches, and in some cases, it could be beneficial to combine different
solutions (cf. [25]). For example, a potential tenant accommodation model could
involve clustering different groups of tenants (e.g. premium vs. standard tenants)
in separate containers and our thread-level solution could be employed to protect
tenants within each container. As shown in the case-driven study of Ochei et
al. [26], decisions related to tenant isolation are impacted by many complex
trade-offs, and depend on many factors such as the application nature, the trust
bestowed upon tenants, the nature of the customizations, etc.

Applicability Beyond JRE. Our approach can be implemented in run-
time platforms of other languages given that they meet the following condi-
tions: (i) threads or similar structures can be safely paused/resumed, (ii) CPU
and memory can be measured on a per-thread basis, (iii) the code of the pro-
gramming language is compiled into an intermediate language, such as Java
bytecode, which can be instrumented before ultimately compiled into machine
code.



278 M. Makki et al.

6 Related Work

This section compares and contrasts our solution with related work.

Performance Isolation. Related work on performance isolation of multi-
tenant SaaS applications [7–10,27–29] focuses on aspects of performance iso-
lation between tenants sharing a single run-time environment. The main dis-
tinction however is that these approaches involve known and trusted service
logic, whereas the specific problem addressed in this paper starts when tenants
implement part of the system functionality by providing their own code which
is by nature untrusted.

The use of tenant custom code that runs in the SaaS application makes the
external metrics commonly used in this context (such as job execution time,
throughput or response time) unsuited for isolating tenants performance-wise
within SaaS applications (cf. [29]). Other elements of related work also rely on
internal metrics such as memory and CPU usage [7,10,27,28]. PerfCloud [30] uti-
lizes system-level metrics to proactively detect performance interference between
tenant workloads and shows that such approaches succeed in avoiding costly
workload profiling and prediction mechanisms without having any interference
on application code.

Java Studies. This work is in continuation of existing work that deals with
the limitations of running user code in Java threads. Herzog et al. [16] and
Rodero-Merino et al. [17] highlight safe termination of threads and resource
control as one of the main obstacles. Work aimed at resource consumption con-
trol in the JRE [19,31,32] has led to the JSR-284 specification [18] also known
as the Java RCM API. However, neither the specification nor its implementa-
tions (e.g. Oracle HotSpot JVM) currently provide any way for imposing limits
on CPU and memory usage. The solution presented here involves complex, holis-
tic and cohesive instrumentation of (i) the JRE, (ii) cloud service provider code,
and (iii) tenant-provided code to overcome the above shortcomings.

Multi-tenant JVM. Specialized Java Virtual Machines (JVM) have been built
for executing the code provided by multiple tenants in a single JVM instance [11–
15]. In contrast, instead of developing specialized JVMs, our approach provides a
customized yet backwards-compatible JRE, which can as such be used in indus-
trialized JVMs. In MVM [12,14], I-JVM [13] and IBM MT JVM [15], tenant
custom code is executed as a separate application. This is not desirable in the
context of multi-tenant SaaS applications in which tenant custom code runs as
an integrated part of the SaaS application, rather than an independent appli-
cation. In addition, our approach allows sharing JRE and other libraries and
consequently increases scalability.

Despite requiring a separate OS process for each tenant, KaffeOS [11] can still
be used for SaaS applications that execute tenant custom code, mainly owing
to its hierarchical memory management which supports objects being shared
between Java processes. This sharing mechanism however sacrifices application
portability: every time an object is to be shared or a shared object is required,



Thread-Level CPU/Memory Usage Control 279

a specific Heap class is explicitly used, and this makes it impossible to port the
code to another JVM. This becomes even more problematic when an existing
application or platform (e.g. a web-server) is required as a multi-tenant cloud ser-
vice. Everything should be redesigned according to the new programming model
which is fundamentally different from standard Java practices whose memory
management is entirely hidden from application developers.

Interpretive Approach. The Activiti workflow engine allows Secure Script-
ing [33] by means of the instruction count callback mechanism provided by the
Rhino [34] JavaScript engine. Even though resource usage control is limited to
memory,5 the Java RCM API can be used to support other types of resources.
However, this approach is only applicable to interpreted languages because it
relies on counting the number of intermediate language instructions before per-
forming a usage control. Our approach, instead, deals with languages whose
bytecode are ultimately compiled into native machine code. In that case, there
is no interpreter that can count the executed instructions and perform usage
control via a callback function. Due to independence of our approach from inter-
preters, the performance degradation is considerably lower.

7 Conclusion

When it comes to processing service requests, for example in the context of
web content, thread-level processing allows for high scalability and resource effi-
ciency. In the context of multi-tenancy however, the limited monitorability and
controllability of server threads in terms of their CPU and memory usage impede
attaining the desired property of tenant isolation. This is especially problematic
in service offerings that can be customized by tenants through custom code. For
these reasons, tenant isolation is in practice accomplished by means of containers
or virtual machines (VM) in multi-tenant architectures (cf. [35]).

In this paper, which fits into our ongoing research track on application-level
tenant isolation in SaaS offerings, we take advantage of Java bytecode instrumen-
tation and the Java RCM API to accomplish CPU and memory usage control at
thread-level. By validating our solution in a prototype application, it is shown
that the usage level of these two critical resources can be controlled without using
containers or VMs. Evaluation results show that the proposed solution increases
tenant accommodation capacity with a factor of 59 compared to process-level
tenant isolation at the expense of 0.31 ns average performance overhead per usage
control checkpoint.

Acknowledgment. This research is partially funded by the Research Fund KU Leu-
ven (project GOA/14/003 - ADDIS) and the strategic basic research (SBO) project
DeCoMAdS.

5 The claimed CPU usage control in fact restricts the response time of the untrusted
script rather than its CPU usage.



280 M. Makki et al.

References

1. Gupta, D., Cherkasova, L., Gardner, R., Vahdat, A.: Enforcing performance iso-
lation across virtual machines in Xen. In: van Steen, M., Henning, M. (eds.) Mid-
dleware 2006. LNCS, vol. 4290, pp. 342–362. Springer, Heidelberg (2006). https://
doi.org/10.1007/11925071 18

2. Somani, G., Chaudhary, S.: Application performance isolation in virtualization.
In: IEEE International Conference on Cloud Computing, CLOUD 2009, pp. 41–
48. IEEE (2009)

3. Li, Y., Li, W., Jiang, C.: A survey of virtual machine system: current technology
and future trends. In: 2010 Third International Symposium on Electronic Com-
merce and Security (ISECS), pp. 332–336. IEEE (2010)

4. Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications in
the cloud. ACM SIGCOMM Comput. Commun. Rev. 41(1), 45–52 (2011)

5. Weissman, C.D., Bobrowski, S.: The design of the force.com multitenant internet
application development platform. In: Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, pp. 889–896. ACM (2009)

6. Song, H., Chauvel, F., Solberg, A.: Deep customization of multi-tenant SaaS
using intrusive microservices. In: 2018 IEEE/ACM 40th International Conference
on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-
NIER), pp. 97–100. IEEE (2018)

7. Li, X.H., Liu, T.C., Li, Y., Chen, Y.: SPIN: service performance isolation infras-
tructure in multi-tenancy environment. In: Bouguettaya, A., Krueger, I., Margaria,
T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 649–663. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89652-4 58

8. Lin, H., Sun, K., Zhao, S., Han, Y.: Feedback-control-based performance regulation
for multi-tenant applications. In: 2009 15th International Conference on Parallel
and Distributed Systems (ICPADS), pp. 134–141. IEEE (2009)

9. Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Leymann,
F.: Runtime prediction of service level agreement violations for composite services.
In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave -2009. LNCS,
vol. 6275, pp. 176–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16132-2 17

10. Wang, W., Huang, X., Qin, X., Zhang, W., Wei, J., Zhong, H.: Application-level
CPU consumption estimation: towards performance isolation of multi-tenancy web
applications. In: 2012 IEEE 5th International Conference on Cloud computing
(CLOUD), pp. 439–446. IEEE (2012)

11. Back, G., Hsieh, W.C., Lepreau, J.: Processes in KaffeOS: isolation, resource man-
agement, and sharing in Java. In: Proceedings of the 4th Conference on Symposium
on Operating System Design & Implementation-Volume 4, p. 23. USENIX Associ-
ation (2000)

12. Czajkowski, G., Daynès, L., Titzer, B.L.: A multi-user virtual machine. In:
USENIX Annual Technical Conference, General Track, pp. 85–98 (2003)

13. Geoffray, N., Thomas, G., Muller, G., Parrend, P., Frénot, S., Folliot, B.: I-JVM: a
Java virtual machine for component isolation in OSGi. In: IEEE/IFIP International
Conference on Dependable Systems & Networks, DSN 2009, pp. 544–553. IEEE
(2009)

14. Czajkowski, G., Daynàs, L.: Multitasking without compromise: a virtual machine
evolution. ACM SIGPLAN Not. 47(4a), 60–73 (2012)

https://doi.org/10.1007/11925071_18
https://doi.org/10.1007/11925071_18
https://doi.org/10.1007/978-3-540-89652-4_58
https://doi.org/10.1007/978-3-642-16132-2_17
https://doi.org/10.1007/978-3-642-16132-2_17


Thread-Level CPU/Memory Usage Control 281

15. Johnson, G., Dawson, M.: Introduction to Java multitenancy. Technical report
(2015)

16. Herzog, A., Shahmehri, N.: Problems running untrusted services as Java
threads. In: Nardelli, E., Talamo, M. (eds.) Certification and Security in Inter-
Organizational E-Service. IOLCS, vol. 177, pp. 19–32. Springer, Boston (2005).
https://doi.org/10.1007/11397427 2

17. Rodero-Merino, L., Vaquero, L.M., Caron, E., Muresan, A., Desprez, F.: Building
safe PaaS clouds: a survey on security in multitenant software platforms. Comput.
Secur. 31(1), 96–108 (2012)

18. JCP: JSR 284: Resource Consumption Management API. https://jcp.org/en/jsr/
detail?id=284. Accessed 04 Dec 2018

19. Czajkowski, G., Hahn, S., Skinner, G., Soper, P., Bryce, C.: A resource management
interface for the JavaTM platform. Softw. Pract. Exp. 35(2), 123–157 (2005)

20. Grove, D., DeFouw, G., Dean, J., Chambers, C.: Call graph construction in object-
oriented languages. ACM SIGPLAN Not. 32(10), 108–124 (1997)

21. OSGi Alliance: OSGi specification (2012). https://osgi.org/download/r4v43/osgi.
core-4.3.0.pdf. Accessed 19 Apr 2017

22. Simão, J., Lemos, J., Veiga, L.: A2-VM : a cooperative Java VM with support for
resource-awareness and cluster-wide thread scheduling. In: Meersman, R., et al.
(eds.) OTM 2011. LNCS, vol. 7044, pp. 302–320. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25109-2 20

23. Kim, Y.J., Lee, Y.C., Han, H., Kang, S.: Hierarchical recursive resource sharing for
containerized applications. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC
2018. LNCS, vol. 11236, pp. 781–796. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03596-9 56

24. Makki, M., Van Landuyt, D., Joosen, W.: Towards PaaS offering of BPMN 2.0
engines: a proposal for service-level tenant isolation. In: Mann, Z.Á., Stolz, V.
(eds.) ESOCC 2017. CCIS, vol. 824, pp. 5–19. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-79090-9 1

25. Truyen, E., Van Landuyt, D., Reniers, V., Rafique, A., Lagaisse, B., Joosen, W.:
Towards a container-based architecture for multi-tenant SaaS applications. In: Pro-
ceedings of the 15th International Workshop on Adaptive and Reflective Middle-
ware, p. 6. ACM (2016)

26. Ochei, L.C., Bass, J.M., Petrovski, A.: Degrees of tenant isolation for cloud-hosted
software services: a cross-case analysis. J. Cloud Comput. 7, 22 (2018)

27. Zhang, X., Tune, E., Hagmann, R., Jnagal, R., Gokhale, V., Wilkes, J.: CPI 2:
CPU performance isolation for shared compute clusters. In: Proceedings of the 8th
ACM European Conference on Computer Systems, pp. 379–391. ACM (2013)

28. Krebs, R., Spinner, S., Ahmed, N., Kounev, S.: Resource usage control in multi-
tenant applications. In: 2014 14th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (CCGrid), pp. 122–131. IEEE (2014)

29. Walraven, S., De Borger, W., Vanbrabant, B., Lagaisse, B., Van Landuyt, D.,
Joosen, W.: Adaptive performance isolation middleware for multi-tenant SaaS. In:
2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing
(UCC), pp. 112–121. IEEE (2015)

30. Lama, P., Wang, S., Zhou, X., Cheng, D.: Performance isolation of data-intensive
scale-out applications in a multi-tenant cloud. In: 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 85–94. IEEE (2018)

31. Binder, W., Hulaas, J.G., Villazón, A.: Portable resource control in Java. ACM
SIGPLAN Not. 36, 139–155 (2001)

https://doi.org/10.1007/11397427_2
https://jcp.org/en/jsr/detail?id=284
https://jcp.org/en/jsr/detail?id=284
https://osgi.org/download/r4v43/osgi.core-4.3.0.pdf
https://osgi.org/download/r4v43/osgi.core-4.3.0.pdf
https://doi.org/10.1007/978-3-642-25109-2_20
https://doi.org/10.1007/978-3-030-03596-9_56
https://doi.org/10.1007/978-3-030-03596-9_56
https://doi.org/10.1007/978-3-319-79090-9_1
https://doi.org/10.1007/978-3-319-79090-9_1


282 M. Makki et al.

32. Janik, A., Zieliński, K.: Transparent resource management with Java RM API.
In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS
2006. LNCS, vol. 3994, pp. 1023–1030. Springer, Heidelberg (2006). https://doi.
org/10.1007/11758549 136

33. Activiti. https://www.activiti.org/. Accessed 04 Dec 2018
34. Rhino. https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino/.

Accessed 04 Dec 2018
35. HoseinyFarahabady, M.R., Lee, Y.C., Zomaya, A.Y., Tari, Z.: A QoS-aware

resource allocation controller for function as a service (FaaS) platform. In: Max-
imilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol.
10601, pp. 241–255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69035-3 17

https://doi.org/10.1007/11758549_136
https://doi.org/10.1007/11758549_136
https://www.activiti.org/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino/
https://doi.org/10.1007/978-3-319-69035-3_17
https://doi.org/10.1007/978-3-319-69035-3_17


Optimized Application Deployment
in the Fog

Zoltán Ádám Mann1(B), Andreas Metzger1, Johannes Prade2,
and Robert Seidl3

1 University of Duisburg-Essen, Essen, Germany
zoltan.mann@gmail.com

2 Nokia, Munich, Germany
3 Nokia Bell Labs, Munich, Germany

Abstract. Fog computing uses geographically distributed fog nodes
that can supply nearby end devices with low-latency access to cloud-
like compute resources. If the load of a fog node exceeds its capacity,
some non-latency-critical application components may be offloaded to
the cloud. Using commercial cloud offerings for such offloading incurs
financial costs. Optimally deciding which application components to keep
in the fog node and which ones to offload to the cloud is a difficult
combinatorial problem. We introduce an optimization algorithm that (i)
guarantees that the deployment always satisfies capacity constraints, (ii)
achieves near-optimal cloud usage costs, and (iii) is fast enough to be
run online. Experimental results show that our algorithm can optimize
the deployment of hundreds of components in a fraction of a second on
a commodity computer, while leading to only slightly higher costs than
the optimum.

1 Introduction

Fog computing provides a decentralized infrastructure for supporting applica-
tions in domains like Internet of Things (IoT), cyber-physical systems, or smart
manufacturing (Industry 4.0) [9,13]. Such applications process data from dis-
tributed end devices. Processing these data in the end devices is often not feasi-
ble because of the very limited capacity (in terms of CPU, storage, battery) of
the devices. Fog computing uses computational resources called fog nodes at the
network edge, which offer higher capacity than end devices. A fog node thus can
host applications that process data from end devices that are in the proximity
of the fog node [1,23]. This facilitates data processing with low latency, since
modern communication technologies (like 4G and 5G) make the transfer of data
from the end devices to nearby fog nodes very fast (e.g., 5G even offers real-
time guarantees). This does not mean that all of the application’s components
need to reside in the fog node. Some application components, e.g., ones that are
not latency-critical, may even be offloaded to the cloud instead of fog nodes, to
benefit from the virtually unlimited computational capacity of the cloud [3].

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 283–298, 2019.
https://doi.org/10.1007/978-3-030-33702-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_22&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_22


284 Z. Á. Mann et al.

This paper focuses on optimizing application component deployment between
a fog node and the cloud. The fog node, which can be considered a small data
center at the network edge, hosts a set of applications [10]. Each application
consists of a set of components (e.g., microservices). The fog node offers virtu-
alized, cloud-like resources for hosting the components, e.g., in virtual machines
or containers. Although the computational capacity of a fog node is typically
larger than that of end devices, it is still limited and much lower than that
of the cloud [12]. If the load of the fog node exceeds its capacity, some appli-
cation components thus may have to be offloaded to the cloud. However, this
offloading entails two concerns. On the one hand, using a commercial cloud is
associated with financial costs, both for the usage of cloud compute resources
and for data transfers into and out of the cloud. On the other hand, for some
of the components there may be an affinity requirement prescribing the compo-
nent to remain in the fog node, e.g., because the component is critical in terms
of latency or because the component deals with sensitive data that must not be
uploaded to the cloud due to data protection reasons [18]. Deciding which com-
ponents to move to the cloud leads to a complex optimization problem, in which
capacity and affinity constraints have to be satisfied while costs stemming from
using the cloud are minimized. In addition, optimizing application deployment
is not a one-off activity. The deployment should be re-optimized regularly during
operation, e.g., when a new application is added or an application is removed,
the load on an application changes, cloud prices change, etc. After such events,
the deployment of all applications may be re-optimized. Components can be
migrated between the fog node and the cloud to adapt the deployment in these
cases [24]. This requires the optimization algorithm to be fast enough to be used
online.

This paper makes the following contributions:

(i) We formalize the problem of optimizing the deployment of application com-
ponents between a fog node and the cloud.

(ii) We devise a heuristic algorithm (FogPart) for the problem. The result of
the algorithm always satisfies the capacity and affinity requirements, when-
ever they can be satisfied. FogPart is a significantly extended version of the
Kernighan-Lin algorithm for balanced graph partitioning [11]. FogPart is
a fast heuristic that iteratively improves an existing partition by a sequence
of local changes, while also being able to escape local optima.

(iii) We demonstrate the applicability of our algorithm by applying it to the
smart manufacturing case study “Factory in a Box”.

(iv) We experimentally evaluate the effectiveness of FogPart in terms of the
resulting cloud usage cost and the algorithm’s execution time and compare
it with an exact algorithm and another heuristic.

The results show that the cost of the deployment found by FogPart is
on average only 2.1% higher than the results of the exact algorithm. At the
same time, FogPart is orders of magnitude faster, taking less than 300 ms on a
commodity computer to optimize the deployment of 450 components. FogPart
delivers near-optimal results very quickly, making it applicable to practical use.



Optimized Application Deployment in the Fog 285

2 Problem Formalization

Figure 1 gives a schematic overview of the addressed problem. We are given a set
A of applications to be deployed. An application A ∈ A is represented by an undi-
rected graph A = (VA, EA), where VA is the set of components of application A
and EA is the set of connectors among the components. VD denotes the set of end
devices connected to the fog node, and ED is the set of connectors between end
devices and application components. The set of all end devices and components is
V = VD ∪ ⋃{VA : A ∈ A}. The set of all connectors between end devices and
components as well as among components is E = ED ∪ ⋃{EA : A ∈ A}.

Fig. 1. Schematic example of applications deployed in a fog node and the cloud

For a component v ∈ V , p(v) ∈ R
+ is the compute capacity required by v. As

an example, this can be the number of CPU cores required by v. The predicate
s(v) is used to model the affinity requirement. The predicate is true if and only
if v must remain in the fog node. If v ∈ VD, then p(v) = 0 and s(v) = true. For
a connector e ∈ E, h(e) ∈ R

+ denotes the amount of data exchanged along e.
P ∈ R

+ denotes the compute capacity (e.g., number of CPU cores) of the
fog node. The cost of renting a compute unit (vCPU) in the cloud is denoted by
c1, the unit cost of data transfer between the fog node and the cloud by c2.

A deployment is a function d : V → {fog, cloud} that maps each component
to either the fog node or the cloud. We use �(d) to denote the total compute
capacity occupied in the fog node by deployment d: �(d) =

∑
v∈V, d(v)=fog p(v).

A valid deployment must respect the following constraints:

�(d) ≤ P, (1)
∀v ∈ V : s(v) ⇒ (d(v) = fog). (2)

Constraint (1) ensures that the total compute power required by the compo-
nents in the fog node does not exceed the capacity of the fog node. Constraint
(2) ensures that all affinity requirements are observed.

Our aim is to find a solution that minimizes the financial cost. For a deploy-
ment d, the set of connectors between the fog node and the cloud is defined as
E(d) = {uv ∈ E : d(u) �= d(v)}. Then, the cost of deployment d is:

cost(d) =
∑

v∈V, d(v)=cloud

c1 · p(v) +
∑

e∈E(d)

c2 · h(e), (3)



286 Z. Á. Mann et al.

where the first term is the cost of leased cloud resources and the second term is
the cost of data transfers between the fog node and the cloud. Hence our aim is
to minimize (3) while satisfying (1) and (2).

For a connector between an end device v1 and a component v2, s(v1) =
true ensures that v1 cannot be moved to the cloud. If d(v2) = cloud, then the
connector crosses the boundary between fog and cloud, and thus it contributes
to the costs in the second term of (3), otherwise it does not.

The deployment must be adapted in three cases: (i) when a new application
is added, (ii) when an application is removed, (iii) when something changes in
the deployed applications or in their environment.

Note that, in contrast to approaches aiming at placing one application on
several fog nodes [4], our problem formulation focuses on the placement of a
set of applications in a single fog node and the cloud. This is why our problem
formulation differs from others in the literature (e.g., we use affinity requirements
to ensure that latency-critical components are placed in the fog node, instead of
working with application deadlines). Our approach fits the needs of a provider
of an edge data center (an example application scenario is presented in Sect. 4).

3 The FogPart Algorithm

The FogPart algorithm we propose to address the above optimization problem
works on a model of the system. This means that the algorithm tentatively allo-
cates and moves the components between the fog node and the cloud. Only after
the algorithm terminates, the best found configuration is enacted by actually
carrying out the necessary allocations and migrations.

When a new application is added, FogPart first places each new component
v as follows: if s(v) = true (i.e., v is subject to an affinity requirement), then v
is placed in the fog node, otherwise in the cloud. Afterwards, the algorithm re-
optimizes the deployment. When an application is removed, all its components
are removed from the deployment, and a re-optimization is carried out. When
there is a change in the deployed applications (e.g., in the CPU requirements of
some components, the amount of data transfer between components, the affinity
requirements of components) or in the environment (e.g., in the unit price of
using the cloud or the capacity of the fog node), FogPart first ensures that the
affinity requirement continues to hold by moving any affected component from
the cloud to the fog node, and then performs re-optimization.

Re-optimization works the same way in each case. Re-optimization is based
on iterative improvement: it starts from a – not necessarily valid – deployment
and tries to improve it (making it valid and decreasing its cost) through a series of
local changes. In each step, one component is moved either from the fog node to
the cloud or vice versa; however, if the current deployment violates the capacity
constraint, then only moves from the fog node to the cloud are allowed. The idea
of the algorithm is to move the component leading to the highest decrease in
cost, captured by the gain of the components.



Optimized Application Deployment in the Fog 287

Definition 1. Let d be a deployment and v ∈ V a component. Let d′ be the
deployment obtained from d by moving v. Then, given deployment d, the gain of
moving v is defined as

gain(d, v) =

{
−∞ if d is valid, d′ is invalid,

cost(d) − cost(d′) otherwise.

The algorithm prefers moves with higher gain values. To escape local optima,
the move with highest gain is made even if its gain is negative, i.e., the move
increases the cost (except if the gain is −∞). To avoid infinite loops, each com-
ponent may be moved only once during a re-optimization. When no further move
is possible, the deployment with the lowest cost that was encountered during the
algorithm is taken as the resulting new deployment.

Algorithm 1. Deployment re-optimization
1: procedure re-optimize(d)
2: bestDeployment ← d
3: bestCost ← cost(d)
4: L ← {v ∈ V : ¬s(v)}
5: end ← (L = ∅)
6: while ¬end do
7: bestGain ← −∞
8: for v ∈ L do
9: if �(d) ≤ P or d(v) = fog then

10: g ← gain(d,v)
11: if g > bestGain then
12: bestComp ← v
13: bestGain ← g
14: end if
15: end if
16: end for
17: if bestGain > −∞ then
18: forced ← (�(d) > P )
19: flip d(bestComp)
20: L.remove(bestComp)
21: if forced or cost(d) < bestCost

then
22: bestDeployment ← d
23: bestCost ← cost(d)
24: end if
25: end if
26: end ← (L = ∅ or bestGain = −∞)
27: end while
28: d ← bestDeployment
29: end procedure

Algorithm 2. Calculation of the
gain of moving a component
1: procedure gain(d, v)
2: if d(v) = fog then
3: r ← −c1 · p(v)
4: else if �(d) ≤ P and �(d)+

p(v) > P then
5: return −∞
6: else
7: r ← c1 · p(v)
8: end if
9: for vw ∈ E do

10: if d(v) = d(w) then
11: r ← r − c2 · h(vw)
12: else
13: r ← r + c2 · h(vw)
14: end if
15: end for
16: return r
17: end procedure

The above re-optimization procedure in FogPart is an extended version
of the Kernighan-Lin (KL) algorithm for balanced graph partitioning [11,17].



288 Z. Á. Mann et al.

Variants of the KL algorithm have been successfully applied to different parti-
tioning problems [16,19–21], thanks to the fact that it is a fast heuristic which
can escape local optima. Applying the KL algorithm to our optimization prob-
lem required several extensions, since the original algorithm supports only edge
costs, whereas our problem also contains costs related to vertices, as well as
hard constraints on capacity and affinity, which are not supported by the origi-
nal algorithm.

A more detailed description of the re-optimization procedure is given in Algo-
rithm1. The algorithm starts by setting “bestDeployment” and “bestCost” to
the current deployment respectively its cost (lines 2–3). The list L contains the
components that may be moved. In line 4, L is initialized to the set of all compo-
nents without affinity requirements; the components with affinity requirements
are not movable since they must remain in the fog node. In each iteration, one
component is moved and it is removed from L (line 20); the procedure ends if L
becomes empty, as captured by the Boolean variable “end” (lines 5, 6, 26).

In each iteration, first the component to be moved is determined (“best-
Comp”). For that purpose, “bestGain” is initialized to −∞ (line 8), and then
all movable components are checked (lines 8–16). Line 9 ensures that moving a
component from the cloud to the fog node is not considered if the fog node is
already overloaded. Lines 10–14 determine the component with the highest gain.
If an allowed move is found, then it is performed (line 19) and the corresponding
component is removed from L (line 20). If the fog node was overloaded before the
move, then the move is forced to be from the fog node to the cloud, as captured
by the Boolean variable “forced”. In this case, “bestDeployment” and “bestCost”
are certainly updated with the changed deployment and its cost, otherwise they
are updated only if the changed deployment is better than the best deployment
encountered so far in terms of costs (lines 18, 21–24). The loop ends if there are
no more movable components (L = ∅) or there are no valid moves, i.e., there are
only moves that would invalidate the deployment (“bestGain” = −∞) (line 26).
Finally, the best deployment found is chosen (line 28).

The gain of a component is computed by Algorithm2, in line with Defini-
tion 1. If the component v is currently in the fog node, then moving it to the
cloud would increase costs by c1 ·p(v) (lines 2–3). If v is in the cloud, then moving
it to the fog node would decrease costs by the same amount (lines 6–7). However,
if the move violates the capacity constraint of the fog node, then the move is not
allowed, resulting in a gain of −∞ (lines 4–5). In lines 9–15, the connectors of
v are investigated. For a connector vw, if v and w are either both in the cloud
or both in the fog node, then the move would increase costs by c2 · h(vw) (lines
10–11); otherwise, it would decrease costs by the same amount (lines 12–13).

4 Case Study

To demonstrate the applicability of our approach and illustrate its operation, we
applied it to a case study from the smart manufacturing domain, called “Fac-
tory in a Box” (FiaB). FiaB is an innovative factory solution, representing a



Optimized Application Deployment in the Fog 289

Fig. 2. Factory in a Box (FiaB): outside and inside view

Table 1. Characteristics of components in the FiaB case study

Application Component Required CPU cores Affinity Req.

A1 AM task manager 1 No

iWh manager 1 No

Robot control 1 Yes

Manual assembly SW 2 No

Order management 2 No

Supply management 2 No

Tool management 1 Yes

Process management 1 Yes

ERP system 2 No

A2 FiaB remote management 1 No

Shop floor management 1 Yes

A3 Sensor evaluation SW 1 No

Sensor dashboard 1 No

complete production environment, integrated in a standard 20-feet freight con-
tainer (see Fig. 2). It can host many different types of production lines, ranging
from chemical processes, electronic device manufacturing to consumer goods. It
accommodates a heterogeneous internal communication infrastructure, including
novel mobile and fixed telecommunication technologies (e.g., private LTE and
5G) to serve various applications in the Industrial IoT environment. In addition
to the computing capabilities within the FiaB (which we consider as the fog
node), it connects to a cloud infrastructure using a public network.

For managing the production, multiple applications are needed. The char-
acteristics of the application components respectively the connectors are shown
in Table 11 and Table 2. The unit costs of compute resources and of data trans-

1 Abbreviations: AM = Additive Manufacturing, iWh = inbound Warehouse, VR/AR
= virtual reality/augmented reality, ERP = Enterprise Resource Planning.



290 Z. Á. Mann et al.

Table 2. Characteristics of connectors in the FiaB case study

App. Connector (endpoint1 ↔ endpoint2) Data transfer [GB/day]

A1 AR/VR glasses (device) ↔ Manual assembly SW 15

Tool management ↔ Process management 1

AM task manager ↔ Tool management 2

iWh manager ↔ Tool management 0.5

Robot control ↔ Tool management 2

AM task manager ↔ Process management 0.1

Robot control ↔ Process management 0.1

Manual assembly SW ↔ Process management 1

ERP system ↔ Order management 1

Order management ↔ Supply management 0.1

Order management ↔ Process management 0.1

A2 Shop floor management ↔ FiaB remote management 5

A3 Sensor evaluation SW ↔ Sensor dashboard 2.5

Fig. 3. Deployment of the first application in the FiaB case study

fers to and from the cloud are determined based on Amazon EC2 pricing2. The
hourly rental fee of a t2.small instance is USD 0.023, leading to a daily fee of
USD 0.552, which is used as c1. The transfer of 1GB of data to or from Amazon
EC2 costs USD 0.09, which is used as c2. The fog node has 12 CPU cores.

Running FogPart to add application A1, first the components with affinity
requirements (Robot control, Tool management, Process management) are put
into the fog node and all other components are tentatively put into the cloud.
Then, Algorithm 1 is executed to optimize the deployment. Algorithm 1 moves
five further components from the cloud to the fog node, until the capacity of the
fog node is exhausted, leading to the deployment shown in Fig. 3.

2 https://aws.amazon.com/ec2/pricing/on-demand/.

https://aws.amazon.com/ec2/pricing/on-demand/


Optimized Application Deployment in the Fog 291

Fig. 4. Deployment of the second application. The numbers show the order in which
the components are allocated and moved by FogPart

Fig. 5. Deployment of the third application (numbering as in Fig. 4)

When application A2 is deployed, first its component with an affinity require-
ment (Shop floor management) is put into the fog node and the other component
(FiaB remote management) into the cloud. When re-optimizing the deployment,
FogPart is confronted with an invalid deployment requiring 13 CPU cores in
the fog node. Hence, FogPart first makes a forced move: the AM task manager
is moved from the fog node to the cloud. This way, the deployment becomes
valid, and it even reaches a local optimum: only moves from the fog node to the
cloud are possible, which increase costs. FogPart makes one of these worsening
moves: the Supply management is moved from the fog node to the cloud. As it
turns out, this worsening move pays off: it frees up 2 CPU cores in the fog node,
so that in the next two steps the FiaB remote management and iWh manager
components can be moved to the fog node. The resulting deployment is better
than the local optimum found earlier, as the heavy traffic between the Shop floor
management and FiaB remote management components does not leave the fog



292 Z. Á. Mann et al.

node anymore. FogPart tries further moves but they do not lead to lower costs,
hence the deployment shown in Fig. 4 is activated in the end.

When deploying application A3, the new components (Sensor evaluation SW,
Sensor dashboard) are put into the cloud. Since the capacity of the fog node
is exhausted, only worsening moves are possible. The algorithm moves the iWh
manager from the fog node to the cloud, after which it becomes possible to move
the AM task manager from the cloud to the fog node. This leads to a better
deployment, which also further moves cannot improve. In fact, the resulting
deployment, which is shown in Fig. 5, is optimal.

These examples illustrate how FogPart continually ensures satisfaction of
the requirements, and at the same time optimizes costs. In particular, the exam-
ples show how FogPart can escape local optima.

5 Experimental Evaluation

To evaluate the costs of the solutions delivered by the FogPart algorithm as well
as its execution time, we experimentally compare the performance of FogPart
to two competing algorithms:

(i) Solving the optimization problem with an integer linear programming (ILP)
solver as a typical example of an exact algorithm.

(ii) A simple heuristic based on the first-fit (FF) principle, as a typical example
of a greedy algorithm. FF first deploys all components with affinity require-
ments in the fog node. The remaining components are deployed in the fog
node if they fit, and otherwise in the cloud.

We implemented the three algorithms as a Java program that we made pub-
licly available3. The experiments were performed on a Lenovo ThinkPad X1
laptop with Intel Core i5-4210U CPU @ 1.70 GHz and 8 GB RAM. The ILP-
based algorithm uses the Gurobi Optimizer, version 7.0.2, as an external solver.
The ILP solver was executed in single-threaded mode with a timeout of 60 s.

We simulated the following scenario:

– 10 applications are randomly generated with the following parameters:
• |VA| = 30
• p(v) is uniformly chosen from {1, 2, 3, 4} for each v ∈ VA

• s(v) is true with probability 0.1 for each v ∈ VA

• (VA, EA) is a complete graph
• h(e) is uniformly chosen from [0.0, 3.0] for each e ∈ EA

– Starting with A = ∅, the applications are added one by one in the first 10
steps. Afterwards, 10 change steps are carried out, and finally the applications
are removed one by one. Each change step performs one of the following
actions (each with equal probability):

• For each application, pick 3 random components and either increase or
decrease their number of CPU cores by 1.

3 https://sourceforge.net/p/vm-alloc/hybrid-deployment/.

https://sourceforge.net/p/vm-alloc/hybrid-deployment/


Optimized Application Deployment in the Fog 293

0

100

200

300

400

500

600

1 6 11 16 21 26

Co
st

Step

ILP FOGPART FF

(a) Financial costs

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1 6 11 16 21 26

Ex
ec

u
on

 
m

e 
[m

s]

Step

ILP FOGPART FF

(b) Algorithm execution time (logarithmic scale)

Fig. 6. Results of first adding, then changing, and finally removing 10 applications

• For each application, pick a random component v and let s(v) := ¬s(v).
• For each application, pick 10 random connectors and change their traffic

intensity by multiplying with 2 or 0.5.
• Change c1, the unit cost of compute resources, by either increasing or

decreasing it by 10%.
– As before, c1 = 0.552 and c2 = 0.09 (in line with Amazon EC2 pricing)
– P = 150

Figure 6a shows the costs achieved by the three algorithms after each algo-
rithm call. As expected, the costs monotonously increase in the first 10 steps
and decrease in steps 20–30. In steps 1–2 and 29–30, it is possible to deploy all
components in the fog node, leading to 0 costs; this optimal deployment is found
by all algorithms. In the other steps, some components must be deployed in the



294 Z. Á. Mann et al.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

15 20 25 30 35 40 45

To
ta

l c
os

ts

Number of components per applica on

ILP FOGPART FF

(a) Financial costs

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

15 20 25 30 35 40 45

To
ta

l e
xe

cu
on

 
m

e 
[m

s]

Number of components per applica on

ILP FOGPART FF

(b) Algorithm execution time (logarithmic scale)

Fig. 7. Impact of increasing the number of components

cloud, leading to non-zero costs. Consistently across all steps 3–28, the results
of FogPart are only slightly higher than those of the ILP-based algorithm,
whereas the FF algorithm yields significantly higher costs. The costs achieved
by FogPart are on average 2.19% higher than the costs achieved by the ILP-
based algorithm; the costs of FF are 29.32% higher than those of ILP.

Figure 6b shows the execution time of the three algorithms in each step. The
time is shown in milliseconds, using logarithmic scale. The execution time of the
ILP-based algorithm is consistently significantly higher than the execution time
of the two heuristics. The average execution time of the ILP-based algorithm is
roughly 26 s, while the average execution time is only about 36 ms for FogPart
and 1 ms for FF. In 8 cases, the execution time of the ILP-based algorithm
reaches the timeout threshold of 60 s.



Optimized Application Deployment in the Fog 295

To evaluate scalability, we repeated the same call sequence as above, with
varying number of components per application. In Fig. 7a, we report the total
costs achieved by the three algorithms aggregated along the whole call sequence
of adding, changing, and removing 10 applications. The number of components
per application increased from 15 to 45 in increments of 5, thus leading to
150–450 components within a call sequence. Consistently across all application
sizes, the cost of the deployments found by FogPart is only slightly higher than
the costs achieved with ILP, whereas the costs achieved by FF are significantly
higher. On average, FogPart leads to 2.1% higher costs than ILP, whereas FF
leads to 24.3% higher costs than ILP. Interestingly, as the number of components
grows, the relative difference between the algorithms’ results decreases. This is
because, as the number of components grows, also the number of components
with affinity requirements grows, using up an increasing part of the fog node’s
capacity, and leaving less optimization opportunities for the deployment of the
components without affinity requirements. E.g., when each application consists
of 45 components, the expected number of CPU cores needed by the components
with affinity requirements is 112.5, using up 75% of the capacity of the fog node.

Figure 7b shows the total execution time – aggregated over the whole call
sequence – of the three algorithms (note the logarithmic scale of the vertical
axis). The execution time of FF is very low (tens of milliseconds for the whole
call sequence), that of FogPart is somewhat higher but still quite low (less than
2 s in each case for the whole call sequence in total), and that of ILP is much
higher (more than 20 min for a call sequence when the number of components
is over 300). As the number of components grows, the execution time of both
FogPart and ILP tends to grow. However, the growth rate is very different
in the two cases. When the number of components grows from 150 to 450 – a
threefold increase – the execution time of FogPart increases by a factor of 5.7,
suggesting a moderate polynomial complexity. At the same time, the execution
time of ILP grows by a factor of 26, suggesting an exponential execution time,
damped down by the timeout of 60 s per run.

6 Related Work

Some approaches have already been proposed in the literature for the optimized
deployment of applications in the fog [4]. Mahmud et al. proposed a heuristic
to allocate application components in a multi-layer fog system [14]. Taneja and
Davy developed a greedy algorithm for placing application modules in the cloud
and on fog nodes [27]. Skarlat et al. devised a genetic algorithm for optimizing
the deployment of IoT applications on fog nodes [26]. Da Silva et al. considered
the deployment of distributed stream processing applications on cloud and edge
resources with the aim of minimizing application latency [25]. Cai et al. addressed
the deployment of complex event processing applications on edge resources with
the aim of minimizing the average application latency [5]. Mouradian et al. use
tabu search to minimize the makespan of applications consisting of virtual net-
work functions in the context of mobile fog nodes [22]. However, these approaches



296 Z. Á. Mann et al.

suffer from some serious limitations. First, some approaches support only appli-
cations with a special structure (cycles of four vertices [14], series-parallel graphs
[22,25], or directed acyclic graphs [5]). In contrast, our algorithm works for any
application topology. Second, some approaches do not consider the costs of using
the cloud at all [5,25], or do not take data transfers between application com-
ponents into account [26,27], which, however, can lead to significant costs. In
contrast, our algorithm explicitly minimizes the costs of using the cloud, includ-
ing costs for both compute resources in the cloud and data transfer between the
fog node and the cloud. Third, some approaches were based on simple greedy
algorithms [14,27] that consider only one application at a time and deploy its
components sequentially. In contrast, our algorithm optimizes the deployment of
all applications together, which increases the probability of finding overall good
solutions, and uses special techniques to escape local optima.

Similar problems also arise when optimizing the deployment of applications in
hybrid clouds. Several authors investigated the problem of scheduling a workflow
using the resources of a hybrid cloud [2]. Chopra et al. proposed an algorithm
for minimizing costs while respecting a given deadline [8]. Chang et al. proposed
an agent-based mechanism to continually re-optimize the deployment of the jobs
of a workflow in a hybrid cloud [7], while Zhu et al. addressed the scheduling
of deadline-constrained workflows with stochastic tasks [29]. Another related
area is the allocation of massively parallel tasks using the resources of a hybrid
cloud. Van den Bossche et al. addressed the allocation of tasks to hybrid clouds
taking into account application deadlines and cloud resource costs [28]. Candeia
et al. aimed at maximizing profit, taking into account the benefit of finishing a
set of compute tasks early and the costs of using cloud resources [6]. Malawski
et al. used mixed integer nonlinear programming to allocate tasks to hybrid
cloud resources, subject to deadline constraints, minimizing costs [15]. In all
these papers, the communication structure between tasks is either constrained
to be acyclic, which is an unrealistic assumption for many applications, or not
considered at all. In contrast, our approach works with arbitrary communication
topologies among the components of an application.

7 Conclusions

This paper addressed the problem of deploying application components on a fog
node or in the cloud, such that components which need to be kept close to the
end devices are deployed on the fog node, the capacity of the fog node is not
overloaded, and the costs of using the cloud for computation and data transfer
are minimized. We devised a heuristic for this problem. Our experimental results
suggest that the results of our algorithm are close to optimal, while the algorithm
is very fast so that it can be used online.

In the future, we aim to extend our approach to handle further constraints
(e.g., modeling a more fine-grained control of latency) and optimization objec-
tives (e.g., relating to energy consumption).



Optimized Application Deployment in the Fog 297

Acknowledgments. Research leading to these results received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agree-
ments no. 731678 (RestAssured) and 731932 (TransformingTransport).

References

1. Abbas, Z., Li, J., Yadav, N., Tariq, I.: Computational task offloading in mobile
edge computing using learning automata. In: IEEE ICCC, pp. 57–61 (2018)

2. Alkhanak, E.N., Lee, S.P., Rezaei, R., Parizi, R.M.: Cost optimization approaches
for scientific workflow scheduling in cloud and grid computing: a review, classifi-
cations, and open issues. J. Syst. Softw. 113, 1–26 (2016)

3. Bermbach, D., et al.: A research perspective on fog computing. In: Braubach, L.,
et al. (eds.) ICSOC 2017. LNCS, vol. 10797, pp. 198–210. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91764-1 16

4. Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to place your apps in the fog -
state of the art and open challenges. arXiv preprint, arXiv:1901.05717 (2019)

5. Cai, X., Kuang, H., Hu, H., Song, W., Lü, J.: Response time aware operator place-
ment for complex event processing in edge computing. In: Pahl, C., Vukovic, M.,
Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 264–278. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03596-9 18

6. Candeia, D., Araújo, R., Lopes, R., Brasileiro, F.: Investigating business-driven
cloudburst schedulers for e-science bag-of-tasks applications. In: CloudCom, pp.
343–350 (2010)

7. Chang, Y.S., Fan, C.T., Sheu, R.K., Jhu, S.R., Yuan, S.M.: An agent-based work-
flow scheduling mechanism with deadline constraint on hybrid cloud environment.
Int. J. Commun Syst 31(1), e3401 (2018)

8. Chopra, N., Singh, S.: Deadline and cost based workflow scheduling in hybrid cloud.
In: ICACCI, pp. 840–846 (2013)

9. Dastjerdi, A.V., Buyya, R.: Fog computing: helping the Internet of Things realize
its potential. Computer 49(8), 112–116 (2016)

10. Deng, S., Xiang, Z., Yin, J., Taheri, J., Zomaya, A.Y.: Composition-driven IoT
service provisioning in distributed edges. IEEE Access 6, 54258–54269 (2018)

11. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Techn. J. 49(2), 291–307 (1970)

12. Lai, P., et al.: Optimal edge user allocation in edge computing with variable sized
vector bin packing. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018.
LNCS, vol. 11236, pp. 230–245. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03596-9 15

13. Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, survey and
future directions. In: Di Martino, B., Li, K.-C., Yang, L.T., Esposito, A. (eds.)
Internet of Everything. IT, pp. 103–130. Springer, Singapore (2018). https://doi.
org/10.1007/978-981-10-5861-5 5

14. Mahmud, R., Ramamohanarao, K., Buyya, R.: Latency-aware application module
management for fog computing environments. ACM ToIT 19(1), 9 (2018)

15. Malawski, M., Figiela, K., Nabrzyski, J.: Cost minimization for computational
applications on hybrid cloud infrastructures. FGCS 29(7), 1786–1794 (2013)

16. Mann, Z.Á.: Partitioning algorithms for hardware/software co-design. Ph.D. thesis,
Budapest University of Technology and Economics (2004)

17. Mann, Z.Á.: Optimization in Computer Engineering - Theory and Applications.
Scientific Research Publishing, Irvine (2011)

https://doi.org/10.1007/978-3-319-91764-1_16
http://arxiv.org/abs/1901.05717
https://doi.org/10.1007/978-3-030-03596-9_18
https://doi.org/10.1007/978-3-030-03596-9_15
https://doi.org/10.1007/978-3-030-03596-9_15
https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1007/978-981-10-5861-5_5


298 Z. Á. Mann et al.

18. Mann, Z.Á., Metzger, A.: Optimized cloud deployment of multi-tenant software
considering data protection concerns. In: CCGRID, pp. 609–618 (2017)

19. Mann, Z.Á., Orbán, A., Farkas, V.: Evaluating the Kernighan-Lin heuristic for
hardware/software partitioning. AMCS 17(2), 249–267 (2007)

20. Mann, Z.Á., Papp, P.A.: Formula partitioning revisited. In: 5th Pragmatics of SAT
Workshop, vol. 27, pp. 41–56. EasyChair Proceedings in Computing (2014)

21. Mann, Z.Á., Papp, P.A.: Guiding SAT solving by formula partitioning. Int. J. Artif.
Intell. Tools 26(4), 1750011 (2017)

22. Mouradian, C., Kianpisheh, S., Abu-Lebdeh, M., Ebrahimnezhad, F., Jahromi,
N.T., Glitho, R.H.: Application component placement in NFV-based hybrid
cloud/fog systems with mobile fog nodes. IEEE JSAC 37(5), 1130–1143 (2019)

23. Nan, Y., Li, W., Bao, W., Delicato, F.C., Pires, P.F., Zomaya, A.Y.: A dynamic
tradeoff data processing framework for delay-sensitive applications in cloud of
things systems. J. Parallel Distrib. Comput. 112, 53–66 (2018)

24. Ravindra, P., Khochare, A., Reddy, S.P., Sharma, S., Varshney, P., Simmhan, Y.:
ECHO: an adaptive Orchestration platform for Hybrid dataflows across Cloud and
Edge. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017.
LNCS, vol. 10601, pp. 395–410. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69035-3 28

25. da Silva Veith, A., de Assunção, M.D., Lefèvre, L.: Latency-aware placement of
data stream analytics on edge computing. In: Pahl, C., Vukovic, M., Yin, J., Yu,
Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 215–229. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03596-9 14

26. Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., Leitner, P.: Optimized IoT
service placement in the fog. Service Oriented Comp. Appl. 11(4), 427–443 (2017)

27. Taneja, M., Davy, A.: Resource aware placement of IoT application modules in
fog-cloud computing paradigm. In: IEEE IM, pp. 1222–1228 (2017)

28. Van den Bossche, R., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling
in hybrid IaaS clouds for deadline constrained workloads. In: IEEE CLOUD, pp.
228–235 (2010)

29. Zhu, J., Li, X., Ruiz, R., Xu, X.: Scheduling stochastic multi-stage jobs to elastic
hybrid cloud resources. IEEE TPDS 29(6), 1401–1415 (2018)

https://doi.org/10.1007/978-3-319-69035-3_28
https://doi.org/10.1007/978-3-319-69035-3_28
https://doi.org/10.1007/978-3-030-03596-9_14


Toward Cost Efficient Cloud Bursting

Amirmohammad Pasdar1, Young Choon Lee1(B), and Khaled Almi’ani2

1 Macquarie University, Sydney, NSW 2109, Australia
amirmohammad.pasdar@hdr.mq.edu.au, young.lee@mq.edu.au

2 Al-Hussein Bin Talal University, Ma’an, Jordan
k.almiani@ahu.edu.jo

Abstract. While private clouds are still widely adopted due primarily to
privacy and security reasons, they are often less resilient with fluctuating
workloads compared to public clouds. Workload surges in private clouds
can be dealt with by offloading some workload/jobs to public clouds;
this is referred to as cloud bursting. Although the dynamic use of public
clouds is claimed to be cost efficient, the actual realization of such cost
efficiency is highly dependent on judicious scheduling decisions. In this
paper, we present Cost Efficient Cloud Bursting Scheduler (CECBS) as a
new scheduling framework that optimizes cost efficiency while preserving
privacy by taking advantage of benefits of each of two cloud types. In
particular, CECBS schedules jobs taking into account (1) public cloud
pricing policy (billing cycle), (2) privacy of data/job and (3) local elec-
tricity rates for private clouds. Based on simulation results obtained from
real workload traces, CECBS achieves 20% cost savings on average com-
pared with costs of Resource Management Service (RMS) [11].

1 Introduction

Cost efficiency is one of the key benefits of cloud computing. The optimization
of cost efficiency is of great practical importance with ever increasing operating
expenses including energy prices. Such optimization can be achieved by deploying
all ICT solutions to public clouds, such as Amazon Web Services (AWS) [1],
Microsoft Azure (MS) [5] and Google Compute Engine (GCE) [3]. However,
when it comes to job/data privacy, the use of private clouds is often inevitable.
While such use resolves the privacy issue, it brings another issue of less resilient
resource provisioning particularly when private clouds encounter workload surges
that exceed the resource capacity.

A practical solution for the above stated issues is the mix use of private
clouds and public clouds (i.e., hybrid clouds). There have been many works on
scheduling in geo-distributed clouds and hybrid clouds [13,15,16,18]. Neverthe-
less, they tend to neglect the data privacy. In addition, their cost optimization
focuses on the minimization of public cloud usage considering different rates of
virtual machines (VMs or instances in the AWS terminology), but not billing
cycles, e.g., the hour in AWS and the second in GCE.

In this paper, we study the cost efficiency of cloud bursting explicitly taking
into account privacy, billing cycles and local electricity rates. To this end, we
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 299–313, 2019.
https://doi.org/10.1007/978-3-030-33702-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_23&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_23


300 A. Pasdar et al.

develop Cost Efficient Cloud Bursting Scheduler (CECBS) as a new schedul-
ing framework. The overall structure of CECBS is shown in Fig. 1. In particular,
CECBS consists of two main components: a hybrid scheduler (Algorithm 1) and
a Q-learning based VM manager (Algorithm 5). The former further consists of
three scheduling algorithms that deal with privacy-sensitive jobs (Algorithm2)
and regular jobs (Algorithms 3 and 4 for private cloud and public cloud, respec-
tively). The latter Q-learning based VM manager constantly monitors states
of VMs in the private cloud. The state information is then used to (1) make
scheduling decisions for the private cloud using Algorithms 2 and 3 and (2) acti-
vate/deactivate VMs to save energy as CECBS concerns local electricity rates.

Algo. 3

A stream of jobs T

Algo. 2

Q-Learning
based VM
manager
(Algo. 5)

Private Cloud

VM state control signal
(Activate/Deactivate)

VM state/job

VM state

Privacy
sensitive
job

Privacy
sensitive
job

Public Cloud Provider 1

Public Cloud Provider 2

Public Cloud Provider 3

Public Cloud
Queued job (jqueued)
to offload to the
public cloud for
privacy sensitive
job

Hybrid Cloud Scheduler (Algo.1)

Regular job

Offload jqueued

Algo. 4

Fig. 1. Structure of CECBS framework.

For a job, if it is privacy sensitive,
it is scheduled to the private cloud.
Otherwise, it is scheduled to either
cloud based on cost efficiency compar-
ison between private cloud and pub-
lic cloud. The cost efficiency of private
cloud is determined based on primarily
local electricity rates (as energy prices
are soaring and account for a large por-
tion of operating expenses) while that
of public cloud is determined based on its billing cycle (e.g., the hour or second).

Based on simulation results obtained from 24 h of real workload traces,
CECBS saves costs by 20% compared with costs of Resource Management Ser-
vice (RMS) [11]. For the private cloud alone, CECBS reduces the private cloud
usage cost up to 54%, 55%, and 55% in comparison with RMS with respect to
VM monitoring intervals of 30 s, 60 s and 120 s, respectively. It also improves
resource utilization up to 31% compared with RMS.

2 Problem Statement

The hybrid cloud consists of a private cloud and a set of M public clouds
(CP = {CP 1, · · · , CPM}). A public cloud CP i consists of k VMs, CP i =
{vm1, · · · , vmk}. Public cloud CP i has its own billing cycle BCCP i

. Each
BCCPi

may have remaining time that vmi could be used for “free”. There may
be a completely new billing cycle (BCnew

CP i
) that can incur charges or an existing

billing cycle (BCactive
CP i

) that can be used for free before the end of billing cycle.
The private cloud consists of a number of servers, each of which hosts one or

more VMs. The private cloud has varying electricity rates (Chτ ) with respect to
different times of day, i.e., off-peak, shoulder and peak. It may also follow a fixed
rate (Chf ) per a specific period of contract, such as the year. The energy con-
sumption of a server can be calculated based on Thermal Design Power (TDP).
We assume servers are equipped with power management that allows them to
be put into deep sleep mode on which power consumption is negligible.



Toward Cost Efficient Cloud Bursting 301

Algorithm 1: Hybrid Cloud Scheduler
Data: T

1 for ti ∈ T do
2 if ti is privacy sensitive then
3 Privacy-aware scheduling (Algorithm 2)
4 end
5 else

6 Calculate ecti
private at Chτ with current VM states

7 Calculate ecti
public based on tres

i considering ecactive
private

8 if ecprivate ≤ ecpublic then
9 Schedule ti to the private cloud (Algorithm 3)

10 end
11 else
12 Schedule ti to the public cloud (Algorithm 4)
13 end

14 end

15 end

Workloads are considered as a stream of T jobs at time τ . Each job (ti)
within this stream of jobs (T ) has certain characteristics, such as a deadline (dt)
and privacy sensitivity (pt). A job with a privacy concern must be executed on
the private cloud. Required resources are expressed in terms of the number of
CPU cores (coret) and the required memory (memt).

The problem in our study is how to schedule a stream of jobs which become
available at different times to resources within a hybrid cloud environment so
that cloud bursting improves the cost efficiency while preserving privacy.

3 Cost Efficient Cloud Bursting Scheduler

In this section, we present CECBS (Fig. 1) with its two main components: Hybrid
cloud scheduler and Q-learning based VM manager.

3.1 Hybrid Cloud Scheduler

Hybrid cloud scheduler (Algorithm 1) is the key scheduling component. It always
schedules privacy-sensitive jobs to the private cloud (Algorithm 2). In the mean-
time, it schedules regular jobs, without privacy concerns, based on the cost of
execution between private cloud and public cloud (Algorithm 3).

Privacy-Aware Scheduling. Jobs within a workload which arrived at time τ
may be processed within the private cloud due their privacy constraints. This is
an optimization allocation achieved through the use of Algorithm 2 that assigns
privacy concerned jobs cost efficiently to the virtual machines within the private
cloud while considering the job deadlines.



302 A. Pasdar et al.

Algorithm 2: Privacy-aware scheduling
Data: NF(privacy − sensitive) jobs
Result: PS(Privacy Schedule)

1 Initialize incapableV Ms ← null, |DMatrix| ← |NF | × |activeV Ms|,
loff ← null, V ← null, flag ← true

2 do
3 Update DMatrix with activeV Ms & its VMWorkload
4 Initialize incapableV Ms
5 for i ← 0 to |NF | do
6 for tk ∈ NF \ (loff ∪ V ) do
7 for vmj ∈ activeV Ms \ incapableV Ms do
8 if i = 0 and DMatrix[tk][vmj ] = −1 then
9 DMatrix[tk][vmj ] ← Exce(tk, vmj) - wdealy

10 end
11 else
12 DMatrix[tk][vmj ] ← Exce(tk, vmj) − DMatrix[tk][vmj ]
13 end
14

15 end

16 end
17 [trw, vmcl] = FindMinV alue(DMatrix)
18 if trw or vmcl is null then
19 flag ← false
20 activeV Ms = poll(nonActiveVMs)
21 break

22 end
23 else
24 assign trw to vmcl

25 update DTMatrix & add trw to V
26 update VMWorkload of vmcl

27 add [trw, vmcl] to PS
28 update vmcore

cl and vmmem
cl

29 end

30 end

31 while !flag and nonActiveVMs �= ∅
32 if |V | �= |NF | then
33 R ← NF \ (loff ∪ V )
34 for tR ∈ R do
35 swap tr with regular jobs in activeV Ms queue
36 end

37 end

In the beginning, we initialize a matrix (DMatrix) which is updated with
the current workload of activeV Ms at time τ . Each virtual machine also has a
queue for keeping track of jobs for execution. We also maintain a list of incapable



Toward Cost Efficient Cloud Bursting 303

virtual machines (incapableV Ms) on which jobs that arrived at time τ would
miss their deadlines.

The DMatrix becomes updated by estimating the remaining time of the
job (tk ∈ NF ) on the VM (vmj ∈ activeV Ms). These values represent the
remaining time when vmj can finish executing tk while considering the corre-
sponding job deadline (lines 6–15). Then, the DMatrix is scanned to find the
minimum positive value. If there is such a value, the corresponding job and vir-
tual machine will be confirmed and will be referred to trw and vmcl as the last
confirmed assignment (lines 24–28). Otherwise, a deep sleep virtual machine, if
available, will be added to the activeV Ms list, and the process will be repeated
again (lines 18–21). For the newly added machine(s), a value called the wake-
up delay (wdelay) is maintained. This is the approximate time needed to have
the virtual machine ready for serving workloads. In the case of unavailability
of any deep sleep machines, active virtual machine queues will be scanned, and
the jobs within the queue will be replaced with the privacy-concerned jobs, and
the selected ones would be added to a list called the offloading list (loff ). The
job(s) which would be selected for swapping purposes, would have to comply
with the privacy concerned job(s) resource requirements. This list of jobs will be
redirected to the public cloud scheduling for execution on public cloud vms.

Regular Job Scheduling. In this section, we present a particle swarm opti-
mization (PSO)-based algorithm to schedule regular jobs to the private cloud
(Algorithm 3). PSO is a computational method that improves a candidate solu-
tion based on a measure of quality through repetition. Having a population of
candidates (or particles) helps the problem to be solved by moving these parti-
cles around in the search-space based on the position and velocity of particles.
The local and the global best-known positions affect each particle’s movement
toward the best-known positions in the search space which eventually will lead
to moving the swarm toward the best solutions. The representation of a solution
(particle P ) in the algorithm is based on the structure of jobs and its correspond-
ing virtual machine. This structure has a length which is equal to the number of
available jobs t within the stream of jobs T at time τ for execution on the a active
virtual machines. For example, if at time τ , q jobs were to become available, the
structure would be {(t1, V M1), . . . , (tq, V Ma)}.

The primary objective of the PSO scheduler is determining jobs that could be
executed within the private cloud based on their resource requirements and user-
specified deadlines in a cost-effective manner. This results in considering several
factors during the representation of the fitness function. We define a variable
called UsedV m(P ) which represents how many virtual machines are used within
the solution. The fewer the number of used virtual machines, the lower the power
consumption. Additionally, a parameter known as Exec(P ) checks whether jobs
in the particle could be processed within the specified deadline on the designated
virtual machine(s). As jobs have specific resource requirements, we use parameter
Res(P ) to determines the particle (P ) which would be satisfied in terms of the
required CPU core and memory. Jobs within the particle might be assigned to



304 A. Pasdar et al.

Algorithm 3: Regular Job Scheduling in the Private Cloud
Data: Private Cloud activeV Ms List, Private Cloud nonActiveVMs List, Task

List (t), Max #generation, and Particle Swarm Optimization Variables
Result: The best schedule within the private cloud

1 Initiate particle swarm optimization generation (initGen), schedule ← null,
and flag ← true;

2 Initialize localBest, and globalBest Particles based on initGen ;
3 Evaluate generation via Equation 1;
4 while schedule = null and nonActiveVMs �= ∅ and flag do
5 while #generations not exceeded do
6 Update localBest and globalBest ;
7 for p ∈ initGen do
8 Update velocity(p) by Equation 2;
9 Update location(p) by Equation 3;

10 Update fitness(p) by Equation 1;

11 end

12 end
13 if schedule = null then
14 activeV ms = poll(nonActiveV ms) ;
15 else
16 flag ← false ;
17 return the best dynamic schedule;

18 end

19 end
20 if schedule = null then
21 loff ← t ;
22 Public Cloud Assignment (loff ) ;

23 end

the same virtual machine. In this case, it is essential that firstly, jobs assigned
to the same virtual machines would have access to their required resources at
the same time. Secondly, it should not cause any delays in the execution of
jobs concurrently. Thus, parameter Cur(P ) evaluates the particle against the
criteria above. If none of the mentioned parameters is satisfied, a negative sign
will be applied to mark a non-eligible particle. Moreover, to avoid overloading a
VM, parameter Wl(P ) is defined which determines the number of queued jobs
for execution for each of the designated VMs within the particle. It checks the
queued jobs for execution based on the average number of jobs per active VM.
Based on these definitions, the fitness function is defined as:

fitness(P ) = UsedV m(P ) × Exec(P ) × Res(P )
× Cur(P ) × Wl(P )

(1)



Toward Cost Efficient Cloud Bursting 305

The particle swarm optimization utilizes the following equations in regard to
updating particle velocity and location in which c1 and c2 are considered learning
factors.

velocity(P ) = velocity(P ) + c1 × rand()
× (localBest − location(P )
+ c2 × rand()
× (globalBest − location(P ))

(2)

location(P ) = location(P ) + velocity(P ) (3)

Algorithm 3 tries to schedule jobs which become available at time τ onto
private cloud virtual machines through an extended particle swarm algorithm
considering minimizing on-premises cost. Since scheduling jobs onto available
resources is computationally intractable, optimization approaches could pro-
vide a near-optimal solution. The structure of the algorithm is based on the
number of available active virtual machines within the private cloud. In case
none is found, the algorithm will iterate over deep sleep mode virtual machines
(nonActiveV Ms). If the job(s) cannot be hosted within the private cloud, they
will be dispatched to the public cloud.

Privacy-aware scheduling (Algorithm 2) is also used to relocate regular jobs
in one or more waiting queues (lines 32–37) when VMs in the private cloud are
overloaded and a privacy-sensitive job needs to be scheduled (see the interaction
between Algorithms 2 and 3).

Public Cloud Scheduling. To execute jobs offloaded to the public cloud,
we propose in this section a cost-efficient approach to select the best virtual
machine from the available cloud providers (Algorithm 4). This algorithm takes
into consideration the available active cycles BCactive

CP during the scheduling
of the jobs. For each job ti ∈ loff , if none of vm ∈ BCactive

CP suited the job
(ti) requirements in terms of resource requirements and deadline, a new virtual
machine from any available cloud provider should be launched. For launching a
new virtual machine, it is necessary to check whether which cloud provider and
under which billing cycle should the job(s) be offloaded. Therefore, in lines 5–7
of Algorithm 4, the cost of launching a new virtual machine based on the job
requirements from cloud providers under different billing cycle policies would
be determined (i.e. per second v. per hour). Then, the estimated cost of cloud
providers is compared to each other (lines 7–11). Then, if it were more cost-
efficient, the job would be dispatched to a new virtual machine from a cloud
provider with a per second billing cycle policy. Otherwise, in lines 13–16, a new
virtual machine would be launched from a cloud provider with a per hour billing
cycle policy, and the job would be assigned to it. In this case, the new billing
cycle BCnew

CPhour
would be added to the existing BCactive

CP , and the corresponding
job would be removed from the offloading list (loff ).



306 A. Pasdar et al.

Algorithm 4: Public Cloud Scheduling
Data: loff , BTCP , and list of public cloud BCactive

CP

Result: LBC(Launching new Billing Cycles)
1 S ← null
2 if loff �= ∅ then
3 for ti ∈ loff do
4 tres

i ← {memti&coreti}
5 Estimate the costhour

CP of launching a BCnew
CPhour

for tres
i

6 Estimate the costsec
CP of launching a BCnew

CPsec
for tres

i

7 if costsec
CP ≤ costhour

CP then
8 Launch BCnew

CPsec

9 S ← vmCPsec

10 Remove ti from loff

11 end
12 else
13 Launch a BCnew

CPhour
based on tres

i

14 Add BCnew
CPhour

to BCactive
CP

15 S ← vmCPhour

16 Remove ti from loff

17 end

18 end

19 end
20 LBC ← S

3.2 Q-Learning Based VM Manager

As idle and active virtual machines consume energy, there should be a mechanism
that regularly monitors the private cloud (i.e. either putting virtual machines
into deep sleep mode or activating one or more). In this section, we present a
Q-Learning-based algorithm for virtual machine management. Q-Learning as a
values-based learning algorithm in reinforcement of learning aims at learning
a policy (e.g. VM management) to prepare agents (the hybrid scheduler) to
take suitable actions under different circumstances. The learning process for VM
management could be improved during time as it could make decisions based on
the behaviours which had been seen, and choose the proper action. The entire
learning process is straightforward which would not add any complexities to the
entire framework.

The proposed Q-Learning algorithm is presented in Algorithm5. In this algo-
rithm, per a defined cycle, it is decided that virtual machines should be kept
active or put into deep sleep mode. The decision is made based on either the past
behaviours of virtual machines as observed and learned till time τ or an adjust-
ment of the learning process through supervised learning taking into account the
virtual machines’ workloads at time τ . In this way, the number of active virtual
machines for serving workloads can be balanced against incoming workloads.



Toward Cost Efficient Cloud Bursting 307

Algorithm 5: Q-Learning based VM Management
Data: Private cloud activeV Ms and nonActiveVMs, Q-Learning qTable, pau,

psp, virtual machine under-utilized factor fuu, and virtual machine
over-utilized factor fou

Result: Activate, deactivate, or keep the current status virtual machines
1 Determine the current workload of activeV Ms
2 Initialize reward, a random double number rnd, and pastRewards
3 if rnd ≤ pau then
4 pastRewards ← average(k) rewards from qTable
5 Sort pastRewards in descending order and return the index of first element
6 if index = 2 then
7 reward = reward × cfdec

8 decrease(activeV Ms)

9 else if index = 1 then
10 reward = reward × cfnon

11 Keep the current activeV Ms status

12 else
13 reward = reward × cf inc

14 increase(activeV Ms)

15 end

16 end
17 else
18 if workload ≤ fuu then
19 reward = reward × cfdec

20 decrease(activeV Ms)

21 else if workload ≤ fou and fuu ≤ workload then
22 reward = reward × cfnon

23 Keep the current activeV Ms status

24 else
25 reward = reward × cf inc

26 increase(activeV Ms)

27 end

28 end
29 Update QT using Equation 4

The presented algorithm leverages a combination of the current virtual
machines’ workload at time τ and k-past Q-Learning observations of virtual
machines behaviours with their corresponding probabilities. The former acts as
a supervised learning that corrects the learning process with a probability of psp.
In other words, it relies on the current status of VMs in the private cloud to
correct the learning process if necessary. The latter relies on some specific past
seen behaviours and autonomously manages the status of virtual machines with
a probability of pau.

The output action of the Q-Learning will be one of the following in a greedy
way: (1) activating a new virtual machine, (2) keeping the current number
of active virtual machines, or (3) deactivating one or more virtual machines.



308 A. Pasdar et al.

The action will affect the list of active virtual machines (activeV Ms) and deep
sleep VMs (nonActiveV Ms). The corresponding value of the action is recorded
in a table called Q-Learning Table (QT ). The corresponding reward for each
action is multiplied by a coefficient of (−cf inc, cfnon, cfdec) which represents
(increment, none, decrement) that clearly shows increasing active VMs (the neg-
ative sign of cf inc) is not in favour of the learning process. In contrast, decreasing
the active VMs is aligned with the goal of virtual machine management.

To update each record of corresponding action at time τ , Eq. 4 is used. In this
Equation qllr and qldf are the learning factor and the discount factor, respec-
tively. The learning factor controls to what extent the old information should
be overridden with the new obtained information. The discount factor evaluates
the importance of future rewards. Function actionEstimator() is an estimation
of optimal value in the future which is based on the current virtual machines’
workload at time τ .

QT [action] = (1 − qllr) × QT [action]
+ qllr × reward + qllr

× qldf × actionEstimater();
(4)

4 Evaluation

In this section, we evaluate the performance of CECBS in terms of VM usage
and cost in comparison with RMS [11] that dynamically schedules deadline-
constrained jobs in hybrid clouds.

4.1 Simulation Setup

Our simulations have been conducted using synthesized workloads based on Face-
book workload traces [2] which are historical Hadoop traces on a 600-machine
cluster at Facebook. In particular, we have synthesized jobs to be one of three
types: short, medium or long. Each job is associated with the length (the number
of instructions) which follows a Gaussian distribution for the purpose of execu-
tion time estimation. Short, medium, and long jobs are selected based on (mean,
variance) values that are (1.2, 0.125), (1.512, 1) and (15.12, 10), respectively. The
ratio between three job types is 89:10:1 as reported in [19]. We also make some
jobs to be privacy sensitive, i.e., 5–50%.

The private cloud consists of 50 VMs with 4 vCPUs and computing capacity
of 2200MIPS1. The private cloud is charged based on the electricity rate at the
different time of day which is categorized as off-peak, peak, shoulder with the
corresponding rate of $12.08196, $51.04627, and $24.44365 kilowatts per hour
[7]. The fixed rate for electricity is also considered. Public clouds modeled are
AWS, MS Azure and GCE.

1 We use Intel R© Xeon R© E5-4603V2 Processor as a model CPU, with a 95 W TDP
and the typical usage of 77.19W [4].



Toward Cost Efficient Cloud Bursting 309

Q-Learning parameters values are fuu of 0.3, fou of 0.7, both qllr and qllr
of 0.8, reward coefficients of −1, 0.5, +1 for cf inc, cfnon, and cfdec, respec-
tively. The VM management is called every 30 s, 60 s, and 120 s. Particle swarm
optimization parameters are c1 and c2 of 2 and w of 8.

4.2 Results

10
15
20
25
30
35
40
45
50

0 5 10 15 20 25 30 35 40 45 50

#V
M

Workload Privacy(%)

CECBS[30s] CECBS[60s]
CECBS[120s] Private
RMS

(a) VM usage.

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50

C
os

t($
)

Workload Privacy(%)

CECBS[30s] CECBS[60s]
CECBS[120s] RMS

(b) Cost.

Fig. 2. Scheduling using the private cloud alone.

In this section, we present
results when (1) jobs are
all scheduled to the private
cloud (Fig. 2) and (2) jobs are
scheduled to both private and
public clouds (Figs. 3, 4 and
5), with respect to primarily
VM usage and cost includ-
ing the number of free billing
cycles used in public clouds.

By increasing the number
of privacy workload shown in
Fig. 2a, the usage of VMs in
average also increased. Also, taking a look at the VM usage, it is understood
from Fig. 2a that VM usage in RMS is high which also can be referred from
Fig. 3a. However, it still could not utilize resources for effective execution of jobs
within their expected deadlines.

Workload distribution is also shown for CECBS (and its derivatives), and
RMS (and its derivatives) in Figs. 3a, b, c, and d, respectively. The workload dis-
tribution based on these figures shows that CECBS could effectively respond to
the availability of cost-efficient resources under their corresponding price scheme
(w.r.t Fig. 4a). The lack of diversity and incurring higher cost lead to CECBS
to use more internal resources when it would have to collaborate with Google.
In contrast, when CECBS collaborated with AWS and Microsoft, it used more
external resources as it was beneficiary to have the workload executed on the
public clouds. Therefore, this is not considerable for the usage of Google resources
as it is not as much as the other providers for both CECBS and RMS. When the
workload privacy percentage increases, the private cloud uses more resources in
a cost-efficient way.

Figure 2b (and Fig. 4) illustrates that higher dispatching jobs to the private
clouds is not always beneficial in terms of cost. As shown in Fig. 3, with higher
privacy rates, CECBS uses lower number of VMs than RMS while the number
of jobs executed on the private cloud is much higher than RMS. Moreover,
on average and per all privacy workloads, RMS has submitted more jobs than
CECBS. But RMS led to having higher private cloud cost due to using almost
all the VMs for job execution. Therefore, the actual VM usage of RMS and
CECBS shows that RMS could have dealt with jobs within the private cloud
effectively if it had managed to use VMs appropriately. Although CECBS did
not send off many jobs to the private cloud for privacy workloads under 30%,



310 A. Pasdar et al.

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45 50

#J
ob

Workload Privacy(%)

CECBS[P] CECBS[AWS]
CECBS[GCE] CECBS[MS]

RMS[P] RMS[AWS]
RMS[GCE] RMS[MS]

(a) Multi-cloud

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45 50
#J

ob
Workload Privacy(%)

CECBS[P] CECBS[AWS] RMS[P] RMS[AWS]

(b) AWS

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45 50

#J
ob

Workload Privacy(%)

CECBS[P] CECBS[GCE] RMS[P] RMS[GCE]

(c) GCE

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45 50

#J
ob

Workload Privacy(%)

CECBS[P] CECBS[MS] RMS[P] RMS[MS]

(d) MS

Fig. 3. Job proportion when CECBS and RMS collaborate with all cloud providers
and only one provider, respectively. P means private.

for higher privacy workloads, it dispatched more jobs to the private cloud while
keeping number of VM usage as low as possible. Taking a look at the VM usage
and the private VM cost, shows that the total private cost for RMS would be
nearly the same for all privacy workloads regardless of number of jobs sent off
to the private cloud. In other words, RMS has kept VMs active but CECBS has
aligned its VMs usage based on the workload arrival time.

Figure 4 illustrates the total cost incurred during workload execution under
each different approach. CECBS in comparison to its derivatives achieved the
lower cost due to the cost comparison across multiple cloud providers. This cost
reduction emerges from Hybrid Cloud Scheduler (Algorithm1), Public cloud
scheduling (Algorithm 4) in particular. They firstly determine whether there is
a suitable billing cycle to dispatch any workload to, and the cost comparison
between the private and public cloud providers to evaluate which cloud envi-
ronment would minimize the total cost for the workload execution. It is also
undeniable the cost of non-active virtual machines (idle) plays an essential role
in the total cost of workload execution.

As CECBS and its derivative forms dynamically manage active virtual
machines, the required number of them is aligned with the current workload.
Usage of active billing cycles as well as the diversity of resources on each cloud
provider helped CECBS to be more cost efficient. RMS and its derivatives could
not achieve the lowest cost (Fig. 4a and c) in spite of relying more on the private
cloud resources. RMS-Google (Fig. 4c) has the highest cost after RMS-AWS as
the resource types are not as diverse as the other cloud providers (which is also
true for CECBS), and if it was necessary to offload workloads to Google, it might
select instances that were not affordable.

It should be mentioned that when CECBS only considers Google for workload
bursting, workloads tend to be executed within the private cloud due to the cost-
efficiency. That is why CECBS has relatively the lower cost regarding resource
usage in comparison to the other CECBS derivatives. Since electricity providers
may offer a fixed rate of electricity, CECBS and RMS were also evaluated and
generally CECBS achieved the lower cost usage based on a recommended plan
[6] shown in Fig. 4b and d. Since this is only a 24 h workload execution on a



Toward Cost Efficient Cloud Bursting 311

200

250

300

350

400

450

0 5 10 15 20 25 30 35 40 45 50

C
os

t($
)

Workload Privacy(%)

CECBS[30s] CECBS[60s]
CECBS[120s] RMS

(a) Non-fixed price

200

250

300

350

400

450

0 5 10 15 20 25 30 35 40 45 50

C
os

t($
)

Workload Privacy(%)

CECBS[F30s] CECBS[F60s]
CECBS[F120s] RMS[F]

(b) Fixed(F) price

200

250

300

350

400

450

500

550

600

0 5 10 15 20 25 30 35 40 45 50

C
os

t($
)

Workload Privacy(%)

[AWS] [GCE] [MS]
[FAWS] [FGCE] [FMS]

(c) RMS drv.

200

250

300

350

400

450

500

550

600

0 5 10 15 20 25 30 35 40 45 50

C
os

t($
)

Workload Privacy(%)

[AWS] [GCE] [MS]
[FAWS] [FGCE] [FMS]

(d) CECBS drv. 30s

Fig. 4. (a) Total cost of CECBS and RMS while the electricity price is not fixed, (b)
CECBS and RMS with fixed rate, (c) RMS derivatives, (d) reporting only CECBS drv.
30 s.

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50

#P
ai

d 
C

yc
le

Workload Privacy(%)

CECBS[30s] CECBS[60s]
CECBS[120s] RMS

(a) AWS

500
700
900

1100
1300
1500
1700
1900
2100
2300

0 5 10 15 20 25 30 35 40 45 50

#P
ai

d 
C

yc
le

Workload Privacy(%)

CECBS RMS

(b) MS

10

410

810

1210

1610

2010

0 5 10 15 20 25 30 35 40 45 50

#C
re

at
ed

 C
yc

le

Workload Privacy(%)

CECBS[30s] CECBS[60s]
CECBS[120s] RMS

(c) Google created cycles

Fig. 5. The number of free cycles used by CECBS and RMS. For MS, CECBS per each
VM management cycle obtained the same value.

hybrid cloud environment, it is obvious that for a longer period of time RMS
would eventually incur high cost of using public cloud resources in comparison
to CECBS. This is also true when RMS would collaborate with only one cloud
provider.

Figure 5 shows the number cycles that jobs are executed free of charge for
CECBS and RMS. Regardless of number of jobs offloaded to the public cloud,
RMS has the lowest number of free cycles (i.e., already paid cycles) which is
shown in Fig. 5a and b for Amazon and Microsoft, correspondingly. RMS could
not re-use the paid cycles and its usage is not as high as CECBS which could be
interpreted as jobs sent to public clouds might not be eligible for using the paid
cycles. At different VM management cycle time, it is understood the number of
free cycle usage is almost the same for CECBS which could be related to the
number of jobs dispatched to these providers, and the types of jobs which are
dispatched for execution based on the cost comparison. Figure 5c refers to the
creation of billing cycles for Google. Since the billing is per second, the creation



312 A. Pasdar et al.

is only depicted as the created cycles are not eligible as valid paid cycles due the
cycle length.

5 Related Work

The cost efficiency of cloud computing has been extensively studied [8–12,14,17].
Many of these studies focus on scheduling jobs considering the tradeoff between
performance improvement and cost savings. However, they often neglect private
cloud costs, such as energy costs, and privacy; this is what distinguishes our
work from these studies.

The work in [11] is probably closest to our work in this paper. Calheiros et.
al in [11] propose a resource management system for cloud bursting. This system
adopts dynamic provisioning and scheduling of cloud resources to minimize cost
while respecting job deadlines. Charrada and Tata [12] propose a couple of pro-
cedures that are mainly based on cost calculation for choosing on or off-premise
resources. However, the privacy constraint of jobs while bursting workloads to
the public cloud is ignored. Bossche et al., [10] focus on the determination of
potential cost on private or public clouds and choosing the cost-efficient cloud
addressing deadline compliance. Abdi et al. [8] propose a binary linear program-
ming approach to cost-effectively address resource allocation within a federated
cloud while addressing deadline-constrained jobs without considering job pri-
vacy. Resource allocation is also addressed in [17] which investigates the Pareto-
optimality of cloud bursting for bag-of-tasks applications. This Pareto-optimality
is also studied by Ben-Yehuda et al. in [9].

Our work in this paper is different from these previous studies: (1) different
electricity rates within the private cloud is taken into account, (2) launching
and activating new billing cycles of different public cloud providers based on
their chagrining policies are explicitly considered, and (3) privacy is explicitly
considered.

6 Conclusion

In this paper, we have studied cost efficiency of cloud bursting with the devel-
opment of CECBS as a new scheduling framework. Due to the nature of hybrid
clouds in terms of billing policies and the ongoing cost of a private cloud, it is
crucial to cost efficiently deal with workloads. Besides, the privacy of data/jobs
should not be overlooked. We have shown this complex scheduling problem with
multiple objectives and constraints can be addressed by taking advantage of
benefits of both cloud types. Results based on real workload traces have proved
our claims.

Acknowledgment. Authors would like to express their deepest appreciation to Ms.
Chakaveh Saedi who provided valuable comments for the paper completion.



Toward Cost Efficient Cloud Bursting 313

References

1. Amazon EC2 Pricing. https://aws.amazon.com/ec2/pricing/
2. Facebook Workload Traces. https://github.com/SWIMProjectUCB/SWIM/wiki/

Workloads-repository
3. Google Compute Engine. https://cloud.google.com/compute/pricing
4. Intel Xeon E5–4603V2. https://www.zones.com/site/product/index.html?

id=102611016&page name=product spec
5. Microsoft Azure Pricing. https://azure.microsoft.com/en-au/pricing/
6. Secure Saver. https://www.energyaustralia.com.au/home/electricity-and-gas/

understand-electricity-and-gas-plans/secure-saver
7. Energy Australia: Energy price fact sheet NSW business (electricity) (2017).

https://secure.energyaustralia.com.au/EnergyPriceFactSheets/Docs/EPFSIE B
N BBAS EA 6 02-01-2017.pdf

8. Abdi, S., PourKarimi, L., Ahmadi, M., Zargari, F.: Cost minimization for deadline-
constrained bag-of-tasks applications in federated hybrid clouds. Future Gener.
Comput. Syst. 71(C), 113–128 (2017)

9. Ben-Yehuda, O.A., Schuster, A., Sharov, A., Silberstein, M., Iosup, A.: Expert:
pareto-efficient task replication on grids and a cloud. In: 2012 IEEE 26th Interna-
tional Parallel and Distributed Processing Symposium, pp. 167–178 (May 2012)

10. den Bossche, R.V., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling in
hybrid IaaS clouds for deadline constrained workloads. In: 2010 IEEE 3rd Interna-
tional Conference on Cloud Computing, pp. 228–235, July 2010

11. Calheiros, R.N., Buyya, R.: Cost-effective provisioning and scheduling of deadline-
constrained applications in hybrid clouds. In: Wang, X.S., Cruz, I., Delis, A.,
Huang, G. (eds.) WISE 2012. LNCS, vol. 7651, pp. 171–184. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-35063-4 13

12. Charrada, F.B., Tata, S.: An efficient algorithm for the bursting of service-based
applications in hybrid clouds. IEEE Trans. Serv. Comput. 9(3), 357–367 (2016)

13. Chen, L., Liu, S., Li, B., Li, B.: Scheduling jobs across geo-distributed datacenters
with max-min fairness. IEEE Trans. Netw. Sci. Eng. 6, 1 (2018)

14. Chen, Y., Sion, R.: To cloud or not to cloud?: Musings on costs and viability. In:
Proceedings of the 2nd ACM Symposium on Cloud Computing, SOCC 2011, pp.
29:1–29:7. ACM, New York, NY, USA (2011)

15. Clemente-Castello, F.J., Nicolae, B., Rafique, M.M., Mayo, R., Fernandez, J.C.:
Evaluation of data locality strategies for hybrid cloud bursting of iterative MapRe-
duce. In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID), pp. 181–185, May 2017

16. Clemente-Castelló, F.J., Mayo, R., Fernández, J.C.: Cost model and analysis of
iterative MapReduce applications for hybrid cloud bursting. In: IEEE/ACM Inter-
national Symposium Cluster, Cloud and Grid Computing (CCGRID), pp. 858–864,
May 2017

17. Farahabady, M.R.H., Lee, Y.C., Zomaya, A.Y.: Pareto-optimal cloud bursting.
IEEE TPDS 25(10), 2670–2682 (2014)

18. Hoseinyfarahabady, M.R., Samani, H.R.D., Leslie, L.M., Lee, Y.C., Zomaya, A.Y.:
Handling uncertainty: pareto-efficient BoT scheduling on hybrid clouds. In: 2013
42nd International Conference on Parallel Processing, pp. 419–428, October 2013

19. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the
Third ACM Symposium on Cloud Computing, SoCC 2012, pp. 7:1–7:13 (2012)

https://aws.amazon.com/ec2/pricing/
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
https://cloud.google.com/compute/pricing
https://www.zones.com/site/product/index.html?id=102611016&page_name=product_spec
https://www.zones.com/site/product/index.html?id=102611016&page_name=product_spec
https://azure.microsoft.com/en-au/pricing/
https://www.energyaustralia.com.au/home/electricity-and-gas/understand-electricity-and-gas-plans/secure-saver
https://www.energyaustralia.com.au/home/electricity-and-gas/understand-electricity-and-gas-plans/secure-saver
https://secure.energyaustralia.com.au/EnergyPriceFactSheets/Docs/EPFSIE_B_N_BBAS_EA_6_02-01-2017.pdf
https://secure.energyaustralia.com.au/EnergyPriceFactSheets/Docs/EPFSIE_B_N_BBAS_EA_6_02-01-2017.pdf
https://doi.org/10.1007/978-3-642-35063-4_13


Optimized Renewable Energy
Use in Green Cloud Data Centers

Minxian Xu1,2, Adel N. Toosi2(B), Behrooz Bahrani3, Reza Razzaghi3,
and Martin Singh4

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen 518055, China

2 Faculty of Information Technology, Monash University,
Clayton, VIC 3800, Australia

{minxian.xu,adel.n.toosi}@monash.edu
3 Department of Electrical and Computer Systems Engineering, Monash University,

Clayton, VIC 3800, Australia
{behrooz.bahrani,reza.razzaghi}@monash.edu

4 School of Earth, Atmosphere and Environment, Monash University,
Clayton, VIC 3800, Australia
martin.singh@monash.edu

Abstract. The huge energy consumption of cloud data centers not only
increases costs but also carbon emissions associated with such data cen-
ters. Powering data centers with renewable or green sources of energy can
reduce brown energy use and consequently carbon emissions. However,
powering data centers with these energy sources is challenging, as they
are variable and not available at all times. In this work, we formulate
the microservices management problem as finite Markov Decision Pro-
cesses (MDP) to optimise renewable energy use. By dynamically switch-
ing off non-mandatory microservices and scheduling battery usage, upon
the user’s preference, our proposed method makes a trade-off between
the workload execution and brown energy consumption. We evaluate
our proposed method using traces derived from two real workloads and
real-world solar data. Simulated experiments show that, compared with
baseline algorithms, our proposed approach performs up to 30% more
efficiently in balancing the brown energy usage and workload execution.

1 Introduction

The adoption of cloud computing has been rapid; it has been found that 70% of
organizations have at least one application deployed in clouds [1]. These appli-
cations are hosted in cloud data centers which allow users to access them via the
Internet. Due to the rapid growth of cloud data centers, it is anticipated that

Minxian Xu was with the Faculty of Information Technology, Monash University; he is
now with Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
China. A major part of this work was done while the author was at the Monash
University.

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 314–330, 2019.
https://doi.org/10.1007/978-3-030-33702-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_24&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_24


Optimized Renewable Energy Use in Green Cloud Data Centers 315

data centers will consume significant worldwide generated electricity [1]. This
huge energy consumption has an immense impact on the environment through
greenhouse gas emissions. Thus, improving the energy efficiency of the cloud data
center has attracted significant attention from researchers and the IT industry.

To ensure the sustainability of clouds, the carbon footprint of data centers
must be reduced. Apart from reducing the total energy consumption, powering
data centers with renewable (green) energy sources like wind or solar signifi-
cantly reduces the carbon emissions associated with data centers. However, the
limitation of renewable energy is that it is not as reliable as the grid power, and
it is stochastic and intermittent in its behaviour.

Microservices are small, autonomous services that are rapidly becoming the
norm for building large-scale applications in cloud data centers. With their isola-
tion and light-weight features, microservices can be dynamically switched on/off
to improve resource usage of application. This allows service providers to execute
optional microservices (e.g., an analytics engine for E-commerce website) to bet-
ter match the workload with the energy supply. To this end, one must develop
algorithms to switch microservices on/off so that the overall executed number
of microservices is maximized while minimizing the use of non-green power. In
this work, we develop a method to manage resources at the microservice level to
match the energy demand with the renewable energy supply of a data center.

Currently, most energy efficient scheduling algorithms for cloud data centers
are heuristic-based, e.g., [2,6,7]. Heuristics are designed to provide acceptable
results in a reasonable time frame. However, the entire solution space is not
searched in heuristic approaches and their performance is not guaranteed. In
practice, both future workloads and the availability of green energy are non-
deterministic, and must be modelled probabilistically. Therefore, we consider
using Markov Decision Processes (MDP) to model the stochastic nature of work-
loads and green energy availability in green cloud data centers. In this work, we
assume that the data center is powered by an on-site renewable energy system
(e.g., a photovoltaic solar power system) and the residual green energy can be
stored in batteries for near future use. When battery storage is used, a chal-
lenging question to address is “when and in what capacity should batteries be
discharged to maximize the overall executed number of microservices?”

We aim to find the optimised policy that maximizes the number of executed
microservices while minimizing brown energy (energy produced from polluting
sources) use. The policy contains actions that select how many microservices
are to be switched off and whether and in what capacity the battery power
is consumed in each time slot in accordance with the system administrator’s
preference for environmental friendliness. The key contributions are as follows:

– We model the green-aware microservices management problem as a finite
horizon Markov Decision Process problem with the objective to minimize
the usage of brown energy while maximizing the number of microservices
deployed. In our model, we consider renewable energy (green), grid electricity
(brown) and battery to power the system.



316 M. Xu et al.

– We propose an algorithm based on MDP to dynamically switch off microser-
vices and schedule battery usage to achieve the optimised results.

– We propose a tuning parameter which allows the system administrator to
make a trade-off between the workload execution and brown energy use.

– We conduct simulation-based experiments using real data derived from work-
load traces and renewable energy availability. The results show that our
proposed approach significantly reduces brown energy usage while deploy-
ing more microservices compared with baselines.

2 Related Work

Green cloud data centers powered by renewable energy is becoming an important
topic in operating cloud data centers. To the best of our knowledge, our work is
the first one to apply MDP to optimise the renewable energy use in cloud data
centers. We now discuss the related work. Table 1 also shows the comparison of
the related work based on key approaches, energy sources and objectives.

Markov Decision Process in Cloud Computing Environment. To model
the probabilistic features of cloud computing environments and make resource
management decisions, MDP has been applied in some research. Xu et al. [13]
applied approximate MDP to schedule application components in cloud data
centers to improve the trade-offs between the energy consumption and discount
offered to users. Terefe et al. [11] adopted an MDP-based multi-site offloading
algorithm for mobile cloud computing, which aims to achieve the energy-efficient
objective of mobile devices. Han et al. [5] proposed a VM migration approach
based on MDP to reduce data center energy consumption and resource shortage.
Shen et al. [10] proposed an MDP-based approach to balance the VM loads
on physical machines, which can achieve lower SLA violations and better load
balancing effects than baselines.

Our work differs significantly from these MDP-based efforts in several per-
spectives: (1) none of them applied MDP to model the probabilistic feature of
workloads and renewable energy together; (2) none of them put the efforts on
optimising the use of renewable energy; and (3) none of them considered the
actions on microservices and battery.

Renewable Energy Use in Data Centers. Renewable energy has been used
to power data centers to reduce their carbon footprint. Zhang et al. [15] proposed
a middleware system to dynamically dispatch requests to maximize the percent-
age of renewable energy used to power a network of distributed data centers
while satisfying the desired cost/budget of the service provider. They applied a
requests dispatching algorithm based on linear-fractional programming. In con-
trast, our approach is based MDP and considers the actions for battery to further
maximize the renewable energy use.

Giori et al. [4] proposed a prototype green data center called Parasol, which is
powered by solar panels, battery and grid power. They used linear programming
to manage workloads and select sources of energy. In contrast, our approach does



Optimized Renewable Energy Use in Green Cloud Data Centers 317

Table 1. Comparison of related work

Approach Approach Energy sources Objective

Linear

programming

Prediction MDP Brown Green Battery Energy-

aware

Green-

aware

QoS-

aware

Xu et al. [13] � � � �
Terefe et al. [11] � � �
Han et al. [5] � � � �
Shen et al. [10] � �
Zhang e al. [15] � � � � �
Giori et al. [4] � � � � � � �
Liu et al. [8] � � � � �
Our approach � � � � � �

not need a prediction model to predict future renewable energy availability and
workloads as Parasol does. We model workloads and renewable energy based on
probabilistic model and introduce a tuning parameter (dimmer) to balance the
trade-offs between the workload execution and brown energy use.

Liu et al. [8] used a holistic approach by considering renewable energy supply,
electricity pricing and cooling costs to improve the sustainability of data centers.
Our work differs from this one as our objective is maximising the use of renew-
able energy. Toosi et al. [12] proposed an approach to redirect virtual machine
requests to other data centers with available renewable energy. They introduced
two online deterministic algorithms for maximizing renewable energy usage. In
contrast, we apply the MDP approach for a single data center and manage the
actions for microservices and battery rather than virtual machines.

3 System Modeling and Problem Statement

Figure 1 shows the schematic view of the proposed system. We consider a data
center that consists of multiple physical machines (servers). To power the data
center, several energy sources are considered, including brown energy generated
by coal-based facilities, green energy generated by solar panels and batteries that
can store the surplus green energy. Applications constructed via self-contained
microservices deployed on physical machines to provide services for the end users.
Many applications including web applications often have microservices that fit

Fig. 1. Schematic view of the system.



318 M. Xu et al.

into the brownout [14] feature, which can be regarded as non-mandatory com-
ponents that can be dynamically activated/deactivated as need arises. For exam-
ple, microservices handling the recommendation engines for a shopping website,
or microservices running ad selection algorithms and optimization. Our approach
only targets microservices having brownout feature and all other microservices
remain untouched in the system.

3.1 States

We consider the discrete time finite-state MDP, and we aim to find an optimal
policy (state to action mapping) to achieve best results for a single day. We
discretize the time horizon into identically sized slots, i.e., each day is divided
into 24 h time slots. A finer grain time slot can be used in our model. However,
since weather data is often available in hourly basis1 and service are billed per
hour in well-known cloud providers such as AWS2, here, we focus on hourly time
slots throughout the day (solar cycle).

The system state S(t) at time-slot t includes the status of (1) demanded
microservices, (2) available renewable energy, and (3) level of battery state
of charge (SoC). The state space of active microservices at time t is given as
W (t) ≤ W̄ ∈ Z

+, where Z
+ is the set of non-negative integers and W̄ is the

maximum number of microservices the system can accommodate. The num-
ber of active microservices represents the intensity of workloads, that is, more
active microservices are required when workload is high. Availability of renew-
able energy at time t is represented by a discrete random value G(t) ≤ Ḡ ∈ Z

+.
G(t) represents the level of electricity generated by the renewable power system
and Ḡ is the maximum level of renewable power can be generated in the sys-
tem. Similarly, B(t) ≤ B̄ ∈ Z

+ is a discrete value denoting the battery level
SoC, where B̄ is the maximum charge level that battery can hold. Therefore,
the state of the system at time t, S(t), is denoted by:

S(t) Δ= [W (t), G(t), B(t)] ∈ S, (1)

where S stands for all possible states.
Figure 2a shows an example of states in our MDP-based modeling. In this

example, we have four time intervals at different states. We assume one unit
microservice(s) consumes one unit green energy or battery. Microservices are
presumed to be grouped in a way that each group roughly consume one unit of
energy. At T0, the demanded number of microservices is 6 units, green energy
level is 3 and battery level is 2, which represents the state that green energy
and battery cannot satisfy the required energy of microservices. At T1, the state
represents that green energy is sufficient to handle the entire workload, e.g. at
the noontime that solar power is adequate. In this state, no extra brown energy

1 http://www.bom.gov.au/climate/data-services/solar-information.shtml.
2 https://aws.amazon.com/premiumsupport/knowledge-center/ec2-instance-hour-

billing/.

http://www.bom.gov.au/climate/data-services/solar-information.shtml
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-instance-hour-billing/
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-instance-hour-billing/


Optimized Renewable Energy Use in Green Cloud Data Centers 319

Fig. 2. Example of states and actions in the system

is required. At T2, the state represents the situation where no green energy is
available. The number of microservices is 5, green energy level is 0 and battery
level is 2. At T3, the state represents the condition where battery is empty, so
the battery level is 0.

3.2 Actions

At the beginning of each time-slot, the system determines the control action to
switch off some microservices and to decide the allowed battery discharge. The
next state S(t + 1) depends on the current state S(t) and the decision maker’s
action A. Our model must decide to perform the best possible action in each
state. Actions are denoted as A = (a, b), where a is the number of executed
microservices and b denotes the maximum battery level allowed to be consumed
to execute microservices. The actions change the states from one to another and
achieve different rewards. The goal is to calculate the optimal policy, which is a
mapping from states to actions such that the reward is maximized. The reward
function will be discussed in the next subsection.

Figure 2b demonstrates a set of sample possible actions corresponding to the
Fig. 2a state at T0. In T0, green energy and battery cannot fully satisfy the
number of microservices. One may choose to run all 6 units of microservices
using one unit of brown energy plus the entire battery charge, i.e., A = (6, 2).
Note that green power is always being used to the maximum a head of other
sources, i.e. grid and battery. Another possible action executes only 5 out of 6
microservices and uses the entire battery storage levels so that no extra brown
energy is required, i.e., A = (5, 2). To reserve battery level charge for the next
time slot, a possible action is to execute only 4 microservices and use one or
none of the battery levels, i.e., A = (4, 1) and A = (4, 0).

The demanded workload and available green energy level at S(t + 1) are
independent of the state S(t) and are determined stochastically according to the
time. However, battery level at S(t + 1) depends on S(t) and action A. If there
is extra green energy in the last state, it will be used to charge battery in the
next state. For S(t) = [W (t), G(t), B(t)], the number of microservices that can
be executed is 0 ≤ a ≤ W (t) and the battery level that can be consumed is
0 ≤ b ≤ min(B(t), [a − G(t)]+), where [x]+ = max[0, x]. Thus, the battery level



320 M. Xu et al.

at t + 1 is determined according the following equation:

B(t + 1) = min(B̄, B(t) − b + [G(t) − a]+), (2)

where [G(t) − a]+ represents the level of not consumed green energy at t and
used to charge battery.

3.3 Reward Function

At each time slot, the process is in a state S(t), and we choose a possible action A.
The process randomly moves to the next state S(t+1) at the next time slot, and
gives the corresponding reward R(S(t), A). Our model intends to optimise two
contradictory objectives: minimizing brown energy consumption and maximizing
the number of microservices executed. Note that we target optional microservices
with an interactive nature in our model that they cannot be delayed to be exe-
cuted in the future. For example, current end users of a shopping website do not
receive suggestions for items if the recommendation service is switched off. We
introduce λr parameter to balance the trade-off between the number of microser-
vices and brown energy usage. λr can be set by the system administrators to
satisfy their cost and QoS requirements. Thus, we define the reward function
R(.) as:

R(.) = −λr × [a − G(t) − b]+ + (1 − λr) × a. (3)

The first part [a − G(t) − b]+ represents the brown energy usage and the
second part, a, shows the number of executed microservices at time slot t. When
λr = 1, the reward function only considers the brown energy usage. When λr = 0,
the reward function is R(.) = a, that is, the reward function only considers
the executed microservices. When λr is between 0 and 1, the reward function
makes a balance between the number of executed microservices and brown energy
consumption. The impact of λr will be evaluated in Sect. 5.4.

3.4 Transition Probabilities

The probability that the MDP moves into S(t + 1) is influenced by the chosen
action A. We assume that the decision maker has access to a long-time history
of workloads demand and renewable power generation to compute probabili-
ties. Thus, for each time slot, the probability of receiving the specific level of
workload (the number of demanded microservices), W (t), is known in advance
and is denoted by P (W (t)). In Sect. 5.1, we explain how these probabilities are
computed. The probability that the specific level of green power is generated at
time slot t is denoted by P (G(t)). These values are also known to the decision
maker in advance and are computed according to the history of renewable power
generation. By knowing W (t) and G(t) and action A = (a, b), we can compute
the battery level SoC at t+1. Therefore, the transition probability from S(t) to
S(t + 1) with a given action A is computed as:

PA(S(t), S(t + 1)) = P (W (t + 1)) × P (G(t + 1)). (4)



Optimized Renewable Energy Use in Green Cloud Data Centers 321

3.5 Optimal Policy

The optimal policy π∗ describes the best action for each state in MDP which
maximizes the expected reward in observation period, e.g. 24 h. The equation
for the optimal policy is shown as follows:

V π∗(S(t)) = max
A

{R(S(t), A) +
∑

S(t+1)

PA(S(t), S(t + 1)) × V π∗(S(t + 1))}, (5)

where V (S(t)) is the expected reward obtained in the observation period, i.e.,
from the current time to the last time slot. In Eq. (5), the maximum reward that
can be obtained at state S(t) is computed by optimally choosing action A that
maximizes the reward over all possible, next states S(t + 1). The above analysis
converts our model to a dynamic programming problem.

4 MDP-Based Green-Aware Algorithm

Algorithm 1 shows the pseudocodes of our MDP-based green-aware algorithm.

Initializing System Information: At the beginning time interval, the algo-
rithm uses the information to initialize system, including, the observation period,
e.g. 24 h, the maximum number of levels for workloads, green energy and battery
capacity (line 1).

Finding Reachable States and Possible Actions: Based on the probabil-
ities of all states, only states with probability larger than 0 are considered as
reachable. Meanwhile, based on the predefined maximum levels of workloads and
green energy, possible actions can be found (lines 2–16).

Algorithm 1. MDP-based Green-aware algorithm
Input: System state, transition probabilities, observation time periods.
Output: Control actions
1: Initializing observation period T , the maximum levels of workloads W̄ and green energy Ḡ,

battery capacity B̄
2: for t from 0 to T do
3: for W (t) from 0 to W̄ do
4: for G(t) from 0 to Ḡ do
5: P (S(t)) = P (W (t)) × P (G(t))
6: for B(t) from 0 to B̄ do
7: if Pr[S(t)] > 0 then
8: Adding S(t) into reachable states S

9: end if
10: end for
11: end for
12: end for
13: end for
14: for all reachable states in S do
15: Adding action A(a, b) into possible actions A(S(t)) for S(t), ∀ 0 ≤ a ≤ W (t), ∀ 0 ≤ b ≤

min(B(t), [a − G]+)
16: end for
17: Updating transition probabilities PA(S(t), S(t + 1)) from S(t) to S(t + 1)
18: Updating the reward function R(.) from S(t) to S(t + 1)
19: Calculating the optimal expected reward by algorithm 2 to find the V π∗(S(t))
20: Deciding the control actions based on V π∗(S(t)).
21: return best actions for states



322 M. Xu et al.

Updating Transition Probabilities of States: Fetching the probabilities of
different levels of workloads and availability of green energy (line 17).

Updating the Reward of States: Based on the different levels of workloads,
green energy and consumed battery, the reward of each state is updated accord-
ing to Eq. (3) (line 18).

Calculating the Utility Function: Using Algorithm 2, Algorithm 1 calculates
the optimal expected reward value of reachable states (line 19).

Deciding the Actions: According to the optimised expected reward value that
can be achieved, algorithm selects the action which maximizes the objective
function for each state according to Eq. (5).

Algorithm 2 shows how to calculate the optimal expected reward by iterating
over actions. The algorithm is based on value iteration to maximize the reward
value, which represents the best control policy. With the inputs of reachable
states and corresponding possible actions, the algorithm iterates over time peri-
ods 0 to T . The expected reward of a state is calculated in line 6. Then the
algorithm iteratively updates the best reward value by going through all the
reachable states and possible actions. In each iteration, the optimal expected
reward value V π∗(S(t)) with optimal policy π∗ is updated based on the expected
reward in the previous state. After obtaining the optimal reward value, we can
find the optimal control action.

Complexity Analysis: In our algorithm, for each state at a specific time inter-
val, only the best action to reach the state is kept, which means the other actions
are eliminated. Thus, the solutions space is Θ(Λ×Γ ×Δ) which is in polynomial
complexity, where Λ, Γ , and Δ are the maximum level for the number of active
microservices, green energy and battery, respectively.

Algorithm 2. The optimal expected reward value for all the states
Input: reachable states S(t) ∈ S, possible actions A(S(t)) and estimated transition probabilities at

time interval t as PA(S(t), S(t + 1))
Output: The optimal expected reward value
1: t = 0, V (S(0)) = 0, ∀S(0) ∈ S(0)
2: for t from 0 to T − 1 do
3: t = t + 1
4: V π∗(S(t)) = -∞
5: for S(t) ∈ S(t) do
6: V (S(t)) = maxA{R(S(t), A) +

∑
S(t+1) PA(S(t), S(t + 1)) × V (S(t + 1))}

7: if V (S(t)) > V π∗(S(t)) then
8: V π∗(S(t)) = V (S(t))
9: end if
10: end for
11: end for
12: return V π∗(S(t)) as optimal expect reward value



Optimized Renewable Energy Use in Green Cloud Data Centers 323

5 Performance Evaluations

In the following, we evaluate the performance of our proposed MDP-based app-
roach. We use two workloads derived from realistic traces along with the histor-
ical solar data from the Australian Government Bureau of Meteorology3.

5.1 Workload Traces

We use two realistic workload traces derived from Wikipedia4 and Nectar5 in
our experiments. To convert workloads to fit into the states, we divide workloads
into a set of levels with a specific range.

We use one-month Wikipedia data traces that contain 10% of all user requests
issued to the Wikipedia website during this period. The total number of requests
per hour ranges from 4 to 14 millions as shown in Fig. 3(a). The figure shows
that the Wikipedia trace follows a typical pattern with the top and bottom
number of requests during the day and night time, respectively. We divide the
number of requests per hour into 10 levels, each representing a workload level in
MDP. Each level is associated with a request rate range, of which the midpoint
is used as the representative value for the corresponding level. For instance, the
representative value for level 0 is 670 thousand and covers the range of 0 to 1340
thousand requests per hour. Figure 3(b) depicts the workload level conversion for
the Wikipedia traces. It can be observed that the data still follows the pattern
in Fig. 3(a), while the total workload levels are reduced to 10. Note that, in
our experiment, we shifted Wikipedia data traces timing in a way that its user
base would be in Australia at the same place as we consider the renewable
power generation. Therefore, the peaks of workload coincides with the peaks of
renewable power generation for the Wikipedia workload.

The Nectar Cloud platform provides the scalable computing infrastructure to
Australian researchers and contains the traces of requests submitted for instan-
tiating VM instances. Different from the Wikipedia trace, Nectar does not have
a clear diurnal pattern and requests have start time, end time and five different
VM types with the different number of vCPUs (virtual CPUs), e.g. small type
has 1 vCPU and medium type has 2 vCPUs. We calculate the cumulative vCPU
demand from users during 30 days as shown in Fig. 3(c), in which the demanded
resource ranges from 500 to 2600 vCPUs. In Nectar traces, we cannot see an
apparent pattern like that of Wikipedia. Similar to Wikipedia traces, we convert
the vCPU resource consumption into 10 levels (Fig. 3(d)). For instance, level 0
represents values from 0 to 286 vCPUs.

5.2 Workload Level Probabilities

The probability P (W (t)) shows the likelihood that workload demand falls into
a certain level in time slot t. In order to compute P (W (t)), we use existing
3 http://www.bom.gov.au/climate/data-services/solar-information.shtml.
4 http://www.wikibench.eu/wiki/2007-10/.
5 https://nectar.org.au/research-cloud/.

http://www.bom.gov.au/climate/data-services/solar-information.shtml
http://www.wikibench.eu/wiki/2007-10/
https://nectar.org.au/research-cloud/


324 M. Xu et al.

Fig. 3. (a) Original Wikipedia workloads. (b) Converted workload levels. (c) Original
Nectar workloads. (d) Converted workload levels.

historical data based on a weekly cycle. Therefore, we keep different values of
P (W (t)) for different hours and different days of a week. In order to compute
P (W (t)) for a given time slot of a weekday (e.g., Monday, 8:00 to 9:00 am),
we count the number of times that the historical workload hits a certain level
(e.g., level 5) in the existing traces. Then the number is divided by the total
number in all levels in time slot t to obtain the probability. This way, we create
seven probability matrices (each for one day of a week) that contains 10 rows
and 24 columns. Each cell shows the probability of receiving a certain level of
workload at the specific time slot. The history data we used for the probability
computation for Wikipedia is from September 19 to October 19, 2007 and for
the Nectar is from December 1 to December 30, 2013.

5.3 Solar Power Levels

In order to make the solar data incorporated into our model, we use the hourly
satellite data for the solar irradiation falling on a horizontal surface collected
by the Australian Bureau of Meteorology. The trace has more than 30 years
of hourly global horizontal solar irradiance (GHI) across Australia. We assume
that the solar system fully converts hourly GHI value to power. Figure 4 shows
the historical (original) and converted one-month solar irradiance data in Jan
2017 for the gridded data that covers Clayton campus at Monash University. In
the historical data, the maximum value of GHI is 1108W/m2 and the minimum
value is zero. We also map GHI data into 10 levels of power, where the minimum
solar level is 0 and the maximum solar level is 9.

Fig. 4. Historical and converted solar irradiance.



Optimized Renewable Energy Use in Green Cloud Data Centers 325

To compute the likelihood of green power generation at a specific level
P (G(t)), we use historical data at the same hour from the previous years. For
example, if we want to calculate the probability of renewable power generation
at level 2 at hour 11:00 am on the 1st of January, 2018, we look at the historical
data at 11:00 am on the 1st of January from 1990 to 2017. Then, the probability
that green power generation reaching level 2 is calculated based on the sample
data.

Table 2. Impact of λr on the number of microservices and brown energy usage.

λr 0 0.25 0.5 0.75 1

Average number of microservices 4.26 4.26 2.47 2.47 0

Average brown energy usage 3.26 2.4 0.60 0.60 0

5.4 Evaluations with Different λr Values

To evaluate the impact of different λr values on the number of executed microser-
vices and average energy consumption, we vary λr from 0 to 1 in the reward func-
tion as noted in Eq. (3) for the Wikipedia workload. The results are shown in
Table 2. As we expect, the larger λr value, the fewer average number of microser-
vices are executed and less brown energy is consumed. When λr = 0, the app-
roach runs the maximum average number of 4.2 microservices and consume 3.3
units of brown energy. When λr = 0.5, the average number of microservices is
reduced to 2.5 and the brown energy usage is decreased to 0.6. When λr = 1, no
microservice is executed and no brown energy is consumed. We choose λr = 0.5
to balance the trade-off in the rest of experiments. In practice, the service admin-
istrators can set λr to fit into their preferences.

5.5 Baseline Algorithms

We use the following state-of-the-art heuristic algorithms as baselines:

DMWB (Demanded Microservices Without Battery): The algorithm
executes the demanded number of microservices as it is received by the system,
but does not use the battery.

SLW (Sliding Window): This sliding window algorithm [9] uses the recent
historical actions to make an action. We set the sliding window size as 3 and the
current action is the average number of microservices in the last 3 time intervals.
SLW uses the maximum available battery capacity to power system whenever
green energy is not sufficient.

BF (Best Fit): This algorithm is a representative energy management algo-
rithm derived from [3]. It chooses the action that executes the maximum number
of microservices with the least brown energy usage. The full battery capacity is
consumed whenever green energy is insufficient.



326 M. Xu et al.

Fig. 5. Performance comparison of algorithms using Wikipedia workload.

We investigate the following metrics to evaluate system performance:

Number of Microservices: As one of the main objectives is to maximize the
number of executed microservices, this metric measures the number of microser-
vices on average over all hours.

Brown Energy Usage: Another main objective is to reduce brown energy
consumption. This metric represents the average amount of brown energy usage
over all hours. This metric can be read as the carbon footprint as well.

Algorithm Efficiency: The algorithm efficiency is represented as the optimiza-
tion objective that considers both the brown energy usage and the number of
active microservices simultaneously. The combined two objectives are derived
from Eq. (3) as: 1

T × {λ × ∑t=T
t=0 [a(t) − G(t) − b(t)]+ + (1 − λ) × ∑t=T

t=0 a(t)},
where a(t) is the number of active microservices, b(t) is the battery discharge at
time interval t, and T is the 72-h observation period.

Percentage of Green Energy Usage: We also evaluate the percentage of
green energy consumed out of the total energy usage on average over all hours.

5.6 Experimental Results

Figure 5 shows the performance comparison under the Wikipedia workload for
three baseline algorithms and our proposed Green-Aware MDP-based algorithm
(GMDP) over 3 days. The evaluated Wikipedia workloads start from October 20
to 22, 2007 and the evaluated Nectar workloads are from January 1 to 3, 2014.
To avoid the seasonal variance of solar irradiance, we repeat our experiments
with the solar data in the first three days in January, April, July and October
2017 respectively under the same Wikipedia workloads. From Fig. 5(a) and (b),
DMWB represents the baseline that executes the demanded number of microser-
vices as received, which executes 4.234 with 95% Confidence Interval (CI) (3.882,
4.586) microservices and 2.88 with 95% CI: (2.609, 3.153) brown energy usage.
The SLW algorithm lowers the number of microservices and brown energy usage
to 3.115 with 95% CI: (2.846, 3.384) and 1.781 with 95% CI: (1.649, 1.912)
respectively. The BF algorithm supports the minimum number of microservices
as 1.922 with 95% CI: (1.645, 2.199) and consumes the minimum brown energy as
0.544 with 95% CI: (0.432, 0655). Our proposed GMDP runs 27% more microser-
vices than BF as 2.436 with 95% CI: (2.137, 2.736) and its brown energy usage is



Optimized Renewable Energy Use in Green Cloud Data Centers 327

0.60 with 95% CI: (0.449, 0.756), which is only 0.6 more than BF. Figure 5(c) and
(d) depict the comparison of efficiency and percentage of green energy usage for
algorithms. While GMDP reduces the number of microservices, it achieves the
highest efficiency and percentage of green energy usage, which means GMDP can
run the maximum number of microservices with the least brown energy usage.

Fig. 6. Performance comparison of algorithms using Nectar workload.

Fig. 7. Actions corresponding to demanded workloads for (a) Wikipedia and (b) Nec-
tar. Battery actions corresponding to available battery (c) Wikipedia and (d) Nectar.

Figure 6 depicts the comparison based on the Nectar workload. In Fig. 6(a)
and (b), we can observe that the DMWB executes the maximum number of
microservices as 6.253 with 95% CI: (5.833, 6.673) and the corresponding brown
energy is 4.836 with 95% CI: (4.344, 5.329). SLW reduces the number of microser-
vices to 3.919 with 95% CI: (3.585, 4.254) and brown energy usage to 2.425 with
95% CI: (2.064, 2.787). BF achieves the least number of 1.773 with 95% CI:
(1.589, 1.958) microservices and minimum brown energy usage of 0.583 with
95% CI: (0.386, 0.782). GMDP increases microservices and brown energy usage
to 2.34 with 95% CI: (2.083, 2.598) and 0.658 with 95% CI: (0.475, 0.841), respec-
tively. Compared with BF, GMDP executes 31% more microservices with only
12% more brown energy use. GMDP has the highest efficiency and the largest
percentage of green energy usage as shown in Fig. 6(c) and (d).

As a conclusion, we can say that GMDP achieves the best trade-off between
the number of executed microservices and brown energy use, highest efficiency
and the maximum percentage of green energy use. The DMWB algorithm exe-
cutes the demanded number of microservices as received, however, its actions are



328 M. Xu et al.

not optimised according to the availability of green energy and battery status of
charge. The SLW algorithm takes the advantage of the recent actions. However,
the percentage of green energy usage is not maximized. BF finds the best action
at the current time period, however, the average value in the long term is not
optimal. The GMDP algorithm avoids the limitations of baseline algorithms by
reacting to the number of demanded microservices and searching a larger solu-
tion space. The GMDP algorithm reduces the brown energy usage to the level
requested by the system administrator through lowering the number of executed
microservices, and improves efficiency and percentage of green energy usage.

To demonstrate the behaviour of GMDP and the nature of selected actions,
Fig. 7(a) and (b) show the executed number of microservices by GMDP versus
the demanded number of microservices for the two workloads in the first day of
the three-day observation period with solar irradiance in January. From Fig. 7(a),
we notice that in some time periods, e.g. during time periods 0–1 and 9–17, the
number of demanded microservices is the same as the executed microservices for
the Wikipedia workload. This happens when the energy drawn from green sources
and battery are sufficient to handle the entire workload. However, when the green
energy and battery charge are not sufficient, e.g. during time periods 2–8, the exe-
cuted microservices controlled by actions and are less than the demanded ones.
Figure 7(b) shows similar behaviors for theNectarworkload.GMDPexecutesmore
microservices during the time period that green energy or battery charge are suffi-
cient and efficiently reduces the executed microservices with the limitation in green
energy according to the administrator preference (λr).

Figure 7(c) and (d) shows the sample battery status of charge and corre-
sponding actions in the first day of our three-day observation period with solar
irradiance in January for Wikipedia and Nectar workloads respectively. For the
Wikipedia workload, we can notice that the initial battery is consumed in time
periods 0 and 1., e.g. battery is discharged for 5 and 4 units respectively. The
battery is not recharged until the time period 12, when the green energy is
enough and can be charged into battery. Then the battery level is decreased to
0 during time periods 16 to 19, and there is no action for the battery in the
time periods 20–23. The battery actions for Nectar workloads are much simpler
compared with Wikipedia workloads. The battery is consumed in time period 0
and 1, and only recharged 1 unit at time period 14. This is because the Nectar
workloads during time periods 0 to 13 are higher than Wikipedia workloads.
Thus the green energy is consumed completely, and the battery has no chance
to get recharged.

6 Conclusions and Future Work

We modeled the green-aware microservices management problem as a finite
Markov Decision Process to reduce brown energy usage while provisioning
resources for microservices. In our model, we consider brown energy, green energy
(solar power) and a chargeable battery as the energy sources to power the data
centers. To optimise system performance, our proposed MDP-based approach



Optimized Renewable Energy Use in Green Cloud Data Centers 329

called GMDP controls system actions and decides the number of microservices
that must be executed out of the incoming workload and how much battery must
be consumed in each time slot. We used real traces derived from Wikipedia and
Nectar and Solar irradiance data from the Australian government Bureau of
Meteorology to evaluate our system performance. Experimental results show
that the proposed approach can efficiently balance the trade-off between the
number of microservices and brown energy usage. In future, we plan to design
and develop a prototype system incorporating the proposed algorithm. We will
extend our model to consider more complex scenarios including battery self-
discharge, variable grid electricity prices, and net metering. We will use a rein-
forcement learning approach to solve Markov decision processes.

Acknowledgments. This work is partially supported by Monash Infrastructure
Research Seed Fund Grant and FIT Early Career Researcher Seed Grant.

References

1. Buyya, R., Srirama, S.N., et al.: A manifesto for future generation cloud computing:
research directions for the next decade. ACM Comput. Surv. 51(5), 105:1–105:38
(2018)

2. Cianfrani, A., Eramo, V., Listanti, M., Polverini, M., Vasilakos, A.V.: An OSPF-
integrated routing strategy for QoS-aware energy saving in IP backbone networks.
IEEE Trans. Netw. Service Manag. 9(3), 254–267 (2012)

3. Farahnakian, F., Pahikkala, T., Liljeberg, P., Plosila, J., Hieu, N.T., Tenhunen,
H.: Energy-aware VM consolidation in cloud data centers using utilization predic-
tion model. IEEE Trans. Cloud Comput. 7(2), 524–536 (2019). https://doi.org/
10.1109/TCC.2016.2617374

4. Goiri, Í., Katsak, W., Le, K., Nguyen, T.D., Bianchini, R.: Parasol and
GreenSwitch: managing datacenters powered by renewable energy. In: ACM
SIGARCH Computer Architecture News, vol. 41, pp. 51–64. ACM (2013)

5. Han, Z., Tan, H., Chen, G., Wang, R., Chen, Y., Lau, F.C.M.: Dynamic virtual
machine management via approximate Markov decision process. In: Proceedings
of the 35th Annual IEEE International Conference on Computer Communications
(INFOCOM), pp. 1–9 (2016)

6. Jiang, D., Xu, Z., Liu, J., Zhao, W.: An optimization-based robust routing algo-
rithm to energy-efficient networks for cloud computing. Telecommun. Syst. 63(1),
89–98 (2016)

7. Liu, H., et al.: Thermal-aware and DVFS-enabled big data task scheduling for data
centers. IEEE Trans. Big Data 4(2), 177–190 (2018)

8. Liu, Z., et al.: Renewable and cooling aware workload management for sustainable
data centers. In: ACM SIGMETRICS Performance Evaluation Review, vol. 40, pp.
175–186. ACM (2012)

9. Shaw, R., Howley, E., Barrett, E.: A predictive anti-correlated virtual machine
placement algorithm for green cloud computing. In: 2018 IEEE/ACM 11th Inter-
national Conference on Utility and Cloud Computing, pp. 267–276. IEEE (2018)

10. Shen, H., Chen, L.: Distributed autonomous virtual resource management in dat-
acenters using finite-Markov decision process. IEEE/ACM Trans. Netw. 25(6),
3836–3849 (2017)

https://doi.org/10.1109/TCC.2016.2617374
https://doi.org/10.1109/TCC.2016.2617374


330 M. Xu et al.

11. Terefe, M.B., Lee, H., Heo, N., Fox, G.C., Oh, S.: Energy-efficient multisite offload-
ing policy using Markov decision process for mobile cloud computing. Pervasive
Mob. Comput. 27, 75–89 (2016)

12. Toosi, A.N., Qu, C., de Assunção, M.D., Buyya, R.: Renewable-aware geographical
load balancing of web applications for sustainable data centers. J. Netw. Comput.
Appl. 83, 155–168 (2017)

13. Xu, M., Buyya, R.: Energy efficient scheduling of application components via
brownout and approximate Markov decision process. In: Maximilien, M., Valle-
cillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 206–220.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 14

14. Xu, M., Buyya, R.: Brownout approach for adaptive management of resources and
applications in cloud computing systems: a taxonomy and future directions. ACM
Comput. Surv. 52(1), 8:1–82:7 (2019)

15. Zhang, Y., Wang, Y., Wang, X.: GreenWare: greening cloud-scale data centers to
maximize the use of renewable energy. In: Kon, F., Kermarrec, A.-M. (eds.) Mid-
dleware 2011. LNCS, vol. 7049, pp. 143–164. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25821-3 8

https://doi.org/10.1007/978-3-319-69035-3_14
https://doi.org/10.1007/978-3-642-25821-3_8
https://doi.org/10.1007/978-3-642-25821-3_8


Operating Enterprise AI as a Service

Fabio Casati(B), Kannan Govindarajan, Baskar Jayaraman,
Aniruddha Thakur, Sriram Palapudi, Firat Karakusoglu, and Debu Chatterjee

ServiceNow™, Inc., Santa Clara, CA 95054, USA
fabio.casati@servicenow.com

Abstract. This paper discusses the challenges in providing AI func-
tionality “as a Service” (AIaaS) in enterprise contexts, and proposes
solutions to some of these challenges. The solutions are based on our
experience in designing, deploying, and testing AI services with a num-
ber of customers of ServiceNow, an Application Platform as a Service
that enables digital workflows and simplifies the complexity of work in
a single cloud platform. Some of the underlying ideas were developed
when many of the authors were part of DxContinuum inc, a machine
learning (ML) startup that ServiceNow bought in 2017 with the express
purpose of embedding ML in the ServiceNow platform. The widespread
adoption of ServiceNow by the majority of large corporations has given
us the opportunity to interact with customers in different markets and
to appreciate the needs, fears and barriers towards adopting AIaaS and
to design solutions that respond to such barriers. In this paper we share
the lessons we learned from these interactions and present the resulting
framework and architecture we adopted, which aims at addressing fun-
damental concerns that are sometimes conflicting with each other, from
automation to security, performance, effectiveness, ease of adoption, and
efficient use of resources. Finally, we discuss the research challenges that
lie ahead in this space.

Keywords: Machine learning · Cloud computing · PaaS

1 Introduction and Motivations

Machine learning (ML)1 is becoming widespread and used in everyday consumer
applications, from face recognition on our phones to shopping recommendations,
smart dieting and fitness. It is increasingly adopted not only by big players with
deep machine learning competencies, but also by small startups and individual
developers with limited ML skills. Some of the reasons for the recent ML success
include:

1 In this paper, we use the machine learning (ML) and artificial intelligence (AI)
somewhat interchangeably because the distinction is not significant for the purposes
of this paper.

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 331–344, 2019.
https://doi.org/10.1007/978-3-030-33702-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_25&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_25


332 F. Casati et al.

1. Ubiquity of Data: The volume, variety and velocity of data being collected
and available for analysis has exploded. A small number of platforms control
an enormous amount of data on consumer behavior, and use ML to effectively
increase engagement on their platforms. Enterprises are also generating a lot
of data about their operations that can be leveraged to improve business
outcomes.

2. Ubiquity of Compute: The advent of cheap computing and of computing on
demand has significantly lowered the barriers to throwing significant comput-
ing resources at ML problems.

3. New representations and algorithms: ML algorithms themselves have
improved with highly scalable/parallel versions of various classic algorithms.
In addition, newer representation techniques for unstructured text, audio and
images using deep neural networks have revolutionized traditionally difficult
tasks.

This has led to applications that were the realm of “science fiction” to be
now realized and deployed, from self-driving cars to automated conversational
agents.

However, ML adoption within the enterprise (to automate or assist enterprise
processes such as those driving supply chain management, HR, sales, marketing,
IT service and operations management and the like) is still limited. According to
recent surveys, only 26% of the companies have integrated AI into their processes
and day-to-day operations, even in the most “digitized” organizations. While
there are pilots running in all areas2, only 18% of companies have ML embedded
in more than one functions or business unit [18]3. The challenge most companies
face - besides lack of digitization - is the shortage of AI talent, the prohibitive
cost of adopting ML/AI at scale starting with inadequate IT infrastructure, and
the lack of a clear company strategy within the organization [18].

Cloud services provide the opportunity to solve, or at least mitigate, some of
the aspects related to skills and infrastructure. Google, Amazon, Microsoft and
many other vendors provide ML services that can be invoked via API and can
scale with a few clicks, and offer both pre-trained models as well as services to
train a model over our own data. Indeed, it seems that as part of the enterprise
IT infrastructure moves to the cloud or embraces the “as a service” approach
(for both private and public clouds), ML will follow the same path.

However, doing so presents its own challenges that go well beyond devel-
oping “good” ML algorithms. This paper discusses these challenges based on
years of experience of operating low-code/no-code ML services with automated
devops at scale to businesses around the world, including the majority of Fortune
500 companies. We also present how we approached these challenges, focusing
specifically on how to define and operate an automated, scalable and secure ML
service. Despite the progress, there are important research questions that are
2 See, e.g., https://emerj.com/ai-executive-guides/enterprise-adoption-of-artificial-

intelligence/.
3 The survey was run across regions and industries in the US, reaching over 2000

companies.

https://emerj.com/ai-executive-guides/enterprise-adoption-of-artificial-intelligence/
https://emerj.com/ai-executive-guides/enterprise-adoption-of-artificial-intelligence/


Operating Enterprise AI as a Service 333

far from being solved, and in the discussion section we will outline what we
experienced as some of the key challenges lying ahead.

2 Related Work

With cloud and AI being emerging trends [3,10], many solutions that offer AI
as a service have appeared. We divide such solutions in three main classes:

– Inference as a service: the cloud service provider offers pre-trained models
that can be used via APIs. For example, nearly every big player in the IT
space provides models to detect content in images or extract features from
text snippets.

– Training as a service: here the cloud provider offers algorithms (and support-
ing infrastructure), but users can also train the model on their data or to focus
on detecting specific classes. Depending on the level of flexibility provided (or
desired by users), these can range from fixed, predefined algorithms to fully
customizable or even programmable ones, or to providing Auto-ML function-
ality where “good” parameters and hyper-parameters of the algorithms are
learned automatically based on the training data.

– Embedded AI solution as a service. AI training and prediction are still cloud
services, but they are integrated with the enterprise business process manage-
ment system (BPMS). This means that AI abstractions are made available
from within the BPMS platform and can be leveraged to assist in process
execution with little or no ad hoc coding and from within the user interface
users are already familiar with. Servicenow and Salesforce are example of
companies that offer such functionality in various ways. This approach has
many variants depending on what AI is embedded into. For example, rela-
tional DBMS providers may think of providing out of the box functionality
to predict cell values in tuples, possibly implemented via DB triggers that
populate specific cell values upon insertion or updates to records.

Many research contributions exist in all of the above solution types. For
example, Ribeiro and colleagues [12] provide a service component architecture
for providing ML as a service, aimed at scalability and also at flexibility in terms
of accommodating a variety of ML models.

As another example, Rafiki provides a cloud architecture that allows clients to
perform model training and inference [17]. The approach performs automated
and distributed hyper-parameter tuning and semi-automates model selection,
thereby relieving the user from having competences in these areas. Rafiki also
manages the trade-off between accuracy and response time during inference,
as higher accuracy, often achieved via ensemble models, may require increased
prediction time as it needs to wait for all models to complete their work.

Ease.ml addresses the problem of multi-tenant resource management for pro-
viding ML services [9]. Specifically, the work focuses on automatic selection of
the ML model to be adopted for each user with the goal of maximizing average
accuracy across users. The main contribution of the work is an algorithm for



334 F. Casati et al.

multi-tenant, cost-aware model selection based on first estimating the potential
accuracy improvement for each user based on the best model to run for them, and
on then picking the user with highest potential improvement. Experiments show
significant improvement with respect to baselines and state of the art systems.

These contributions solve problems that are related but orthogonal to what
we tackle here. Our focus is on providing an operational environment for ML so
that non ML experts can develop solutions that incorporate intelligence into their
processes without having to worry about operational aspects and while satisfy-
ing performance, security and other enterprise-level non-functional requirements.
While these requirements may restrict the freedom in terms of modeling tech-
niques available, in our experience, the benefits of automatic operationalization
outweigh a few additional points of improved accuracy that extended experi-
menting with ad hoc solutions may bring. Indeed, it is no secret that many ML
models that are developed do not make it into production because the engineer-
ing and deployment are too complex and what actually goes into production are
simpler models where the vast majority of the benefit is gained [1].

Recent research aimed at addressing the problem of data (and model) con-
fidentiality. MLcapsule [8] tackles the problem by conceiving a AIaaS approach
where the model is downloaded and run on the client side, while however main-
taining the model secret. The client in turns maintains the data secret as the
data never leaves the client. The assumption here is that the model is pretrained
and the main focus on the paper is in avoiding model stealing and reverse engi-
neering.

On the embedding side, ML algorithms and architectures have been pro-
posed to extend databases and workflows with intelligent capabilities. For exam-
ple, embedding AI into databases can be seen as promising in terms of allow-
ing a generic way to predict an attribute of a record based on the values of
other attributes for the same record. This can for example be implemented via
user-defined functions (UDFs) in SQL, but as observed in [17] it would require
implementing various ML models in UDFs as well as careful tuning to optimize
performances and prediction accuracy.

One of the largest category of embedded models are those in the context of
workflow management, and specifically in process mining and Robotic Process
Automation (RPA). Process mining - and more generally, the notion of applying
ML to process management, is a topic that has received a lot of attention in
the last two decades. The large majority of the efforts focused again on the
algorithm side, with the bulk of the work aimed at extracting process model from
traces (e.g., [2,11,19]), clustering execution traces, detecting outliers [15,16], as
well as predicting paths and execution times [5,7]. RPA leverages the results of
process mining in many ways, including identifying promising opportunities for
RPA adoption [6]. Companies providing process mining and RPA capabilities
do offer cloud services and address integration with the BPMS. For example,
companies such as Celonis or TimelinePI can connect to enterprise data stores
and application platforms (such as ServiceNow) and process execution traces,
offering a scalable cloud-based analytic system to make sense of the data from a



Operating Enterprise AI as a Service 335

process perspective. On-premises solutions are also available. RPA systems also
provide cloud-based solutions, sometimes marketed as “automation as a service”,
as well as enable in-house deployments4.

The challenges we tackle in this paper are related but we focus on abstractions
of ML functionality and on secure, integrated and scalable deployment within
the same data center of the BPMS.

3 Background: Enterprise Business Process Management

We present our concepts and architecture in the context of a digitized enter-
prise where various processes are supported or automated via systems such as
Salesforce, Jira, SAP or ServiceNow. As an example, ServiceNow5 is an appli-
cation platform as a service that offers functionality for modeling and running
workflows, and provides built-in capabilities for typical workflows, tasks, data
models and UIs in areas such as IT service management, IT operations manage-
ment, customer service and HR. The value proposition of such platforms derive
therefore not only from the application development features (e.g., the workflow
model designer, the workflow engine, the UI form designer, etc.), but also from
the built-in modules, from the ecosystem of plugins and extensions (much like
an app store for enterprise applications), from the ability to define and enforce
access to applications and data, and from the secure, scalable, efficient manage-
ment of applications and data.

Application platforms such as ServiceNow are interesting from an AI perspec-
tive for two reasons: First, they collect data that can be used by ML algorithms
to support the process. For example, they store data about how problems or
incidents are assigned to specific customer support agents or to a given level
of priority, or on how incidents are resolved. Second, they provide a uniform
way to define applications and workflows, extending the ones available out of
the box. This means that the same platform can run a variety of user-defined
applications and that the platform is aware of the UI forms, workflows and data
models that are part of an application. This provides an opportunity for inte-
grating ML capabilities into the platform: if we find a way to do so that is (i)
secure and effective from cloud management perspective and that (ii) offers ML
abstractions that make it easy for customers to leverage the intelligent features,
then we can inject ML into many processes, not just one, and with relatively
limited effort, skills required, and by leveraging the same information security,
scalability, and service level offered by the cloud BPMS.

4 See for example https://docs.uipath.com/orchestrator/docs/about-physical-
deployment for RPA architectures on UIPath.

5 https://developer.servicenow.com.

https://docs.uipath.com/orchestrator/docs/about-physical-deployment
https://docs.uipath.com/orchestrator/docs/about-physical-deployment
https://developer.servicenow.com


336 F. Casati et al.

4 AI as an Embedded Enterprise Service

4.1 Challenges

Capturing the opportunity offered by enterprise BPMS from an AI perspective
presents several challenges, especially if we want to provide the same convenience
that cloud services provide, with a low total cost of ownership so that the services
can be affordable and sustainable.

(a) Enterprise data is often the property of the enterprise, even if it is hosted in
a public cloud or service provider’s infrastructure, and consequently has very
strict access requirements. In addition, for machine learning to be effective
in making complex decisions inside enterprise applications, they have to be
well integrated with them. This is not just about exposing a model through a
REST API, but it involves encapsulating and aligning the pipeline for train-
ing and prediction that goes from the data as it exists in the application’s
database to the form required for training and inference. Once the inference
is done, ML platforms should provide a variety of mechanisms for utilizing
the output of the inference, given that it is a probabilistic outcome and not
a deterministic one.

(b) The pre-trained models that work well in the consumer context may not be
as effective in the enterprise context. For example, if we want to use Natural
Language Processing for analyzing chatbot or email interactions between
a customer service representative and a customer to determine what the
problem is, we may not be able to use commonly available word embeddings
in all situations, for several reasons:
– A word like London or Madrid denotes a location, but in specific con-

texts (such as ServiceNow), it denotes product releases6. Louise can be
the name of a person or a lake, but it can also be the name of a con-
ference room in an organization. Pre-trained word embeddings will skew
the weights to what is reasonable in the “wild wild west”, but in differ-
ent enterprises the neighborhood of “Madrid” or “Louise” will be very
different.

– More sophisticated pre-trained models such as models for dependency
parsing are also trained on public corpora and may not have the precision
needed to be effective in enterprise settings. In most cases they would
require at least some pre- and post-processing of text to bring them into
a form that will parse with the necessary precision.

(c) Expecting the average developers and product managers in IT departments
of enterprises or software companies to be familiar with such technologies
- and their many nuances - to make use of them is too high a hurdle for
adoption to happen effectively. Therefore we have to enable effective low-
code/no-code ML solution development, which in turn implies exposing ML
abstractions that can be easily integrated into enterprise processes and that
strike the right balance between generality, ease of use, and effectiveness.

6 ServiceNow releases are named from cities around the world.



Operating Enterprise AI as a Service 337

(d) The whole as-a-Service movement, especially the Software-as-a-Service
movement, has changed the economics of software. As mentioned earlier,
platforms like ServiceNow and Salesforce enable developers to develop fairly
sophisticated applications and not have to worry about deploying them
because the platform provides that for free. In order to extend that to
machine learning capabilities available within the platform, the process of
deploying machine learning solutions has to be automated so that the devel-
oper can focus on specifying what they want to train, and utilize the results
of inference in the application environment itself. Without this automa-
tion and uniformity, the cost of operating the ML solution can materially
increase. Indeed, developing and deploying complete ML solutions is much
more complex than just creating models [14]. While some ML workloads
perform significantly better on special purpose hardware, uniformity in the
upper layers of the software stack can materially reduce the cost of ongoing
operations.

(e) Testability and explainability are other big challenges that have to be over-
come for ML to be incorporated into enterprise applications. Since ML com-
putations are inherently probabilistic, it is often difficult to test ML solutions
using traditional testing methods that compare actual results with expected
results and test for equality [13]. In addition, ML-based decisioning in the
enterprise requires explainability and justification for predictions, often to
increase confidence before adoption or for legal reasons. For example, in some
restricted/regulated markets enterprises have to show that ML models they
use do not have bias (and using pre-trained models from a the consumer
context can allow bias to creep in complex ML solutions [4]).

(f) Cloud BPMS vendors carefully architect their solutions to have a footprint
that makes scaling them manageable in terms of computing resources and
costs. ML is resource-intensive both in terms of compute and storage, and
keeping the resource consumption low is essential to scale to thousands of
concurrent instances requesting to compute predictions.

(g) Finally, the ML infrastructure has to deliver the necessary security and con-
fidentiality guarantees on the data, the generated models, and the inferences
made by ML.

All of these issues contribute to the central problem we aim at, that of lower-
ing the barrier to adoption of effective AI within the enterprise processes. This
barrier does not come only from whether a solution is feasible, useful, secure
and cost-effective for a company: it also comes from how “hard” it is for the
average company to explore such solutions from a technical, architectural, legal
perspective, just to name a few. Each of these perspectives will require prepara-
tion, discussions, iterations, and possibly eventual approvals, and will invariably
involve change. Therefore, they require time, resources, as well as persistent,
committed “champions”.

We argue therefore that creating a solution that has the desirable properties
is only a necessary step towards adoption. We also claim that for the same
reasons creating a separate, autonomous cloud platform for AI services would
not only create an additional burden for the customer (and raise issues about if



338 F. Casati et al.

and how data, models and inferences are kept secure across clouds as well as to
how performance and effectiveness are managed), but would also raise the barrier
to adoption in terms of having to go through the due diligence for adopting such
architecture.

4.2 AI as a Service

The discussion above emphasizes that the architecture of embedded AI may differ
from typical “aaS” approach. As an example, Fig. 1 shows how AIaaS would be
used in a typical setting.

Fig. 1. A common architecture for leveraging AIaaS in enterprise business processes
(Color figure online)

A BPMS supports workflow definition and execution, while a separate cloud
service is available for training and inference. When the enterprise wants to
exploit ML in a process, it leverages the internal team of data scientists to
identify where it is promising and possible to do so. For example, it identifies
that classifying incoming requests by topic is feasible because of the nature and
amount of the available data.

Next, ad hoc code is written and tested by internal developers to identify the
source data to be used for training, extract it and package it for delivery to the
cloud training service (this is shown in blue in the Figure). A specific ML model
also needs to be selected and possibly configured, depending on the flexibility
allowed by the cloud AI service and desired by the enterprise.

The enterprise also needs to decide how to store the trained model, e.g.,
whether it is stored by the AI service provider (convenient, but may not meet
security requirements) or internally, and if internally, how and where, weather



Operating Enterprise AI as a Service 339

it should be encrypted and if so what the encryption, decryption and usage
workflow looks like.

For inference, additional development is needed to be able to obtain input
data, transfer it to the cloud inference engine (possibly along with the model,
if it was stored internally), obtain the prediction and apply it to the process.
This is very laborious, requires ML skills, and presents performance and security
challenges (for example, transferring the model for each prediction is likely unre-
alistic, having it stored at the AI service provider may or may not be acceptable
by the enterprise). Furthermore, specific UI (again shown in blue in the Figure)
also needs to be designed, developed, tested and deployed so that the enter-
prise process worker can leverage the result of the prediction, and be aware of
“metadata” such as the confidence level for the prediction. Code for periodically
retraining the model with fresh data (or simply with more data) must also be
in place.

While all this is feasible and presents many advantages (such as ample choice
of ML algorithms, arbitrary scalability) it requires skills, design and development
work, security engineering and very likely many levels of approvals and estab-
lishment of contractual relationships to use services and data centers for a new
company - the AIaaS provider. None of these issues is a show-stopper, but is
likely to significantly delay and raise the barrier for leveraging AI into enterprise
processes.

4.3 Embedded ML as a BPMS Service

The objective and value we are pursuing (Fig. 2) is to transition to a framework
where ML sits on top of the BPMS platform, tightly integrated with it and
enabling low code or no code deployment of ML solutions. The price to pay is
that the range of solutions that are possible are those supported by the ML
platform, and going outside the platform would imply the need of addressing all
the challenges discussed earlier, something often unrealistic in many enterprise
contexts.

Figure 3 shows how the “as a service” scenario changes with the embedded
architecture we propose. The approach here from an architectural perspective is
that the ML services, while being separate cloud services, are deployed and oper-
ated along with the BPMS, typically within the same data center and offered as
additional services within the same contractual framework with the enterprise.
The ML workflow in this case proceeds as follows (we will only describe it briefly
in the following, but the interested reader can activate cloud instances of Servi-
ceNow and install the ML functionality for free at http://developer.servicenow.
com).

1. The user decides to add ML functionality to a process. For example, it wishes
to use ML to automatically categorize incidents, so that they can be then
assigned and routed through the incident management process. To do so,
users simply state that they want to apply a classification template to a
BPMS object (in this case, Incident). Figure 4 shows part of such a template

http://developer.servicenow.com
http://developer.servicenow.com


340 F. Casati et al.

Fig. 2. Integrated ML solutions enable familiar interfaces and low/no code deploy-
ments.

Fig. 3. Integrating cloud AI/ML services with enterprise BPMSs

in ServiceNow. The details are not important at this stage, what matters
is that (i) the template has the same UX interaction paradigm as all other
applications in the platform, (ii) it is aware of the ServiceNow data model and
applications, and as such (iii) the classification task can be defined literally
with a few clicks. Users have the options of filtering data and features of inter-
est if they so wish. Users can also set specific prediction and recall thresholds
to restrict the automated solution to be applied only above certain levels of
confidence and accuracy in the results.

2. Upon definition, when the user applies the template to Incidents, the ML
plugin in ServiceNow contacts a scheduler informing it of the need to develop
a classification model.



Operating Enterprise AI as a Service 341

Fig. 4. Template for defining incident classification

3. A set of machines devoted to training run a set of trainer instances. These
instances periodically contact the scheduler once they are available to fetch
new work to be done. If there is work, the trainers contact the BPMS to fetch
the data, build the model, discard the training data, and send the model back
to the BPMS.

4. The BPMS encrypt and stores the model, to be then used for prediction.

At prediction time, the following workflow is run:

1. When a new item to be classified is created (in our example, as a new incident
comes in), the ML plugin executes a rule that invokes the prediction server.

2. Invocations go through the load balancer, that besides managing the load
among instances of the predictor, it supports stickiness, that is, routes
requests over a short time span to the same predictor instance.

3. If the predictor instance has the classification model cached, it uses it to make
the inference. If not, it checks if it is available (encrypted) on disk. If so, it
decrypts it (the key is always passed by the BPMS and not stored) and loads
it in cache. If the model is not available locally, it sends a request to the
BPMS to fetch it.

4. Periodically, the database at the predictor side is cleaned to remove rarely
used models.

The whole infrastructure is set up to be secure and, also importantly, to
ensure that it can run smoothly even in the presence of large number of requests.
For this reason, each predictor and trainer instance is constrained to a fixed
maximum memory usage and the same is true for the model size.

The end benefit is that users with little or no data science and ML compe-
tences and no coding skills can get going with an ML solution embedded into



342 F. Casati et al.

their processes. To enable this, the ML services also need to be heavily data-
driven, that is, they should adjust how they operate and what they provide
based on the specific customer data that is available. For example, certain func-
tionality such as creating word embeddings specific to a customer may or may
not make sense depending on the amount and nature of the available data; or,
classification problems over heavily unbalanced datasets and large number of
classes may mean that the ML services can decide that it will only make pre-
dictions in certain cases and for certain classes as it can do so with the required
confidence. For this reason the integrated ML services do include such data-
driven behavior that goes to some extent beyond the “typical” Auto-ML, in the
sense that the ML pipeline also needs to decide if and how a specific problem
can be approached and the extent to which a solution is provided.

5 Lessons Learned and Open Research Challenges

The concepts and architecture described here have proven to be successful in a
large number of use cases and customer engagement across the globe. However,
there are abundant opportunities for research in this space as the number of
unsolved problems remain high.

A key challenge is identifying which ML abstractions should be exposed to
strike the right balance between generality and efficacy. We want to avoid creat-
ing and maintaining separate algorithms and ML workflows for different specific
problems, but on the other hand we need solution to be effective for such prob-
lems, and sometimes general solutions lack such effectiveness. The current ver-
sion of the platform provides functionality such as classification, clustering and
similarity, but the challenge here is to identify classes of problems that are suffi-
ciently large to warrant their own, specific ML solution. These for example may
involve process-aware ML, algorithms for replacing forms in process steps with
a chatbot-like interfaces, or methods for assisting users in ensuring the quality
of the information they provide (e.g., ensuring that when a defect or incident is
reported, there is enough information to understand, replicate and diagnose the
problem).

A related concern is how to expose and explain the results of ML in the
tool and how this is made part of a successful user experience. This issue also
includes how to explain, when needed, the result of the ML algorithms, par-
ticularly in terms of confidence and how to configure behaviors based on such
confidence (e.g., automate classification for some classes if confidence is high,
provide suggestions in other cases in more or less explicit ways).

A second set of challenges revolves around how to identify opportunities
for injecting ML (in which workflows, at what stage and for what), as well as
semi-automatically defining an appropriate training datasets/featureset. Today
to some extent users still need to identify attributes of interests “by hand”, and
the system provides support in terms of (i) performing the data extraction as
needed, and (ii) alerting if data is insufficient. However, in general we can imagine
to automate the process by having the ML plugins automatically scan data and



Operating Enterprise AI as a Service 343

decide which features are relevant, or simply “dump” all possible features into
a deep learning model, perhaps tuned via auto-ML. The challenge here is that
if we do this frequently we overload both the BPMS node and the ML service
node, and the goal of keeping a low TCO is compromised.

Finally, interesting challenges remain on the UX side, related to how to help
users become familiar with how to apply ML for their problems and processes,
how to understand the value and potential of ML, and how to gauge the accuracy
(or lack thereof) of ML solution in general as well as of individual predictions
or recommendations.

If we can solve these three open problems we can take a big leap forward in
addressing the issue mentioned in the introduction - the very low adoption of
ML within enterprise processes.

References

1. Amatriain, X., Basilico, J.: Netflix recommendations: Beyond the 5 stars. https://
medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-
1-55838468f429a (2012)

2. Augusto, A., et al.: Automated discovery of process models from event logs: review
and benchmark. IEEE Trans. Knowl. Data Eng. PP, May 2017. https://doi.org/
10.1109/TKDE.2018.2841877

3. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-
mun. ACM 60, 64–72 (2017). https://doi.org/10.1145/2983528

4. Brunet, M., Alkalay-Houlihan, C., Anderson, A., Zemel, R.S.: Understanding the
origins of bias in word embeddings. CoRR abs/1810.03611 (2018). http://arxiv.
org/abs/1810.03611

5. Di Francescomarino, C., Ghidini, C., Maggi, F., Milani, F.: Predictive process
monitoring methods: which one suits me best?, April 2018

6. Geyer-Klingeberg, J., Nakladal, J., Baldauf, F., Veit, F.: Process mining and
robotic process automation: a perfect match, July 2018

7. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.C.: Business
process intelligence. Comput. Ind. 53(3), 321–343 (2004). https://doi.org/10.1016/
j.compind.2003.10.007

8. Hanzlik, L., et al.: MLCapsule: guarded offline deployment of machine learning as
a service. Technical report, September 2018. https://arxiv.org/abs/1808.00590

9. Li, T., Zhong, J., Liu, J., Wu, W., Zhang, C.: Ease.ml: Towards multi-tenant
resource sharing for machine learning workloads, September 2017

10. Mistry, S., Bouguettaya, A., Dong, H.: Economic Models for Managing Cloud Ser-
vices. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73876-5

11. Osman, C., Ghiran, A.M.: Extracting customer traces from CRMS: from software
to process models. Procedia Manufact. 32, 619–626 (2019). https://doi.org/10.
1016/j.promfg.2019.02.261

12. Ribeiro, M., Grolinger, K., Capretz, M.: MLaaS: machine learning as a service,
December 2015. https://doi.org/10.1109/ICMLA.2015.152

13. Sampson, A., Panchekha, P., Mytkowicz, T., McKinley, K.S., Grossman, D., Ceze,
L.: Expressing and verifying probabilistic assertions. In: Programming Language
Design and Implementation (PLDI), June 2014. https://www.microsoft.com/en-
us/research/publication/expressing-and-verifying-probabilistic-assertions/

https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429a
https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429a
https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429a
https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.1145/2983528
http://arxiv.org/abs/1810.03611
http://arxiv.org/abs/1810.03611
https://doi.org/10.1016/j.compind.2003.10.007
https://doi.org/10.1016/j.compind.2003.10.007
https://arxiv.org/abs/1808.00590
https://doi.org/10.1007/978-3-319-73876-5
https://doi.org/10.1016/j.promfg.2019.02.261
https://doi.org/10.1016/j.promfg.2019.02.261
https://doi.org/10.1109/ICMLA.2015.152
https://www.microsoft.com/en-us/research/publication/expressing-and-verifying-probabilistic-assertions/
https://www.microsoft.com/en-us/research/publication/expressing-and-verifying-probabilistic-assertions/


344 F. Casati et al.

14. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Cortes,
C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in
Neural Information Processing Systems, vol. 28, pp. 2503–2511. Curran Associates,
Inc. (2015). http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-
learning-systems.pdf

15. Seeliger, A., Nolle, T., Mühlhäuser, M.: Finding structure in the unstructured:
hybrid feature set clustering for process discovery. In: Weske, M., Montali, M.,
Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 288–304.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7 17

16. Seeliger, A., Sánchez Guinea, A., Nolle, T., Mühlhäuser, M.: ProcessExplorer: intel-
ligent process mining guidance. In: Hildebrandt, T., van Dongen, B., Röglinger, M.,
Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26619-6 15

17. Wang, W., et al.: Rafiki: machine learning as an analytics service system. Proc.
VLDB Endowm. 12, 128–140 (2018). https://doi.org/10.14778/3282495.3282499

18. Webb, N.: Notes from the AI frontier: AI adoption advances, but foundational
barriers remain (2018)

19. Yang, S., Li, J., Tang, X., Chen, S., Marsic, I., Burd, R.: Process mining for trauma
resuscitation, vol. 18, August 2017

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://doi.org/10.1007/978-3-319-98648-7_17
https://doi.org/10.1007/978-3-030-26619-6_15
https://doi.org/10.1007/978-3-030-26619-6_15
https://doi.org/10.14778/3282495.3282499


Towards Automated Patch Management
in a Hybrid Cloud

Ubaid Ullah Hafeez1(B), Alexei Karve2(B), Braulio Dumba2(B),
Anshul Gandhi1(B), and Sai Zeng2(B)

1 PACE Lab @ Stony Brook University, Stony Brook, NY 11794, USA
{uhafeez,anshul}@cs.stonybrook.edu

2 IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
karve@us.ibm.com, Braulio.Dumba@ibm.com, saizeng@us.ibm.com

Abstract. Software patching is routinely employed for enterprise online
applications to guard against ever-increasing security risks and to keep up
with customer requirements. However, in a hybrid cloud setting, where
an application deployment can span across diverse cloud environments,
patching becomes challenging, especially since application components
may be deployed as containers or VMs or bare-metal machines. Further,
application tiers may have dependencies, which need to be respected.
Worse, to minimize application downtime, selected patches need to be
applied in a finite time period. This paper presents an automated patch-
ing strategy for hybrid-cloud—deployed applications that leverages a
greedy algorithm design to optimally patch applications. Our implemen-
tation and evaluation results highlight the efficacy of our strategy and
its superiority over alternative patching strategies.

1 Introduction

Online enterprise applications today are often deployed in a hybrid cloud—a
computing environment that combines the benefits of public and private clouds
by sharing data and application deployment between them. A hybrid cloud is
cost-effective and elastic as the public cloud portion of the application follows a
pay-as-you-go model. On the other hand, the private cloud portion can be kept
behind a firewall, on compliant machines, to ensure data security and privacy.

To avoid security breaches and keep the application updated according to cus-
tomer requirements, most online applications employ software patching. Apply-
ing a security patch as soon as it is available can prevent 57% of the security
breaches [2]. In addition to security patches, application update patches are also
important. For example, an online application launched a time ticker sidebar
which was regarded as “spambar” by users and decreased the popularity of the
application among desktop users; this sidebar was taken down shortly to avoid
any further customer disappointment [6]. Thus, timely patching is one of the key
requirements for secure and performant functioning of online applications [2].

Patch management of applications deployed in a hybrid cloud environment
is complicated and tedious. Applications in hybrid cloud often span multiple
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 345–350, 2019.
https://doi.org/10.1007/978-3-030-33702-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_26&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_26


346 U. Hafeez et al.

components, also referred to as services or tiers. There may be numerous pend-
ing patches, with different priorities, including those that are critical. Typically,
there is only a limited time period, referred to as maintenance window, during
which the application can be brought down and patched in an offline manner.
Also, while patching, application components should be turned off in a specific
order to avoid violating dependencies and to prevent the application from crash-
ing. This makes manual patching for different tiers across different types of clouds
and deployment types expensive (and possibly infeasible) and prone to human
error. Clearly, an automated patch management system would be invaluable for
applications deployed in a hybrid cloud.

There are some existing application management tools, e.g., Puppet [12],
RCP [11] which are used for automating application patching. However, these
tools do not allow application owners to limit downtime for patching by spec-
ifying a maintenance window. Enterprise applications cannot be taken offline
for arbitrarily long time periods, making existing tools ineffective for automated
patching of enterprise applications. There is another prior work on patching
which focus on applications deployed in just a single cloud [10]. While there are
some works that discuss patch management in a hybrid cloud [8], they assume
that all components of the application have replicas and can be patched online.

This paper presents Hybrid Cloud Patch Manager (HCPM), a framework
for automated patch management for applications deployed in a hybrid cloud.
HCPM applies the optimal subset of patches in any given maintenance win-
dow and patches tiers that can be patched online whenever possible. For patch
selection in a given window, HCPM employs PatchSelect, a greedy yet optimal
algorithm. While patching, HCPM takes application dependencies into account,
by constructing a dependency graph, thus ensuring that the application is always
healthy and does not crash. Experiments confirm that HCPM effectively patches
hybrid-cloud–deployed multi-tier applications within the given offline window.
We further evaluate HCPM using simulations, and compare against other patch-
ing strategies, for a complex, 11-tier application. Our results, in various patching
scenarios, show that HCPM outperforms other strategies by 2–29%, on average,
and by as much as 2×. To make HCPM easily deployable in practice, we imple-
ment it as a plug-in that can be integrated with existing applications.

To the best of our knowledge, this is the first work on automated patch
management for enterprise applications, deployed across containers and VMs
in a hybrid cloud, that considers the length of the maintenance window and
dependencies across application tiers.

2 Automated Patch Management

HCPM automates patch management for applications deployed in a hybrid cloud
and ensures that critical patches are applied as early as possible while comply-
ing with application dependencies. HCPM’s architecture is shown in Fig. 1(a).
HCPM consists of a DependencyMapper , a PatchMonitor , a few PatchAgents
and a PatchManager . The PatchMonitor and DependencyMapper provide inputs
to PatchManager to enable automated patching, whenever feasible.



Towards Automated Patch Management in a Hybrid Cloud 347

(a) HCPM’s architecture (b) Topology

Fig. 1. Stock-trader application deployment in our hybrid cloud environment. The
direction of the edges represents the dependence relationship between each component
of the application: trader → portfolio → Db2; Stocks; Twitter; Slack; Loyalty.

The PatchAgent (per-cloud or per-tier) monitors the state of the application
and OS patches for each node, and maintains a list of pending patches along
with their importance. Whenever there is a new pending patch, the PatchAgent
communicates this list to the PatchMonitor . The PatchMonitor aggregates pend-
ing patches, along with their importance scores, across all PatchAgents . When
required, PatchMonitor communicates the pending patches to PatchManager .

The DependencyMapper constructs the dependency graph of the application
using tools for automatic discovery as well as direct input from the application.
DependencyMapper keeps updating the topology in real time as it discovers
more information about the application. The PatchManager communicates with
DependencyMapper and PatchMonitor to perform the actual patching.

For selection of offline patches, PatchManager employs our PatchSelect algo-
rithm. For a given maintenance window of size, say, W minutes, PatchSelect
finds optimal subset of patches for each tier separately as multiple tiers can
be patched simultaneously in the offline window. For a given tier, let the esti-
mated time to reboot its node be R and that to reboot all its dependent tiers
be R′; then, we have Wactual = W − R − R′ minutes left to apply patches to
the tier. PatchSelect partitions all patches according to their importance level
and then sorts the patches, for each level, in ascending order of their patching
time. Starting from the most important level (level i = 1), PatchSelect greedily
selects as many patches as possible, in sorted order, such that the sum of their
patching time is less than Wactual. If the time to apply patches of level i = 1
is W1 < Wactual, and either all patches of level i = 1 have been applied or no
more patches of level i = 1 can be applied without exceeding Wactual, then the
algorithm proceeds similarly to the next priority levels, in order, with remaining
time Wactual = Wactual − W1. Given an application with S tiers and N number
of pending patches, the time complexity of PatchSelect is O(S2 + N log(N)).

To minimize the time for applying patching, PatchManager is implemented
as a multi-process agent which brings down tiers in order of dependencies and
starts applying patches to offline tiers simultaneously. Once the patching of a
subset of patches is successful, PatchManager informs PatchMonitor , which in



348 U. Hafeez et al.

turn removes the applied patches from the pending list. If some of the patches
fail, PatchManager logs the specific cause of failure and reverts the patches so
that the application stays healthy.

3 Experimental Evaluation

This section evaluates the performance of HCPM for stock-trader [5], a multi-
tier microservice-based application deployed in our hybrid cloud environment as
shown in Fig. 1(b). Our hybrid cloud environment is composed of a 2-core, 8 GB
memory VM on AWS public cloud, and 4 4-core, 16 GB memory VMs on our
private cloud. All VMs on our private cloud are connected as a cluster using the
open-source ICP—a Kubernetes-based private cloud. To simulate real workload
of multiple users (create new portfolios, buying stocks, etc.), we use jmeter [4].

HCPM Deployment: We implement HCPM as follows: the PatchAgent mod-
ule is implemented using the publicly available Vulnerability Advisor (VA) [3]
and BigFix [1]. We use REST APIs of VA and BigFix to communicate with
PatchManager . The PatchMonitor and PatchManager are implemented in
Python. The DependencyMapper module is implemented using WeaveScope [7].

Evaluation: In our deployment of HCPM, the PatchAgent module periodically
scans for services that are missing critical security patches. HCPM extracts the
dependency (see Fig. 1(b)) among the components of the stock-trader using its
DependencyMapper module. Then, it uses the PatchSelect algorithm to find
and apply the optimal subset of patches from the list of pending patches (see
Table 1) for the given maintenance window, which is set to 2 min, and restarts
the containers within the maintenance window. While restarting, HCPM makes
sure that dependency constraints are not violated. Given a short maintenance
window of 2 min, HCPM identifies that the patches for the Db2 VM cannot be
applied, and these are thus omitted by PatchSelect; the remaining patches are
applied in 54 s.

Table 1. Pending packages for the images of stock-trader.

Tier Pending vulnerable packages

Portfolio libgcrypt20, procps, gpgv, libssl1.0.0, gnupg, libprocps4

Trader gnupg, libgcrypt20, libssl1.0.0, libprocps4, gpgv, procps

Db2 java (RHSA-2018:0349-01), wget (RHSA-2018:3052)

4 Simulation Results

For simulations (written in Python), we consider a large, multi-tier data stream-
ing application, as in VScope [9], which has 11 tiers. We use details of pending



Towards Automated Patch Management in a Hybrid Cloud 349

0 50 100
Window size as precentage of time

required to apply all patches

0

10

20

30

40
S

co
re

 o
f t

he
 s

el
ec

te
d 

su
bs

et

PatchSelect
Knapsack
Random

0 50 100
Window size as precentage of time

required to apply all patches

0

15

30

45

60

S
co

re
 o

f t
he

 s
el

ec
te

d 
su

bs
et

PatchSelect
Knapsack
Random

0 50 100
Window size as precentage of time

required to apply all patches

0

5

10

15

20

S
co

re
 o

f t
he

 s
el

ec
te

d 
su

bs
et

PatchSelect
Knapsack
Random

(a) Uniformly distributed
patch importance levels i.e.
33% hi, 33% med., 33% low.

(b) Skewed distribution of
patch importance levels i.e.
50% hi, 30% med., 20% low.

(c) Empirically distributed
patch importance levels i.e.
12% hi, 48% med., 40% low.

Fig. 2. Simulation results showing the performance of PatchSelect, knapsack, and ran-
dom patch selection under different patch importance levels.

patches based on the statistics of OS patches from last year [3]. To assign impor-
tance scores to patches, we consider three different scenarios using scores of 1
(high), 2 (med), and 3 (low) as shown in Fig. 2.

Figure 2 compares the performance of PatchSelect with two other strategies
i.e. Knapsack, which models patch selection as a knapsack problem and uses
a dynamic programming algorithm and Random, which is a simple strategy of
randomly selecting patches until the maintenance window is exhausted. In Fig. 2,
we use geometric scores when computing the accumulated score for a subset
because typically, it is more important to apply a single high priority patch
as compared to numerous low priority patches. Let N be the total number of
pending patches. Consider a subset s with mi number of patches of importance
i, for i ∈ Z

+. We define the accumulated geometric score for a subset s as:

score(s) =
∑

i≥1

mi∑

j=1

1
N i

=
∑

i≥1

mi

N i
(1)

In all three scenarios in Fig. 2, PatchSelect improve the performance over ran-
dom by about 18–29%, on average, with a maximum improvement of 53–101%.
Against knapsack, we improve performance by about 2–3%, on average, with
a maximum improvement of 6–13%. While the knapsack score is often close to
that of PatchSelect, we find that the running time of knapsack is about 100×
that of PatchSelect in almost all cases.

5 Conclusion

The emergence of hybrid cloud computing has made it easier for businesses to
leverage the elasticity of economical public clouds while safeguarding sensitive
data in their private clusters. However, this distributed deployment makes it



350 U. Hafeez et al.

difficult to patch hybrid-cloud–deployed applications, especially when the appli-
cation has to be taken down to apply critical patches. Our solution, HCPM,
automatically patches application components across clouds within the allotted
offline time period while respecting tier dependencies. Importantly, HCPM does
so while providing optimality guarantees and bounds on running time.

References

1. BigFix. https://www.ibm.com/security/endpoint-security/bigfix
2. How to shut the window of (unpatched) opportunity. https://www.welivesecurity.

com/2018/04/19/patching-shut-window-unpatched
3. IBM Vulnerability Advisor. https://github.com/IBM-Bluemix-Docs/va
4. Jmeter. https://jmeter.apache.org
5. Stock-trader application. https://github.com/IBMStockTrader
6. Time’s up for the Ticker? Facebook appears to axe feed for tracking your friends’

activity. https://techcrunch.com/2017/12/10/times-up-for-facebook-ticker/
7. Weavescope. https://github.com/weaveworks/scope
8. Hopmann, A., et al.: High availability of machines during patching
9. Wang, C., et al.: VScope: middleware for troubleshooting time-sensitive data center

applications. In: Narasimhan, P., Triantafillou, P. (eds.) Middleware 2012. LNCS,
vol. 7662, pp. 121–141. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-35170-9 7

10. Dake, S.C.: Containerized upgrade in operating system level virtualization
11. Kloeckner, K., et al.: Building a cognitive platform for the managed it services

lifecycle. IBM J. Res. Dev. 62(1), 8–11 (2018)
12. Plummer, S., Warden, D.: Puppet: introduction, implementation & the inevitable

refactoring. In: Proceedings of the 2016 ACM SIGUCCS Annual Conference (2016)

https://www.ibm.com/security/endpoint-security/bigfix
https://www.welivesecurity.com/2018/04/19/patching-shut-window-unpatched
https://www.welivesecurity.com/2018/04/19/patching-shut-window-unpatched
https://github.com/IBM-Bluemix-Docs/va
https://jmeter.apache.org
https://github.com/IBMStockTrader
https://techcrunch.com/2017/12/10/times-up-for-facebook-ticker/
https://github.com/weaveworks/scope
https://doi.org/10.1007/978-3-642-35170-9_7
https://doi.org/10.1007/978-3-642-35170-9_7


Services on the Internet of Things



QCF: QoS-Aware Communication
Framework for Real-Time IoT Services

Omid Tavallaie1(B), Javid Taheri2, and Albert Y. Zomaya1

1 School of Computer Science, The University of Sydney, Sydney, Australia
{omid.tavallaie,albert.zomaya}@sydney.edu.au

2 Department of Computer Science, Karlstad University, Karlstad, Sweden
Javid.taheri@kau.se

Abstract. Routing Protocol for Low-power Lossy Networks (RPL) is
designed by Internet Engineering Task Force (IETF) as the de facto
routing standard for Internet of Things (IoT). Supporting mobility and
providing Quality of Service (QoS) in the timeliness domain were not
addressed in the IETF standard. RPL performs poorly when it comes
to satisfying QoS constraints and adaptability to changes in the network
topology. In this paper, we address this formidable problem by propos-
ing QCF, a QoS-aware Communication Framework for real-time IoT
services. Our proposed framework provides a lightweight practical app-
roach to support timeliness requirements, and node mobility. It applies
fuzzy logic to balance energy resources and traffic loads in the network.
QCF estimates node mobility and the one-hop delay by using two novel
methods. It employs two-hop neighbor information to enhance the par-
ent selection process, and estimates the remaining time to the packet’s
deadline without using synchronized clocks. We integrate QCF into the
Contiki operating system and implement it on Zolerita IoT motes. Emu-
lation results show that QCF improves the deadline delivery ratio by
up to 67% and reduces the end-to-end delay by up to 63%.

Keywords: Internet of Things (IoT) · Quality of Service (QoS) ·
Service-oriented networking · Real-time services

1 Introduction

Routing Protocol for Low-power Lossy Networks (RPL) was designed by Inter-
net Engineering Task Force (IETF) as an IPv6 routing standard for Low-power
and Lossy Network (LLN) applications of Internet of Things (IoT). LLNs con-
sist of embedded devices with limited power, memory and processing resources
interconnected by lossy links. These networks can be used in a wide variety of
applications including home and building automation [1], industrial control [2]
and smart grids [3]. Due to inherent characteristics of LLNs, routing and con-
necting resource constrained LLN devices to the Internet are challenging issues.
LLN nodes are usually interconnected by lossy unstable links support low data

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 353–368, 2019.
https://doi.org/10.1007/978-3-030-33702-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_27&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_27


354 O. Tavallaie et al.

rates. Topology of the network is dynamically changed due to the node fail-
ure and mobility. Furthermore, multi-hop transmission over short range wireless
links is used for forwarding data through the network [4].

Based on the characteristics of LLNs, specified in [1,2], RPL is defined in
RFC 6550 [5] as an IPv6 distance vector routing protocol that creates a Directed
Acyclic Graph (DAG) topology in the network. In this topology, all resource-
limited IoT devices send their data to root nodes, border routers that connect
LLNs to the Internet and cloud servers. Based on a predefined Objective Func-
tion (OF), IoT devices estimate their logical distances to root nodes to select a
path for forwarding packets. An OF indicates how routing metrics can be used
for selecting the preferred parent from a set of one-hop neighbors. While IETF
proposed two OFs by considering the Expected Transmission Count (ETX) and
the hop count in [6,7], many implementation details are left open. For example,
combining different metrics and converting them to an OF is not addressed in
RPL, and it is still an open research topic [8]. Meeting different Quality of Ser-
vice (QoS) constraints exposes hard trade-offs among routing metrics, which is
known as a NP-complete optimal path problem [9].

In real-time IoT services, data must be delivered to root nodes before a
deadline. Therefore, only routes that can guarantee timely end-to-end delivery,
must be selected for forwarding packets [10]. In these services, the performance
of the routing operation is evaluated based on the end-to-end delay, the energy
consumption, and the ratio of packets can be delivered to root nodes before their
deadlines. Various factors impact each of these metrics that usually have different
priorities for nodes and packets. For example, for nodes which are close to the
roots, energy balancing has the highest priority as node failure may lead to the
disconnected network. To design an effective routing that can meet timeliness
requirements, not only must a good trade-off be made among given metrics, but
also criteria that impact each of these metrics must be detected and considered
in the parent selection process.

In this paper, we propose a QoS-aware Communication Framework (QCF)
that can be integrated into RPL to provide QoS guarantee of timeliness in soft
real-time IoT services. QCF supports node mobility and considers packets’ dead-
lines in the routing operation. Our contribution in this paper is summarized as
follows:

– We design a flexible communication framework, namely QCF, to (a) work
with any user-defined OF, (b) provide an efficient QoS support in the time-
liness domain, (c) balance the energy consumption and traffic loads in the
network, and (d) provide adaptability to time-varying network topology by
estimating node mobility.

– Our proposed framework does not use costly synchronization techniques or
global clocks to meet timeliness requirements.

– We apply fuzzy logic to make robust decisions and decrease the complexity
of the parent selection process.

– While most of the proposed mobility-aware IoT solutions can be applied
only on GPS-enabled nodes, our framework can estimate node mobility by



QCF: QoS-Aware Communication Framework for Real-Time IoT Services 355

monitoring the neighbor table in a lightweight method. This feature makes
QCF applicable for a wide range of IoT motes with different hardwares.

– We implement QCF on Contiki OS (open source operating system for IoT)
[11] and Zolerita IoT motes [12]. It can be easily integrated into the IoT pro-
tocol stack to be used as a service-oriented middleware for real-time services.

To elaborate our work in this paper, we organize the following sections.
Section 2 provides an overview of RPL; Sect. 3 details our proposed framework.
Section 4 is to evaluate the performance of QCF. Section 5 discusses related work.
Finally, Sect. 6 concludes this paper. Table 1 summarizes most of symbols used
in this work.

2 RPL Overview

Constructing topology is performed in RPL based on the OF that defines how
routing metrics can be used for the rank calculation. A node’s rank shows its

Table 1. Main symbols used in this paper

Symbol Definition

G The topology graph of the network

V The set of all nodes

S The set of all IoT nodes

R The set of all root nodes

E The set of all links

Ranki The rank of node i in the DAG topology

Costi,j The cost of using the wireless link between nodes i and j

CSi The candidate set of node i

NSi The neighbor set of node i

PSi The parent set of node i

Di
j The computed one-hop delay metric for node j, in node i

Pi The parent of node i in the DAG topology

W i
j The computed weight for node j, in node i

Ej The residual energy of node j

Ei
j The computed energy metric for node j, in node i

Qj The queue length of node j

Qi
j The computed queue metric for node j, in node i

N i
j The computed node metric for node j, in node i

QoSi
j The computed QoS metric for node j, in node i

Mi The mobility metric of node i

TwoHopDi
j The computed two-hop delay metric for node j, in node i



356 O. Tavallaie et al.

Fig. 1. An example of a DAG topology.

logical distance from a root node in the DAG topology. Ranks are increased
in the direction from root nodes to leaf nodes. In the DAG topology, all edges
are directed toward and terminate at DAG roots in a way that no cycle exists.
Each DAG consists of at least one Destination Oriented Directed Acyclic Graph
(DODAG). A DODAG has only one root node so that each IoT node in a DAG
can belong to only one DODAG. In addition, all DODAGs in the same RPL
instance use the same OF. Figure 1 shows a DAG consists of two DODAGs in
a network of nine IoT nodes and two root nodes. Hop-count was considered as
the OF for this network.

For a DAG G = (V, E) consists of n DODAGs Gi = (Vi, Ei), the sets of all
nodes and all possible wireless links can be seen as

V =
n⋃

i=1

Vi, E =
n⋃

i=1

Ei. (1)

All nodes can be categorized into two classes of roots and IoT nodes. Thus, the
set of all nodes in DAG G can be defined as

V = (S ∪ R), (2)

where S and R are sets of IoT nodes and roots respectively. Since each node of
a DAG belongs to one DODAG, S and R can be defined as

S =
n⋃

i=1

Si, R =
n⋃

i=1

Ri. (3)

∀i � n, |Ri| = 1 reflects that each DODAG consists of only one root node.
Building a DAG starts from root nodes by broadcasting DODAG Information



QCF: QoS-Aware Communication Framework for Real-Time IoT Services 357

Object (DIO) messages to one-hop neighbors. DIO is an ICMPv6 message that
contains the node rank and information about the DODAG. By receiving a DIO
message, the receiver adds one-hop neighbors with lower ranks to its parent set.
After selecting the preferred parent from the parent set, each node i with the
parent Pi updates its rank by

Ranki = RankPi
+ Costi,Pi

, (4)

where Costi,Pi
is the cost of using the wireless link (i, Pi) that connects node i

to its parent Pi. In Fig. 1, this cost is considered as one unit for all links between
one hop neighbors. When a node updates its rank, it broadcasts a DIO message
contains the new rank to inform its one-hop neighbors of the change in the
DODAG topology. In order to avoid loops, nodes with higher ranks cannot be
selected as parents. Nodes’ ranks are decreased toward the roots that have the
minimum rank in the network topology.

3 QCF: QoS-Aware Communication Framework

In this section, we present our framework and explain its modules. QCF considers
node and link metrics in selecting the preferred parent as the next hop. It employs
information of two-hop neighbors for calculating energy, queue and delay metrics.
Moreover, our framework updates the remaining time to the packet’s deadline
in each hop by estimating the one-hop delay.

3.1 Creating the Parent Set

A node can select only neighbors with lower ranks as its parents. The candidate
set of node i is defined as

CSi = {j|j ∈ NSi, Rankj < Ranki}, (5)

where NSi is the neighbor set of node i. This set contains all nodes placed in the
radio range of node i. For on-time delivery of packet p, the estimated one-hop
delay of a neighbor must be less than the packet’s deadline. Hence, the parent
set of node i is defined according to

PSi = {j|j ∈ CSi, Di
j < Deadlinei

p}, (6)

where Di
j is the estimated delay for forwarding a packet from node i to node

j. To choose the preferred parent as the next hop in the DAG topology, node
i computes both node and delay metrics for each neighbor, and then combines
them to a QoS metric. As a result, for all nodes j ∈ PSi, a weight is computed
by node i. Finally, the neighbor with the maximum weight is selected as the next
hop, i.e.

Pi = arg max
j∈PSi

W i
j . (7)

It is important to note that ranks are calculated based on the OF which is
independent from QCF.



358 O. Tavallaie et al.

3.2 Node Metric

In QCF, the node metric is computed based on two-hop neighbor information.
This solution is implemented without increasing the number of control packets,
mainly because each node not only broadcasts its residual energy and its queue
length, but also sends information of its parent within the option field of DIO
messages. As shown in [13], the performance of the network can be improved by
using multi-hop information, although this may reduce the network life-time for
increasing the control packet overhead. In our proposed framework, we do not
increase the number of DIO messages for sending QCF’s control information,
yet still, we can make better decisions for selecting the next hop. We consider
different priorities for the information of two hops. This is based on the fact that
energy consumption and congestion are severely increased for the nodes that are
close to the root node. To address this issue, node i computes the energy metric
for node j ∈ PSi by

Ei
j = λEj + γEpj

, (8)

where Ej and Epj
indicate the residual energies for nodes j and Pj respectively.

Node i receives this information in DIO messages, and computes Ei
j . λ and γ are

used to prioritize nodes based on their logical distances to the root. We consider
higher priorities for parent nodes as they are always closer to the root node
(λ < γ). The values of λ and γ are determined by the following conditions:

λ + γ = 1, λ =
RankPj

RankPj
+ Rankj

, (9)

thus
γ =

Rankj

RankPj
+ Rankj

. (10)

For example, γ = 0.66 (λ = 0.33) when Rankj = 2 and RankPj
= 1. In the RPL

standard, ranks are increased in the direction from roots toward the leaf nodes.
By increasing the logical distance from the root node, both Rankj and RankPj

are increased that results in reducing the difference between λ and γ.
By using the same approach, node i computes the queue metric for node j

according to
Qi

j = λQj + γQPj
, (11)

where Qj is the number of packets are stored in the queue of node j. Exponential
Weighted Moving Average (EWMA) is applied to smooth the queue metric and
make it resilient against sudden changes as

Qj(t) = αQj(t − 1) + (1 − α)qj(t), (12)

where qj(t) is the queue length of node j at time t, Qj(t − 1) is the weighted
average queue length of node j at time t − 1, and 0 < α < 1 is the smooth factor.

To combine Qi
j with Ei

j and convert them into the node metric, we use
a fuzzy system with three membership functions for each metric. Figure 2(a)



QCF: QoS-Aware Communication Framework for Real-Time IoT Services 359

0

0.5

1

0 β 2β 3β 4β

M
em

be
rs

hi
p 

de
gr

ee

Residual energy (mJ)

low
medium

high

(a)

0

0.5

1

0 2L 4L 6L 8L

M
em

be
rs

hi
p 

de
gr

ee

Queue length

short
average

long

(b)

Fig. 2. Membership functions for (a) the energy metric, (b) the queue metric.

shows the trapezoidal membership functions that we use for the energy metric.
These functions are defined as

low(Ei
j) =

⎧
⎪⎨

⎪⎩

1 Ei
j ≤ β

Ei
j−2β

β−2β β < Ei
j < 2β

0 2β ≤ Ei
j

, (13)

medium(Ei
j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 Ei
j ≤ β

Ei
j−β

2β−β β < Ei
j < 2β

1 2β ≤ Ei
j ≤ 3β

Ei
j−4β

3β−4β 3β < Ei
j < 4β

0 4β ≤ Ei
j

, (14)

high(Ei
j) =

⎧
⎪⎨

⎪⎩

0 Ei
j ≤ 3β

Ei
j−3β

4β−3β 3β < Ei
j < 4β

1 4β ≤ Ei
j

, (15)

where β is one fifth of the node’s initial energy. Each membership function gener-
ates a value that shows the membership degree of the residual energy to a fuzzy
set. Likewise, we use 3 membership functions for the queue metric according to
Eqs. (16), (17), and (18). Figure 2(b) shows these membership functions where
L is set as one tenth of the maximum queue size.

short(Qi
j) =

⎧
⎪⎨

⎪⎩

1 Qi
j ≤ 2L

Qi
j−4L

2L−4L 2L < Qi
j < 4L

0 4L ≤ Qi
j

, (16)

average(Qi
j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 Qi
j ≤ 3L

Qi
j−3L

5L−3L 3L < Qi
j < 5L

1 Qi
j = 5L

Qi
j−7L

5L−7L 5L < Qi
j < 7L

0 7L ≤ Qi
j

, (17)



360 O. Tavallaie et al.

long(Qi
j) =

⎧
⎪⎨

⎪⎩

0 Qi
j ≤ 6L

Qi
j−6L

8L−6L 6L < Qi
j < 8L

1 8l ≤ Qi
j

. (18)

In the next step, Mamdani fuzzy inference system [14] is used to combine
fuzzified input values to the fuzzy output value ni

j . Table 2 shows the rules which
are applied for combining fuzzy values of queue and energy metrics. We define
three output fuzzy sets for the node metric: good, moderate and bad. By using
maximum and minimum operators, output membership functions are defined as

good(ni
j) = Max

⎛

⎝
Min(medium(Ei

j), short(Qi
j)),

Min(high(Ei
j), average(Qi

j)),
Min(high(Ei

j), short(Qi
j))

⎞

⎠ , (19)

moderate(ni
j) = Max

⎛

⎝
Min(low(Ei

j), short(Qi
j)),

Min(medium(Ei
j), average(Qi

j)),
Min(high(Ei

j), long(Qi
j))

⎞

⎠ , (20)

bad(ni
j) = Max

⎛

⎝
Min(low(Ei

j), long(Qi
j)),

Min(medium(Ei
j), long(Qi

j)),
Min(low(Ei

j), average(Qi
j))

⎞

⎠ . (21)

Finally, in the defuzzification step, we generate a crisp value for the node
metric from the outputs of three membership functions. Centroid defuzzification
is used for generating the crisp output N i

j that ranges from 0 to 100. Figure 3
shows output membership functions are used in the defuzzification process.

Table 2. Rules for combining energy and queue length metrics

Energy/Queue Short Average Long

Low Moderate Bad Bad

Medium Good Moderate Bad

High Good Good Moderate

0

0.5

1

0 25 50 75 100

M
em

be
rs

hi
p 

de
gr

ee

Node metric

bad
moderate

good

Fig. 3. Output membership functions used in the defuzzification process.



QCF: QoS-Aware Communication Framework for Real-Time IoT Services 361

3.3 Delay Metric

In QCF, each node estimates the one-hop delay to the next hop when it receives
an Acknowledgement (ACK) packet. Before sending the packet p to the next
hop, the sender (node i) saves its local time Sendi

p in a delay table which has
two columns PacketID, and SendT ime. When node i receives the ACK packet
at time RecvACKi

p, it estimates the one-hop delay to its next hop (node j) as

Di
j = (RecvACKi

p − Sendi
p) − TransDj,i(ACK) − PropDj,i(ACK), (22)

where PropDj,i(ACK) is the propagation delay for sending the ACK packet
from node j to node i. The propagation delay depends on the distance between
two nodes and the propagation speed of the wireless medium, that is equal to,
or a little less than the speed of light [15]. We consider a constant value for the
propagation delay in computing the delay metric, as it is less than 1 ms in our
experiments. TransDj,i(ACK) is the transmission time of the ACK packet that
depends on the size of the packet and the channel capacity between nodes j and
i (cj,i). In order to estimate this delay, the receiver sends its transmission rate to
the sender in the ACK packet. Thus, node i can compute TransDj,i(ACK) by

TransDj,i(ACK) =
PacketSize(Ack)

cj,i
. (23)

To improve the delay estimation process, we employ the two-hop neighbor
information in QCF. This idea can provide a better insight to select the next
hop in the path that results in decreasing the end-to-end delay from the source
node to the root. The two-hop delay metric for selecting node j as the parent of
node i is defined as

TwoHopDi
j = λDi

j + γDj
Pj

. (24)

We differentiate two hop neighbors based on their logical distances to the root
node, as we applied it for energy and queue metrics. Based on this, higher pri-
orities are always considered for parent nodes in the routing operation.

3.4 QoS Metric

In order to define the joint QoS metric, node and delay metrics are normalized by

QoSi
j = (1 − δi

p)(1 − TwohopDi
j

max
k∈PSi

TwoHopDi
k

) + δi
p

N i
j

max
k∈PSi

N i
k

, (25)

δi
p =

Deadlinei
p

Deadlinep
, (26)

where δi
p is a trade-off parameter between node and delay metrics. δi

p is defined
by Eq. (26) based on the fact that by decreasing the remaining time to the
deadline of a packet, the priority of the delay metric should be increased. In Eq.
(26), Deadlinei

p and Deadlinep show the current updated deadline (when the
packet is processed at node i) and the initial deadline of packet p respectively.



362 O. Tavallaie et al.

3.5 Mobility Metric

For IoT nodes without GPS modules, mobility can be estimated based on the
changes in the set of one-hop neighbors. We use this idea to define the mobility
metric. We noticed that changes in the number of rows of the neighbor table
cannot be detected when mobile nodes move in a network with the uniform node
distribution, while insert and delete operations are performed on the neighbor
table for adding or removing neighbors. We monitor the neighbor table during
n time slots to deal with stop times in mobility models. Node j computes its
mobility metric by

Mj =

∑n−1
k=0 Min( ωj(t−k)

Max(φj(t−k),1) , 1)

n
, (27)

where φj(t) and ωj(t) are the number of rows (neighbors), and the number of
insert/delete commands that are applied at time slot t on the neighbor table of
node j. This metric is computed and sent to one-hop neighbors in DIO packets.
0 ≤ Mj ≤ 1 and more mobility a node has, the higher would be its mobility
metric. As a result, Mj = 0 reflects no mobility that does not have any impact
on the final weight of node j, as it is computed by

W i
j = QoSi

j × (1 − Mj). (28)

Algorithm 1. QCF operation for forwarding packet p in node i
1 PSi ← Ø, MaxNodeMetric ← −1, MaxDelay ← −1
2 for each node j ∈ NSi do
3 if Rankj < Ranki then
4 if Di

j < Deadlinei
p then

5 PSi ← PSi ∪ {j}
6 if MaxDelay < TwoHopDi

j then

7 MaxDelay ← TwoHopDi
j

8 end

9 if MaxNodeMetric < Ni
j then

10 MaxNodeMetric ← Ni
j

11 end

12 end

13 end

14 end
15 if PSi = Ø then
16 Drop Packet p
17 else
18 MaxWeight ← −1

19 Compute δi
p by Eq. (26)

20 for each node k ∈ PSi do
21 Compute QoSi

k by Eq. (25)

22 Compute W i
k by Eq. (28)

23 if MaxWeight < W i
k then

24 MaxWeight ← W i
k

25 Pi ← k

26 end

27 end
28 Forward packet p to node Pi

29 end



QCF: QoS-Aware Communication Framework for Real-Time IoT Services 363

Node i computes this weight for all nodes in its parent set (∀j ∈ PS(i)).
Finally, the neighbor with the maximum weight is selected as the preferred
parent. Algorithm1 shows how QCF operates in node i for forwarding packet p.
In this algorithm, MaxDelay, and MaxNodeMetric are the maximum values of
two-hop delays and node metrics for neighbors with estimated one-hop delay less
than the packet’s deadline. These values are used for computing the QoS metric
in Eq. (25). It should be noted that, Algorithm1 does not compute the metrics
that are independent from the packet’s deadline. These metrics are computed
only when nodes receive DIO or ACK packets.

3.6 Updating the Packet’s Deadline in Each Hop

In delay sensitive IoT applications such as health care monitoring, the perfor-
mance of a system is measured based on the number of packets can be delivered
to the roots before their deadlines. In these applications, sending packets without
considering their deadlines not only wastes bandwidth and energy resources, but
also increases the average end-to-end delay in the network. By calculating the
elapsed time and updating the packet’s deadline in each hop, only neighbors with
one-hop delays less than the packet’s deadline, can be selected as the next hop.
In addition, packets with expired deadlines are detected and dropped for sav-
ing network resources. However, synchronizing IoT nodes in LLN is challenging
due to limited energy resources and lossy communications. In QCF, we update
deadlines of packets in each hop without using synchronization; by applying a
cross layer solution in the MAC and network layers. To this end, we compute
the following four delays for each neighbor:

– Processing delay: the time interval between receiving a packet at the MAC
layer, to completion of routing operations and directing the packet to the
queue. This delay includes the required time for different operations such as
checking bit level errors, and examining the header of the packet.

– Queuing delay: the waiting time of a packet in the queue before transmis-
sion. This delay includes channel access time for finding the channel idle, and
also the waiting time for re-sending collided packets.

– Transmission delay: the time required for pushing all the bits of a packet
into the link and transmitting them to the receiver. This delay depends on
the packet size and the transmission rate of the wireless link.

– Propagation delay: the time required for propagating one bit from the
sender to the receiver. It depends on the distance between two neighbors and
the propagation speed of the wireless link.

For updating the deadline of a packet, QCF does not send any additional
control messages, instead, we use only four bytes to store the current deadline of
a packet on its header. By receiving the last bit of the packet p in node i, QCF
saves the local receive time Recvi

p, and calculates the sum of the processing delay
(ProcDi

p) and the queuing delay (QueDi
p) just before forwarding the packet at

time Forwardi
p as

ProcDi
p + QueDi

p = Forwardi
p − Recvi

p. (29)



364 O. Tavallaie et al.

Transmission delay for sending the packet p from node i to node j can be com-
puted by Eq. (23), as we explained in Sect. 3.3. Hence, the total elapsed time of
packet p in node i is computed as

Elapsei
p = (Forwardi

p − Recvi
p) + TransDi,j(p) + PropDi,j(p). (30)

Node i subtracts Elapsei
p from the current deadline (Deadlinei

p) just before
transmitting the packet to node j. Thus, node j receives the packet p with the
deadline (Deadlinej

p) updated in node i just before the transmission by

Deadlinej
p = Deadlinei

p − Elapsei
p. (31)

By using this approach, nodes can drop packets that have deadlines shorter than
estimated one-hop delays of parents. This leads to saving network resources and
decreasing the average end-to-end delay.

4 Performance Evaluation

We integrated QCF into the Contiki OS and evaluated its performance in Cooja
(Contiki network emulator). Also, we implemented our framework on Zolerita
IoT motes (Fig. 4) to take advantage of the unique characteristic of Cooja that
allows us to generate the exact binary codes that could be run on real motes as
well. Memory limitation of Zolerita motes was considered in the implementations;
the size of generated binary codes is less than 32 KB in all experiments. In our
emulation scenarios, 2 roots and 50 IoT nodes are distributed in an area with the
size 200 m-by-200 m, while root nodes are placed in the top area of the terrain.
We used 2 scenarios for each experiment: (1) without any mobile nodes, (2) using
random waypoint mobility model in 10% of nodes. In addition, we have evaluated
the performance of QCF for different timeliness requirements and traffic loads.
IEEE 802.15.4 is used as the MAC layer; transmission and interference ranges
are adjusted to 50 m and 100 m respectively.

Figure 5(a) shows the ratio of the packets are delivered to the roots before
their deadlines. In all cases, QCF enhances Deadline Delivery Ratio (DDR) of
RPL by at least 25%. In addition to considering the queue length, QCF updates
deadlines of packets at each hop, and selects only parents with the estimated

Fig. 4. Zolerita IoT motes used in emulations.



QCF: QoS-Aware Communication Framework for Real-Time IoT Services 365

 0
 20
 40
 60
 80

 100

400 600 800 1000

D
D

R
 (

%
)

Deadline (ms)

RPL
RPL + QCF

(a) Deadline delivery ratio

 0
 100
 200
 300
 400
 500
 600
 700
 800

400 600 800 1000

E
2

E
 d

el
ay

 (
m

s)

Deadline (ms)

RPL
RPL + QCF

(b) End-to-end delay

 0
 10
 20
 30
 40
 50
 60
 70

400 600 800 1000

D
M

R
 (

%
)

Deadline (ms)

RPL
RPL + QCF

(c) Deadline miss ratio

Fig. 5. Performance of QCF in a static network under varied deadline.

 0
 20
 40
 60
 80

 100

400 600 800 1000

D
D

R
 (

%
)

Deadline (ms)

RPL
RPL + QCF

(a) Deadline delivery ratio

 0
 100
 200
 300
 400
 500
 600
 700
 800

400 600 800 1000

E
2

E
 d

el
ay

 (
m

s)

Deadline (ms)

RPL
RPL + QCF

(b) End-to-end delay

 0
 10
 20
 30
 40
 50
 60
 70

400 600 800 1000

D
M

R
 (

%
)

Deadline (ms)

RPL
RPL + QCF

(c) Deadline miss ratio

Fig. 6. Performance of QCF in a mobile network under varied deadline.

one-hop delay less than the packet’s deadline. This results in dropping packets
with expired deadlines and decreasing the average end-to-end delay, as shown
in Fig. 5(b). RPL has the same end-to-end delay in all experiments as it does
not have any mechanism to update and consider the packet’s deadline in the
parent selection process. QCF decreases the end-to-end delay of RPL by 63%
when the deadline is 400 ms. Figure 5(c) presents the performance of QCF for
Deadline Miss Ratio (DMR), the percentage of delivered packets that missed
their deadlines. By decreasing the remaining time to the deadline, QCF increases
the priority of the two-hop delay metric in Eq. (25) for computing the QoS
metric. This leads to selecting parents with shorter two-hop delays. Also, by
updating the packet’s deadline, QCF drops packets with expired deadlines at
each hop. As a result, QCF has DMR less than 10% in all experiments, while
the DMR of RPL is increased from 19% to 62%, when the packet’s deadline is
decreased from 1000 ms to 400 ms.

Figure 6 shows the performance of QCF in a network with mobile nodes.
As Fig. 6(a) and (b) present, QCF can enhance the performance of RPL by
considering node mobility in selecting the preferred parent. Based on Eq. (28),
neighbors with high mobility have less chance to be selected as the next-hop.
This leads to avoid retransmissions of packets that cannot be delivered to mobile
parents. Similar to experiments in the static network, QCF has deadline miss
ratio less than 10%, while up to 68% of packets delivered by RPL missed their



366 O. Tavallaie et al.

 0
 20
 40
 60
 80

 100

0 0.25 0.5 1 2 3 4

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 (

%
)

Packet/second/node

RPL
RPL + QCF

 0
 10
 20
 30
 40
 50
 60

0 0.25 0.5 1 2 3 4

IC
M

P
 P

ac
k
et

s/
n
o
d
e

Packet/second/node

RPL
RPL + QCF

 0
 1
 2
 3
 4
 5
 6
 7

0 0.25 0.5 1 2 3 4

P
ar

en
t 

ch
an

g
es

/n
o
d
e

Packet/second/node

RPL
RPL + QCF

(a) Energy consumption (b) ICMP packets (c) Parent changes

Fig. 7. Performance of QCF under different traffic loads in a static network.

 0
 20
 40
 60
 80

 100

0 0.25 0.5 1 2 3 4

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 (

%
)

Packet/second/node

RPL
RPL + QCF

(a) Energy consumption

 0
 10
 20
 30
 40
 50
 60

0 0.25 0.5 1 2 3 4

IC
M

P
 p

ac
k
et

s/
n
o
d
e

Packet/second/node

RPL
RPL + QCF

(b) ICMP packets

 0
 1
 2
 3
 4
 5
 6
 7

0 0.25 0.5 1 2 3 4
P

ar
en

t 
ch

an
g
es

/n
o
d
e

Packet/second/node

RPL
RPL + QCF

(c) Parent changes

Fig. 8. Performance of QCF under different traffic loads in a mobile network.

deadlines, as shown in Fig. 6(c). This increases the energy consumption and the
end-to-end delay, that makes RPL inefficient in delay-constrained applications.

Figure 7(a) presents the average energy consumption per node in a static
network. For traffic loads with data rates less than 1 packet per second, both
methods have roughly the same energy consumption. QCF increases the energy
consumption of RPL when the packet generation rate is higher than 1 packet per
second. This is because QCF changes the preferred parent more frequently to
balance the loads of parent nodes, as it considers the queue length in the parent
selection process. This results in broadcasting DIO packets to inform one-hop
neighbors of the change in the DAG topology. As shown in Fig. 7(b), and (c),
QCF increases the average number of ICMP packets and the average number of
parent changes of RPL when the packet generation rate is higher than 1 packet
per second, similar to Fig. 7(a).

Figure 8 shows the performance of QCF in a mobile network. By estimating
mobility of neighbor nodes, QCF decreases ICMP packets overhead and the
average number of parent changes by up to 21% and 41% respectively.

5 Related Work

The load balancing problem of RPL has been investigated in various articles [8,
16–18]. The combination of ETX and the queue length was used in QU-RPL [8]
for improving the load balancing and the delivery ratio. This protocol considers



QCF: QoS-Aware Communication Framework for Real-Time IoT Services 367

higher priorities for parent nodes and computes the final rank of each node based
on the number of hops, ETX and the queue length. Compatibility of QU-RPL
with RPL was not discussed by authors. In [16], authors proposed a backward
compatible extension of RPL (BRPL) for high-throughput IoT networks. BRPL
supports mobility and tries to switch smoothly between back-pressure routing
and RPL. It creates the DAG topology based on the queue backlog and the OF
provided by the user. BRPL is fully compatible with RPL, it tries to eliminate
traffic congestions by utilizing network resources.

A minimum degree spanning tree is built in MD-RPL [17] to maximize the
lifetime of IoT nodes. MD-RPL modifies the original tree formed by RPL to
decrease the degree of the tree and enhance load balancing. MD-RPL forms the
minimum tree based on the number of hops. To decrease the overhead of control
packets, MD-RPL’s control packets are encapsulated in the original packets of
RPL. The number of children in the DAG topology was used in LB-OF [18] for
increasing the network life-time. LB-OF employs the combination of ETX and
the number of children to calculate the rank of each node. It tries to decrease
the congestion by considering higher priorities for parents with less children. In
nodes that are close to the root and have one child, LB-OF cannot detect the
congestion as it does not use the queue length in the parent selection process.

[19,20] discussed the energy-efficiency of RPL in different IoT applications.
Authors in [19] designed Smart Energy Efficient Objective Function (SEEOF)
for IoT based smart metering applications. SEEOF was designed based on the
energy and the link quality metrics. It defines a new energy metric by combining
the drain rate and the residual energy for selecting the preferred parent. The
drain rate metric of SEEOF depends on the quality of the path and the number of
children. An energy efficient region based RPL protocol (ER-RPL) was proposed
in [20] for LLNs. ER-RPL tries to reduce energy consumption in the network
by participating only a subset of nodes in the routing operation. It exploits the
region feature of IoT applications. A self-regioning algorithm is used in ER-RPL
to help nodes find their region codes, while ETX is employed as the reliability
metric. ER-RPL can be applied for supporting P2P traffic patterns in LLNs.

6 Conclusion

In this paper, we proposed QCF, a new QoS-aware communication framework
for real-time IoT services. QCF considers link and node metrics in the routing
operation and employs fuzzy logic to improve the parent selection process. Our
proposed framework updates the packet’s deadline at each hop by using a novel
method that does not require any coordination between IoT nodes. By estimat-
ing the node mobility in a lightweight approach, QCF provides adaptability to
changes in the network topology. To evaluate the performance of our proposed
framework, we integrated QCF into the Contiki OS, and implemented it on
Zolerita IoT motes. Emulation results showed that QCF significantly improves
QoS in terms of the deadline delivery ratio and the end-to-end delay.



368 O. Tavallaie et al.

References

1. Martocci, J., De Mil, P., Riou, N., Vermeylen, W.: Building automation routing
requirements in low-power and lossy networks. IETF RFC 5867 (2010)

2. Pister, K., Thubert, P., Dwars, S., Phinney, T.: Industrial routing requirements in
low-power and lossy networks. IETF RFC 5673 (2009)

3. Spano, E., Niccolini, L., De Pascoli, S., Iannacconeluca, G.: Last-meter smart grid
embedded in an Internet-of-Things platform. IEEE Trans. Smart Grid. 6(1), 468–
476 (2015)

4. Liu, X., Sheng, Z., Yin, C., Ali, F., Roggen, D.: Performance analysis of routing
protocol for low power and lossy networks (RPL) in large scale networks. IEEE
Internet Things J. 4(6), 2172–2185 (2017)

5. Winter, T., et al.: RPL: IPv6 routing protocol for low-power and lossy networks.
IETF RFC 6550 (2012)

6. Thubert, P.: Objective function zero for the routing protocol for low-power and
lossy networks (RPL). IETF RFC 6552 (2012)

7. Vasseur, J.P., Kim, M., Pister, K., Dejean, N., Barthel, D.: Routing metrics used
for path calculation in low-power and lossy networks. IETF RFC 6551 (2012)

8. Kim, H.-S., Kim, H., Paek, J., Bahk, S.: Load balancing under heavy traffic in RPL
routing protocol for low power and lossy networks. IEEE Trans. Mobile Comput.
16(4), 964–979 (2017)

9. Kamgueu, P.O., Nataf, E., Ndie Djotio, T.: On design and deployment of fuzzy-
based metric for routing in low-power and lossy networks. In: LCN Workshops
2015, pp. 789–795. IEEE (2015)

10. Qiu, T., Lv, Y., Xia, F., Chen, N., Wan, J., Tolba, A.: ERGID: an efficient routing
protocol for emergency response Internet of Things. J. Netw. Comput. Appl. 72,
104–112 (2016)

11. Contiki operating system. http://www.contiki-os.org/
12. Zolerita. https://zolertia.io/
13. Li, Y., Chen, C.S., Song, Y.-Q., Wang, Z., Sun, Y.: Enhancing real-time delivery

in wireless sensor networks with two-hop information. IEEE Trans. Ind. Inform.
5(2), 113–122 (2009)

14. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy
logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

15. Kurose, J., Ross, K.: Computer Networking: A Top-Down Approach, 6th edn.
Addison Wesley, Boston (2013)

16. Tahir, Y., Yang, S., McCann, J.: BRPL: backpressure RPL for high-throughput
and mobile IoTs. Trans. Mobile Comput. 17(1), 29–43 (2018)

17. Mamdouh, M., Elsayed, K., Khattab, A.: RPL load balancing via minimum degree
spanning tree. In: WiMob 2016, pp. 1–8. IEEE (2016)

18. Qasem, M., Al-Dubai, A., Romdhani, I., Ghaleb, B., Gharibi, W.: A new efficient
objective function for routing in Internet of Things paradigm. In: CSCN 2016, pp.
1–6. IEEE (2016)

19. Shakya, N.M., Mani, M., Crespi, N.: SEEOF: smart energy efficient objective func-
tion: adapting RPL objective function to enable an IPv6 meshed topology solution
for battery operated smart meters. In: Global Internet of Things Summit (GIoTS),
pp. 1–6. IEEE (2017)

20. Zhao, M., Ho, I.W., Chong, P.H.J.: An energy-efficient region-based RPL routing
protocol for low-power and lossy networks. IEEE Internet Things J. 3(6), 1319–
1333 (2016)

http://www.contiki-os.org/
https://zolertia.io/


Constraint-Aware Drone-as-a-Service
Composition

Babar Shahzaad(B), Athman Bouguettaya, Sajib Mistry,
and Azadeh Ghari Neiat

The University of Sydney, Sydney, NSW 2000, Australia
{babar.shahzaad,athman.bouguettaya,sajib.mistry,

azadeh.gharineiat}@sydney.edu.au

Abstract. We propose a novel Drone-as-a-Service (DaaS) composition
framework considering the recharging constraints and the stochastic
arrival of drone services. We develop a service model and a quality model
for drone delivery services. A skyline approach is proposed that selects
the optimal set of candidate drone services to reduce the search space.
We propose a heuristic-based multi-armed bandit approach to compose
drone services minimizing delivery time and cost. Experimental results
prove the efficiency of the proposed approach.

Keywords: DaaS · Service selection · Service composition ·
Recharging constraint · Lookahead heuristic

1 Introduction

Drones are aircraft that have no onboard human pilot. A plethora of new oppor-
tunities and applications have been created using drones in diverse sectors such
as shipping, shopping, security, and surveillance [5]. Different types of drones
offer several services including inspection, sensing, and delivery [21]. The drone-
based delivery service is a fast-growing industry that includes large commercial
organizations such as Amazon, DHL, and Google [2].

A Drone-as-a-Service (DaaS) consists of both functional and non-functional
or Quality of Service (QoS) properties [20]. The functional properties state that
a drone can deliver a package from a source to a destination following a skyway
network. A skyway network is a set of skyway segments following the line-of-sight
drone flying regulations [8]. Each line segment between two particular nodes is
a skyway segment. The non-functional properties of a DaaS include flight range,
battery capacity, endurance, and payload.

Given a skyway network, our objective is to compose the optimal set of DaaS
services that deliver the package from a source to a destination with the minimum
delivery time. We assume that the DaaS services will be instantiated with the
same drone, i.e., there will be no handover of packages among different drones.
We identify the following key challenges in a DaaS composition:

– Limited flight range: A flight range of a drone is influenced by the limited
battery capacity, the speed, and the weather conditions [9]. A limited flight
range may affect the delivery time and profitability of the business.

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 369–382, 2019.
https://doi.org/10.1007/978-3-030-33702-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_28&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_28


370 B. Shahzaad et al.

– Recharging requirements: The power consumption of a drone depends on the
payload weight, the drone speed, and the wind speed. The power consump-
tion increases as the weight of payload increases. As a result, drones need
recharging to serve a wider service area. The maximum service area of drones
with full capacity charge ranges from 3 to 33 km [10]. In some cases, multiple
times of recharging may be required to support persistent drone delivery in
the long-distance areas.

– Constraints on recharging pads at the stations: The number of recharging
pads at a station (an intermediate node in the skyway network) is usually
finite [10]. The availability of recharging pads may not be guaranteed.

– Dynamic DaaS services: Multiple DaaS services which are instantiated by
different drones may operate in the same skyway network at the same time.
As a result, a congestion may occur at the network. The congestion is defined
as the total waiting time of a drone for the availability of a recharging pad
at a certain recharging station [10]. The arrival of the drone services at a
recharging station is usually stochastic in nature [24].

We focus on the composition of DaaS services considering the recharging con-
straints and stochastic arrival of other drone services. To the best of our knowl-
edge, existing approaches do not focus on the constraint-aware compositions. Cur-
rent research mainly focuses on the route planning for drones by formulating the
problem as vehicle routing problem (VRP) [9] and travelling salesman problem
(TSP) [11]. A single drone routing problem is studied with the objective of mini-
mizing total fuel consumption in [23]. The proposed approach generates delivery
routes for only a single drone with a fixed number of stations. A multi-objective
optimization approach is proposed for using a swarm of drones for delivery pur-
poses without considering the payload effects on energy consumption in [18]. An
energy consumption model is proposed for maximizing profitability and mini-
mizing the overall delivery time in [16]. This approach does not consider the
effect of the flight range with dynamic payloads.

We propose a constraint-aware DaaS composition framework that selects an
optimal drone service from multiple candidate services. We consider the recharg-
ing constraints and influence of one drone’s recharging time on others at each
node. We transform the composition problem into a multi-objective optimization
problem, i.e., minimizing the delivery time and cost. For simplicity, we assume
that the available drone services are deterministic, i.e., we know a priori about
the payload, speed, battery capacity, flight range, and battery consumption rate
of each drone. We also assume that the service environment is deterministic, i.e.,
we have complete knowledge about available charging pads and the trajectory
of other drone services. The deterministic model is used to estimate the arrival
time, recharging time, and waiting time of each drone at a specific node. We also
estimate the overall travel time and delivery cost for each drone to its respective
destination using the service statistics. Finally, we solve the optimization prob-
lem using the multi-armed bandit tree exploration approach [7]. We summarize
the main contributions of this paper as follows:

• A new service model and a quality model for drone delivery services.



Constraint-Aware Drone-as-a-Service Composition 371

• Formulation of the DaaS composition as a multi-armed bandit tree explo-
ration problem.

• A new composability model for drone delivery services.
• A new heuristic-based optimal drone service composition algorithm.
• A simulation-based evaluation with a real-world dataset to show the efficiency

of the proposed model in comparison to the baseline approach.

2 Motivating Scenario

We consider drone-based package delivery with recharging constraints as a moti-
vating scenario. Figure 1 presents the skyway network for drone delivery with
recharging stations. We construct a skyway network which follows drone regula-
tions such as visual line-of-sight (LOS) and no-fly zones [26]. The skyway network
is divided into line segments. Each line segment is limited by two nodes. Each
node is either a recharging station, a delivery target, or both. A fixed number of
recharging pads are available at each node where any drone can recharge.

DaaS
1 , DaaS

2 , …
, DaaS

n

DaaS
1 , DaaS

2 , …
, DaaS

n

DaaS
i+1

DaaSi+2

X
Selected DaaS Service
DaaS Composability

DaaS Service

DaaSi+3

Charging Pad
Drone Charging

Fig. 1. Skyway network for drone delivery

We abstract each skyway segment as a drone service. Each drone service
has specific QoS attributes such as battery capacity, payload capacity, speed,
and flight range. We assume that the QoS attributes of a drone service are
deterministic. Drones have limited battery and payload capacities and flight
ranges. It is possible that a single drone service may not deliver the package
from source to destination. Therefore, multiple recharging may be required for
long-distance drone delivery services. We formulate this problem as composition
of several drone services at intermediate nodes to deliver packages.

We need to select an optimal set of candidate drone services at the source
node for each delivery demand. We assume that the same drone delivers the
package from a source to a destination. We have the recharging constraints at



372 B. Shahzaad et al.

each node because of the limited number of recharging pads. Given a set of
delivery demands, our target is to select and compose optimal drone services
to meet the user’s requirements. An optimal drone service composition avoids
congestion at any node and minimizes delivery time and cost. We focus on the
composition of optimal drone services considering the recharging constraints,
delivery time, and cost.

3 Related Work

Several studies address the routing problems for delivery by drones. Most of
these previous studies focus on last-mile delivery by drones with a combination
of ground vehicles. The hybrid ground vehicle and drone model was first studied
by [13]. Two new approaches are introduced for drone-assisted parcel delivery
problems. In the first approach, while a ground vehicle is serving a customer,
a drone is dispatched from the ground vehicle to serve another customer. The
drone returns back to meet with the ground vehicle in a rendezvous location
after serving the customer. The objective is to minimize the total delivery time.
In the second approach, ground vehicles and drones operate separately. In this
case, while ground vehicles are routed between customers, drones operate from
the depot to perform dedicated deliveries. It is concluded that the flight range
of a drone is a function of its speed [13]. The speed of a drone has a significant
impact on drone delivery operations due to the impact on its range. The proposed
approach is tested only on small-sized instances with 10 to 20 customers. This
work is extended by [17] to enhance the efficiency of the proposed model. A
simulated annealing meta-heuristic approach is proposed to solve the problem.
The proposed solution is tested for customer instances up to 200. The hybrid
approach is not suitable for deliveries in remote areas where either the road
infrastructure is very congested or there is no road access for ground vehicles.

Comparatively fewer studies have focused solely on using drones to make
deliveries. A single drone routing problem is studied in [23]. Multiple refuelling
depots are considered and the drone can refuel at any depot. The objective of
this problem is to minimize the total fuel consumption for visiting all the delivery
targets. It is assumed that drone will never run out of fuel during the journey
to a target. An MILP formulation is proposed to model the problem which is
solved using an approximation algorithm. The proposed approach is tested for
6 depots and 25 targets only. Temporal logic constraints are not considered in
the proposed model. The proposed approach can generate delivery routes for
only a single drone with a fixed number of stations which limits its potential
applicability to problems in the real world.

A multi-objective optimization approach is proposed for delivery by a swarm
of drones in [18]. Several constraints have been taken into consideration for deliv-
ering items to target locations. A Genetic Algorithm (GA) is proposed to solve
the problem. The proposed approach is limited to visiting only one customer
per trip. Moreover, the energy consumption and the effects of payloads are not
modelled in the proposed approach. An energy consumption model for drones



Constraint-Aware Drone-as-a-Service Composition 373

has been proposed to automate the delivery by drone in [6]. It is assumed that
drones can deliver multiple packages within a specified service area. The impact
of parcel payloads and flight ranges related to battery capacities are analysed
to optimize the drone fleet size. It is concluded that increasing battery capacity
and flight range of a drone can reduce the overall delivery costs.

An economic analysis is performed on drone utilization for delivery businesses
in [16]. It is identified that energy efficiency and battery aging are the major
sources of expense. The proposed scheme does not consider the optimization and
planning of end-to-end drone deliveries. In [22], a scheduling model is developed
for persistent drone delivery services. The fundamental characteristics of drone
deliveries are mainly focused such as payload capacity, limited flight time, and
the effect of payload on flight ability. There are multiple service stations for
drones to replenish their batteries during the delivery operation. The problem
is formulated as a Mixed Integer Linear Programming (MILP) model and a
heuristic approach is developed to address the computational issues in large-
scale problems. The proposed model does not consider recharging constraints at
each service station and its influence on other drones.

The service paradigm is leveraged to model different transport service for
multi-modal travel purposes in [14,15]. A service composition framework is
proposed for composing spatio-temporal line segment services. In our previous
paper, we propose the service model of a DaaS [20]. Services are composed based
on their QoS parameters. The battery capacities and recharging constraints are
not considered in the proposed model. To the best of our knowledge, this paper
is the first attempt to model the recharging constraints of drone delivery services
and constraint-aware composition of drone delivery services.

4 Multi-armed Bandit Formulation of DaaS Composition

Given a set of n drones D = {d1, d2, . . . , dn} and a set of m delivery targets T =
{t1, t2, . . . , tm}, we formulate the problem as an undirected graph G = (V,E),
where V is a set of vertices representing the targets and E is a set of edges
representing skyway segment services joining any two vertices. Each delivery
target is assumed to be a charging station. We assume that each node has a
limited number of charging pads. We also assume that there are no self-loops in
the edges. B represents the battery capacities of all the drones. bij is the battery
consumed in traveling from vertex i to j. cij represents the cost to travel from
vertex i to j. We also assume that battery consumption of the drone is linear
with respect to payload and distance travelled by the drone. The delivery cost is
directly proportional to the battery consumption of the drone. It is symmetric for
delivery time and cost from i to j and j to i. To avoid any failure in delivery, we
assume that drones never run out of battery while traveling from i to j. Drones
have different payload, battery capacities, and flight ranges. There is a constraint
that each delivery is done by the same drone from source to destination, i.e., no
handover are allowed on intermediate nodes. We also assume that drones are
charged to their capacities at their respective source nodes.



374 B. Shahzaad et al.

Fig. 2. An example of a state tree

We formulate the DaaS composition as the multi-armed bandit tree explo-
ration [7] problem. The multi-armed bandit problem has extensively been stud-
ied in the literature. ε-Greedy algorithm, optimistic exploration, and Thompson
Sampling are the most used approaches for multi-armed bandit problems [19].
Most of the bandit algorithms based on Upper Confidence Bounds (UCB) are
applied to tree search. In multi-armed bandits, an arm represents a choice or an
action which is initially unknown to the player. The target is to maximize the
reward by selecting optimal arms. This approach is suitable for both determin-
istic and non-deterministic types of problems. If the arms are known a priori,
the arm with the highest reward would be selected. In case of unknown arm
distribution, each arm is pulled several times to get more information about the
arms, which is regarded as exploration.

We consider a finite set of actions which can be taken by drone at each node
while traveling to the destination. A drone can either wait, recharge, or travel from
one node to another. The waiting and recharging times also affect the overall deliv-
ery time and cost of drone services. These actions can generate a large set of pos-
sible states. We represent these states in the form of a multi-armed bandit search
tree. The objective is to take the optimal actions which favour the optimal states to
reach the destination faster at a lower cost. At each node, the selection of the right
arm (action/choice) is of paramount importance. Figure 2 presents an example of a
temporal state tree. Each state is a combination of a node identity and timestamp.
For the sake of simplicity, we consider that the states are known beforehand. In case
of immediate optimal state selection, the selected state may lead to a non-optimal
state. The more information about the neighbour and the next states guides more
efficiently about the selection of optimal states.

5 Candidate Drone Service Selection Using Skyline

The selection of the candidate drone services from a set of available drone services
is the first step to begin the composition. The service selection problem based
on functional features has been investigated in [4,25]. We focus solely on QoS



Constraint-Aware Drone-as-a-Service Composition 375

Fig. 3. Skyline for the drone selection

properties for the selection of functionally equivalent drone services [12,27]. We
use the drone’s payload capacity to filter out those drones which are not able to
carry the delivery package. We then use skyline [3,28] to select the non-dominated
drone services based on the best QoS features for each drone service.

Without loss of generality, we assume that the cost for each drone service
is same for simplicity. We use the following three QoS parameters to compute
the skyline: (1) flight duration without recharging (in minutes), (2) flight range:
how far a drone can travel (in kilometers) without recharging, and (3) recharging
time from 0 to 100% (in minutes).

Given a set of drone services, DaaS = {DaaS1,DaaS2, . . . , DaaSn}, and
a set of QoS parameters Q = {q1, q2, . . . , qm}, we say that DaaSi dominates
DaaSj (denoted as DaaSi � DaaSj) when DaaSi is equal or better to DaaSj

on all quality parameters and strictly better at least on one quality attribute. In
the mathematical form, we represent the relation as Pareto dominance relation.
A drone service DaaSi � DaaS is Pareto dominant to another drone service
DaaSj if for all QoS parameters qa of Q, a ∈ {1, 2, . . . ,m}{

qa(DaaSi) � qa(DaaSj), if qa is positive QoS parameter.
qa(DaaSi) � qa(DaaSj), if qa is negative QoS parameter.

(1)

and for at least one QoS parameter qb ∈ Q, b ∈ {1, 2, . . . ,m}{
qb(DaaSi) � qb(DaaSj), if qb is positive QoS parameter.
qb(DaaSi) ≺ qb(DaaSj), if qb is negative QoS parameter.

(2)

where the travel distance is a positive quality parameter and range and recharg-
ing time are negative quality parameters. Here range represents the time taken
by a drone to cover a certain distance. Figure 3 presents a 2-dimensional repre-
sentation of skyline for selecting a set of candidate services from the dataset.



376 B. Shahzaad et al.

Fig. 4. State selection without lookahead

6 DaaS Composition Using Lookahead Tree Exploration

A single drone service may not deliver packages to long-distance areas. The selec-
tion and composition of optimal drone services from a large number of candidate
services is a challenging task. The uncertainty is the main issue in a DaaS com-
position. In many cases, an immediate optimal service may lead to a non-optimal
service. For example, we have a skyway network where node 1 is the source node
and node 5 is the destination node. Here we find a temporal optimal neighbour
leading to a non-optimal state. Temporal optimal means taking towards destina-
tion faster. As shown in Fig. 2, the service of state [2, t1] is optimal but the overall
delivery time is more compared to state [3, t2]. This uncertainty can cause long
delays for drones to deliver packages. It is time inefficient to look for all possible
service compositions or tree explorations to find the best composition. The time
complexity for such problems is exponential. Hence, we need a heuristic-based
solution to find the optimal composition of drone services.

We propose a lookahead heuristic-based solution to the multi-armed bandit
tree exploration problem. The selection of optimal actions in a DaaS composi-
tion is performed by looking ahead of immediate available services. We consider
the current waiting time, expected waiting time, and flight time to the desti-
nation for selection of optimal drone services. Here lookahead means looking
at the states next to the neighbour states. Figures 4 and 5 illustrate the differ-
ence between without lookahead and with one lookahead based service (state)
selection. Without lookahead considers only the neighbour optimal state which
leads to an overall non-optimal solution. Using lookahead heuristic provides more
information to select the overall optimal state.

6.1 DaaS Multi-armed Bandit Tree Lookahead

In the proposed approach, lookahead means considering the possible states next
to the neighbour states while making a decision. Tree exploration works like a
depth-first search approach. But we select only one service at a time by looking



Constraint-Aware Drone-as-a-Service Composition 377

Fig. 5. State selection with one lookahead

ahead of neighbour states. We propose a novel heuristic-based algorithm for
drone service selection and composition. The details of the proposed approach
are given in Algorithm 1. In Algorithm 1, the output is an optimal drone service
composition from source to destination for the input of skyway segment spatio-
temporal graph G, the set of recharging pads RP , the set of drones D, the source
src, the destination dst, the weight of the package w, the number of lookaheads
lookahead, and the start time of the service sT ime. In lines 1–3, we create empty
lists for the optimal drone service composition plan, a temporary DaaS variable,
and an optimal drone to be selected dsel. We define a set of state space, a set of
action space, and a temporary variable n in lines 4–6. We divide the proposed
algorithm into three steps. In the first step, we select an optimal drone from a
set of available drones given the weight of the package. In the second step, we
determine either a single drone service can fulfill the user’s requirements or not.
We select an optimal state representing a drone service leading to the desired
destination in line 9. As we stated earlier that we assume the drones are charged
to their capacities at the respective source locations. In the case of a single drone
service, a drone does not need to be recharged. Here optimal state represents
the minimum delivery time to the destination.

In the third step, we compose the optimal drone services because a single
drone service cannot deliver the package from source to the destination. In line
13–17, we select optimal states from the set of state space based on the given
lookahead. At each step, we have a finite set of actions. Either we can wait,
recharge, or transit from one state to the next state. Each new state depends
upon the action taken in current state, i.e., Xi+1 = f(Xi, Aj) where Xi+1, Xi,
and Aj represent the next state, current state, and action taken in current state.
Each action in the current state should be close to the optimal. The selection
of an optimal state depends on the current waiting time, expected waiting time
on the next state(s), and expected flight time to the destination. This highly
depends on the availability of recharging pads on the subsequent nodes. In many
cases, a greedy approach without lookahead may lead to non-optimal states.



378 B. Shahzaad et al.

Algorithm 1. Drone Service Selection and Composition Algorithm
Input: Spatio-Temporal Graph G, Recharging Pads RP , Drones D, Source src, Des-

tination dst, Package Weight w, Lookahead lookahead, Start Time sT ime
Output: Optimal Composition Plan Opt Comp
1: Opt Comp ← φ
2: DaaS ← φ
3: dsel ← φ
4: X = {x0, x1, x2, . . . , xn}
5: A = {wait, recharge, travel}
6: n = 0

Step 1. Selection of Optimal Drone
7: dsel = select optimal drone (D, w)

Step 2. Check if a single drone service can reach the destination or not
8: if Distsrc,dst ≤ Rangedsel ∗ Speeddsel then
9: x = select optimal state (X, A, lookahead)

10: Opt Comp ← x
11: return Opt Comp

Step 3. If a single drone service cannot deliver to destination
12: else
13: while Xi �= dst do
14: x = select optimal state (X, A, lookahead)
15: DaaSn ← x
16: n = n + 1
17: end while
18: Opt Comp ← DaaS
19: end if
20: return Opt Comp

In such cases, we select optimal states by looking ahead of immediate states.
This approach is a bit computational time expensive but the overall results are
near-optimal to the exact solution of the problem. We use two types of lookahead
approaches (1) Fix (2) Adaptive. The adaptive lookahead depends on the size
of the number of nodes in the graph and distance to destination.

7 Experiments and Results

In this section, we present the performance evaluation of the proposed approach.
We conducted a set of experiments to assess the performance of the proposed
approach. We compared the proposed approach with a baseline (i.e., Brute-
Force) approach and a without lookahead approach in terms of execution time
and delivery time. We conducted all the experiments on an Intel Core i7 processor
(3.20 GHz and 16.0 GB RAM) under Windows 10. We implemented all the
algorithms in Python.

7.1 Baseline Approach

We use Brute-Force as a baseline approach to finding an optimal composition
of services. It finds all the possible compositions of drone services from a given



Constraint-Aware Drone-as-a-Service Composition 379

source to destination. We then select an optimal composition based on the QoS
parameters of drone services. Finding all possible compositions of drone services
is time exponential. This reduces the performance of Brute-Force approach to
find optimal DaaS composition.

Table 1. Dataset description

Attribute Value

No. of Drones 15

No. of Nodes in Skyway Network 2500

No. of Services 1250

Payload Capacity 1–4 (kg)

7.2 Experimental Setup

We evaluated the proposed approach using a synthesized dataset for different
types of drones and a publicly available drone dataset for flight data [1]. The
Brute-force approach performs the exhaustive operation and takes exponential
time. The baseline approach exhausted for more than 100 nodes. For this rea-
son, the number of nodes varies from 10–100 for all approaches and 500–2500
for without lookahead and proposed lookahead heuristic-based approaches. We
conducted the experiments for 10% times the total number of nodes and com-
puted the average results. For example, we run the experiment 250 times for
2500 nodes. We selected a random source and destination for each experiment.

7.3 Results and Discussion

The baseline approach finds all the possible compositions from a given source
to a destination and selects an optimal composition for each experiment. The
proposed approach performs composition of selective services based on certain
parameters to reach the destination faster.

Average Execution Time. The time complexity of the baseline approach is
exponential. The computational time for service composition using Brute-Force
approach is very high in comparison to without lookahead and proposed lookahead
heuristic-based approaches. The difference in average execution time for Brute-
Force, without lookahead, and proposed heuristic-based approaches is shown in
Fig. 6. As expected, the average execution time for the increasing number of nodes
is much higher for the baseline approach than the proposed approach. Depending
upon the number of lookaheads, the computation time varies for composing drone
services. The higher the number of lookaheads we have, the more computational
time is required to compose drone services. As shown in Fig. 7, the average execu-
tion time of our proposed approach with a lower number of lookaheads is closer to
without lookahead based composition approach.



380 B. Shahzaad et al.

Delivery Time. The delivery time for drone services is highly uncertain when
a single drone service cannot fulfill the user’s requirements. At each station, the
number of recharging pads are limited which can be occupied by other drones for
long time periods. In this context, the delivery time of a drone service includes
the flight time, recharging time, and waiting time. The selection of a right drone
service is of paramount importance as it ensures the availability of recharging
pads ahead of time minimizing the overall delivery time. The performance of the
proposed approach varies for a varying number of lookaheads. The increasing
number of lookaheads requires more computational time for finding an optimal
solution. As shown in Fig. 8, the proposed lookahead heuristic-based approach
finds a near-optimal solution compared to Brute-Force approach. However, the
time complexity of the proposed approach is much better than the baseline
approach. The delivery time for large networks is shown in Fig. 9 considering
without lookahead and lookahead-based proposed approaches.

0 50 100 150
0

500

1000

1500

Number of nodes

A
ve

ra
ge

ex
ec

ut
io
n
tim

e
(m

s) Without Lookahead
Lookahead 1
Lookahead 2
Lookahead 3
Lookahead 4
Brute-Force

Fig. 6. Execution time (10–100 nodes)

0 1000 2000 3000
0

500

1000

1500

2000

Number of nodes

A
ve

ra
ge

ex
ec

ut
io
n
tim

e
(m

s) Without Lookahead
Lookahead 1
Lookahead 2
Lookahead 3
Lookahead 4

Fig. 7. Execution time (500–2500 nodes)

0 50 100 150
0

200

400

600

Number of nodes

D
el
iv
er
y
tim

e
(s
ec

)

Without Lookahead

Lookahead 1
Lookahead 2
Lookahead 3
Lookahead 4

Brute-Force

Fig. 8. Delivery time (10–100 nodes)

0 1000 2000 3000
0

5000

10000

15000

20000

Number of nodes

D
el
iv
er
y
tim

e
(s
ec

)

Without Lookahead
Lookahead 1
Lookahead 2
Lookahead 3
Lookahead 4

Fig. 9. Delivery time (500–2500 nodes)



Constraint-Aware Drone-as-a-Service Composition 381

8 Conclusion

We propose a constraint-aware DaaS composition framework for drone-based
delivery services. We propose a skyline approach to select optimal candidate drone
services.Aheuristic-based service compositionusingmulti-armedbandit approach
is proposed for composing the drone services. We conduct several experiments to
illustrate the performance of the proposed approach in comparison to Brute-Force
approach. Experimental results show that our proposed approach overall performs
better than the Brute-Force approach. In future work, we will focus on dynamic
QoS parameters, environmental uncertainties such as weather conditions, and the
multi-source multi-destination drone delivery services.

Acknowledgment. This research was partly made possible by NPRP 9-224-1-049
grant from the Qatar National Research Fund (a member of The Qatar Foundation)
and DP160103595 and LE180100158 grants from Australian Research Council. The
statements made herein are solely the responsibility of the authors.

References

1. Drone swarms. https://figshare.com/articles/Flight logs of drone swarms/
6843977

2. Bamburry, D.: Drones: designed for product delivery. Des. Manage. Rev. 26(1),
40–48 (2015)

3. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings
17th International Conference on Data Engineering, pp. 421–430 (2001)

4. Bouguettaya, A., et al.: End-to-end service support for mashups. IEEE Trans. Serv.
Comput. 3(3), 250–263 (2010)

5. Chmaj, G., Selvaraj, H.: Distributed processing applications for UAV/drones: a
survey. In: Selvaraj, H., Zydek, D., Chmaj, G. (eds.) Progress in Systems Engi-
neering. AISC, vol. 366, pp. 449–454. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-08422-0 66

6. Choi, Y., Schonfeld, P.M.: Optimization of multi-package drone deliveries consid-
ering battery capacity. Technical report (2017)

7. Coquelin, P.A., Munos, R.: Bandit algorithms for tree search. In: Proceedings of
the Twenty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2007,
pp. 67–74 (2007)

8. Corbett, M.J., Xie, F., Levinson, D.: Evolution of the second-story city: the Min-
neapolis skyway system. Environ. Plann. B Plann. Des. 36(4), 711–724 (2009)

9. Dorling, K., Heinrichs, J., Messier, G.G., Magierowski, S.: Vehicle routing problems
for drone delivery. Trans. Syst. Man Cybern. 47(1), 70–85 (2017)

10. Kim, J., Kim, S., Jeong, J., Kim, H., Park, J., Kim, T.: CBDN: cloud-based drone
navigation for efficient battery charging in drone networks. Trans. Intell. Transp.
Syst. 1–18 (2018)

11. Kim, S., Moon, I.: Traveling salesman problem with a drone station. IEEE Trans.
Syst. Man Cybern. Syst. 49(1), 42–52 (2019)

12. Liu, X., Bouguettaya, A., Wu, J., Zhou, L.: Ev-LCS: a system for the evolution of
long-term composed services. IEEE Trans. Serv. Comput. 6(1), 102–115 (2013)

https://figshare.com/articles/Flight_logs_of_drone_swarms/6843977
https://figshare.com/articles/Flight_logs_of_drone_swarms/6843977
https://doi.org/10.1007/978-3-319-08422-0_66
https://doi.org/10.1007/978-3-319-08422-0_66


382 B. Shahzaad et al.

13. Murray, C.C., Chu, A.G.: The flying sidekick traveling salesman problem: opti-
mization of drone-assisted parcel delivery. Transp. Res. Part C Emerg. Tech. 54,
86–109 (2015)

14. Neiat, A.G., Bouguettaya, A., Sellis, T., Mistry, S.: Crowdsourced coverage as a
service: two-level composition of sensor cloud services. Trans. Knowl. Data Eng.
29(7), 1384–1397 (2017)

15. Neiat, A.G., Bouguettaya, A., Sellis, T., Ye, Z.: Spatio-temporal composition of
sensor cloud services. In: ICWS, pp. 241–248 (2014)

16. Park, S., Zhang, L., Chakraborty, S.: Design space exploration of drone infrastruc-
ture for large-scale delivery services. In: 2016 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), New York, NY, USA, pp. 1–7 (2016)

17. Ponza, A.: Optimization of drone-assisted parcel delivery. Master’s thesis, Univer-
sità Degli Studi Di Padova, Padova, Italy (2016)

18. San, K.T., Lee, E.Y., Chang, Y.S.: The delivery assignment solution for swarms of
UAVs dealing with multi-dimensional chromosome representation of genetic algo-
rithm. In: 2016 IEEE 7th Annual Ubiquitous Computing, Electronics Mobile Com-
munication Conference (UEMCON), pp. 1–7 (2016)

19. Scott, S.L.: Multi-armed bandit experiments in the online service economy. Appl.
Stochast. Mod. Bus. Ind. 31, 37–49 (2015)

20. Shahzaad, B., Bouguettaya, A., Mistry, S., Neiat, A.G.: Composing drone-as-a-
service (DAAS) for delivery. In: 26th IEEE International Conference on Web Ser-
vices (ICWS), Milan, Italy (2019)

21. Shakhatreh, H., et al.: Unmanned aerial vehicles: a survey on civil applications and
key research challenges. CoRR abs/1805.00881 (2018)

22. Song, B.D., Park, K., Kim, J.: Persistent UAV delivery logistics: MILP formulation
and efficient heuristic. CAIE 120, 418–428 (2018)

23. Sundar, K., Rathinam, S.: Algorithms for routing an unmanned aerial vehicle in
the presence of refueling depots. IEEE Trans. Autom. Sci. Eng. 11(1), 287–294
(2014)

24. Venkatachalam, S., Sundar, K., Rathinam, S.: Two-stage stochastic program-
ming model for routing multiple drones with fuel constraints. arXiv preprint
arXiv:1711.04936 (2017)

25. Wang, H., Shi, Y., Zhou, X., Zhou, Q., Shao, S., Bouguettaya, A.: Web service
classification using support vector machine. In: 2010 22nd IEEE International Con-
ference on Tools with Artificial Intelligence, vol. 1, pp. 3–6 (2010)

26. West, G.: Drone on. Foreign Aff. 94, 90 (2015)
27. Ye, Z., Bouguettaya, A., Zhou, X.: QoS-aware cloud service composition based

on economic models. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC
2012. LNCS, vol. 7636, pp. 111–126. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34321-6 8

28. Yu, Q., Bouguettaya, A.: Computing service skylines over sets of services. In: 2010
IEEE International Conference on Web Services, pp. 481–488 (2010)

http://arxiv.org/abs/1711.04936
https://doi.org/10.1007/978-3-642-34321-6_8
https://doi.org/10.1007/978-3-642-34321-6_8


An Adaptive Monitoring Service
Exploiting Data Correlations in Fog

Computing

Monica Vitali(B), Xuesong Peng, and Barbara Pernici

Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
{monica.vitali,xuesong.peng,barbara.pernici}@polimi.it

Abstract. In smart environments, a big amount of information is gen-
erated by sensors and monitoring devices. Moving data from the edge
where they are generated to the cloud might introduce delays with the
growth of data volume. We propose an adaptive monitoring service, able
to dynamically reduce the amount of data moved in a fog environment,
exploiting the dependencies among the monitored variables dynamically
assessed through correlation analysis. The adaptive monitoring service
enables the identification of dependent variables that can be transmit-
ted at a highly reduced rate and the training of prediction models that
allow deriving the values of dependent variables from other correlated
variables. The approach is demonstrated in a smart city scenario.

1 Introduction

Monitoring Data are generated by sensors used to monitor an environment of
interest, that are intended to be utilized by different applications deployed across
edge/IoT, fog, and cloud layers. In a smart city, data collected from scattered,
different places, converge into a unified monitoring data service used by different
applications. The volume of data collected by IoT and sensors makes it time
consuming to move all data from the edge where they are generated to the cloud
for analysis, likely introducing critical delays. It is important to reduce the size
of the data to be moved in order to make this task more agile [1]. As described in
Sect. 2, existing approaches focus on the definition of possibly adaptive sampling
rates for each variable. As illustrated in [2,3], variables collected by a monitoring
system may be not independent. In this paper, we propose a service oriented
approach to reduce the data volume by exploiting hidden relations among data,
distinguishing between regressor variables and dependent variables, for which it
is possible to significantly reduce the volume of transmitted data. The paper is
organized as follows. Section 2 analyzes the state of the art. Section 3 describes
the overall approach and Sect. 4 illustrates the monitoring reduction service. In
Sect. 5 we apply the framework to a smart city scenario.

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 383–389, 2019.
https://doi.org/10.1007/978-3-030-33702-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_29&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_29


384 M. Vitali et al.

2 State of the Art

Data reduction in Big Data systems generally reduces either data storage, in-
network data transmissions, or data redundancy [4]. The reduction methods
include compressing raw data, decreasing the data sampling rate, and reducing
the overall data according to the network topology. The work of [5] proposes
a knowledge-driven data sharing framework in IoT-based Big Data systems,
transmitting knowledge patterns instead of raw data. In our approach we propose
to dynamically derive the relationships among variables, based on the actual
data, rather than on predefined knowledge patterns. The problem of adaptive
monitoring has been widely discussed in the literature [6]. The authors review
monitoring tools and techniques for Fog Computing, and consider the reduction
in the amount of network traffic as one of the challenges in current monitoring
systems. A solution is proposed in [7], where a lightweight adaptive monitoring
framework suitable for IoT devices is proposed. The authors reduce the data
volume considering an adaptive sampling and (ii) an adaptive filtering. Similarly
to [8], the focus is on the adjustment and reduction of single signals generated by
sensors, without considering the possible dependencies existing between them.

Smart cities and smart homes are typical applications of the fog comput-
ing technology. In [9,10], architectures for optimizing near real-time services for
prediction analytics are discussed. In order to show the performance of our app-
roach, we applied the AMS to a real dataset representing a smart city scenario.

HISTORICAL DATA

(a) REDUCTION PLAN
GENERATION

Smart 
Building

Smart 
Climate

B02 B06

V1

V2

V3

(c) ADAPTIVE 
MONITORING SERVICE

DEPLOYMENT

RAW DATA

REDUCED DATA

(d) REDUCTION PLAN
ENACTMENT

REDEPLOYMENT
REDUCTION PLAN UPDATE

(b) REDUCTION PLAN
TRAINING

f()

f()

RE-TRAINING

RS DS CVS

B05 C01
EDGE

FOG

CLOUD

SENSORS

V1

V3

V2

V5

V6

V4

Fig. 1. Adaptive monitoring service

3 Adaptive Monitoring Service

The proposed Adaptive Monitoring Service (Fig. 1) has the goal to reduce moni-
toring data deriving and exploiting correlations among monitored variables (i.e.,
sensor-generated data). The first step is the Reduction Plan Generation (a),
where historical data are analyzed to discover relations among variables and to
generate a Reduction Plan, which indicates the variables that must be collected



An Adaptive Monitoring Service Exploiting Data Correlations 385

(regressor variables - RV) and the ones (dependent variables - DV) that can be
reconstructed from the values of the collected ones. Each variable can therefore
be monitored in three different modalities: (i) EMPTY means no data are trans-
mitted; (ii) NORMAL means all the produced data are transmitted; and (iii)
REDUCED means a highly reduced down-sampled set of data is transmitted,
used only for validation purposes. To derive the prediction models, i.e. functions
to reconstruct dependent variables from regressor variables, a Reduction Plan
Training (b) phase is performed. An Adaptive Monitoring Service Deployment
(c) phase decides how to deploy the services that are needed to enact the Reduc-
tion Plan on a fog hierarchical infrastructure, trying to reduce the overall volume
of data traveling from the edge of the network to the cloud. The optimization
of this step will be analysed in future work. The Reduction Plan Enactment (d)
transforms the raw data produced by sensors into a reduced dataset. Monitoring
can be enhanced considering the variability of the environment [8]. During the
collection of reduced data, several events might occur that require adjustments.
Therefore, the AMS execution requires a continuous validation phase, where data
of dependent variables are collected at a highly reduced frequency only to verify
the validity of the prediction functions. Minor events might require a refinement
of the prediction models (re-training). However, since the observed environment
is dynamic and relations among variables might change, the derivation of a new
Reduction Plan might also be needed in some cases.

4 Monitoring Data Reduction

Dependencies between variables are represented through a Direct Acyclic Graph
(DAG), derived from the correlation matrix, i.e., the matrix obtained by com-
puting the correlation between each pair of variables collected by the monitoring
system, orienting the edges by discovering causal relations, using the technique
described in [2]. The approach discovers relations between variables by comput-
ing the Pearson correlation coefficient between each couple of variables, applying
a threshold to filter weak correlations, and deriving causal dependencies through
a heuristic search algorithm. Once dependencies are detected, prediction can be
provided by building a regression formula able to properly combine all the con-
curring variables to reconstruct a missing signal. In this way, some of the data
produced by sensors can be omitted and reconstructed after the transmission if
needed, thus reducing the volume of the data to move.

Before going into the details, we introduce some terminology. We denote the
set of all monitoring variables as U , which is split into two sets: (i) Regressor
Variable Set (RS), composed of all the variables that cannot be derived from
other information (independent variables); (ii) Dependent Variable Set (DS),
composed of variables derivable from other monitored information. According to
this, U = RS

⋃
DS. Each variable in DS depends on the value of other variables

- referred to as Correlated Variables Set (CV S) - and can be reconstructed
using a regression function. Variables in CV S can be both regressor variables
rv ∈ RS and dependent variables dv ∈ DS. In Fig. 1(a) we show an example



386 M. Vitali et al.

with six variables and their dependencies. Variable v6 is depending both on v4
and v5, therefore the CVS for v6 is {v4, v5}. In the figure, we also see that v4 is a
regressor variable while v5 is a dependent variable, depending on v3. So in this
case we have RS = {v1, v2, v4} and DS = {v3, v5, v6}. The correlated variable
sets are cvs(v3) = {v1}, cvs(v5) = {v3}, cvs(v6) = {v4, v5}.

As described in [2], the dependencies between monitoring variables are not
static (e.g., a sensor might stop working for a period of time, an existing sensor
might be moved from a location to another, a new sensor might be installed).
The CVS used to predict a variable in DS can change accordingly. Thus, we
model an element of CVS as a variable cvst,k ⊆ U dependent on timestamp t. In
the reduced monitoring data, variables in RS keep all raw samples, since they
cannot be derived from other variables. Variables in DS, instead, are collected
at a reduced sampling rate. Samples are used for continuously validating the
reliability of the prediction.

The Reduction Plan is the key element of the AMS and the basis for
the service to enact data reduction. It gives information on which variables to
reduce and on how to reconstruct their value from their correlate variables. It
consists of the following parts: (i) RS/DS partition: the set of variables U is
partitioned into the two subsets RS and DS. The partition at timestamp t is
denoted as < RSt,DSt >; (ii) CVS : for each variable in DS the set of correlated
variables cvst,k is used to train the prediction function of dvk ∈ DS at time t;
(iii) Prediction parameters: the prediction parameters describe the quantitative
relation between a variable dvk and its correlated variables cvst,k. A reduction
plan is represented as a labeled-DAG (LDAG), sub-graph of the DAG of the
dependencies. An edge from vi to vj indicates that vj is reduced and rebuilt
starting from the values of vi. Since the reduction plan can evolve, we denote
the reduction plan used at time t as LDAGt (Eq. 1):

LDAGt = [Nodest, Edgest, Labelst] (1)

Given the Reduction Plan, for each dvk, the service provides the parameters
of the model for enacting the prediction. To capture the correlations between
variables collected by the monitoring system, a regression analysis is performed
on a training dataset. In this paper we have applied Linear Regression as the
regression method, due to its low complexity and reduced execution time given
the need to build the model on edge and fog devices with limited resources and to
quickly rebuild the model when needed. We assume the CV S of vk ∈ DS contains
N variables X = {x1, x2, · · · , xN} and the training dataset comprises samples
of P timestamps. The linear regression method assumes that the relationships
between X and ft,k are linear, as depicted in Eq. 2 at timestamp t:

ft,k(X) = β01 + β1xt,1 + · · · + βnxt,N + εt (2)

In this work, we adopt the Ordinary Least Squares (OLS) method [11] to estimate
the parameters values β, as described in [12]. This approach is only used as a
proof of concept and alternative methods can be adopted. As an example, we
are also investigating alternative solutions such as neural networks.



An Adaptive Monitoring Service Exploiting Data Correlations 387

5 Validation

We applied the AMS to the REFIT Smart Home dataset1, which includes sensor
measurements of smart buildings and climate data recorded at a nearby weather
station. Each building is connected to an edge device, collecting the information
before sending them to be stored in the cloud.

We used the data collected in 80 days, from 2014-02-05 to 2014-05-05 at a
fixed sampling interval of 30 min. We used 14 days of data to train the Reduc-
tion Plan, then we tested the performance of data reduction with the data left
(59 days). Applying the proposed methodology, we found 31 regressor variables
rv and 43 dependent variables dv to be predicted. For 17 of these dvs, the AMS
reduces the sensor data of more than 40% while maintaining a reasonable accu-
racy. Table 1 shows a subset of the selected reductions, focusing on buildings
B05 and B06. The first column represents the DS discovered while column 2
represents the CV S for each dv. The correlation value of the relation is shown
in column 3. As it can be observed, strong relations are discovered between
variables of the same kind in the same building, and most of all between tem-
peratures of different rooms. The reduction ratio for the whole dataset of 74
variables in 59 days is 15.95%. This is a good achievement considering also that
31 variables are not reduced and that a portion of the 43 dvs are collected as raw
data during the validation and re-training phases. The average reduction ratio
considering only the 43 dvs is 27%.

Table 1. Reduction performance scoring of B05 and B06 variables

DV CVS Corr.

B06 HW1 Temp B06 S1 Temp 0.88

B05 LR1 Temp B05 K1 Temp 0.86

B06 BR1 Temp B06 K1 Temp 0.85

B05 BR2 Temp B05 S1 Temp 0.89

B05 BR3 Temp B05 BR2 Temp B05 S2 Temp 0.96

B05 BR1 Temp B05 S1 Temp 0.85

B06 BT2 Temp B06 BR3 Temp 0.89

B06 BT3 Temp B06 LR1 Temp B06 BR1 Temp 0.90

B06 LD1 Temp B06 BT3 Temp 0.80

B05 BR4 Temp B05 BR1 Temp B05 BR3 Temp 0.98

B06 K1 Temp B06 LR1 Temp B06 S1 Temp 0.88

1 https://lboro.figshare.com/articles/REFIT Smart Home dataset/2070091.

https://lboro.figshare.com/articles/REFIT_Smart_Home_dataset/2070091


388 M. Vitali et al.

6 Concluding Remarks

The Adaptive Monitoring Service proposed in this paper aims to identify a new
systematic reduction of sensor data transmitted in a fog architecture. The rela-
tionships among the variables are exploited to reduce the data flow between the
layers of a fog environment. The implications on service deployment have been
discussed and an example based on a smart city scenario has been presented.

In future work we are going to refine the proposed methodology by focusing
on the service deployment. We aim to propose an optimised deployment strategy
considering the heterogeneity of the monitoring services and of the nodes in
which they can be executed. We will also introduce latency for evaluating the
effectiveness of the reduction plans when dealing with high data volumes.

Acknowledgments. This work is supported by European Commission H2020 Pro-
gramme through the DITAS (Data-intensive applications Improvement by moving
daTA and computation in mixed cloud/fog environmentS) Project no. 731945.

References

1. Plebani, P., et al.: Information logistics and fog computing: the DITAS approach.
In: Proceedings of CAiSE Forum 2017, Essen, Germany, 12–16 June 2017, pp.
129–136 (2017)

2. Vitali, M., Pernici, B., O’Reilly, U.-M.: Learning a goal-oriented model for energy
efficient adaptive applications in data centers. Inf. Sci. 319, 152–170 (2015)

3. Carvalho, C.G., Gomes, D.G., Agoulmine, N., de Souza, J.N.: Improving predic-
tion accuracy for WSN data reduction by applying multivariate spatio-temporal
correlation. Sensors 11(11), 10010–10037 (2011)

4. Rehman, M.H.U., Liew, C.S., Abbas, A., Jayaraman, P.P., Wah, T.Y., Khan, S.U.:
Big data reduction methods: a survey. Data Sci. Eng. 1(4), 265–284 (2016)

5. Rehman, M.H.U., Chang, V., Batool, A., Wah, T.Y.: Big data reduction framework
for value creation in sustainable enterprises. Int J. Inf. Manage 36(6), 917–928
(2016)

6. Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V.: Monitoring self-
adaptive applications within edge computing frameworks: a state-of-the-art review.
J. Syst. Softw. 136, 19–38 (2018)

7. Trihinas, D., Pallis, G., Dikaiakos, M.: Low-cost adaptive monitoring techniques
for the internet of things. In: IEEE Transactions on Services Computing (2018)

8. Andreolini, M., Colajanni, M., Pietri, M., Tosi, S.: Adaptive, scalable and reliable
monitoring of big data on clouds. J. Parallel Distrib. Comput. 79–80, 67–79 (2015).
https://doi.org/10.1016/j.jpdc.2014.08.007

9. Yassine, A., Singh, S., Hossain, M.S., Muhammad, G.: IoT big data analytics for
smart homes with fog and cloud computing. Future Gener. Comput. Syst. 91,
563–573 (2019)

10. Aazam, M., Zeadally, S., Harras, K.A.: Fog computing architecture, evaluation,
and future research directions. IEEE Commun. Mag. 56(5), 46–52 (2018)

11. Hayashi, F.: Econometrics, vol. 1, pp. 60–69. Princeton University Press, Princeton
(2000)

https://doi.org/10.1016/j.jpdc.2014.08.007


An Adaptive Monitoring Service Exploiting Data Correlations 389

12. Peng, X., Pernici, B.: Correlation-model-based reduction of monitoring data in
data centers. In: Proceedings of the 5th International Conference on Smart Cities
and Green ICT Systems, SMARTGREENS 2016, Rome, Italy, 23–25 April 2016,
pp. 395–405 (2016)



The Circuit Breaker Pattern Targeted
to Future IoT Applications

Gibeon Aquino1(B) , Rafael Queiroz1 , Geoff Merrett2 ,
and Bashir Al-Hashimi2

1 Department of Informatics and Applied Mathematics, UFRN, Natal, Brazil
gibeon@dimap.ufrn.br, rafaelqueiroz@ufrn.edu.br

2 School of Electronics and Computer Science, University of Southampton,
Southampton, UK

{gvm,bmah}@ecs.soton.ac.uk

Abstract. In the context of the Internet of Things (IoT), there is
a growing trend towards increasing the integration and collaboration
between IoT systems to create relevant end-to-end solutions. Accord-
ingly, addressing dependability in the future IoT applications will surely
be more challenging. In this work, we examine a popular microservices
pattern known as Circuit Breaker (CB). This pattern aims at preventing
failure from cascading to dependent services. In the context of IoT, it can
be used as an intermediary in the communication between critical IoT
nodes to increase the dependability of the whole. Notwithstanding, some
particularities present in IoT must be considered to allow this pattern to
yield similar benefits. Therefore, we compile several aspects concerning
the design and implementation of the CB tailored to IoT applications
as a taxonomy. Also, we conduct an experimental validation to compare
the benefits of the CB in a prototype of a traffic light system.

Keywords: Circuit Breaker · Internet of Things · Microservices
architecture · Dependability · Software architecture

1 Introduction

There is a growing trend towards increasing the integration and collaboration
between IoT systems to create relevant end-to-end solutions [2]. Under the col-
laborative perspective, they form a cluster of systems cooperating to solve harder
problems. This phenomenon is known as System of Systems (SoS) [1], and it is
well applicable to a significant part of existing IoT systems [4]. Indeed, this kind
of IoT solutions has been advancing very fast and, shortly, they might repre-
sent most of the IoT deployments. The concern is that designing, implementing,
and operating IoT applications acting as SoSs is even more complex and intro-
duces new challenges. Therefore, advanced development strategies are required
to address dependability in these applications adequately [6].

Meanwhile, Microservices Architecture (MSA) has been increasingly lauded
as a successful approach to achieving dependability in information systems.
There is also a growing position in favor of applying MSA to in IoT [3,7]. Accord-
ingly, IoT applications could adopt several of the MSA development strategies
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 390–396, 2019.
https://doi.org/10.1007/978-3-030-33702-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_30&domain=pdf
http://orcid.org/0000-0001-6950-8169
http://orcid.org/0000-0002-7088-4492
http://orcid.org/0000-0003-4980-3894
https://doi.org/10.1007/978-3-030-33702-5_30


The Circuit Breaker Pattern Targeted to Future IoT Applications 391

to reap similar benefits. Among the MSA strategies, the Circuit Breaker (CB)
is a prevalent pattern to deal with the resilience of distributed services. It works
by preventing the failure propagation to dependent services. For IoT systems, it
can be used as an intermediary in the communication between critical IoT nodes
in order to increase the dependability of the whole solution.

This work seeks to explore the options of designing and implementing the
CB in IoT solutions. Although many IoT devices have high computing capa-
bilities (e.g., smartphones, home voice assistants), a significant part has limited
capabilities (e.g., memory, processing power, energy availability, connectivity),
dedicated systems, and non-preemptive execution [5,8]. Therefore, the CB in IoT
applications must address these constraints properly. For this reason, we inves-
tigate several CB possibilities target to IoT and organize them as a taxonomy.
Moreover, to examine the applicability and trade-offs, we conduct an experi-
mental study using a prototyped IoT application. This prototype simulates a
solution of smart traffic lights based on the collaboration of multiple nodes.

2 Circuit Breaker Narrowed to IoT Systems

The CB is a simple and effective pattern for fault tolerance. In the interaction
between different microservices, it assumes the responsibility of detecting failures
and preventing its propagation. The use of CB brings several benefits directly
related to availability and reliability, such as: (a) It prevents to perform the action
that is doomed to fail; (b) It allows handling the error quickly and gracefully; (c)
The callers do not have to cope with the failure themselves; (d) Custom fallback
plans can be used; (e) All callers are spared from calling the crashed service;
(f) It can also spare the service from being overwhelmed by large numbers of
requests (e.g., it can implement a local cache).

Fig. 1. A taxonomy for the design of the Circuit Breaker targeted to IoT applications.

Although the CB is a simple pattern, there are several issues to take into
account when implementing it. For the best of our knowledge, the literature
about it is usually focused on information systems and fail to address specific
needs required by IoT. For this reason, we sought to compile the main aspects,
and possibilities regarding the CB tailored to IoT and organized them as a



392 G. Aquino et al.

taxonomy (Fig. 1). It defines three main groups, according to their influence on
the CB design. The Structural comprises the options which affect the structure in
terms of implementation and execution. The Behavioural includes those related
to the behavior at run-time. The last is related to communication.

2.1 Structural

A critical decision to be made in IoT scenarios is the deployment location where
the CB will execute, i.e., in which physical node it will be hosted. Because every
message must pass through it, its availability, security, and performance have to
fit the application needs. In IoT applications, these aspects include the reliability
and the capacity of the hardware, the deployment location, the energy supply,
the connectivity, and also the other process/services competing in the same node.
In essence, it can execute in the caller, service, or as an additional node.

The management of CB instances is another critical decision. Simple solu-
tions can adopt a single instance option running in the caller, service, or proxy.
However, in some applications, redundancy strategies involving the use of multi-
ple instances should be considered also to improve its availability. Also, the way
how the instances interact with the caller or the service (wrapping) may also be
taken into consideration. It can share the same process (In-process), or it can
run in a separate process (Inter-process).

2.2 Behavioural

Several options exist, but they can be grouped in the following categories: Mask-
ing, Fail-fast, and Retry. While the masking strategy seeks to hide the failure to
the caller, the fail-fast allows to notice it as fast as possible. The most common
masking strategies are: return a default value; return the last valid result (e.g.,
from a cache); or return a calculated value (e.g., forecasting based on histori-
cal data). Among the fail-fast strategies, the most common are: return an error
code; return the original error to the caller. Finally, the Retry strategy seeks to
try the failed operation again some times, hoping it can be successful. It can also
retry in a surrogate service.

A fundamental ability of the CB is the failure detection on the target service
in order to trip the circuit. In the same way, when the circuit is open, it must
monitor the service health to close the circuit safely. The main strategies to do
this are: (a) On-demand – it periodically transits to the state of half-open and
seize a real request to test the service; (b) Passive – it waits for periodic health
signals from the service (e.g., heartbeats, keepalives) to confirm if the service
is available or unavailable; (c) Active – it regularly checks the service health
independently of the caller requests.

Finally, several parameters should be adjusted appropriately, considering the
application needs, to attain the CB benefits. One of them is the timeout, which
is used to establish a limit of how long the CB should wait before assuming
an omission failure. The concurrency configuration includes parameters such
as the maximum of concurrent requests, requests queue size, and maximum
throughput. The checking interval establishes the frequency of health checking.



The Circuit Breaker Pattern Targeted to Future IoT Applications 393

To differ intermittent and permanent failures, the CB uses the error threshold
which indicates the limit of failures it can tolerate.

2.3 Communication

IoT solutions are strongly based on communication between things. Currently, a
vast number of communication protocols and technologies coexist. As an interme-
diary, the CB must follow the same communication model adopted by the peers.
Despite the several options, we can abstractly classify them in four models.

The Request-response is the model which the caller sends requests, and the
service responds. This model is usually synchronous, as the caller has to wait for
the response to continue its task. It is also stateless as no information about the
caller is kept between requests. Even in IoT systems, RESTful HTTP solutions
are commonly found [3]. However, for constrained devices and networks, other
REST derivatives options are frequently mentioned, e.g., the Devices Profile for
Web Services (DPWS) and the Constrained Application Protocol (CoAP).

The Asynchronous messaging allows the systems to send messages to each
other asynchronously. Commons examples of this model in IoT are WebSocket
protocol and Reactive Streams. One variation of that model is the Publish-
Subscribe. In this model, the sender of a message (publisher) does not send
it directly to the receiver (subscriber). Alternatively, they use an intermediate
(i.e., message broker) to asynchronously delivered the messages. One of the most
common examples of this model in IoT solutions is the MQTT (Message Queuing
Telemetry Transport). Finally, Exclusive-Pair is a simple model and considered
a low-level option. It is a bidirectional and fully duplex communication model
which uses a persistent connection between a pair of elements.

3 Experimental Study

To demonstrate the suitability of the CB to address the dependability, we devel-
oped a prototype1 that simulates a collaborative traffic light system. It is com-
posed of several micro-controllers, each one placed in a traffic junction to control
a traffic light group. Each runs an instance of a Traffic Junction System (TJS)
and are wirelessly interconnected. The TJS performs a periodic task of moni-
toring the traffic density on the roads its controls and also requests data from
adjacent TJSs to make a more accurate decision. In this study, we sought to
evaluate the consequences of intermittent nodes for the whole solution.

This scenario aims to demonstrate the SoS paradigm applied to IoT. A crit-
ical issue in such systems is that failures in one part can induce the dependent
systems to fail too, potentially triggering the cascading effect. In order to exam-
ine this issue, we ran five TJS instances (TJ0...TJ4) and simulated omission
failures in two of them according to the following configuration (node, start,
duration): {(TJ1, 30 s, 30 s), (TJ1, 90 s, 10 s), (TJ3, 40 s, 20 s)}. This kind of

1 https://github.com/labcomu/smart-traffic-prototype.

https://github.com/labcomu/smart-traffic-prototype


394 G. Aquino et al.

Fig. 2. Task time over the experiment execution.

failure happens when the service omits to respond to a request. The duration of
the experiment was 120 s, with task periods of 2 s. For the physical nodes, we
used Raspberry Pi 3 Model B, interconnected in a network of 100 Mbps. Con-
cerning the CB design structural decisions, we adopted the following strategies:
caller deployment, single instance, and in-process wrapping. Such choices aimed
to create a configuration suitable to the typical constraint of traffic junction
infrastructures. Concerning the behavior, we implemented the fail-fast strat-
egy, on-demand health checking, and configuration parameters of {timeout= 1 s,
error threshold= 1, no concurrency}. These choices sought to achieve more accu-
rately the requirements of the TJS.

3.1 Experimental Results

In our study, we extended the traditional availability measurement by introduc-
ing the metric availability to collaborate (AC). It is defined as the fraction of
time the TJS is active responding requests from its peers. As the solution’s key
point is the collaboration ability, the time it is available to provide information
to the adjacent nodes is a relevant quality attribute. Table 1 shows that the AC
increased with the use of the CB. It means the solution with CB allowed the TJS
to dedicate more time collaborating with its peers and consequently improving
the accuracy of its decision.

Table 1. Results of the experiment execution collected on the TJ0 node.

No CB With CB

Executed Tasks 60 60
Complete Tasks 41 41
Partial Tasks 10 19
Aborted Tasks 9 0

No CB With CB

Task time (mean) 929 ms 600 ms
Task time (std) 737 ms 329 ms
Availability to

53.6% 70.0%
collaborate



The Circuit Breaker Pattern Targeted to Future IoT Applications 395

This effect is influenced by the decrease of the Task time, which is the time
to the TJS completes one task. Accordingly, the use of the CB improved the
performance and also the stability. Without the CB, the task time becomes very
high during the failures (Fig. 2). Because the TJS needs to wait for the adjacent
nodes response to complete its task, its performance is strongly affected if some
of the peers last to respond.

Finally, we also evaluated the completion of the tasks (Table 1). The tasks
were classified as follows: Complete – executed considering all peers response
and completed before the task cycle expires; Partial – completed before the task
cycle expires, but could not use information from all peers; Aborted – did not
complete before the task cycle expires. The results showed a complete reduction
in the aborted tasks with the CB. It means the TJS was able to make more
accurate decisions.

4 Conclusions

This paper sought to examine the circuit breaker pattern in the context of IoT.
We seized the growing belief that some MSA practices are promising to IoT, par-
ticularly considering the expected complexity of future applications. Our main
contribution was the definition of a taxonomy, based on the compilation of sev-
eral aspects concerning the design and implementation of the CB tailored to IoT
applications. Also, we conducted an experimental validation to compare the ben-
efits of this pattern in a prototype of a traffic light system. The results showed
several advantages for this specific application. In particular, it demonstrated
the CB ability to improve performance, availability, and accuracy significantly.

Acknowledgments. This research was partially funded by CAPES - Finance Code
001, INES 2.0, CNPq grant 465614/2014-0, FACEPE grant APQ-0399-1.03/17, and
CAPES grant 88887.136410/2017-00.

References

1. Ackoff, R.L.: Towards a system of systems concepts. Manag. Sci. 17(11), 661–671
(1971)

2. Bello, O., Zeadally, S.: Intelligent device-to-device communication in the Internet of
Things. IEEE Syst. J. 10(3), 1172–1182 (2016)

3. Butzin, B., Golatowski, F., Timmermann, D.: Microservices approach for the inter-
net of things. In: 21st International Conference on Emerging Technologies and Fac-
tory Automation (ETFA), pp. 1–6. IEEE (2016)

4. Delicato, F.C., Pires, P.F., Batista, T., Cavalcante, E., Costa, B., Barros, T.:
Towards an IoT ecosystem. In: Proceedings of the First International Workshop
on Software Engineering for Systems-of-Systems, pp. 25–28. ACM (2013)

5. Hahm, O., Baccelli, E., Petersen, H., Tsiftes, N.: Operating systems for low-end
devices in the Internet of Things: a survey. IEEE Internet of Things J. 3(5), 720–
734 (2016)



396 G. Aquino et al.

6. Hammoudi, S., Aliouat, Z., Harous, S.: Challenges and research directions for Inter-
net of Things. Telecommun. Syst. 67(2), 367–385 (2018)

7. Santana, C., Alencar, B., Prazeres, C.: Microservices: a mapping study for inter-
net of things solutions. In: 2018 IEEE 17th International Symposium on Network
Computing and Applications (NCA), pp. 1–4. IEEE (2018)

8. Zikria, Y.B., Yu, H., Afzal, M.K., Rehmani, M.H., Hahm, O.: Internet of Things
(IoT): operating system, applications and protocols design, and validation tech-
niques. Future Gener. Comput. Syst. 88, 699–706 (2018)



Services in Organizations, Business and
Society



A Catalogue of Inter-parameter
Dependencies in RESTful Web APIs

Alberto Martin-Lopez(B), Sergio Segura, and Antonio Ruiz-Cortés

Department of Computer Languages and Systems,
Universidad de Sevilla, Seville, Spain

{amarlop,sergiosegura,aruiz}@us.es

Abstract. Web services often impose dependency constraints that
restrict the way in which two or more input parameters can be combined
to form valid calls to the service. Unfortunately, current specification
languages for web services like the OpenAPI Specification provide no
support for the formal description of such dependencies, which makes
it hardly possible to automatically discover and interact with services
without human intervention. Researchers and practitioners are openly
requesting support for modelling and validating dependencies among
input parameters in web APIs, but this is not possible unless we share
a deep understanding of how dependencies emerge in practice—the aim
of this work. In this paper, we present a thorough study on the pres-
ence of dependency constraints among input parameters in web APIs in
industry. The study is based on a review of more than 2.5K operations
from 40 real-world RESTful APIs from multiple application domains.
Overall, our findings show that input dependencies are the norm, rather
than the exception, with 85% of the reviewed APIs having some kind of
dependency among their input parameters. As the main outcome of our
study, we present a catalogue of seven types of dependencies consistently
found in RESTful web APIs.

Keywords: Web services · Constraints · Parameter dependencies

1 Introduction

Web Application Programming Interfaces (APIs) allow systems to interact with
each other over the network, typically using web services [10,17]. Web APIs
are rapidly proliferating as the cornerstone for software integration enabling
new consumption models such as mobile, social, Internet of Things (IoT), or
cloud applications. Popular API directories such as ProgrammableWeb [14] and
RapidAPI [16] currently index over 21K and 8K web APIs, respectively, from
multiple domains such as shopping, finances, social networks, or telephony.

Modern web APIs typically adhere to the REpresentational State Transfer
(REST) architectural style, being referred to as RESTful web APIs [7]. REST-
ful web APIs are decomposed into multiple web services, where each service

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 399–414, 2019.
https://doi.org/10.1007/978-3-030-33702-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_31&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_31


400 A. Martin-Lopez et al.

implements one or more create, read, update, or delete (CRUD) operations over
a resource (e.g. a tweet in the Twitter API), typically through HTTP inter-
actions. RESTful APIs are commonly described using languages such as the
OpenAPI Specification (OAS) [13], originally created as a part of the Swagger
tool suite [19], or the RESTful API Modeling Language (RAML) [15]. These
languages are designed to provide a structured description of a RESTful web
API that allows both humans and computers to discover and understand the
capabilities of a service without requiring access to the source code or additional
documentation. Once an API is described in an OAS document, for example, the
specification can be used to generate documentation, code (clients and servers),
or even basic automated test cases [19]. In what follows, we will use the terms
RESTful web API, web API, or simply API interchangeably.

Web services often impose dependency constraints that restrict the way in
which two or more input parameters can be combined to form valid calls to
the service, we call these inter-parameter dependencies (or simply dependencies
henceforth). For instance, it is common that the inclusion of a parameter requires
or excludes—and therefore depends on—the use of some other parameter or
group of parameters. As an example, the documentation of the YouTube Data
API states that when using the parameter videoDefinition (e.g. to search
videos in high definition) the type parameter must be set to ‘video’, otherwise
a HTTP 400 code (bad request) is returned. Similarly, the documentation of the
cryptocurrency API Coinbase explains that, when placing a buy order, one, and
only one of the parameters total or amount must be provided.

Current specification languages for RESTful web APIs such as OAS and
RAML provide little or no support at all for describing dependencies among
input parameters. Instead, they just encourage to describe such dependencies as
a part of the description of the parameters in natural language, which may result
in ambiguous or incomplete descriptions. For example, the Swagger documenta-
tion states1 “OpenAPI 3.0 does not support parameter dependencies and mutually
exclusive parameters. (...) What you can do is document the restrictions in the
parameter description and define the logic in the 400 Bad Request response”. The
lack of support for dependencies means a strong limitation for current specifica-
tion languages, since without a formal description of such constraints is hardly
possible to interact with the services without human intervention. For example,
it would be extremely difficult, possibly infeasible, to automatically generate test
cases for the APIs of YouTube or Coinbase without an explicit and machine-
readable definition of the dependencies mentioned above. The interest of industry
in having support for these types of dependencies is reflected in an open feature
request in OAS entitled “Support interdependencies between query parameters”,
created on June 2015 with the message shown below. At the time of writing this
paper, the request has received over 180 votes, and it has received 43 comments
from 25 participants2.

1 https://swagger.io/docs/specification/describing-parameters/.
2 https://github.com/OAI/OpenAPI-Specification/issues/256.

https://swagger.io/docs/specification/describing-parameters/
https://github.com/OAI/OpenAPI-Specification/issues/256


A Catalogue of Inter-parameter Dependencies in RESTful Web APIs 401

“It would be great to be able to specify interdependencies between query param-
eters. In my app, some query parameters become “required” only when some
other query parameter is present. And when conditionally required parameters
are missing when the conditions are met, the API fails. Of course I can have the
API reply back that some required parameter is missing, but it would be great to
have that built into Swagger.”

This feature request has fostered an interesting discussion where the partic-
ipants have proposed different ways of extending OAS to support dependencies
among input parameters. However, each approach aims to address a particular
type of dependency and thus show a very limited scope. Addressing the problem
of modelling and validating input constraints in web APIs should necessarily
start by understanding how dependencies emerge in practice. Some previous
papers have addressed this challenge, as a part of other contributions, but they
have studied just a few popular APIs and so they have only scratched the sur-
face [12,21] (c.f. Sect. 5). A systematic and large-scale analysis of the state of
practice is needed in order to answer key questions such as how often dependen-
cies appear in practice or what types of input constraints are found in real-world
web APIs. This is the goal of our work.

In this paper, we present a thorough study on the presence of inter-parameter
dependencies in industrial web APIs. Our study is based on an exhaustive
review of 40 RESTful APIs from multiple application domains carefully selected
from the API repository of ProgrammableWeb [14]. All APIs were carefully
reviewed and classified following a systematic and structured method. Among
other results, we found that 85% of the APIs (34 out of 40) had some kind of
dependency among their input parameters. More specifically, we identified 633
dependencies in 9.7% of the operations analysed (248 out of 2,557). The identi-
fied constraints are classified into a catalogue of seven types of inter-parameter
dependencies in RESTful web APIs. This catalogue will hopefully serve as a
starting point for future approaches on modelling and analysis of input depen-
dencies in web APIs.

This paper is structured as follows: Sect. 2 describes the review method fol-
lowed. Section 3 presents the results of our study. Section 4 describes some poten-
tial threats to validity and how they were mitigated. Related work is discussed in
Sect. 5. Finally, Sect. 6 draws the conclusions and presents future lines of research.

2 Review Method

In what follows, we present the research questions that motivate this study as
well as the process followed for the collection and analysis of the data.

2.1 Research Questions

The aim of this paper is to answer the following research questions (RQs):

RQ1: How common are inter-parameter dependencies in web APIs?
We aim to provide an in-depth view of how frequently dependencies appear in



402 A. Martin-Lopez et al.

practice, trying to find out whether their presence is correlated to certain charac-
teristics or application domains. Once we confirm the presence of dependencies,
we will try to understand how they look like answering the following question.

RQ2: What types of inter-parameter dependencies are found in web
APIs? We wish to provide a catalogue of the types of dependencies among
input parameters most commonly found in real-world APIs, which can serve as
a starting point for future proposals for their modelling and analysis.

2.2 Subject APIs and Search Strategy

The search for real-world APIs was carried out in ProgrammableWeb [14], a
popular and frequently updated online repository with about 21K APIs and
8K mashups at the time of writing this paper. We followed a systematic app-
roach for the selection of a subset of highly-used yet diverse APIs, as follows.
First, we selected the top 10 most popular APIs in the repository overall. Then,
we selected the 3 top-ranked APIs from the top 10 most popular categories in
ProgrammableWeb, i.e. those with a larger number of indexed APIs. APIs on
each category are ordered according to the number of registered applications
consuming them (mashups). We focused on RESTful APIs only, as the de-facto
standard for web APIs. In particular, we selected APIs reaching level 1 or higher
in the Richardson Maturity Model [17], which ensured a minimal adherence to
the REST architectural style, e.g. using the notion of resources. APIs not follow-
ing the key REST principles and those with poor or no available documentation
were discarded, selecting the next one in the list. Some of the selected APIs were
found in different categories and were included just once, ignoring duplicates.
Table 1 depicts the list of subject APIs analysed in our study, 40 in total. For
each API, the table shows its name, category, number of mashups, number of
operations and percentage of operations containing parameter dependencies. For
the sake of readability, similar categories have been merged into a single one.

Figure 1 shows the classification of subject APIs by category and size. As
illustrated, the subject APIs are evenly distributed among 10 different categories
such as communication, social and mapping. Regarding the size, the majority of
reviewed APIs (75%) provide between 1 and 50 operations, with the largest APIs
having up to 305 (DocuSign eSignature) and 492 (Github) operations. Overall,
the selected APIs represent a large, diverse, and realistic dataset.

2.3 Data Collection and Analysis

We carefully analysed the information available in the official website of the 40
subject APIs to answer our research questions. For each API, we collected the
name, link to the documentation, API version, category, number of mashups
and followers registered in ProgrammableWeb, and total number of operations.
Additionally, for each operation with dependencies, we collected the number
and type of input parameters, type of CRUD operation and inter-parameter
dependencies.



A Catalogue of Inter-parameter Dependencies in RESTful Web APIs 403

Table 1. List of subject APIs

Name Category Mashups Operations %Op. with dep.

Google Maps Places Mapping 2, 579 7 57.1

Twitter Search Tweets Social 829 3 100

Youtube Media 707 50 34.0

Flickr Media 635 222 13.1

Twilio SMS Communication 361 31 6.5

Last.fm Media 246 58 31.0

Microsoft Bing Maps Mapping 175 51 21.6

Google App Engine Admin Development 124 38 0.0

Foursquare Social 113 40 40.0

DocuSign eSignature Other 98 305 4.6

Amazon S3 Storage 95 94 16.0

GeoNames Reference 90 41 24.4

Bing Web Search Search 67 1 100

Yelp Fusion Reference 61 12 41.7

Indeed Search 48 2 0.0

Paypal Invoicing Financial 39 21 23.8

Google Custom Search Search 39 2 0.0

Google Geocoding Mapping 36 1 100

SoundCloud Media 34 49 2.0

Oodle Other 34 1 100

NationBuilder Social 33 107 5.6

Tumblr Social 26 25 20.0

OpenStreetMap Mapping 23 39 5.1

iTunes Media 22 1 100

Google Fusion Tables Development 20 33 9.1

Tropo Communication 19 25 8.0

Heroku Development 18 262 0.0

MapLarge Mapping 14 31 0.0

Google Drive Storage 13 39 10.3

CrunchBase Reference 11 23 8.7

Github Development 11 492 2.8

Nexmo SMS Communication 10 3 33.3

Stripe Financial 8 220 7.7

Kiva Financial 8 32 0.0

AT&T In-App Messaging Communication 7 11 9.1

PicPlz Media 5 18 61.1

Coinbase Financial 3 43 7.0

Pryv Other 1 25 16.0

QuickBooks Payments Financial 1 20 20.0

Forte (Payments Gateway) Financial 1 79 19.0



404 A. Martin-Lopez et al.

(a) Categories. (b) Number of operations.

Fig. 1. Classification of subject APIs by category and size.

Dependencies were identified in two steps. First, we recorded all the depen-
dencies among input parameters found in the documentation of the subject
APIs. It is worth mentioning that every dependency can be represented in mul-
tiple ways, e.g. in conjunctive normal form. At this point, we strove to represent
them as they were described in the documentation of the API. This allowed us,
for example, to record the arity of each dependency, i.e. number of parameters
involved in each constraint. In a second step, we studied the shape of all the
dependencies and managed to group them into seven general dependency types
(c.f. Sect. 3.2). Additionally, we used an online text analysis tool [20] to identify
the linguistic patterns most frequently used for the description of each type of
dependency. The documentation collected from each API was reviewed by at
least two different authors to reduce misunderstanding or missing information.
The complete dataset used in our study, including all the data collected from
each API, is publicly available in a machine-processable format [5].

3 Results

In this section, we describe the results and how they answer the research ques-
tions. Firstly, we present how frequently inter-parameter dependencies appear
in practice and whether their presence is correlated to certain API characteris-
tics. Secondly, we detail the different types of dependencies found in the subject
APIs.

3.1 Presence of Inter-parameter Dependencies

This section aims to provide an answer to RQ1 by studying how common inter-
parameter dependencies are in web APIs and where they are typically found.



A Catalogue of Inter-parameter Dependencies in RESTful Web APIs 405

Fig. 2. Percentage of operations with dependencies per category.

We identified 633 total dependencies among input parameters in 85% of the
APIs under study (34 out of 40). Specifically, we found dependencies in 9.7% of
the operations analysed (248 out of 2,557). The percentage of operations with
dependencies of each API is shown in the last column of Table 1. This percentage
ranged from less than 5%, in APIs such as Soundcloud and Github, to 100%, in
APIs such as Bing Web Search and Twitter Search Tweets. Figure 2 depicts a
bar graph with the percentage of operations with dependencies on each category.
As illustrated, we found dependencies in all the categories under study, with
the percentage of operations with dependencies ranging between 2.1% in the
category development and 22.4% in the category reference. This suggests that
the presence of dependencies in real-world APIs is very common, independently
of their application domain.

Figure 3a shows the distribution of dependencies by the number of parame-
ters of the operation. Overall, we found that operations with dependencies had
between 2 and 221 parameters, 20.1 on average (standard deviation = 21.0,
median = 13). Moreover, most of these operations were read operations (61%),
followed by create (26%), update (13%) and delete operations (less than 1%).
Figure 3b depicts the distribution of dependencies by their arity. The largest por-
tion of dependencies were binary (86%), followed by those involving three (10%)
or more parameters (4%). In total, arity ranged between 2 and 10, with depen-
dencies involving 2.2 parameters on average (standard deviation = 0.6, median
= 2). Furthermore, the dependencies mostly involved query parameters (65%),
followed by body (34%), header (3%) and path parameters (1%). Interestingly,
we found 22 dependencies that involved more than one type of parameter. For
example, the Bing Web Search API documentation states that, in order to obtain
results in a given language, either the Accept-Language header or the setLang
query parameter must be specified, but not both.

Finally, we investigated whether some of the data could be used as effective
predictors for the amount of dependencies in a web API. To that end, we studied
some potential correlations among the collected data using the R statistical
environment in two steps. First, we checked the normality of the data using the



406 A. Martin-Lopez et al.

(a) Operation parameters. (b) Dependency arity.

Fig. 3. Classification of dependencies by the number of parameters in the operation
and their arity.

Shapiro-Wilk test concluding that the data do not follow a normal distribution.
Second, we used the Spearman’s rank order coefficient to assess the relationship
between the variables. In particular, we tried to answer the following questions:

– Are APIs with many operations likely to have a higher percentage of opera-
tions with dependencies? No, quite the opposite. Spearman coefficient reveals
a moderate negative correlation (ρ = −0.45, p-value = 0.003), which indicates
that as the number of operations increases, the percentage of operations with
dependencies decreases, and vice versa. In other words, the percentage of
operations with dependencies tends to be higher in APIs with fewer oper-
ations. This may be explained by the fact that APIs with few operations
often suffer from low cohesion, with a few operations trying to do too many
things through the use of a wide set of parameters and dependencies. Con-
versely, APIs with many operations avoid some dependencies by distributing
the functionality across different related operations

– Are operations with many parameters likely to have more dependencies? Yes.
Spearman coefficient reveals a moderate positive correlation (ρ = 0.49, p-
value = 2.2 × 10−16), which means that the number of dependencies in an
operation typically increases with the number of input parameters. We found
an exception, however, in those operations receiving complex objects as input,
where the percentage of object properties with dependencies is usually very
low, e.g. a PayPal invoice is composed of 112 JSON properties with just
2 dependencies among them. We repeated the correlation study excluding
input objects and obtained a Spearman coefficient of 0.67 (p-value = 2.2 ×
10−16), which reflects a stronger positive correlation between the number of
parameters of an operation and the number of dependencies.



A Catalogue of Inter-parameter Dependencies in RESTful Web APIs 407

(a) Dependency types. (b) Occurrences in APIs

Fig. 4. Distribution of dependencies by type and percentage of APIs.

3.2 Catalogue of Inter-parameter Dependencies

In this section, we answer RQ2 by classifying the inter-parameter dependencies
identified into seven general types. We took inspiration in the constraints used to
model dependencies in feature models, in the context of software product lines,
where the authors have wide expertise [3], although we propose more intuitive
and self-explanatory names in our work.

Before going in depth into each type of dependency, a number of consider-
ations must be taken into account. First, for the sake of simplicity, dependen-
cies are described using single parameters. However, all dependencies can be
generalized to consider groups of parameters using conjunctive and disjunctive
connectors. Second, dependencies can affect not only the presence or absence
of parameters, but also the values that they can take. In what follows, when
making reference to a parameter being present or being absent, it could also
mean a parameter taking or not taking a given value, respectively. Finally, when
introducing each dependency type we will make reference to Fig. 4, which shows
the distribution of dependencies by type (Fig. 4a) and the percentage of subject
APIs including occurrences of each dependency type (Fig. 4b). Next, we describe
the seven types of dependencies found in our study, including examples.

Requires. The presence of a parameter p1 in an API call requires the presence
of another parameter p2, denoted as p1 → p2. As previously mentioned, p1 and
p2 can be generalized to groups of parameters and parameters’ assignments, e.g.
a ∧ b = x → c ∨ d. Based on our results, this is the most common type of
dependency in web APIs, representing 35% of all the dependencies identified in
our study (Fig. 4a), and being present in 47.5% of the subject APIs (Fig. 4b). The
syntactical analysis of API documentations revealed that the most frequently
used linguistic patterns to describe this type of dependencies are “you must also



408 A. Martin-Lopez et al.

set X”, “X must also be specified”, “only valid if X is” and “[yes,/required] if
X is specified”. This type of dependency is equivalent to the requires cross-tree
constraint in feature models [3].

As an example, in the Paypal Invoicing API, when creating a draft
invoice, if the parameter custom.label is present, then custom.custom amount
becomes required, i.e. custom.label → custom.custom amount. Similarly, in
the YouTube Data API, when searching for videos with a certain definition
(parameter videoDefinition), the type parameter must be set to ‘video’, i.e.
videoDefinition → type=video.

Or. Given a set of parameters p1, p2, . . . , pn, one or more of them must be
included in the API call, denoted as Or(p1, p2, . . . , pn). As illustrated in Fig. 4,
this type of dependencies represent only 3% of the dependencies identified in
the subject APIs. Interestingly, however, we found that more than one fourth of
the APIs (27.5%) included some occurrence of this type of dependency, which
suggests that its use is fairly common in practice. Typical syntactic structures
to describe these dependencies are “X or Y must be set” and “required if X is
not provided”. This type of dependency is equivalent to the or relationship in
feature models [3].

As an example, when setting the information of a photo in the Flickr API,
at least one of the parameters title or description must be provided, i.e.
Or(title, description). Similarly, in the DocuSign eSignature API, at least
one of the parameters from date, envelope ids or transaction ids must be
submitted in the API call when retrieving the status of several envelopes, i.e.
Or(from date, envelope ids, transaction ids).

OnlyOne. Given a set of parameters p1, p2, . . . , pn, one, and only one of them
must be included in the API call, denoted as OnlyOne(p1, p2, . . . , pn). As
observed in Fig. 4, this group of dependencies represent 17% of all the dependen-
cies identified, and they appear in almost half of the APIs under study (47.5%).
Among others, we found that this type of dependency is very common in APIs
from the category media, where a resource can be identified in multiple ways,
e.g. a song can be identified by its name or by its ID, and only one value must
be typically provided. Common syntactic structures for describing this type of
dependencies are “specify one of the following”, “only one of X or Y can be
specified”, “use either X or Y”, “required unless X” and “required if X is not
provided”. This type of dependency is equivalent to the alternative constraint in
feature models [3].

For example, in the Twilio SMS API, when retrieving the messages of a par-
ticular account, either the parameter MessagingServiceSid or the parameter
From must be included, but not both at the same time, i.e. OnlyOne(Messaging-
ServiceSid, From). Similarly, when deleting a picture in the PicPlz API, only
one of the parameters id, longurl id or shorturl id must be submitted in the
API call, i.e. OnlyOne(id, longurl id, shorturl id).

AllOrNone. Given a set of parameters p1, p2, . . . , pn, either all of them are
provided or none of them, denoted as AllOrNone(p1, p2, . . . , pn). Very similarly



A Catalogue of Inter-parameter Dependencies in RESTful Web APIs 409

Fig. 5. Description of a parameter in the YouTube API that implies multiple
ZeroOrOne dependencies.

to the Or dependency type, only 6% of the dependencies found belong to this
category, nonetheless, they are present in about one third of the APIs under
study (30%). These dependencies are typically described with structures such
as “can only be used in conjunction with”, “required if X is provided” and “(in
conjunction) with X, (...)”.

In the GitHub API, for example, the operation to obtain information about
a user accepts two optional parameters, subject type and subject id, and
they must be used together, i.e. AllOrNone(subject type, subject id). In the
payments API Stripe, when creating a Stock Keeping Unit (a specific version of
a product, used to manage the inventory of a store), if inventory.type is set
to ‘finite’, then inventory.quantity must be present, and vice versa, i.e.
AllOrNone(inventory.type=finite, inventory.quantity).

ZeroOrOne. Given a set of parameters p1, p2, . . . , pn, zero or one can be present
in the API call, denoted as ZeroOrOne(p1, p2, . . . , pn). Figure 4 reveals that this
type of dependency is common both in terms of the number of occurrences (18%
of the total) and the number of APIs including it (47.5%). Commonly used
linguistic patterns for describing this type of dependency are “not supported for
use in conjunction with”, “cannot be combined with”, “if X is set, the only other
supported parameters are” and “mutually exclusive with X”.

Interestingly, about one third of the occurrences of this dependency type
were found in YouTube, where filtering by a video ID in the search operation
restricts the allowed parameters it can be combined with to only 8, as shown
in Fig. 5. Since the operation accepts other 22 optional parameters, they are
related to the video ID parameter by means of ZeroOrOne dependencies, e.g.
ZeroOrOne(relatedToVideoId, topicId). Other examples of this dependency
type include those where the use of a parameter restricts the allowed values
of another parameter, like in the Google Maps API: when searching for places
nearby, if radius is present, then rankby cannot be set to ‘distance’, i.e.
ZeroOrOne(radius, rankby=distance).

Arithmetic/Relational. Given a set of parameters p1, p2, . . . , pn, they are
related by means of arithmetic and/or relational constraints, e.g. p1 + p2 > p3.
As shown in Fig. 4, this type of dependency is the most recurrent across the



410 A. Martin-Lopez et al.

Fig. 6. Complex dependency present in the GET /venues/search operation of the
Foursquare API.

subject APIs, being present in half of them. Moreover, 17% of the dependencies
found are of this type. These dependencies are typically implicit by the meaning
of the parameters. For example, in a hotel booking, the checkout date should
be later than the checkin date.

As an example, in the GeoNames API, when retrieving information about
cities, the north parameter must be greater than the south parameter for the
API to return meaningful results, i.e. north > south (north, east, south and
west are the coordinates of a bounding box conforming the search area). In the
payments API Forte, when creating a merchant application, this can be owned
by several businesses, in which case the sum of the percentages cannot be greater
than 100, i.e. owner.percentage + owner2.percentage + owner3.percentage
+ owner4.percentage <= 100.

Complex. These dependencies involve two or more of the types of constraints
previously presented. Based on our results, they are typically formed by a combi-
nation of Requires and OnlyOne dependencies. As illustrated in Fig. 4, we found
4% of complex dependencies, being present in 7.5% of the subject APIs.

For example, in the Tumblr API, when creating a new post, if the type
parameter is set to ‘video’, then either embed or data must be specified, but not
both, i.e. type=video → OnlyOne(embed, data). Figure 6 shows an extract of
the documentation of the search operation in the Foursquare API. As illustrated,
if intent is set to ‘browse’, then either ll and radius are present or sw and
ne are present, i.e. intent=browse → OnlyOne((ll ∧ radius), (sw ∧ ne)).

4 Threats to Validity

The factors that could have influenced our study and how these were mitigated
are summarised in the following internal and external validity threats.

Internal Validity. This concerns any factor that might introduce bias. The
main source of bias is the subjective and manual review process conducted for
identifying dependencies among input parameters in the online documentation
of the subject APIs. It is possible that we missed some dependencies or that
we misclassified some of them. To mitigate this threat, the documentation of
each API was carefully checked several times recording all the relevant data
for its later analysis, and also to enable replicability. This was an extremely



A Catalogue of Inter-parameter Dependencies in RESTful Web APIs 411

time-consuming process, but it was somehow alleviated by the familiarity of the
authors with web APIs—all the authors have years of experience in the develop-
ment of service-oriented systems for teaching, research and industrial purposes.
The impact of possible mistakes was also minimised by the large number of APIs
reviewed (40 APIs and 2,557 operations), which makes us remain confident of
the overall accuracy of the results.

External Validity. Threats to external validity relate to the degree to which we
can generalise from the experiments. Our study is based on a subset of RESTful
web APIs, and thus our results could not generalise to other APIs. To minimise
this threat, we systematically selected a large set of real-world APIs from mul-
tiple application domains. This set includes some of the most popular APIs in
the world with millions of users worldwide.

5 Related Work

Two related papers have addressed the issue of parameter dependencies in con-
temporary web APIs. Wu et al. [21] presented an approach for the automated
inference of parameter dependencies in web services. As a part of their work,
they studied four popular RESTful web APIs and classified the dependencies
found into six types, four of which are specific instances of the Requires depen-
dency presented in our work. Oostvogels et al. [12] proposed a Domain-Specific
Language (DSL) for the description of inter-parameter constraints in OAS. They
first classified the dependencies typically found in web services into three types:
exclusive (called OnlyOne in our work), dependent (Requires in our work), and
group constraints (AllOrNone in our paper). Then, they looked for instances of
those types of dependencies in the documentation of six popular APIs by search-
ing for specific keywords such as “either” or “one of”. Compared to theirs, our
work presents a much larger and systematic study: we have manually reviewed
40 APIs from different domains, whereas they have jointly studied 7 “popular”
APIs. As a result, the conclusions drawn from our investigation differ sharply
from those derived from their papers. Among other differences, we identified a
richer set of dependencies (e.g. Oostvogels et al. [12] identified three out of the
seven types of dependencies found in our work), and collected a much larger
amount of data (e.g. Oostvogels et al. [12] found 19 dependencies in YouTube
while we found 82). Consequently, the general trends observed in our paper also
differ, e.g. Wu et al. [21] found that an average of 21.9% of service operations
had dependency constraints, while in our study that percentage is 9.7%. As a
further difference, our work comprises a much more thorough analysis of depen-
dencies including aspects such as their arity, frequently used linguistic patterns
and correlations. Overall, however, the three papers complement each other and
support the need for supporting inter-parameter dependencies in web APIs.

Several authors have addressed the problem of input dependencies in web
services using the Web Services Description Language (WSDL). Xu et al. [22]
analysed multiple service specifications to extract different types of constraints
that enable syntax, workflow and semantic testing. One type of constraint they



412 A. Martin-Lopez et al.

were able to infer is inter-parameter dependencies, but no details were given
regarding their type and number of occurrences. Cacciagrano et al. [4] identified
three types of constraints present in input parameters that hinder the auto-
mated invocation of services, one of them being inter-parameter dependencies
(e.g. the value of a parameter being conditioned to the value of some other),
and proposed an XML-based framework for their formalisation. Gao et al. [9]
integrated information about parameters, error messages and testing results to
infer data preconditions on web APIs that sometimes are not correctly specified
in their documentation. They studied two web services and identified constraints
involving one parameter (e.g. an integer that must be lower than certain value)
or several parameters (e.g. two parameters that cannot be used together). Com-
pared to them, our work is the first systematic and large-scale study of input
constraints in modern web APIs, including a catalogue of the types of constraints
most commonly found in practice.

Finally, our work is related to testing approaches for web services where
dependency management is a key point to generate valid test cases. Recent
contributions on testing of RESTful services [1,2,6,18] have succeeded to auto-
matically generate test cases to some extent, however, none of them support
the automated management of dependencies among input parameters. What is
more, checking the existence of inter-parameter dependencies could be consid-
ered a black-box test coverage criterion to fulfil when testing RESTful APIs
[11]. This would, in turn, enable the automatic generation of more thorough test
suites. This paper takes a step further to address these challenges.

6 Conclusions and Future Work

In this paper, we reviewed the state of practice on the existence of inter-
parameter dependencies in RESTful web APIs. To the best of our knowledge,
this is the first systematic study on the topic, and the largest one, with 40 real-
world APIs and more than 2.5K operations reviewed. Our results show that
dependencies are extremely common and pervasive—they appear in 85% of the
APIs under study across all application domains and types of operations. The
collected data helped us to characterise dependencies identifying their most com-
mon shape—dependencies in read operations involving two query parameters—,
but also exceptional cases such as dependencies involving up to 10 parameters
and dependencies among different types of parameters, e.g. header and body
parameters. We also identified some correlations pointing at the number of oper-
ations and the number of parameters as helpful estimators of the amount of
dependencies in a web API. As the main result of our study, we present a cat-
alogue of seven types of inter-parameter dependencies consistently found in all
the subject APIs. We trust that the results of this study will provide the basis
for future research contributions on modelling and analysis of input constraints
in web APIs, enabling a more precise description of their capabilities and open-
ing a new range of possibilities in terms of automation in areas such as code
generation and testing.



A Catalogue of Inter-parameter Dependencies in RESTful Web APIs 413

Several challenges remain for future work. On the one hand, it would be
desirable to perform an empirical study assessing the validity of the conclusions
drawn from our investigation. On the other hand, the results of our study set
the ground for approaches for modelling dependencies among input parameters
in web APIs. Such proposals should ultimately reach industrial standards, as in
the case of tools such as SLA4OAI [8], an OAS extension to model and man-
age Service Level Agreements (SLAs) in APIs. Our work enables the creation
of multiple tools of this kind, namely: a DSL for the description of dependen-
cies; a documentation analyser for the automatic inference of inter-parameter
dependencies based on the linguistic patterns found; a tool for the automatic
detection of dependencies at run-time; and a dependency analyser for the dis-
covery of inconsistencies between multiple dependency constraints, e.g. a dead
parameter that can never be selected.

Acknowledgements. This work has been partially supported by the European Com-
mission (FEDER) and Spanish Government under projects BELI (TIN2015-70560-R)
and HORATIO (RTI2018-101204-B-C21), and the FPU scholarship program, granted
by the Spanish Ministry of Education and Vocational Training (FPU17/04077). We
would also like to thank Enrique Barba Roque and Julián Gómez Rodŕıguez for their
help in analysing the documentation of some of the APIs considered for this study.

References

1. Arcuri, A.: RESTful API automated test case generation with EvoMaster. ACM
Trans. Softw. Eng. Methodol. 28(1), 3 (2019)

2. Atlidakis, V., Godefroid, P., Polishchuk, M.: REST-ler: automatic intelligent REST
API Fuzzing. Technical report, April 2018

3. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

4. Cacciagrano, D., Corradini, F., Culmone, R., Vito, L.: Dynamic constraint-based
invocation of web services. In: 3rd International Workshop on Web Services and
Formal Methods, pp. 138–147 (2006)

5. Inter-Parameter Dependencies in RESTful APIs [Dataset] (2019). https://bit.ly/
2wvv1m1

6. Ed-douibi, H., Izquierdo, J.L.C., Cabot, J.: Automatic generation of test cases for
REST APIs: a specification-based approach. In: IEEE 22nd International Enter-
prise Distributed Object Computing Conference, pp. 181–190 (2018)

7. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis (2000)

8. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortés, A.: Automating SLA-Driven API
development with SLA4OAI. In: 17th International Conference on Service-Oriented
Computing (2019)

9. Gao, C., Wei, J., Zhong, H., Huang, T.: Inferring data contract for web-based API.
In: IEEE International Conference on Web Services, pp. 65–72 (2014)

10. Jacobson, D., Brail, G., Woods, D.: APIs: A Strategy Guide. O’Reilly Media, Inc.,
Sebastopol (2011)

11. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: Test coverage criteria for RESTful
Web APIs. In: Proceedings of the 10th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and Evaluation (A-TEST 2019) (2019)

https://bit.ly/2wvv1m1
https://bit.ly/2wvv1m1


414 A. Martin-Lopez et al.

12. Oostvogels, N., De Koster, J., De Meuter, W.: Inter-parameter constraints in con-
temporary web APIs. In: Cabot, J., De Virgilio, R., Torlone, R. (eds.) ICWE 2017.
LNCS, vol. 10360, pp. 323–335. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60131-1 18

13. OpenAPI Specification. https://github.com/OAI/OpenAPI-Specification.
Accessed March 2019

14. ProgrammableWeb API Directory. http://www.programmableweb.com/. Accessed
March 2019

15. RESTful API Modeling Language (RAML). http://raml.org/. Accessed March
2019

16. RapidAPI API Directory. https://rapidapi.com. Accessed March 2019
17. Richardson, L., Amundsen, M., Ruby, S.: RESTful Web APIs. O’Reilly Media,

Inc., Sebastopol (2013)
18. Segura, S., Parejo, J.A., Troya, J., Ruiz-Cortés, A.: Metamorphic testing of REST-

ful web APIs. IEEE Trans. Softw. Eng. 44(11), 1083–1099 (2018)
19. Swagger. http://swagger.io/. Accessed March 2019
20. Text Analyzer - Text analysis Tool. https://www.online-utility.org/text/analyzer.

jsp. Accessed April 2019
21. Wu, Q., Wu, L., Liang, G., Wang, Q., Xie, T., Mei, H.: Inferring dependency con-

straints on parameters for web services. In: Proceedings of the 22nd International
Conference on World Wide Web, pp. 1421–1432 (2013)

22. Xu, L., Yuan, Q., Wu, J., Liu, C.: Ontology-based web service robustness test
generation. In: IEEE International Symposium on Web Systems Evolution, pp.
59–68 (2009)

https://doi.org/10.1007/978-3-319-60131-1_18
https://doi.org/10.1007/978-3-319-60131-1_18
https://github.com/OAI/OpenAPI-Specification
http://www.programmableweb.com/
http://raml.org/
https://rapidapi.com
http://swagger.io/
https://www.online-utility.org/text/analyzer.jsp
https://www.online-utility.org/text/analyzer.jsp


Simplification of Complex Process Models
by Abstracting Infrequent Behaviour

David Chapela-Campa(B), Manuel Mucientes, and Manuel Lama

Centro Singular de Investigación en Tecnolox́ıas Intelixentes (CiTIUS),
Universidade de Santiago de Compostela, Santiago de Compostela, Spain

{david.chapela,manuel.mucientes,manuel.lama}@usc.es

Abstract. Several simplification techniques have been proposed in pro-
cess mining to improve the interpretability of complex processes, such as
the structural simplification of the model or the simplification of the log.
However, obtaining a comprehensible model explaining the behaviour of
unstructured large processes is still an open challenge. In this paper, we
present WoSimp, a novel algorithm to simplify processes by abstracting
the infrequent behaviour from the logs, allowing to discover a simpler
process model. This algorithm has been validated with more than 10
complex real processes, most of them from Business Process Manage-
ment Challenges. Experiments show that WoSimp simplifies the process
log and allows to discover a better process model than the state of the
art techniques.

Keywords: Event abstraction · Model simplification ·
Log simplification · Process mining

1 Introduction

During the past years process mining has emerged as a discipline focusing on
techniques to discover, monitor and enhance real processes [1]. One of the key
areas of process mining is process discovery, whose objective is to generate a pro-
cess model describing the behaviour of the event log of a process. Once a model
is discovered, the analysis and enhancement of the process can be performed
to detect possible improvements. However, in scenarios where the quality of the
discovered process model is far too low —e.g. spaghetti models—, this analysis
and enhancement become more difficult.

With the entrance of process mining in the Big Data era, these complex
and incomprehensible processes have become more and more common. Different
simplification techniques have been developed with the objective of obtaining an
understandable process model, in order to be able to analyze and enhance the
real process behind it. The first proposals focused on a structural simplification
of the process model using only the information of the model itself [2]. But they
quickly evolved to simplify the process model using also the information from
the event log [3,4]. The drawback of these structural simplification techniques
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 415–430, 2019.
https://doi.org/10.1007/978-3-030-33702-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_32&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_32


416 D. Chapela-Campa et al.

is that, to maintain the fitness, they may produce unstructured models that
deteriorate the understandability of the process.

Other approaches first simplify the log, and then discover an understandable
process model. Some of these techniques search for outliers in the log traces,
removing them with the aim of retaining the frequent behaviour of the process.
In [5] this outlier identification is performed by using the probability of occur-
rence of each event conditioned by both its k predecessors and its k successors
—e.g. how probable is that a follows, or is followed by, the sequence 〈b, c〉. One
drawback of this technique is that, due to the use of sequential conditional prob-
ability, parallel relations are not considered. There are also approaches, like [6],
that entirely remove activites from the log based on their contribution to the
chaotic structure of the process. One drawback of this technique is that the deci-
sion of removing an activity depends on its relations with all the other activities,
making the approach unscalable when the number of activities grows. Further-
more, the removal of activities from the log can produce the loss of important
information if the activity is chaotic in some scenarios, but not in others.

An approach overcoming some of the previous drawbacks is the abstraction of
subparts —subprocesses— of the process. This procedure replaces subprocesses
with new activities, either in the log or structurally in the model. In [7] the
authors propose a supervised method to abstract in the log behavioural activ-
ity patterns that capture domain knowledge. Given a set of activity patterns,
they compose an abstraction model and align the behaviour of this abstrac-
tion model with the original log, creating an abstracted event log. The need of
expert domain knowledge is solved in [8], where an unsupervised version of this
method is proposed. This technique uses frequent local process models [9] as
the activity patterns to abstract. The drawback of this technique is the signifi-
cant penalization in its quality due to the abstraction of frequent subprocesses
—the removal of frequently executed behaviour penalizes the fitness, and the
addition of activities not recorded in the log the precision. This abstraction does
not help to discover a significantly better process model in terms of F-score, not
even undoing the parts of the abstraction after the discovery, as shown in their
experimentation.

Figure 1 shows a motivational example, where an ideal abstraction of the
infrequent behaviour is performed allowing to focus in the frequent one. In this
case, the frequent behaviour is related to the paths through DENIED-CANCELED
and through ACCEPTED-SUCCESS. The removal of the other —infrequent—
traces would cause a lost of all the behaviour in each trace, not only in the
infrequent one. For instance, the behaviour previous to PAY in these infrequent
traces might be important in an analysis phase. Table 1c and Fig. 1d show an
abstraction where the infrequent behaviour of the paths going through the loop
is encapsulated in one activity, ERROR AND RETRY, letting the rest untouched.

In this paper, we present WoSimp, a novel algorithm to simplify processes
by abstracting the infrequent behaviour from the log and maintaining the more
frequent one, allowing to discover a simpler process model. The main novelty of
our approach is that it detects the frequent behaviour of the process in a first



Simplification of Complex Process Models 417

Fig. 1. Motivational example for the algorithm presented in this paper.

phase —using the frequent patterns extracted by WoMine [10]— and abstracts
the infrequent behaviour in a second phase. The use of WoMine to detect fre-
quent behaviour allows our technique to retain not only frequent activities, but
frequent subprocesses, abstracting the infrequent behaviour which obfuscates the
understanding of the overall process. The algorithm has been validated with a set
of 11 complex real process logs, 10 of them from Business Process Management
Challenges, and one from the health domain. Experiments show that WoSimp
simplifies the process log allowing to discover better process models than the
state of the art techniques.

2 Preliminaries

In this paper, we represent process models with place/transition Petri nets [11]
(P/T Petri net) due to its higher comprehensibility, and the easiness to explain
the executed behaviour. A P/T Petri net (Definition 1) is a directed bipartite
graph composed by two kinds of nodes: places and transitions —circles and
boxes, respectively—, and where arcs connect two nodes of different type, as can
be seen in Fig. 2a. Being A the set of activities of a process, each transition in
a Petri net modeling its behaviour is identified by a label corresponding to the
activity it represents. We assume that the transition labels are unique, i.e. there
are no repeated activities in the net. An exception is made for silent transitions,
which are unlabeled. Silent transitions are only executed for routing purposes
and do not correspond to any activity of the process.

Definition 1 (Petri net). A Petri net is a tuple M = (P, T, F ), where

– P is a finite set of places;
– T is a finite set of transitions;
– P ∩ T = ∅; and
– F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs.



418 D. Chapela-Campa et al.

We denote as •t and t• the input and output places of t ∈ T (according to
F ). The state of a Petri net is defined by the marking function m : P � A. m
is a partial function returning, for each place p ∈ P , the label of a transition
—representing a token— or ∅ if there are no tokens in that place. The label
of a token corresponds with the transition which has produced it. Therefore,
a transition t is said to be enabled if ∀p ∈ •t, m(p) 
= ∅. The execution of an
enabled transition t consumes a token in each p ∈ •t, and produces another
token with its label in each p ∈ t•. Silent transitions maintain the label of the
consumed tokens in those it produces. The difference with a usual marking is
that the tokens carry the label of their producing transition. This allows to know,
when a transition is executed, which visible transitions have produced the tokens
it consumed.

Definition 2 (Event, Trace and Event Log). An event ε corresponds to
the execution of the activity α ∈ A in a particular instant. A trace is a list
(sequence) τ = 〈ε1, ..., εn〉 of events εi occurring at a time index i relative to the
other events in τ . Each trace corresponds to an execution of the process, i.e., a
process instance. An event log L = [τ1, ..., τm] is a multiset of traces τi.

In this paper, to ease the comprehension, an event is represented only with
the label of the executed activity, but usually events store more information as
timestamps, resources, etc. Nevertheless, it is important to distinguish between
an activity —an action from a process that can be modeled with a single tran-
sition in the Petri net— and an event —a single execution of an activity. The
replacement of an activity implies the replacement of all its events and the
transition in the Petri net, but the replacement of an event only implies the
replacement of that single execution.

Definition 3 (Behavioural Event). A behavioural event is a tuple β =
(Bβ , α) where:

– α ∈ A is the activity which execution is recorded in the behavioural event;
and

– Bβ is the set of behavioural events which have produced the tokens consumed
by the execution of α.

A

B

C
D

E

F

G
H

I

J

(a) Petri net example.

〈A,C,B, I, C, F,H,E, J〉
(b) Trace example.

〈(∅, A), ({A}, C), ({A}, B),
({C}, I), ({I}, C), ({B}, F ),
({F}, H), ({C}, E), ({H,E}, J)〉
(c) Behavioural trace example.

Fig. 2. Example of a Petri net, a trace, and the corresponding behavioural trace
obtained by replaying the trace in the Petri net. For the sake of simplicity, in each
behavioural event, Bβ is represented as a set of activities instead of behavioural events.



Simplification of Complex Process Models 419

Similar to an event, a behavioural event can store more information like
timestamps, resources, etc. Moreover, a behavioural event also stores its causal
inputs, i.e., the previous behavioural events which produced the tokens it con-
sumed. An example can be seen in Fig. 2c, where 9 behavioural events are shown.
For instance, the last behavioural event, ({H,E}, J), records the execution of J ,
consuming the tokens generated by the executions of H and E.

Definition 4 (Behavioural Trace). Let M be the Petri net of a process, and
τ = 〈ε1, ..., εn〉 a trace of the same process. The corresponding behavioural trace
of τ w.r.t. M is the sequence π = 〈β1, ..., βn〉 of behavioural events. π is the
result of a replay of all εi ∈ τ in M , extending each εi by adding the behavioural
events corresponding to the execution of each α′ ∈ mi(p) for all p ∈ •α, being
α the activity executed in εi —i.e., the behavioural events producing the tokens
consumed by εi.

Figure 2c shows the behavioural trace obtained by replaying the trace in
Fig. 2b in the Petri net of Fig. 2a.

Definition 5 (Behavioural Log). We define a behavioural event log, or
behavioural log, as a multiset Lπ = [π1, ..., πm] of behavioural traces πi.

Definition 6 (Abstraction). Given a behavioural trace π, and being Aπ

the set of activities executed in π. We define an abstraction in π as λ =
(εabs,B, AI , AO) where:

– εabs is an event representing the execution of an abstracted activity;
– B is a set of behavioural events from π to be replaced with εabs;
– AI ⊂ Aπ is a set of activities of the events causing the execution of any event

in B; and
– AO ⊂ Aπ is a set of activities of the events in π whose execution is caused by

events in B,

such that:

– BI = {β′ | β′ ∈ Bβ ∧ β ∈ B};
– AI = {β.activity | β ∈ BI \ B};
– BO = {β′ | β′ ∈ π ∧ β ∈ Bβ′ ∧ β ∈ B}; and
– AO = {β.activity | β ∈ BO \ B}.

For instance, being π the trace depicted in Fig. 2c, an abstraction could
be formed by a new activity Abs as εabs; ({A}, B), ({B}, F ) and ({F},H) as
B; being A the only activity in AO; and J the only activity in AI . After the
abstraction process, εabs would replace the behavioural events of B. Related to
Definition 6, we use the term empty abstraction, represented by λ∅ = (B, AI , AO),
to define an abstraction without assigned event, and the term anti-abstraction,
represented by λ̄, to define the set of behavioural events of a behavioural trace
to keep in the abstracted log, i.e., those events not to be abstracted.



420 D. Chapela-Campa et al.

3 WoSimp Algorithm

In this section we present WoSimp (Algorithm 1), an algorithm to abstract the
infrequent behaviour of a log. The execution of a discovery algorithm over that
abstracted log allows to obtain a more precise and simpler process model, keep-
ing a good fitness. Our proposal takes as input an event log, a process model
and a frequency threshold, and returns the event log with the abstraction of
the infrequent behaviour. The first step of WoSimp is to identify the frequent
behaviour to be kept in the log. For this purpose WoMine [10] is used (Algo-
rithm1: 2), extracting from the process model a set of behavioural patterns
executed in a percentage of the traces of the log frequent w.r.t. the defined
threshold. Later, the behavioural log with the causal relations of each event is
obtained using the given log and the model (Algorithm1: 3). Then, the algorithm
builds the abstractions of the behaviour not covered by the frequent patterns
(Algorithm 1: 4). Finally, the log is abstracted with function abstractLog
(Algorithm 1: 5): each behavioural trace is converted to a trace —removing the
behavioural information—, abstracting those behavioural events defined in the
abstractions.

Algorithm 1. WoSimp algorithm.
Input: An event log L = [τ1, ..., τm] of traces, a process model M , and a

threshold t.
Output: An event log L′ = [τ ′

1, ..., τ
′
m] with the infrequent behaviour of L

abstracted into new activities.
1 Algorithm WoSimp(L, M, t)
2 P ← getFrequentPatterns(L, M , t) // using algorithm

in [10]
3 Lπ ← obtain the behavioural log of L and M // Definition 5
4 Λ ← buildAbstractions(Lπ, P)
5 L′ ← abstractLog(Lπ, Λ)
6 return L′

7 Function buildAbstractions(Lπ, P)
8 Λ∅ ← ∅
9 forall π ∈ Lπ do

10 λ̄ ← {β | β ∈ π ∧ β ∈ p.executedEvents[π] ∧ p ∈ P}
11 Λ∅

π ← obtainEmptyAbstractions(π, λ̄) // Alg. 2

12 Λ∅ ← Λ∅ ∪ Λ∅
π

13 end

14 Λ ←assignAbstractedEvents(Λ∅) // Alg. 3
15 return Λ

16 Function abstractLog(Lπ, Λ)
17 L′ ← Lπ

18 forall λ ∈ Λ do

19 replace λ.B with λ.εabs and insert it in L′

20 end
21 return L′



Simplification of Complex Process Models 421

A naive example can be seen in Fig. 1 where, with a threshold of 25%, the fre-
quent patterns obtained by WoMine cover the behaviour going through DENIED
- CANCELED and through ACCEPTED - SUCCESS. These patterns allow to
abstract the sequences starting in INTERNAL ERR, WRONG DATA, CONN ERR
and DENIED, and going through RETRY. The abstraction technique encapsu-
lates all these behaviour in one abstraction —named ERROR AND RETRY in
Table 1c—, allowing to discover the process as shown in Fig. 1d.

The technique designed to build the abstractions is composed by two phases.
The first phase (Algorithm 1: 9–13) is an horizontal analysis, i.e. one trace
at a time, creating the groups of behavioural events to abstract. For each
trace, the behavioural events belonging to an execution of a frequent pat-
tern are collected in their anti-abstraction (Algorithm1: 10). Then, function
obtainEmptyAbstractions groups the behavioural events to be abstracted
creating the empty abstractions —abstractions without an abstracted event
assigned— corresponding to that trace (c.f. Sect. 3.1). In the second phase (Algo-
rithm1: 14), a vertical analysis going over the log is performed to create the

Algorithm 2. Get empty abstractions of a behavioural trace (Algo-
rithm1: 11).
Input: A behavioural trace π and its anti-abstraction λ̄.
Output: A set Λ∅ with the empty abstractions of the behavioural trace π.

1 Algorithm obtainEmptyAbstractions(π, λ̄)
2 Binfreq ← {β | β ∈ π ∧ β �∈ λ̄}
3 Bconnected ← groupConnectedEvents(Binfreq) // set of sets of β

4 Λ∅ ← ∅
5 forall B ∈ Bconnected do

6 λ∅ ← obtainEmptyAbstraction(π, B)
7 Λ∅ ← Λ∅ ∪ {λ∅}
8 end

9 return Λ∅

10 Function groupConnectedEvents(Binfreq)
11 Bconnected ← ∅ // set of sets of β
12 forall β ∈ Binfreq do
13 if β �∈ ∪Bconnected then
14 B′ ← {β} ∪ {β′ | β′ ∈ Binfreq ∧ (β′ → β ∨ β → β′)}
15 Bconnected ← Bconnected ∪ {B′}
16 end

17 end
18 return Bconnected

19 Function obtainEmptyAbstraction(π, B)
20 AI ← {β′.activity | β′ ∈ (Bβ \ B) ∧ β ∈ B}
21 AO ← {β′.activity | β′ ∈ (π \ B) ∧ β ∈ Bβ′ ∧ β ∈ B}
22 λ∅ ← (B, AI , AO)

23 return λ∅



422 D. Chapela-Campa et al.

abstractions by assigning an abstracted event with the same activity to the
empty abstractions with identical contextual behaviour (c.f. Sect. 3.2). Finally,
with all the information of the abstractions, function abstractLog abstracts
the original behavioural log replacing the behavioural events of each abstraction
with the corresponding abstracted event (Algorithm1: 16).

3.1 Create Abstractions of Infrequent Behaviour from a Trace

The objective of the first phase is to create the empty abstractions with the
infrequent behaviour in each trace by grouping the corresponding behavioural
events. Algorithm 2 shows this abstraction process over a trace. First, the
behavioural events to abstract are collected, i.e., those not present in the anti-
abstraction (Algorithm 2: 2). Then, these behavioural events are grouped, where
each group contains those connected between them (Algorithm2: 3). Afterwards,
an empty abstraction is created for each group (Algorithm 2: 5–8). Function
obtainEmptyAbstraction creates this empty abstraction with (i) the set
of behavioural events to abstract; (ii) the inputs of this group, i.e., for each
behavioural event from the group, the activities of its input behavioural events
not contained in the abstraction group (Algorithm2: 20); and (iii) the outputs
of this group, i.e., the activities of the behavioural events of the trace having as
inputs any of the behavioural events in the group (Algorithm2: 21).

As an example, the process model and the two traces from Fig. 3 are going to
be used. Assuming a balanced distribution in the selections, and a threshold for
the patterns of 70%, WoMine recovers as frequent patterns the initial AND-split
(A, B and C) and the final AND-join without the loop (K, O and N). Table 1
shows the results of the main steps of the first phase over the two traces of Fig. 3.
To create the groups with the connected behavioural events not present in the
anti-abstractions —those unmarked in the trace description— the algorithm
performs a forward iteration over them adding each behavioural event to the set
where its inputs are. The results can be seen in the Bconnected elements. Then, an
empty abstraction is created for each group (e.g. λ∅

1) with the behavioural events

A

B

C
D

E

L

M
O

F
G

J

H I
K

N

(a) Petri net of a process to abstract.

〈A,B, F,C,D,G,L, J,O,K,N〉
(b) Trace example.

〈A,C,E,B,H,L, I,O,O,K,O,N〉
(c) Trace example.

Fig. 3. Petri net and two traces to exemplify the abstraction process.



Simplification of Complex Process Models 423

Table 1. Key elements obtained in the first phase of the algorithm for the traces in
Fig. 3 —events with a hat in each trace are those belonging to the anti-abstraction.
π: the corresponding behavioural trace. Bconnected: the groups of behavioural events
to abstract —to ease the visualization the behavioural events from each Bconnected are
shown as simple events. Λ∅: the empty abstractions created from these groups.

τ1 = 〈Â, B̂, F, Ĉ, D, G, L, J, Ô, K̂, N̂〉
π1 〈(∅, A), ({A}, B), ({B}, F ), ({A}, C), ({C}, D), ({B}, G), ({D}, L), ({F, G}, J),

({L}, O), ({J}, K), ({O, K}, N)〉
Bconnected {F, G, J} and {D, L}
Λ∅ λ∅

1 = ({F, G, J}, {B}, {K})
λ∅
2 = ({D, L}, {C}, {O})

τ2 = 〈Â, Ĉ, E, B̂, H, L, I, O, O, K̂, Ô, N̂〉
π2 〈(∅, A), ({A}, C), ({C}, E), ({A}, B), ({B}, H), ({E}, L), ({H}, I), ({L}, O), ({O}, O),

({I}, K), ({O}, O), ({K, O}, N)〉
Bconnected {E, L, O, O} and {H, I}
Λ∅ λ∅

3 = ({E, L, O, O}, {C}, {O})
λ∅
4 = ({H, I}, {B}, {K})

of the group (e.g. {F,G, J}), the input activities of these behavioural events (e.g.
{B}), and the activities of the behavioural events from π whose inputs are in
the group (e.g. {K}). For instance, the input activity for λ∅

1 is only B because is
the firing behavioural event of F and G, and the firing behavioural events of J
are inside the group. For the output activities, the behavioural events of π1 are
inspected, searching for those whose firing behavioural events are in the group,
i.e., K.

3.2 Activity Assignment to Each Abstraction

Once each trace has its infrequent behaviour grouped in the different empty
abstractions, the second phase starts (Algorithm 3). In this phase, all the empty
abstractions of the log are compared to assign an event with the same activity
to those with identical contextual behaviour —coming from the same activities
or going to the same activities in the model. For this, the empty abstractions are
first grouped by their input activities (Algorithm3: 3–8). Then, these groups are
merged by their output activities, i.e., the groups sharing the output activities of
all their empty abstractions are merged (Algorithm 3: 10–15). Finally, an activity
is created for each group of empty abstractions and assigned to each of them
(Algorithm 3: 17–23).

Continuing with the example in Table 1, the second phase groups all the
empty abstractions first by their input activities obtaining two groups: {λ1, λ4}
and {λ2, λ3}. The grouping by their outputs does not merge any group because
the output activities of the empty abstractions in the first group are {K}, and
the output activites of the second group are {O}. Once the empty abstractions
are grouped, the assignation of artificial activities is performed. An event with
the activity Abs1 is assigned to the empty abstractions λ∅

1 and λ∅
4, and other



424 D. Chapela-Campa et al.

Algorithm 3. Assign an event with an abstracted activity to each empty
abstraction (Algorithm 1: 14).

Input: A set Λ∅ of empty abstractions.
Output: The set Λ of abstractions with the events of the abstracted activities.

1 Algorithm assignAbstractedEvents(Λ∅)
2 Λ∅

I ← ∅ // set of sets of λ∅ with identical inputs

3 forall λ∅ ∈ Λ∅ do

4 if (λ∅ �∈ ∪Λ∅
I) then

5 Λ̃∅ ← {λ̃∅ | λ̃∅ ∈ Λ∅ ∧ λ̃∅.AI = λ∅.AI}
6 Λ∅

I ← Λ∅
I ∪ {Λ̃∅}

7 end

8 end

9 Λ∅
O ← ∅ // set of those sets in Λ∅

I with identical outputs

10 forall Λ∅
i ∈ Λ∅

I do

11 if (Λ∅
i �⊂ ∪Λ∅

O) then

12 Λ̃∅ ← sets in Λ∅
I with identical output activities than Λ∅

i

13 Λ∅
O ← Λ∅

O ∪ {Λ̃∅}
14 end

15 end
16 Λ ← ∅ // set with the abstractions with events assigned

17 forall Λ∅
o ∈ Λ∅

O do
18 α ← create new activity

19 forall λ∅ ∈ Λ∅
o do

20 λ ← λ∅ with α as activity of λ.εabs

21 Λ ← Λ ∪ {λ}
22 end

23 end
24 return Λ

event with activity Abs2 to λ∅
2 and λ∅

3, obtaining the corresponding abstractions.
With the second phase finished the abstraction process in the log is performed,
producing the traces of Fig. 4. With this abstracted log, it is possible to mine
the model shown in Fig. 4c.

4 Experimentation

In this section we evaluate the performance of WoSimp. These experiments have
been executed in a computer with an Intel Core i7-2600 and 16 GB of RAM1.

1 The algorithm, datasets and results can be downloaded from http://tec.citius.usc.
es/processmining/WoSimp/.

http://tec.citius.usc.es/processmining/WoSimp/
http://tec.citius.usc.es/processmining/WoSimp/


Simplification of Complex Process Models 425

〈A,B,Abs1, C,Abs2, O,K,N〉
(a) Abstracted trace of Fig. 3b.

〈A,C,Abs2, B,Abs1,K,O,N〉
(b) Abstracted trace of Fig. 3c.

A
B

C O

K
N

Abs2

Abs1

(c) Abstracted Petri net for the process in Fig. 3a.

Fig. 4. Result of the abstraction process of Fig. 3.

4.1 Datasets

For the experimentation a real log from the health domain —sepsis cases from a
hospital [12]— and multiple Business Process Challenge logs [13–16] have been
used. The characteristics of these logs are presented in Table 2.

Although the abstraction of infrequent behaviour is usually useful to visualize
what is happening in the process, there are some scenarios where the penalization
it causes in terms of quality metrics makes it worse than other simplification
techniques. Two log features are the most relevant to describe in which scenarios
the abstraction of infrequent behaviour might produce a better process model.

Table 2. Characteristics of the logs used in the experimentation: number of traces
(#Traces); number of events (#Events); number of activities (#Activities); number of
variants —traces with the same activity sequence— (Variants), and the percentage of
the log covered by the three variants with more traces. All the logs have been modified
by adding both single start and end activities to each trace. All event names have been
combined with its lifecycle to discern between different phases of the same activity
(START, COMPLETE, etc.).

#Traces #Events #Activities Variants

# % 1st % 2nd % 3rd

BPIC11 1143 152577 626 981 3.59% 1.49% 1.40%

BPIC12-financial 13087 288374 38 4366 26.20% 14.30% 2.07%

BPIC13-clo 1487 9634 9 327 32.62% 8.68% 7.40%

BPIC13-inc 7554 80641 15 2278 23.15% 6.94% 4.66%

BPIC13-op 819 3989 7 182 21.49% 15.02% 6.72%

BPIC15 1 1199 54615 400 1170 0.67% 0.50% 0.33%

BPIC15 2 832 46018 412 828 0.24% 0.24% 0.24%

BPIC15 3 1409 62499 385 1349 1.06% 0.85% 0.71%

BPIC15 4 1053 49399 358 1049 0.28% 0.19% 0.19%

BPIC15 5 1156 61395 391 1153 0.17% 0.17% 0.17%

Sepsis-cases 1050 17314 18 846 3.33% 2.29% 2.10%



426 D. Chapela-Campa et al.

One of these features is the number of activities. The penalization due to the
inclusion of abstracted activities —not present in the log— is too high when the
number of activities is low —e.g. BPIC13-clo and BPIC13-op. The other feature
is the percentage of the log covered by the most frequent activity sequences —
variants. In logs where few variants cover a high percentage of the log traces,
the discovery of a model with those variants may already lead to a better and
simpler process model. Regarding this feature, note that logs from BPIC12 and
BPIC13 contain more than a third of the traces in three variants.

4.2 Results

We have compared our approach with two state of the art techniques: Matrix
Filter2 [5], and Activity Filter3 [6]. We have also considered a naive simplification
technique such as the removal of the variants with lower percentage of coverage
—henceforth referred to as Repetitions.

We have run these techniques in each log with 9 simplification thresholds,
from 10% to 90% with a step of 10. In Repetitions this threshold means the
minimum percentage of traces covered with the most frequent variants to be
maintained, in Activity Filter it refers to the percentage of activities of the log
to be maintained4, and in Matrix Filter it means the threshold to consider an
event as outlier. For each simplified log, 5 process models have been discovered:
one with the Inductive Miner [18], and 4 with the Inductive Miner Infrequent [19]
(thresholds 10%, 20%, 30% and 40%). Finally, to check the simplification level of
these techniques and how good are the process models they obtain, we have mea-
sured the fitness —Alignment-based fitness [20]—, precision —Negative Event
Precision [21]— and simplicity —Weighted P/T average arc degree [22]— of each
simplified model.

We aim to obtain a simple process model allowing to understand the fre-
quent behaviour happening in the process while both fitness and precision are
maintained at desirable levels —a model with an extremely low precision allows
too many behaviour not recorded in the log, obfuscating the real behaviour. For
this reason, both metrics have been summarized in the F-score, penalizing low
values in any of them. Regarding simplicity, we have transformed it into a metric
with values in [0, 1], where a greater value is better —as the F-score. We use the
percentage of simplification w.r.t. the simplicity of the discovered model with the
original log (Sp = 1 − min(Sraw,Ss)

Sraw
). Being Sp the percentage of simplification,

Sraw and Ss the simplicity of the models mined with the original log, and with
the simplified log, respectively.

Figure 5 shows the F-score and Sp of the models discovered with two simpli-
fied logs as inputs. Figure 5a shows a clear overcoming of WoSimp over the other
2 Using plugin Matrix Filter in ProM with Mean as the Threshold adjusting
Method.

3 Using the plugin Activity Filter: Indirect Entropy optimized with Greedy Search in
ProM [17].

4 Activity Filter takes more than 24 h to converge in datasets with more than 300
activities, thus, no results of this technique are shown in those datasets.



Simplification of Complex Process Models 427

0 0.1 0.2 0.3
0

0.1

0.2

0.3

Sp

F
-s

co
re

WoSimp
R

MF
AF

(a) Sp vs. F-score of the models discov-
ered by the IM with the simplified logs of
BPIC15 1.

0 0.1 0.2 0.3

0.2

0.4

Sp

F
-s

co
re

WoSimp
R

MF
AF

(b) Sp vs. F-score of the models discov-
ered by the IMf with the simplified logs of
sepsis cases.

Fig. 5. Scatter plots of Sp against F-score for the models mined with the simplified
logs for each technique (R stands for Repetitions, MF for Matrix Filter and AF for
Activity Filter).

techniques: for high values of Sp, it obtains models with higher values of F-score.
However, there are cases, such as the ones depicted in Fig. 5b, where not all the
models from other techniques are overcome by a model obtained with WoSimp.
For this reason, to make a fairer comparison between the different techniques,
we have used the area covered by the dominant points.

Figure 6 shows for each dataset the area covered by the dominant points of
the models obtained with both the Inductive Miner (top) and Inductive Miner
Infrequent (bottom), having the logs simplified with each technique as inputs. As
it was commented in Sect. 4.1, for datasets with few activities (BPIC13-op and
BPIC13-clo), the addition of abstracted unmapped activities is not worth due to
its penalization. Furthermore, due to the high quantity of behaviour covered by
the more frequent variants, the results of WoSimp in these datasets are overcome
by all the approaches, being Repetitions the best option. In other datasets where
the number of activities is higher, but the more frequent variants still cover
more than a third of the log traces (BIC13-inc and BPIC12-fin), WoSimp is only
overcome by Repetitions. The result in BPIC11 is a particular case. Here, the 10%
of more repeated traces contain enough common behaviour to compensate the
penalization that WoSimp receives for adding abstracted unmapped activities.
Nevertheless, this only happens using the IM, and WoSimp allows IMf to discover
better process models than all other techniques.

As commented in Sect. 4.1, in datasets where the trace variability is high
(BPIC15 1, BPIC15 2, BPIC15 3, BPIC15 4, BPIC15 5 and sepsis cases) and a
naive technique as Repetitions is not useful, and WoSimp outperforms the state
of the art techniques as Fig. 6 shows. Note that, if the variability in traces is high,
the abstraction of WoSimp is the best option for logs with both high (BPIC15)
and low (sepsis-cases) number of activities.



428 D. Chapela-Campa et al.

BPIC
11

BPIC
12-

fin

BPIC
13-

clo

BPIC
13-

inc

BPIC
13-

op

BPIC
15

1

BPIC
15

2

BPIC
15

3

BPIC
15

4

BPIC
15

5

sep
sis

-ca
ses

0

0.1

0.2

0.3

0.4

C
ov

er
ed

A
re

a
(I

M
)

WoSimp R MF AF

BPIC
11

BPIC
12-

fin

BPIC
13-

clo

BPIC
13-

inc

BPIC
13-

op

BPIC
15

1

BPIC
15

2

BPIC
15

3

BPIC
15

4

BPIC
15

5

sep
sis

-ca
ses

0

0.1

0.2

0.3

C
ov

er
ed

A
re

a
(I

M
f)

Fig. 6. Area covered by the dominant points (Sp vs. F-score) for the models discovered
—IM (top), IMf (bottom)— with the simplified logs of each technique, for each dataset.

5 Conclusions

We have presented WoSimp, a novel algorithm to simplify process logs abstract-
ing the infrequent behaviour, allowing to discover a simpler process model. The
proposal is able to detect, using WoMine, the infrequent behaviour which obfus-
cates a process and abstract it allowing to discover a simpler and comprehensible
process model. We have compared WoSimp with the state of the art approaches
showing that WoSimp outperforms the state of the art in complex processes.

Acknowledgments. This research was funded by the Spanish Ministry of Economy
and Competitiveness under grant TIN2017-84796-C2-1-R, and the Galician Ministry
of Education, Culture and Universities under grant ED431G/08. These grants are co-
funded by the European Regional Development Fund (ERDF/FEDER program). D.
Chapela-Campa is supported by the Spanish Ministry of Education, under the FPU
national plan (FPU16/04428).



Simplification of Complex Process Models 429

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

2. Polyvyanyy, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring acyclic process mod-
els. Inf. Syst. 37(6), 518–538 (2012)

3. Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a
controlled manner. Inf. Syst. 38(4), 585–605 (2013)

4. de San Pedro, J., Carmona, J., Cortadella, J.: Log-based simplification of process
models. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015.
LNCS, vol. 9253, pp. 457–474. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23063-4 30

5. Sani, M.F., van Zelst, S.J., van der Aalst, W.M.P.: Improving process discovery
results by filtering outliers using conditional behavioural probabilities. In: Teniente,
E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 216–229. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-74030-0 16

6. Tax, N., Sidorova, N., van der Aalst, W.M.P.: Discovering more precise process
models from event logs by filtering out chaotic activities. J. Intell. Inf. Syst. 52(1),
107–139 (2019)

7. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint,
P.J.: From low-level events to activities - a pattern-based approach. In: La Rosa,
M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 125–141. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 8

8. Mannhardt, F., Tax, N.: Unsupervised event abstraction using pattern abstraction
and local process models. In: Gulden, J., Nurcan, S., et al. (eds.) BPMDS 2017.
CEUR Workshop Proceedings, vol. 1859, pp. 55–63. CEUR-WS.org (2017)

9. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Mining local process
models. CoRR abs/1606.06066 (2016)

10. Chapela-Campa, D., Mucientes, M., Lama, M.: Mining frequent patterns in process
models. Inf. Sci. 472, 235–257 (2019)

11. Desel, J., Reisig, W.: Place/transition Petri Nets. In: Reisig, W., Rozenberg, G.
(eds.) ACPN 1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 15

12. Mannhardt, F. (Felix): Sepsis cases - event log (2016)
13. Van Dongen, B.: Real-life event logs - hospital log (2011)
14. Van Dongen, B.: BPI Challenge 2012 (2012)
15. Steeman, W.: BPI Challenge 2013 (2013)
16. Van Dongen, B.: BPI Challenge 2015 (2015)
17. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,

van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
444–454. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744 25

18. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-319-23063-4_30
https://doi.org/10.1007/978-3-319-23063-4_30
https://doi.org/10.1007/978-3-319-74030-0_16
https://doi.org/10.1007/978-3-319-45348-4_8
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/11494744_25
https://doi.org/10.1007/978-3-642-38697-8_17


430 D. Chapela-Campa et al.

19. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06257-0 6

20. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance check-
ing using cost-based fitness analysis. In: EDOC 2011, pp. 55–64. IEEE Computer
Society (2011)

21. vanden Broucke, S.K.L.M., Weerdt, J.D., Vanthienen, J., Baesens, B.: Determining
process model precision and generalization with weighted artificial negative events.
IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014)

22. vanden Broucke, S.K.L.M., Weerdt, J.D., Vanthienen, J., Baesens, B.: A com-
prehensive benchmarking framework (CoBeFra) for conformance analysis between
procedural process models and event logs in ProM. In: IEEE Symposium on Com-
putational Intelligence and Data Mining, CIDM 2013, pp. 254–261. IEEE (2013)

https://doi.org/10.1007/978-3-319-06257-0_6


Improving IT Support by Enhancing
Incident Management Process with

Multi-modal Analysis

Atri Mandal1(B), Shivali Agarwal1, Nikhil Malhotra2, Giriprasad Sridhara1,
Anupama Ray1, and Daivik Swarup1

1 IBM Research AI, Bengaluru, India
{atri.mandal,shivaaga,girisrid,anupamar,dvenkata}@in.ibm.com

2 IBM Global Technology Services, Bengaluru, India
nikhimal@in.ibm.com

Abstract. IT support services industry is going through a major trans-
formation with AI becoming commonplace. There has been a lot of effort
in the direction of automation at every human touchpoint in the IT sup-
port processes. Incident management is one such process which has been
a beacon process for AI based automation. The vision is to automate
the process from the time an incident/ticket arrives till it is resolved and
closed. While text is the primary mode of communicating the incidents,
there has been a growing trend of using alternate modalities like image to
communicate the problem. A large fraction of IT support tickets today
contain attached image data in the form of screenshots, log messages,
invoices and so on. These attachments help in better explanation of the
problem which aids in faster resolution. Anybody who aspires to provide
AI based IT support, it is essential to build systems which can handle
multi-modal content.

In this paper we present how incident management in IT support
domain can be made much more effective using multi-modal analysis.
The information extracted from different modalities are correlated to
enrich the information in the ticket and used for better ticket routing
and resolution. We evaluate our system using about 25000 real tickets
containing attachments from selected problem areas. Our results demon-
strate significant improvements in both routing and resolution with the
use of multi-modal ticket analysis compared to only text based analysis.

Keywords: Service delivery · Incident management · Multimodal
analysis · Image understanding · Automated routing and resolution

1 Introduction

Incident management process in modern IT service delivery is undergoing a mas-
sive transformation with an ever increasing focus on automation of tasks that
require human cognizance. Two such key tasks are that of ticket assignment and
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 431–446, 2019.
https://doi.org/10.1007/978-3-030-33702-5_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_33&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_33


432 A. Mandal et al.

resolution as they require considerable amount of manual labour. There are quite
a few recent instances in the service industry where assignment/resolution has
been automated using analysis of structured and unstructured text content. All
these systems generally work for text content only. However, a lot of these tick-
ets have attachments of pictures, screenshots, logs etc. which not only help in
giving a visual representation of the problem but also provide necessary context
information. For example, an end user needing troubleshooting assistance for a
software application (e.g. out of memory issue) will take a screenshot capturing
the error message (and error code, if any) and the running application(s) along
with CPU/memory usage statistics. Resolution of tickets without considering
such important details may not only result in an unsatisfactory resolution, but
can also mislead or confuse the user, leading to poor customer experience and
multiple escalations. Also in a lot of cases textual information may be completely
absent from the ticket and the troubleshooting agent has to infer the problem
only from the attachments. In all these scenarios, it is important to address the
fundamental problem of understanding the screenshot images, extract the rele-
vant information and generate problem descriptions which can then be utilized
in the automation pipeline.

There are a quite a few challenges in extracting information from screenshot
images and using them in a proper way to arrive at a resolution. Some of these
challenges are: (i) Lack of labeled training data with images/videos annotated
for the boxes with important information or labels in the form of actual content
of images (text groundtruth). To the best of our knowledge there is no such
annotated dataset available for IT support domain with labeled images. Thus,
deep learning models, which require a lot of training data cannot be trained
on this domain with multimodal data. (ii) Presence of overlapping windows
often occludes the text content which might be relevant for better assignment or
resolution. Thus conventional image processing algorithms like contour detection
[12] or canny edge detection [5] do not work well only by themselves and fail to
understand the internal structure or content in the windows (as shown in Fig. 1).
(iii) To obtain the embedded text in the image we can use Optical Character
Recognition [16]. However the image may have a lot of noisy text which are not
related to the problem (e.g. icon labels, menu items, code, console commands
etc.) and so the complete text obtained from OCR may not be useful. (iv) The
correlation between ticket text and textual content extracted from the image
is also challenging as domain knowledge plays a very important part in this
correlation and content understanding.

In this paper, we discuss an end-to-end system which can analyze image
content in tickets, understand the nature of the problem indicated in the image
and automatically suggest a resolution. In this paper we focus on a specific type
of attachment, viz. screenshots, as this is the most common type of attachment,
requiring human supervision, found in IT support tickets. The key contributions
of our paper are described below:

(i) A high-precision hybrid object detection engine which uses a combination
of traditional image processing algorithms as well as deep learning based



Improving IT Support by Enhancing Incident Management Process 433

Fig. 1. (a) Canny-edge detects spurious boxes (b) Contour detection detects objects
in background

image classification. The main purpose of the detection engine is to identify
if an application window (e.g. error message box, terminal, explorer window
etc.) is present and if so, the type of the application window.

(ii) A ticket enrichment module which uses OCR and NLP based techniques
to extract relevant pieces of information from the application window(s)
detected in the image and uses this extra information to enrich the ticket
data for better classification.

(iii) A scalable routing and resolution recommendation framework, having an
intelligent decision making mechanism based on its confidence on multiple
predicted fields.

Using our system we were able to demonstrate significant improvements in
both ticket assignment and ticket resolution accuracy compared to only text
based analysis. The automation achieved by our system can result in an esti-
mated saving of 200000 man hours per annum for a helpdesk account receiving
100000 tickets a month.

The rest of the paper is organized as follows. Section 2 discusses some of the
related work in the area. Section 3 gives an overview of the system architecture
used. In Sect. 5 we present our experimental results while we conclude in Sect. 6.

2 Related Work

Incident management process has been discussed in literature with a focus on
ticket categorization/problem determination, ticket dispatch/resolver group pre-
diction, resolver group formation and resolution recommendation. Many systems
proposed in the past provide a solution for automated problem determination
and resolution e.g. [1,6] talk about auto-remediation by first categorizing the
ticket into a problem category and then recommending a solution for the problem
category identified. They have used text based classification. The system in [21]
proposes resolution recommendation for event tickets using an approach which
utilizes both the event and resolution information in historical tickets via topic-
level feature extraction. The work in [22] also proposes a solution for automated
ticket resolution using a deep neural network ranking model trained on problem
text and resolution summary of historical tickets. ReACT system [3] performs



434 A. Mandal et al.

an involved natural language processing to help create resolution sequences for
ticket categories in a semi-automated way. However all the above mentioned sys-
tems analyze only the text part of the ticket. Analysis of images have not been
dealt with in these systems.

In another body of work, there is a focus on the ticket dispatch and resolver
group aspects. SmartDispatch [2] provides a solution for automated ticket dis-
patch using Support Vector Machines and discriminative keyword approach.
Historical data on agents and their current workloads is used for ticket dispatch
in [4]. More recently, the system in [14] uses a combination of rule engine and
ensemble classifier to achieve very high accuracy in resolver group prediction.
However none of these works analyze the screenshots and attachments that often
contain vital information.

There are also systems which have looked solely at the problem of mining
information from images. However most of the literature deals with mining,
extracting or summarizing information from natural images which cannot be
used directly due to the challenges stated in Sect. 1. There is very little work done
in the past which focuses on extracting information from technical screenshots.
Anand et al. [17] is one such paper. However, it only mines the screenshots
to broadly classify the application and does not deal with occlusion and text
correlation. Senthil et al. [15] proposes a Question-Answering (QA) system for
ticket resolution where they look at image screenshots containing error. However
the system has looked at specific types of errors (SAP) and rely solely on OCR
to retrieve errors from images. These systems also do not handle occlusion and
text inferences.

We have not come across any work that performs multi-modal(text+image)
analysis on ticket data addressing the challenges of occlusion, text enrichment
and correlation like we have done in this paper. Our proposed approach is generic
enough to be applied to chatbots and QA systems.

3 Multi-modal Analysis in Incident Management

The traditional lifecycle of incident management has undergone massive changes
in recent times due to the infusion of agent assist capabilities. The motivation is
to (i) automate ticket assignment and resolution with high accuracy whenever
possible and (ii) reduce the time taken to resolve in case of manual resolution.
These objectives are primarily achieved through two functional modules viz.
Ticket Enrichment and Resolution Recommendation. The incident management
lifecycle with agent assist capabilities is depicted in Fig. 2. The ticket enrich-
ment module uses models trained on historical data to enrich ticket data with
knowledge inferred from the ticket data. The resolution recommendation module
leverages the enriched ticket information to predict the most accurate resolution
with high confidence. Once the ticket is augmented with inferred knowledge on
resolution and problem category, it is stored in the system and the agents can
leverage it for speedy resolution.

We now explain how the ticket enrichment is done using multi-modal analysis,
that is, combined analysis of text and image present in the ticket. We also explain



Improving IT Support by Enhancing Incident Management Process 435

Fig. 2. System architecture

the proposed multi-step process for resolution recommendation which can choose
the source of resolution based on the confidence on its own knowledge.

3.1 Ticket Enrichment

Often users are unaware of the exact problem or do not know what all details
might be important for solving the problem and end up not specifying relevant
information. For example, in a lot of IT support tickets the name of the oper-
ating system, application, version and other important contextual information
are omitted. Without these information it may be difficult to drill down to the
exact problem category and resolver group. Thus, we augment the text data
with context information and insights obtained from the image data to create
a better ticket which helps in improving the prediction of resolver group and
problem category leading to faster ticket resolution. The different stages of the
ticket enrichment pipeline are described in detail below.

Image Understanding: The image understanding part analyzes the attach-
ment image and extracts artifacts which are used for understanding the image
properties. The most important information in a screenshot is usually contained
within one of the application windows. Therefore, one of the key functionalities
of our system is to detect an application window. We also classify the detected
window based on its type e.g. browser/IDE, console or dialog/message box. We
now describe the image understanding steps below.



436 A. Mandal et al.

i. Shallow Object Detection: The objective of this stage is to detect the
precise coordinates of the window objects present in the screenshots. We exper-
imented with two well documented computer vision techniques for object detec-
tion viz. Contour Detection and Canny Edge detection as described below.

Contour Detection: Contour detection [12] is used to detect objects with both lin-
ear and non-linear contours. Before applying contour detection the input image
is transformed using (i) Gaussian blur and (ii) binary conversion. This method
suffers from two major drawbacks. Firstly, this method not only detects rectan-
gular boxes but also objects with irregular shapes which may be present in the
picture as illustrated in Fig. 1. To solve this problem we use a shape detector
to detect relevant objects of rectangular shape. But this still does not exclude
the possibility of detecting rectangular non-window objects, so we often end up
with false positives. Secondly, detection of window fails when the colors of the
background and the object to be detected are roughly similar resulting in both
objects being converted to the same color during binarization.

Canny Edge Detection: We also use an alternate method for window detection
viz. Canny Edge detector using Hough lines [8]. This technique can detect all
horizontal and vertical lines in a picture and as such can be used to detect
regular geometrical shapes e.g. triangles or rectangles. Before applying canny
edge detector we convert the image to grayscale. The detected lines are clustered
based on their coordinates to detect rectangular shapes. However canny edge
detection fails when windows do not have clear demarcating lines. Also in some
cases canny edge detection ends up mining spurious boxes as shown in Fig. 1.

To increase the accuracy of shallow detection we use an ensemble of both
techniques. However, even with the ensemble the precision is low as none of
the shallow detection methods look at the internal structure of the window. To
reduce false positives and improve precision we use a filtering step as described
below.

ii. Window Filtering/Deduplication: We use different filtering technologies
to remove spurious and duplicate windows detected in the previous step. We
first use a size based filter to remove all windows which are smaller than a
threshold. This removes GUI artifacts like radio buttons, alert/minimize/cancel
icons etc. We then use a CNN based binary image classifier on the filtered boxes
to classify whether the box is an actual application window or not. We use a
CNN based binary classification model, which is trained using screen shots of
end-user problems downloaded from the net and also on synthetically generated
windows. For feature extraction we use ResNet50 model [10] pre-trained with
ImageNet weights. We prefer using ResNet50 architecture over VGG19 [18] as it
uses skip connections to handle the problem of vanishing gradients. For classifi-
cation we added two fully connected layers. The classifier layer was fine tuned
during training and feature extractor layer was frozen. Our model is able to indi-
cate presence/absence of application window with an accuracy of about 95%.



Improving IT Support by Enhancing Incident Management Process 437

Finally we apply a de-duplication step to remove duplicate windows. Since
both shallow detection techniques are applied independently and in parallel there
is the possibility of detecting the same window twice. Duplicate windows can be
detected based on the coordinates of the enclosing rectangle and calculating the
area of overlap using IOU metric.

iii. Deep Learning Based Window Categorization. In this stage of the
pipeline we try to categorize the detected windows as well as identify certain
window properties for deeper understanding of the image. Previously there has
been work on identifying application name and other properties from text part
of the image [15]. However in the case where one or more application windows
are overlapped the text in the background window will be occluded and may not
be useful for extraction. We take the help of deep learning to try and identify
these properties upfront.

We make use of two separate classifiers for this step. The first classifier is used
for classification of windows into specific categories to identify the application
type. We support only a few selected applications as of now but our classifier can
be easily extended to support more applications. The second classifier is used
to determine the OS (Windows, Linux, Mac). We used 1 CNN block having a
convolution layer followed by ReLU activation, max-pooling and batch normal-
ization for feature extraction followed by two fully-connected (FC) layers for
classification.

Text Extraction from Images: Once the window categorization and segmen-
tation phase is over, text is detected and recognized using Tesseract OCR [16]
from the detected application windows. Since we are dealing with screenshots,
the resolution of the image was not an issue. Due to challenges of overlapping
windows/boxes or errors in window detection, the text extraction is not accu-
rate. We use two different types of post-processing on the recognized text. Firstly
we use a dictionary based post-processing step (using edit-distance) to correct
spellings errors for application names or title boxes. For longer text (e.g. dialog
box, console logs etc) we use a word-level language model trained on a very
large data of logs and error messages from stack-overflow. This language model
not only helps us improve word error rates but also predicts words in occluded
windows. We observed in our results that if the text is occluded by a line, we
were able to recover it but if the box suffers from a higher overlap the text does
not get fully recovered even by the language model.

Ticket Text Enrichment: In this step, we enrich the ticket text with infor-
mation extracted from the image. However we cannot directly use all the text
extracted from the image for ticket enrichment. In order to extract key terms
and entities we use a Conditional Random Fields (CRF) based Named Entity
Recognition (NER) system [9] on both ticket text as well as all text extracted
from images. This extractive system gives us terms such as name of operat-
ing system(OS), application/product name, components being mentioned, ver-
sion numbers, error codes, error messages and other entities such as symptoms
or important mentions from log screenshots. For OS name, application name
and components, domain specific dictionaries are used and for version and error



438 A. Mandal et al.

codes we use regular expression based extraction. For the other attributes such as
symptom, activity, action and advise we use deep parsing and understanding [9].
We then correlate these entities with the information obtained from the image to
retain only the most relevant parts of the image information. The resulting text
is then inserted into the ticket using slot-based templates for ticket completion.
The slot templates can differ based on the resolver group. The examples below
illustrate the technique of slot-filling for ticket enrichment. The enriched parts
of the email are enclosed within square braces and the slot names are mentioned
in angular braces along with the corresponding values.

Example1: "Dear sir, My postpaid mobile [<mobile-no> = xxx3224] having relationship

number [<customer-no> = xxx], billing plan [<billing-plan> = infinityxxx] has been

overcharged with international roaming services [<pack-details> = international roaming

XXX nrc] for the billing period [<period> = 08-jan-2019 to 07-feb-2019] which was not

activated by me. You can clearly find the same in the screen shot of bill details sent. Please

refund me the overcharged charges asap. Regards, xxx xxx mobile -- xxx3224"

Example2: "I am getting an error [<errmsg> = An error occurred during the installation

of assembly component HRESULT: 0x800736FD] with error code [< errcode> = Error 1935],

while installing [<appname> = Crystal Reports Runtime Engine] for .Net on [<os> = Windows]

[<osver> = 10]. Please see attached screenshot"

3.2 Resolution Recommendation System

For resolution of tickets we use a recommendation engine which reads the tickets
enhanced with information from the ticket enrichment module, understands the
user intent and uses it to suggest the most relevant resolver group and resolu-
tion(s). The recommendation system is trained using a corpus of historical tickets
T which is divided into two parts viz. TH (short head) and TL (long tail). TH

contains the most frequently occurring problem categories having a well known
resolution and typically accounts for 75–80% of the tickets. TL constitutes the
rarely occurring problem categories for which a well curated resolution may or
may not be present in our training corpus. The division of tickets is done accord-
ing to the following equation:

T = TH + TL (1)

TH =
⋃

pi∈PH

Tpi
(2)

where PH is the set of problem categories in short head and Tpi
is the set

of tickets belonging to the problem category pi. It’s important to note that
problem category may be a composite field in the ticketing system. In this case
we concatenate the constituent sub-field labels to obtain the unique problem
category for training.



Improving IT Support by Enhancing Incident Management Process 439

To select PH we plot a histogram of frequencies for problem category and
select the ones which are above a configured threshold. We also do some post
processing to filter out those categories which do not have well defined resolu-
tions. We use separate strategies for resolving the short head and the long tail
tickets as described below.

Ticket Classification: The objective of ticket classification is to predict the
resolver group and the problem category. We train an ensemble classifier using
only the data in TH . This reduces noise in training data and also eliminates
class imbalance problem [13]. For the ensemble classifier we use simple classifi-
cation models viz. Linear SVM (ovr) and MLP (feed forward neural nets) for
easy deployability and retraining [13]. We plotted the accuracy and coverage of
the selected classifiers against different confidence thresholds and selected the
optimal threshold value to ensure that both classifiers in the ensemble operate
at least at human level efficiency [13].

Ticket Resolution: To obtain a resolution at runtime we first use our ensemble
classifiers to predict the resolver group and problem category. If both these fields
are predicted with high confidence at runtime it means that the problem category
belongs to the short head. In this case we return a resolution directly using a
simple database lookup. If the confidence score for the resolver-group or the
problem category is low then we resort to our long tail approach which queries
the knowledge corpus ingested through an information retrieval infrastructure
(e.g. Watson Discovery). We observe that while we have a resolution available
for most frequent short head queries, we may not have them for infrequent
or unseen queries. To handle this case, we use a web search and combine the
retrieved resolutions with web search results using the enriched ticket description
as query. We re-rank the combined results and present the top N results to the
user. For this, we use a federated search algorithm.

We build a resource representation for ticket content and web resources by
sampling tickets and related web search documents respectively. For each, we
compute the unigram distribution of terms. Using this unigram language model,
we compute the relevance score for tickets as well as for resources from web.
We then use the CORI result merging algorithm [20] to merge the results using
the relevance scores to obtain the final ranked list as shown in Eq. 3, where d
is the normalized score given by the search engine and c is the relevance score
computed by the language model.

result_score =
d+ 0.4× c× d

1.4
(3)

The different steps in the resolution process is orchestrated by the orchestrator
which is the key computational module of the recommendation system. The
complete ticket resolution process is explained in detail in Algorithm1.



440 A. Mandal et al.

4 Dataset Details and Experiment Setup

4.1 IT Support Ticket Data

Our evaluation is based on a ticketing dataset having a corpus of 712320 support
tickets from 428 resolver groups and spanning 3728 distinct problem categories
as shown in Table 1. Out of this corpus 159344 tickets (approx. 22.37%) had
attachments. However for this paper we limited our scope to a small subset of this
dataset mainly because the image understanding part of our system currently
does not handle all possible type of applications. To select our experimental
dataset we chose 10 resolver groups with the maximum amount of screenshot
attachments. Out of these resolver groups we chose the most frequently occurring
33 problem categories for our short head training dataset. The remaining tickets
accounting for 219 problem categories constitutes the long tail. The total number
of multimodal tickets in our curated dataset is 25000.

Algorithm 1: Ticket Resolution Algorithm

1

Input : Enriched ticket text
Output: result = [ resolv_grp,

prob_category, resolution ]
1 Function

ticket-assignment-resolution(
Enriched-Email-Text):

2 final_result = [None, [], []]
3 classification =

InvokeCombinedClassifier(
Enriched-Email-Text )

4 if (classification.conf_resolv_grp >
CONF_RESOLV_CUTOFF) and
(classification.conf_prob_category
> CONF_PROB_CUTOFF) then
/* short head - directly

lookup resolution result */
5 resolution = lookup(resolutionDB,

classification.prob_category)
6 final_result =

[classification.resolv_grp,
classification.prob_category,
resolution]

7 else
/* invoke long tail strategy

*/
8 filter_fields = []
9 if classification.conf_resolv_grp

> CONF_RESOLV_CUTOFF
then

10 filter_fields += resolv_grp
11 final_resolv_grp =

classification.resolv_grp

12 else
/* Assign ticket to manual

queue */
13 final_resolv_grp = None

14 for each subfield in
PROBLEM_CATEGORY_FIELD
do

15 result =
InvokeProblemClassifier(subfield,
Enriched-Email-Text)

16 if result.conf_subfield >
CONF_SUBFIELD_CUTOFF
then

17 filter_fields += subfield

/* invoke Information
Retrieval and web search in
parallel and combine/rerank
results */

18 searchRes = InvokeSearch(
filter=filter_fields,
text=Enriched-Email-Text)

19 webSearchRes = InvokeWebSearch(
Enriched-Email-Text)

20 fedSearchRes =
InvokeFederatedSearch(
Enriched-Email-text, searchRes,
webSearchRes)

21 final_result = [final_resolv_grp,
fedSearchRes.prob_category,
fedSearchRes.resolution]

22 return final_result



Improving IT Support by Enhancing Incident Management Process 441

Fig. 3. Illustrative example

4.2 Image Data

Collection: The image data for our training is mainly obtained from the attach-
ments in the ticketing dataset. However to increase the volume for training as
well as to get more variety in training data we also scraped relevant images from
the web (Google Images). We used a search filter to download images for only
selected applications. Apart from this we also generated synthetic screenshot
images using a python library (pySimpleGUI). Using this library we can easily
control image parameters like size and coordinates of the generated window, text
content, size and count of radio buttons etc.

Augmentation: To enhance the size of our training set we used both offline
and online image augmentation. We perform the following transformations on
each image to generate new images offline, viz. changing brightness and contrast
levels, conversion to grayscale and resizing. Apart from these transformations we
also use Keras augmentation API for further augmentation of the images during
the training process.

Annotation: Annotation of image data is a laborious process as it involves
manual annotation of bounding boxes for windows as well as embedded image
text. For both these types of annotation we used automation.

For bounding box annotation we used shallow object detection technique
described in 3.1. This method of annotation works on most images. However
whenever images contain windows with high degree of overlap and confusing
images in the background the annotation may not be entirely correct. In these
cases we do a manual inspection and annotation.

For getting ground truth data on image text we primarily use synthetically
generated screenshots with pre-defined text content. In this case both the window
and the text are generated by our script and no manual annotation is necessary.
For real screenshots, we first perform OCR on the image and then manually
correct the extracted text to generate groundtruth.



442 A. Mandal et al.

Experimental Setup: For our deep learning based experiments we used a
NVIDIA Tesla K80 GPU cluster with 4 CUDA-enabled nodes. For the remaining
experiments we used a IBM softlayer VM having 256G RAM, 56 CPU cores and
100G HDD.

Table 1. Dataset details

Total tickets Problem categories Multimodal tickets

Overall 712230 3728 159344
Selected 42882 252 25000

Table 2. Accuracy of shallow object detection

Method 1-Window(P,R) 2-windows(P,R) 3-windows(P,R)

Contour 70%,76% 62%,78% 57%,68%
Canny edge 43%,82% 53%,80% 48%,64%
Ensemble+Filter 90%,89% 90%,86% 92%,72%

Table 3. Accuracy of image classification

Method Window filtering Operating system Application category

VGG19 92.3% 91.5% 85.7%
ResNet50 94.9% 94.1% 90.8%

Table 4. Dataset accuracy

Text only Multimodal

Assignment(acc/cov) 86.1%,89.3% 88.6%,96.5%
Resolution 74.7% 82.4%

5 Evaluation

Figure 3 illustrates the working of our pipeline with a real example. The bound-
ing boxes detected by our system are indicated in green while those which are
filtered out after detection are indicated in red. Interestingly shallow object
detection detects the green sliding status bar which is eventually filtered by our
deep learning based window filtering technique. Our system is not only able to
detect the error message box correctly but also the box in background which
has relevant context information. We highlight some of the important context



Improving IT Support by Enhancing Incident Management Process 443

information picked up by our system. Combining the information in the detected
windows the system is able to suggest the most relevant troubleshooting page
for the error. Evaluation of the different functional stages of our multimodal
analysis pipeline is presented below.

Detection of Windows: To detect window objects we first experimented with
DL based object detection. However we observed that training the object detec-
tion algorithm using traditional image datasets like MSCOCO [11] and ImageNet
[7] does not result in high accuracy. One of the reasons is that deep learning based
methods usually need a large number of training samples and it is difficult to
obtain such a large corpus to train. Also the objects in these datasets corre-
spond to natural images with widely different features than those available in
screenshots.

As far as shallow object detection is concerned both canny edge detection
and contour detection suffer from the problem of high recall/low precision. This
is because both these methods detect objects without understanding the internal
structure resulting in false positives. However a combination of the techniques
improves both precision and recall significantly as shown in Table 2.

Image Classification: For our DL based image classification models we exper-
imented with various hyper-parameters like learning rate(LR), filters, filter size,
number of neurons etc. We found LR to be the topmost contributor in accu-
racy. We ran LR range test and plotted the accuracy versus LR, noting the
LR value when the accuracy starts to increase and when the accuracy becomes
ragged [19]. Our results in Table 3 indicate very high accuracy (more than 90%)
for image classification with ResNet50. Since the images have large inter-class
variance and small intra-class variance we also experimented with shallow CNNs
and VGG19. However, with limited amount of training data ResNet50 (with pre-
trained weights) proved to be a better choice than its shallow counterparts. The
result means our system can identify the application type and OS accurately in
more than 90% of the cases even when window text is occluded.

Text Extraction: We evaluated the correctness of our text extraction technique
using mainly synthetic images to avoid manual annotation. Synthetic images
with pre-defined text content were generated using OpenCV python libraries
and the generated text was compared with that obtained from OCR. We used
two different OCR techniques for our evaluation viz. Watson Visual Recognition
and Tesseract, out of which Tesseract performed better. Our OCR technique
was observed to have more than 95% accuracy (character level). However we
also manually corroborated the results with real data for a few images.

Routing/Resolution: To evaluate the accuracy of resolution we look at the
classification results for resolver group and problem category. As routing is a key
step in the resolution of the ticket we have to ensure that routing of the ticket
is improved by our multimodal analysis technique.

Also, the most important step in obtaining the resolution strategy is to
understand the correct problem category of the ticket as in most cases, the
problem category has a one-to-one mapping with the resolution strategy. Even
if that is not the case, identifying the correct problem category is a key step in



444 A. Mandal et al.

automated resolution as it narrows down the scope of the search. As such we
estimate the accuracy of resolution with the accuracy achieved in predicting
the problem category in both the short head and long tail cases. The results
are shown in Table 4. For our dataset the problem category is a composite field
constituting three sub-fields. We consider the identified problem category to be
accurate if and only if all the three sub-fields were identified correctly. Using this
metric we achieved an overall accuracy of 82.4% with multimodal, an improve-
ment of about 8% over text based analysis. In fact, for some problem categories
belonging to the long tail the observed improvement was more than 50% proving
that multimodal analysis is helpful in automated resolution of tickets. Prediction
accuracy of resolver group also improves by about 2.5% but more importantly
the automation coverage increases by more than 7% as more tickets are pre-
dicted with higher confidence. Considering that these improvements are over
and above an already deployed system (using text-based analysis), the numbers
are significant.

5.1 Impact to Incident Management Process

We calculate the impact to the incident management process based on two
aspects viz. Routing and Resolution. For our dataset the incoming rate of tickets
is approximately 100,000 per month. We assume that a human agent takes about
3min to read and assign each ticket and 10min to actually resolve the ticket.
On the basis of the above assumptions the net savings for an account can be
calculated as:

Sassign = N × Tcov × 3 (4)

Sresolve = N ×Rcov × 10 (5)

where N is the total number of tickets per annum, Tcov is the coverage for
automated routing, Rcov is the coverage for automated resolution, Sassign is
the net savings from routing and Sresolve is the net savings from resolution. This
gives a total saving of about 194,000 man hours per annum assuming Tcov = 90%
and Rcov = 80%

6 Conclusion and Future Work

In this paper we have presented an end-to-end system which can analyze image
content in ticket attachments, enrich ticket text and automatically suggest a
resolution. As of now we have limited our scope to analyzing only images with
screenshots. In reality there may be many different types of attachments with
varying properties and user intent. Some of these images may require deep under-
standing of the layout or semantic structure of the image. For example, sales
related support issues may require processing of invoices containing tables, bar
charts etc having a specific layout. Without understanding the layout we can-
not analyze the document for troubleshooting. In the future we will look at
advanced computer vision techniques to understand and analyze such types of
attachments.



Improving IT Support by Enhancing Incident Management Process 445

References

1. Agarwal, S., Aggarwal, V., Akula, A.R., Dasgupta, G.B., Sridhara, G.: Automatic
problem extraction and analysis from unstructured text in IT tickets. IBM J. Res.
Dev. 61(1), 4:41–4:52 (2017)

2. Agarwal, S., Sindhgatta, R., Sengupta, B.: SmartDispatch: enabling efficient ticket
dispatch in an IT service environment. In: 18th ACM SIGKDD (2012)

3. Aggarwal, V., Agarwal, S., Dasgupta, G.B., Sridhara, G., Vijay, E.: ReAct: a sys-
tem for recommending actions for rapid resolution of IT service incidents. In: IEEE
International Conference on Services Computing, SCC 2016 (2016)

4. Botezatu, M.M., Bogojeska, J., Giurgiu, I., Voelzer, H., Wiesmann, D.: Multi-view
incident ticket clustering for optimal ticket dispatching. In: 21st ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2015,
pp. 1711–1720 (2015)

5. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal.
Mach. Intell. 8(6), 679–698 (1986)

6. Dasgupta, G.B., Nayak, T.K., Akula, A.R., Agarwal, S., Nadgowda, S.J.: Towards
auto-remediation in services delivery: context-based classification of noisy and
unstructured tickets. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.)
ICSOC 2014. LNCS, vol. 8831, pp. 478–485. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-45391-9_39

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR09 (2009)

8. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves
in pictures. Commun. ACM 15(1), 11–15 (1972)

9. Gupta, A., Ray, A., Dasgupta, G., Singh, G., Aggarwal, P., Mohapatra, P.: Seman-
tic parsing for technical support questions. In: COLING, Santa Fe, New Mexico,
USA, August 2018

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2016)

11. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

12. Maire, M.R.: Contour detection and image segmentation. Ph.D. thesis (2009)
13. Mandal, A., Malhotra, N., Agarwal, S., Ray, A., Sridhara, G.: Cognitive system to

achieve human-level accuracy in automated assignment of helpdesk email tickets.
ArXiv e-prints, August 2018

14. Mandal, A., Malhotra, N., Agarwal, S., Ray, A., Sridhara, G.: Cognitive system to
achieve human-level accuracy in automated assignment of helpdesk email tickets.
In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp.
332–341. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9_23

15. Mani, S., et al.: Hi, how can I help you? automating enterprise IT support help
desks. CoRR abs/1711.02012 (2017). http://arxiv.org/abs/1711.02012

16. Mori, S., Nishida, H., Yamada, H.: Optical Character Recognition. Wiley, New
York (1999)

17. Sampat, A., Haskell, A.: CNN for task classification using computer screenshots
for integration into dynamic calendar/task management systems. http://cs231n.
stanford.edu/reports/2015/pdfs/anand_avery_final.pdf

https://doi.org/10.1007/978-3-662-45391-9_39
https://doi.org/10.1007/978-3-662-45391-9_39
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-030-03596-9_23
http://arxiv.org/abs/1711.02012
http://cs231n.stanford.edu/reports/2015/pdfs/anand_avery_final.pdf
http://cs231n.stanford.edu/reports/2015/pdfs/anand_avery_final.pdf


446 A. Mandal et al.

18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(2015)

19. Smith, L.: Cyclical Learning Rates for Training Neural Networks, pp. 464–472,
March 2017

20. Xu, J., Callan, J.: Effective retrieval with distributed collections. In: Proceedings
of the 21st Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR 1998, pp. 112–120. ACM (1998)

21. Zhou, W., Tang, L., Zeng, C., Li, T., Shwartz, L., Ya. Grabarnik, G.: Resolution
recommendation for event tickets in service management. IEEE Trans. Netw. Serv.
Manage. 13(4), 954–967 (2016)

22. Zhou, W., et al.: Star: a system for ticket analysis and resolution. In: Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2017, pp. 2181–2190 (2017)



A Recommendation of Crowdsourcing
Workers Based on Multi-community

Collaboration

Zhifang Liao1, Xin Xu1, Peng Lan1, Jun Long1(&), and Yan Zhang2

1 Department of Software Engineering, School of Computer Science and
Engineering, Central South University, Changsha, China

{zfliao,jlong}@csu.edu.cn, xuxin_1996@126.com,

lanpeng5@qq.com
2 Glasgow Caledonian University, Glasgow, UK

yan.zhang@gcu.ac.uk

Abstract. Currently there are problems such as fuzzy workers’ characteristics
and complex human relations existing on many crowdsourcing platforms, which
lead to the difficulty in the recommendation of workers to complete tasks on
crowdsourcing platforms. Aiming at worker recommendations in categorical
tasks on crowdsourcing platforms, this paper proposes a recommendation
considering workers’ multi-community characteristics. It takes factors such as
worker’s reputation, preference and activity into consideration. Finally, based on
the characteristics of community intersections, it recommends Top-N workers.
The results show the recommendations generated by the algorithm proposed in
this paper performs the best comprehensively.

Keywords: Crowdsourcing � Recommendation � Community discovery

1 Introduction

Crowdsourcing is an open call for online workers and a distributed problem-solving
mechanism. Through the combination of computers and unknown online workers, it
has completed tasks which cannot be completed by computers only [1]. The concept of
crowdsourcing was put forward by Jeff Howe in June, 2006 [2]. Its major participators
include Requester and Worker, connected by Human Intelligence Tasks (HIT).

At present, there are many methods for the crowdsourcing recommendation, such
as the Recommendation based on collaborative filtering, the Recommendation based on
the content of tasks, etc. However, most recommendations proposed by the existing
literature are based on workers’ skills [3], and some other recommendations only
considered workers’ interests, preferences or task characteristics [4, 5].

In view of the problems above, the paper proposes a recommendation of crowd
workers based on multi-community collaboration in the categorical tasks.

The main contributions of this paper are as follows:

1. The first attempt to explore the multi-community characteristics among workers.
2. A Recommendation of workers that comprehensively considers workers’ ability,

activity, preference and community properties.

© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 447–451, 2019.
https://doi.org/10.1007/978-3-030-33702-5_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_34&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_34&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_34&amp;domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_34


The rest of this paper is organized as follows. Section 2 discusses the related works.
Section 3 introduces the recommendation of workers based on multi-community
characteristics. Section 4 elaborates on experiments and results analysis. Section 5
draws the conclusion and shows the future work.

2 Related Work

The concept of crowdsourcing has undergone more than ten years since it was put
forward. People have conducted a plenty of researches and studies that mainly focused
on the task selection, result inference [7, 12], workers’ behavior analysis [6] and so on.

To date, studies on task recommendation are mainly based on traditional recom-
mendations, including the content-based recommendation [8], collaborative filtering
(CF) [9], and a hybrid of the two. Zhang et al. proposed a task recommendation based
on 2-tuple fuzzy linguistic method [10], the platform recommends tasks to workers
who are willing to accept them and capable to complete them. Sun et al. used the
negative exponential learning curve model [3] to simulate the skill improvement of
developers and then recommend developers through the predictions of the learning
curve. For a worker’s performance in different types of HITs, combined with similarity
metric and trust subnet extraction algorithm, Ye et al. [11] put forward a new worker
recommendation based on trust-aware model.

Based on previous work, this paper proposes a Recommendation of workers Based
on Multi-community Collaboration (RBMC). The RBMC not only considers the
workers’ attributes used in traditional recommendations, but also considers workers’
other personal characteristics and their characteristics shown in the communities.

3 Recommendation Process

3.1 Constructing the Worker Community Model

The core of the RBMC algorithm lies in discovering the latent characteristics of rep-
utation, activity and preference, and classifying workers into different communities.

Constructing the Worker Ability Matrix. For the multi-class crowdsourcing tasks,
Bayesian Network [12] model reasonably describes the dependence between classes,
which brings out the good performance. Therefore, the Bayesian Network is chosen to
do the aggregation of tags after the classification.

Consider that there are K workers classifying N objects into J possible classes. The

row vector p kð Þ
j ¼ p kð Þ

j;1 ; p
kð Þ
j;2 ; . . .; p

kð Þ
j;J j

PJ
l¼1 p

kð Þ
j;l ¼ 1

n o
of the confusion matrix derives

from the Dirichlet distribution. Therefore, each worker wi has a confusion matrix p kð Þ

of size J � J. Hence, the original model of the group of workers can be expressed as
h ¼ p;uf g ¼ p1; p2; . . .; pK ;u1; . . .;uK

� �
, where ui is the corresponding parameter

of the worker’s tag in Dirichlet distribution.

448 Z. Liao et al.



The Evaluation of Workers’ Reputation. Calculating the Kappa coefficient k of
workers’ confusion matrix pi, and use it as a worker’s reputation Rpti. Based on the
Gaussian distribution features of the worker, we use T-check to work out the confidence
interval when the confidence degree is 95% and classify workers into clusters in turn.

CBRi ¼

0 ; Rpti\0:5

avg
Pmlow

i2L2 Rpti
� �

; 0:5�Rpti\Rpt � sRPffiffi
n

p ta
2
n� 1ð Þ

avg
Pmnor

i2L3 Rpti
� �

; Rpt � sRPffiffi
n

p ta
2
n� 1ð Þ�Rpti\Rptþ sRPffiffi

n
p ta

2
n� 1ð Þ

avg
Pmhigh

i2L4 Rpti
� �

; Rptþ sRPffiffi
n

p ta
2
n� 1ð Þ�Rpti

8>>>><
>>>>:

ð1Þ

where Rpt indicates the average reputation value of workers, and SRp stands for the
standard deviation of distribution.

According to the distribution, the workers are divided into four cluster: malicious
passing, normal, excellent. Hence the clusters based on workers’ reputation commu-
nities are obtained, from which the community of workers with high reputation are
found.

Discovering the Workers’ Preference Community. This paper introduces the pref-
erence characteristics to build relations among workers, and divides workers into
communities according to their task preference characteristics.

According to the clustering effects, we determine the quantity of clusters and get the
distribution of each clusters in communities of workers’ preference,

CBPi ¼ fpL̂pc;jjc; j 2 J; i 2 Lp; p
i 2 h

0
pg ð2Þ

where Lp means the crowd of workers in preference communities, pL̂pc;k is the center

node of cluster p, and h
0
p is the crowd distribution model in the cluster.

The Assessment of Workers’ Activity. Similarly, we divide workers into “Less
active”, “Normal” and “Highly active”. Finally, we obtain the distribution of com-
munities based on workers’ activity and discover the latent highly active community.

Constructing a Worker Model. We use wi ! pi;Rpti;Acti;CBRi;CBPi;CBAif g
storage worker model, where pi is the ability matrix, Rpti is the reputation value, Acti is
the activity, CBRi is the worker clusters based on reputation, CBPi is the worker
clusters based on preference community, and CBAi is the worker clusters based on
activity.

3.2 Generating the Recommended List

According to the procedures above, the relatively stable high-quality community and
highly active community can be found from historical data. Moreover, when the
platform receives the new task set, combined with the pull mechanism in task
assignment, it is easier to discover the latent characteristics of a new task through the
characteristics of the workers who accept it, and to match them to the specific pref-
erence community.

A Recommendation of Crowdsourcing Workers 449



In the process of recommending workers in the real world, some latent charac-
teristics of clustered workers should be considered more, and crossover analysis based
on clusters classified in accordance with different standards is used to obtain the
optimal worker list that meets various criteria.

4 The Experiments and Their Results Analysis

In experiments, we uses the public data collected by AMT (WS-AMT). In order to
illustrate the scientificity and validity of the Recommendation, the experiments aim to
answer the following 2 questions:

Q2: How to construct a worker model and discover the latent worker communities?
Q3: What is the performance of this method proposed in this paper?

4.1 Experimental Design and Result Analysis

Experiment 1 (constructing a worker model). Based on WS-AMT dataset, the
experiment employs Bayesian Network model to build worker ability matrix that
describes the distribution rule of workers’ answers to historical tasks.

After K-means clustering, workers are divided into 6 clusters with obvious distri-
bution characteristics. We define these clusters as workers’ preference communities.
Figure 1 shows the visualized results of center nodes in each preference communities.
The igher the value on the diagonal, the higher precision a worker has in completing
corresponding type of tasks. For example, workers in community 2 perform better to
complete tasks of type 3 or type 5.

In addition, when constructing a worker model, it is necessary to comprehensively
consider the characteristics of workers’ reputation, activity and preference.

Experiment 2 (evaluating algorithm). In the experiment, we select Top-10 workers
list to generate recommendations, the RBMC algorithm is evaluated and compared
with three recommendations based on traditional indicators.

Fig. 1. Visualized matrix of center nodes in
workers’ preference communities

Fig. 2. Aggregation results of recom-
mended data generated

450 Z. Liao et al.



From Fig. 2 we can see that the algorithm accuracy is improved after we considered
anyone of workers’ characteristic of precision, activity and preference. However, the
RBMC that considers both worker behaviors and community characteristics has higher
values than other algorithms.

5 Conclusion and Prospect

The focus of this paper is a new recommendation of workers based on multi-
community collaboration, aiming to recommend a group of workers suitable for
completing tasks on crowdsourcing platforms through worker behavior analysis and
community classification. The experimental results show that, in terms of various
indexes, the RBMC proposed in this paper performs better obviously than the tradi-
tional recommendations based on a single characteristic.

In the future, we will try to optimize recommendation process so as to make it more
real time, and optimize tag aggregation algorithm to improve the aggregation precision.

References

1. Kucherbaev, P., Daniel, F., Tranquillini, S., Marchese, M.: Crowdsourcing processes: a
survey of approaches and opportunities. IEEE Internet Comput. 20(2), 50–56 (2016)

2. Howe, J.: The rise of crowdsourcing. Wired Mag. 14(6), 1–4 (2006)
3. Wang, Z., Sun, H., Fu, Y., Ye, L.: Recommending crowdsourced software developers in

consideration of skill improvement. In: 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 717–722 (2017)

4. Zhang, Y., Qian, Y., Wang, Y.: A recommendation algorithm based on dynamic user
preference and service quality. In: 2018 IEEE International Conference on Web Services
(ICWS), pp. 91–98 (2018)

5. Qiuyan, Z., Yuan, Z., Chen, L.I., Yueyang, L.I.: Task recommendation method based on
workers’ interest and competency for crowdsourcing. Syst. Eng. Theory Pract. 37, 3270–
3280 (2017)

6. Liao, Z., Zeng, Z., Zhang, Y., Fan, X.: A data-driven game theoretic strategy for developers
in software crowdsourcing: a case study. Appl. Sci. 9(4), 721 (2019)

7. Hu, H., Zheng, Y., Bao, Z., Li, G., Feng, J., Cheng, R.: Crowdsourced POI labelling:
location-aware result inference and task assignment (2016)

8. Mao, K., Yang, Y., Wang, Q., Jia, Y., Harman, M.: Developer recommendation for
crowdsourced software development tasks. In: 2015 IEEE Symposium on Service-Oriented
System Engineering, pp. 347–356 (2015)

9. Nilashi, M., Ibrahim, O., Bagherifard, K.: A recommender system based on collaborative
filtering using ontology and dimensionality reduction techniques. Expert Syst. Appl. 92,
507–520 (2018)

10. Zhang, X., Su, J.: An approach to task recommendation in crowdsourcing based on 2-tuple
fuzzy linguistic method. Kybernetes 47(8), 1623–1641 (2018)

11. Ye, B., Wang, Y.: CrowdRec: trust-aware worker recommendation in crowdsourcing
environments. In: 2016 IEEE International Conference on Web Services (ICWS), pp. 1–8
(2016)

12. Kim, H.C., Ghahramani, Z.: Bayesian classifier combination. In: Artificial Intelligence and
Statistics, pp. 619–627 (2012)

A Recommendation of Crowdsourcing Workers 451



Analysis of Resource Allocation of BPMN
Processes

Francisco Durán1(B), Camilo Rocha2, and Gwen Salaün3

1 University of Málaga, Málaga, Spain
duran@lcc.uma.es

2 Pontificia Universidad Javeriana, Cali, Colombia
3 University of Grenoble Alpes, LIG, CNRS, Grenoble, France

Abstract. The approach for the modelling and analysis of resource allo-
cation for business processes presented in this paper enables the auto-
matic computation of measures for identifying the allocation of resources
in business processes. The proposed analysis, especially suited to support
decision-making strategies, is illustrated with a case study of a parcel
ordering and delivery by drones that is developed throughout the paper.
BPMN models are represented in Maude.

1 Introduction

This work presents first steps towards the development of a formal and auto-
matic approach to resource allocation analysis for business process models. The
approach comprises a formal yet executable specification in rewriting logic [3],
a logic of concurrent computation, of a significant and expressive subset of the
Business Process Model and Notation (BPMN) extended with time features and
resources. By being executable in the Maude system [1], the specification sup-
ports the concurrent simulation of a process with different types of resources
and with multiple replicas for any given workload. The analysis techniques for
resource allocation use Maude’s rewriting tools for evaluating expected values
in the executable model — such as charge, occupancy, and usage percentage —
by mechanically generating automatic simulations. The output of the automatic
analysis can then be used to quantitatively assess the efficiency of the business
process model, and thus guide a re-design or re-allocation of resources.

The overall idea is that multiple concurrent executions of a process com-
pete for shared resources. Models are analyzed by observing how the resources’
usage evolve over time when varying the workload and the number of available
resources. This is done without an implementation of the system running on
real resources: the input to the automatic analysis task is a BPMN model of the
process workflow, enriched with a description of its timing behavior and resource

F. Durán was partly funded by project PGC2018-094905-B-I00 (Spanish
MINECO/FEDER), and by U. Málaga, Andalućıa Tech. C. Rocha was partly sup-
ported by Colciencias-EcosNord project “FACTS: Foundational Approach to Cognition
for Today’s Systems” (63561).

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 452–457, 2019.
https://doi.org/10.1007/978-3-030-33702-5_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_35&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_35


Analysis of Resource Allocation of BPMN Processes 453

availability. The BPMN models are described by means of activity and collabora-
tion diagrams, four types of gateways (namely, inclusive, exclusive, parallel, and
event-based), loops, unbalanced processes, event handling, and message-passing.
The timing aspects of the models are specified by associating durations to each
flow and task in the workflow, which can be sampled from a probability distribu-
tion function. Resource usage is specified by providing the amount of resources
available and the resources required for the execution of tasks.

The usefulness of the approach is illustrated with an experiment, which sup-
ports the claim that such an analysis can help in detecting resource usage prob-
lems, thus ultimately leading to the improvement of the business process by
optimizing its resource allocation. In particular, the experiment presented in
this paper identifies low-level occupancy of resources and undesirable patterns
of resource usage. They encompass sequential dependencies and bottlenecks pro-
voked by some highly used resources that may induce performance fall-downs.

2 Business Process Model and Notation

Figure 1 presents a process describing a parcel ordering and delivery by drones.
This BPMN process is presented as a collaboration diagram consisting of two
pools, one for the client and another one for the order management and the
delivery process; they are represented as lanes. This process includes different
kinds of gateways, probabilities for choice gateways, stochastic functions for time
associated to tasks, a loop, and unbalanced structures.

Fig. 1. Running example: parcel delivery by drones.

As usual, start and end events are used, respectively, to initialize and termi-
nate processes. A task represents an atomic activity that has exactly one incom-
ing and one outgoing flow. A task may have a duration (expressed as a stochastic
expression) and may produce an event message. A sequence flow describes two
nodes executed one after the other, i.e., by imposing an execution order with
possible delays.



454 F. Durán et al.

The timing information associated to tasks and flows (durations or delays)
is described either as a literal value or sampled from a probability distribution
function. Gateways (exclusive, inclusive, parallel, and event-based) are used to
control the divergence and convergence of the execution flow. Gateways with
one incoming (resp., outgoing) branch and multiple outgoing (resp., incoming)
branches are called splits (resp., merges). Event-based split gateways may have
a default branch fired by a timeout. Workflows with looping behavior are sup-
ported, as well as unbalanced workflows.

Data-based conditions for split gateways are modeled using probabilities asso-
ciated to outgoing flows of exclusive and inclusive split gateways. For instance,
notice the exclusive split after the Search products task in the Client lane of the
running example, which has outgoing branches with probabilities 0.6, 0.2, and
0.2, specifying the likelihood of following each corresponding path.

Instead of implicitly associating resources to lanes, resources are explicitly
defined at the task level, which is more general. A task that requires resources
can include, as part of its specification, the number of required instances (or
replicas) of a resource. The process in Fig. 1 relies on employees for parcel packing
and drones for parcel delivery. Notice the colored circles at the bottom-right
corner of the Prepare parcel and Deliver parcel tasks, indicating that one instance
of the employee resource and another one of the drone resource are required,
respectively, for the tasks completion. Several tasks could compete for the same
resources (not the case in this example). Furthermore, since multiple instances
of a process may be executed concurrently, all instances also access and compete
for the shared resources. At the bottom-right corner of Fig. 1, a total of two
employees and three drones are specified as the available resources.

3 Resource Allocation Analysis

This section illustrates how resource allocation analysis can be performed with
the proposed approach using the running example. Given a process description,
a specification of resources, and a workload, the experiments illustrate how infor-
mation on execution times and resource usage is collected. This information is
used to find the optimal allocation of resources that minimizes costs and exe-
cution times relative to an optimization goal. The interested reader is referred
to [2] for further details on the experiments.

The BPMN subset encoded in Maude is quite expressive and several kinds
of properties can be computed, including timing and resource-based ones. These
properties are meaningful when executing multiple instances of a process that
compete for the shared resources. As for timing properties, the approach pre-
sented in this paper allows the computation of average execution times (AET)
of a process, its variance (Var), and the average synchronization time (AST)
for merge gateways, representing the time elapse from the arrival of the first
token through one of its incoming flows to its activation. Synchronization times
make sense only for parallel and BPMN 1.0 inclusive gateways, since there is no
waiting/synchronization time for the other gateways.



Analysis of Resource Allocation of BPMN Processes 455

The following resource-based properties are computed:

– The global time usage of all replicas of each resource R (GTUR).
– The average GTU of resource R (GTU1

R).
– The average usage percentage for a resource R (UP1

R).

To quantify these properties, Maude rewriting capabilities are used in order
to simulate and extract analysis results on a given BPMN process.

Table 1. Experimental results for the running example (2 employees, 3 drones)

Num.

inst.

AET Var ASTg8 ASTee Total

time

Resources Anal.

time

GTUe GTU1
e UP1

e GTUd GTU1
d UP1

d

100 106 72 58 58 326 271 135 41 853 284 87 5 s

200 185 134 71 139 670 514 257 38 1892 630 94 26 s

400 284 173 98 237 1132 994 497 43 3270 1089 96 189 s

800 506 294 145 459 2217 1867 933.6 42 6525 2171 98 1233 s

1600 891 473 240 844 4187 3714 1857 44 12428 4142 98 7909 s

Table 1 summarizes experimental results on execution times and resource
usage on the parcel order and delivery example (Fig. 1). They were carried out
on an iMac with 3,2 GHz Intel Core i5 and 8 GB. All simulations were performed
assuming a given workload with a number of instances (1st column) and an expo-
nentially distributed interarrival time (λ = 4). Columns 2–6 contain, resp., the
average execution time (AET), its variance (Var), the average synchronization
time for the parallel merge at the end of the delivery process lane (ASTg8), the
average synchronization time for the end events (ASTee), and the total time
to complete the execution of all instances. The next six columns show results
on resource usage for employees and drones. The final column gives the overall
time needed to complete the analysis. All times are logical units, except the
ones in the last column that are given in seconds. Other information, such as the
duration of each task and the synchronization time of merge gateways, is also
collected.

These experiments consist of 100, 200, 400, 800, and 1600 instances for 2
employees and 3 drones. Note that the average execution and synchronization
times, as their variance, clearly increase with the number of instances. This is
because the more tokens compete for resources, the more time it takes to execute
the process and for the tokens to reach the synchronization points. Note the
relationship between AET and ASTee times, showing an unbalance between the
two lanes: the client lane terminates earlier than the other lane, which exhibits
a bottleneck because of the demand on the resources.

The GTU increases with the number of executed instances. These times are
particularly interesting because they can be materialized as costs (e.g., cost of a
resource, salary of an employee/all employees). In relation with usage percentage
(UP), the results indicate that the employees are “underused” since they work



456 F. Durán et al.

around 40% of the time, in contrast to the drones that are constantly busy and
used about 90% of the time for delivering parcels. This may suggest an inappro-
priate allocation of resources. It is worth observing that, although the number of
instances clearly affects all computed times, the results for resource usage (UP)
are quite stable and a small number of instances is enough for obtaining a good
approximation of these percentages.

Resource allocation impacts execution times (AET) and resource usage (UP)
of a process. Figure 2 focuses on average execution time and depicts the results
when the number of employees and drones vary for a fixed number of executions
(400). The objective here is to reduce the average execution time for completing
the process: the quicker the parcel is delivered, the more satisfied the client is.
It can be observed that, independently of the number of employees, execution
times are not satisfactory with 1 or 2 drones (between 400 and 800 time units).
The time becomes reasonable for more than 3 drones (less than 300 time units)
and tends to stabilize. It is also worth noting that, given its low usage rate,
the number of employees does not impact significantly the execution time. For
more than six drones, only going from one to two employees makes a significant
impact in the AET values.

Fig. 2. Average execution time (400 instances)

Figure 3 gives a different point of view of resource usage by concentrating
on each resource replica. Figure 3 (left) shows that employees are close to 100%
usage only if there is 1 or 2 instances of that resource and at least 4 or 8 drones,
respectively. If the number of employees increases, the usage percentage quickly
drops, reaching a low level (e.g., 14% for 4 employees and 2 drones). This per-
centage slightly increases with the number of drone replicas (e.g., 34% for 4
employees and 5 drones), but remains low (around 30%). Figure 3 (right) shows
that the drone usage is always quite high whatever the number of employees is.
With only 1 or 2 drones, the usage percentage is almost at 100% and slightly
decreases with 4 drones. When there are 6 drones and 1 employee, the percent-
age is still about 60%. Another interesting fact is that the number of employees
barely impacts the drone usage percentage. For example, with 4 drones, the
usage percentage is around 90% for any number of employees.



Analysis of Resource Allocation of BPMN Processes 457

Fig. 3. Average percentage usage per employee (left) and drone (right) (400 instances)

References

1. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

2. Durán, F., Rocha, C., Salaün, G.: A Note on Resource Allocation Analysis of BPMN
Processes, July 2018. http://maude.lcc.uma.es/BPMN-R

3. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
http://maude.lcc.uma.es/BPMN-R


Services at the Edge



Joint Operator Scaling and Placement
for Distributed Stream Processing
Applications in Edge Computing

Qinglan Peng1, Yunni Xia1(B), Yan Wang2, Chunrong Wu1, Xin Luo3(B),
and Jia Lee1

1 Software Theory and Technology Chongqing Key Lab, Chongqing University,
Chongqing, China

xiayunni@hotmail.com
2 Department of Computing, Macquarie University, Sydney, NSW 2109, Australia

3 Chinese Academy of Sciences, Chongqing Institute of Green and Intelligent
Technology, Chongqing, China

luoxin21@gmail.com

Abstract. Distributed Stream Processing (DSP) systems are well
acknowledged to be potent in processing huge volume of real-time stream
data with low latency and high throughput. Recently, the edge comput-
ing paradigm shows great potentials in supporting and boosting the DSP
applications, especially the time-critical and latency-sensitive ones, over
the Internet of Things (IoT) or mobile devices by means of offloading
the computation from remote cloud to edge servers for further reduced
communication latencies. Nevertheless, various challenges, especially the
joint operator scaling and placement, are yet to be properly explored
and addressed. Traditional efforts in this direction usually assume that
the data-flow graph of a DSP application is pre-given and static. The
resulting models and methods can thus be ineffective and show bad user-
perceived quality-of-service (QoS) when dealing with real-world scenarios
with reconfigurable data-flow graphs and scalable operator placement. In
contrast, in this paper, we consider that the data-flow graphs are con-
figurable and hence propose the joint operator scaling and placement
problem. To address this problem, we first build a queuing-network-
based QoS estimation model, then formulate the problem into an integer-
programming one, and finally propose a two-stage approach for finding
the near-optimal solution. Experiments based on real-world DSP test
cases show that our method achieves higher cost effectiveness than tra-
ditional ones while meeting the user-defined QoS constraints.

Keywords: Edge computing · Distributed stream processing ·
Operator placement · Operator replication

1 Introduction

Recent years have witnessed the prosperity of Internet of Things (IoT) devices
and novel mobile applications. Now we are surrounded by different kinds of IoT
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 461–476, 2019.
https://doi.org/10.1007/978-3-030-33702-5_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_36&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_36


462 Q. Peng et al.

devices, e.g., smart phones, tablets, wearable devices, smart household appli-
ances, etc. These devices keep producing data and generating requests for event
handling day and night [20]. Such unbounded data and events should be properly
analyzed and handled on time, especially when applications are latency-sensitive.
A bicycle-sharing system is a good example of such latency-sensitive applications,
where the borrowing and returning events of the shared bicycles should be col-
lected and summarized in a timely manner for guaranteeing prompt responses to
queries of available bicycles. Augmented reality (AR) is another good example,
where objects or human faces in the video or pictures captured by mobile cam-
era should be recognized, analyzed, and augmented as fast as possible to avoid
congestions between user-machine interactions. Traditional cloud computing can
be ineffective for hosting such latency-sensitive applications because by deploy-
ing services and providing data caching at the remote cloud ends, cloud users
may frequently experience high latency and congestions. In contrast, the edge
computing paradigm can be highly capable and efficient in supporting them due
to the fact that user data are managed at the edge of Internet, where mobile
core networks are alleviated from problems of congestion and edge servers are
usually located near data sources for highly-reduced latency and communication
overhead [17].

Deployment

Logical 
Operator

Operator
Placement

Operator
Scaling

Operator
Instances

Source operator Transformation operator Sink operator
Edge serversOs Ot Od

Fig. 1. A data-flow graph example and its deployment.

The above-mentioned latency-sensitive applications can usually be viewed as
typical distributed stream processing (DSP) systems [12], where the underlying
business processes can be described as data-flow graphs with the help of control-
flow, and the corresponding events can thus be handled by continuously flowing
through the operators according to the structure of data-flow graphs. Figure 1
shows an example of a data-flow graph and its deployment. There are three
type of operators: (1) source operators, which are in charge of reading data or
receiving events; (2) transformation operators, which perform transformations
on data or events (e.g., map, reduce, join, and filter); and (3) sink operators,
which could be end users or other information systems. The processed data or
events are finally consumed by them.

A major limitation of the existing studies in this direction lies in that they
usually assume that the topological structure of the data-flow graph is pre-given



Joint Operator Scaling and Placement in Edge Computing 463

and thus address the operator placement problem in a static way [3,18]. However,
for many real-world DSP engines and systems, e.g., Apache Storm and Flink,
operators can be scalable at run-time because multiple replicas of an operator
are allowed to be instantiated to increase throughput and avoid the single-point-
failures. As shown in Fig. 1, when deploying a DSP application, for one logical
operator in the data-flow graph of this application, multiple operator instances
can be launched and they can be placed to different edge resources. Therefore, the
cost-effective joint operator scaling and placement of operators in the data-flow
graph of an edge-oriented DSP application with guaranteed quality-of-service
(QoS) becomes a key challenge.

Therefore, within this paper, instead of assuming pre-given and static data-
flow graphs, we consider configurable ones and the resulting problem of joint
operator scaling and placement for DSP applications on the edge computing
platforms. To this end, we propose a queuing-network-based model for the esti-
mation of the response time and formulate the joint problem into an integer-
programming problem. Moreover, we propose a combination of a Binary-Genetic-
Algorithm (BGA)-based method and a bottleneck-analysis-based solution refine-
ment for identifying high-quality near-optimal solutions. Experiments based on
real-world DSP test cases clearly show that our method significantly outperforms
traditional ones in terms of response time and cost.

2 Related Work

Operator placement refers to assigning the stream processing operators in a
DSP application to different machines [14]. It has been widely acknowledged
that placing the stream operators of IoT applications to edge, where is close
to the user data is generated, can speed up the applications, reduce the load
of cloud data centers and save more communication bandwidths [7]. According
to the latest Cisco global cloud index [15], by 2021, 75% of data produced by
human, machines, or things will be stored or processed at the edge.

However, it has been proven that such an operator placement problem on
heterogeneous edge resources is NP-hard [2]. Therefore, how to develop efficient
and elegant methods or algorithms for the edge-oriented operator placement
problem has become a hot issue, and many efforts were paid to this field. For
example, Cai et al. [3] investigated the fluctuation of request rate of complex-
event-processing (CEP) applications in the edge computing environment, then
they proposed a predictive algorithm which is capable of adjusting the placement
of operators on the fly. On the other hand, Silva Veith et al. [18] considered a
mixture resource pool with both edge and cloud servers and proposed a latency-
aware operator placement method. Likewise, Renart et al. [7] also considered
a mixture resource pool and they developed a programming model, which is
capable of splitting mobile applications dynamically across the edge and the
cloud online, to optimize the end-to-end latency, bandwidth consumption and
messaging cost. Amarasinghe et al. [1] targeted at minimizing the end-to-end
latency, they formulated the operator placement problem into a constraint satis-
faction problem and employed Gecode solver to acquire placement plans. While



464 Q. Peng et al.

Hiessl et al. [9] considered various QoS metrics, including response time, avail-
ability, enactment, and migration cost, to build their system model. Then they
employed a simple additive weighting method to aggregate these metrics and
the IBM CPLEX tool to solve the optimal placement problem.

A careful investigation into the aforementioned studies shows that they are
still limited in two ways: (1) many studies, e.g., [3,16] and [19], assumed that
the data-flow graph of DSP applications is pre-given and thus no operator scal-
ing is permitted. However, as an important feature in real-world DSP engines,
operator scaling has strong impacts to user-perceived QoS and deployment cost;
(2) various existing methods, e.g., [5] and [18], only considered a single path
or a combination of multiple paths in building their QoS model. However, the
performance of an operator instance might be interfered by operator instances
in other paths; thus, evaluating the QoS of a DSP system by modeling it to tan-
dem queues may suffer from the loss of accuracy. To overcome these limitations,
we consider configurable data-flow graphs and propose a queuing-network-based
QoS model for the estimation of the response time of a DSP application. Based
on the proposed model, we formulate the joint operator scaling and placement
for DSP applications in edge computing into an integer-programming problem
and develop a two-stage method to solve it.

3 System Model and Problem Formulation

In this section, we first propose a queuing-network-based model for the esti-
mation of the response time of DSP applications on edge computing, then we
formulate the joint operator scaling and placement into an integer-programming
problem. Table 1 lists the notations used in our system model.

3.1 System Model

The data-flow graph of a DSP application can be described as a directed acyclic
graph G = (O,S), where O = {o1, o2, ..., on} is the set of logical event processing
operators, S = {s(i,j)|i �= j ∧ i, j ∈ [1, n]} the streams of events flowing between
logical operators [9].

As shown in Fig. 1, there are three type of operators in a data-flow graph,
i.e., source operators Os, transformation operators Ot, and sink operators Od

[18]. Note that, a data-flow graph may contain multiple source operators and
sink operators. Unbounded events enter the DSP system continuously from Os,
then wait to be processed by flowing through Ot, and are finally consumed by
end users or other information systems at Od. We use oci to denote the required
amount of computation of processing an event at oi, which can be measured by
the count of instructions, omi the required memory for running oi itself. Figure 1
also shows an example of scaling and placing the operators in a data-flow graph
to edge resources. As we can see in this figure, multiple operator instances are
allowed to be launched for a single logical operator and they can be deployed
to different edge servers [4]. We use p = {p1, p2, ..., pn} to denote the operator



Joint Operator Scaling and Placement in Edge Computing 465

Table 1. List of notations

Notation Description Notation Description

γi Output rate of events at
logical operator oi

o(i,j) j-th operator instance
for oi

λi Input rate of events at
logical operator oi

oci Required amount of
computation of
processing an event at oi

λi,j Input rate of events at
operator instance o(i,j)

omi Required memory for
running oi itself

μ(i,j,k) Event processing rate of
operator instance o(i,j)
at edge server ek

p Operator scaling plan
for a data-flow graph

ρ(i,j,k) Event processing
strength of operator
instance o(i,j) at ek

pi Parallelism number of a
logical operator oi

ψi Ratio of the number of
input events to output
events of oi

s(i,j) An event stream flows
from oi to oj

ω(i,j) Probability of an output
event emitted by oi
flows through oj

q(i,j,k) Average queue length of
an operator instance
o(i, j) at edge server ek

b(i,j) Bandwidth between
edge servers ei and ej

x Operator placement
plan for a data-flow
graph

ci Average size of an event
at oi

x(i,j,k) Function to identify
whether i(i,j) is placed
to server ek

ei i-th edge server in
resource pool

D User-defined response
time constraint

m Available edge servers
count in a resource pool

Os Set of source operators
in a data-flow graph

mk Required memory for
server ek

Ot Set of transformation
operators in a data-flow
graph

n Logical operators count
in a data-flow graph

Od Set of sink operators in
a data-flow graph

l(i,j) Latency between edge
servers ei and ej

R(p, x) Estimated response time
of the joint operator
scaling and placement
solution

oi i-th logical operator in a
data-flow graph

C(p, x) Estimated cost of the
joint operator scaling
and placement solution



466 Q. Peng et al.

scaling plan of a data-flow graph, where pi is the parallelism number of a logical
operator oi, and the operator instances of oi can thus be represented as oi =
{o(i,1), o(i,2), ..., o(i,pi)}.

For an event stream s(i,j) which connects oi and oj , the probability of an
output event emitted by oi flows through oj is determined by ω(i,j). For a logical
operator oi, the ratio of the number of input events to the number of output
events is determined by its selection rate ψi. ω(i,j) and ψi can be empirically
obtained from the log files of the DSP system [11,18]. We use λi and γi to
denote the input and output rates of events at oi respectively, and λi can be
calculated as follows:

λi =

⎧
⎪⎨

⎪⎩

γk, ∃s(k,i) ∈ S ∧ ok ∈ Os

∑

s(i,j)∈S

λi × ψi × ω(i,j), oi /∈ Os

(1)

where

γi = λi × ψj , oj /∈ Od, (2)

the event arrival rate at each operator can thus be calculated in a recursive way.

Shared Memory Shared Memory

Slots Slots

Edge server e1 e2Edge server 

o3o2o1

p1 = 2 p2 = 3 p3 = 2

o11

o12

o21

o22

o23

o31

o32

Operator scaling 

Edge server e1

Events

Dispatching 
service

Data transfer 
service

Events flow in an edge server

O
perator placem

ent 

Fig. 2. An example of joint operator scaling and placement.

A DSP application can be deployed to the resource pool constructed by
heterogeneous edge servers, e.g., base stations, wireless access points, on-board
computers, etc. These servers are usually distributed around end users, and we
use a 3-tuple R = (E,B,L) to denote the configuration of a resource pool, where
E = {e1, e2, ..., em} is the set of available edge servers, B = {b(i,j)|i, j ∈ [1,m]} is
the bandwidth between edge servers, and L = {l(i,j)|i, j ∈ [1,m]} is the latency
between them. We use emi to denote the available memory of edge server ei, use
eci to denote the computing capability of ei, which can be measured by million
of instructions per second (MIPS), and epi the price per unit time of hiring such
an edge server.



Joint Operator Scaling and Placement in Edge Computing 467

An edge server with multi-core processors can support multiple operator
instances at the same time. We use slots count to represent how many operator
instances can be accommodated to an edge server, the number of slots of edge
server ei is denoted as esi . Figure 2 shows an example of scaling logical operators
in a data-flow graph and placing the corresponding operator instances to the
slots of different edge servers. Note that, the operator instances deployed to the
same server share the host’s memory, and operators can be bundled together and
to placed into one slot, e.g., the SlotSharingGroup function in Apache Flink.
According to the Burke theorem, slots with bundles of operator instances can
be seen as a tandem queue.

The system described above can be modeled as a Jackson queuing-network.
We use x to denote the placement plan, and x(i,j,k) ∈ {0, 1} is the indicator
of whether o(i,j) is placed into server ek. The event input rate of an operator
instance λ(i,j) can be calculated as λ(i,j) = λi/pi. We use μ(i,j,k) to denote the
event processing rate of o(i,j) at edge server ek, the event processing strength
ρ(i,j,k) of o(i,j) at ek can thus be calculated as:

ρ(i,j,k) =
λ(i,j) × oci

eck
. (3)

Therefore, the average queue length of an operator instance o(i,j) at edge server
ek is:

q(i,j,k) =
ρ(i,j,k)

1 − ρ(i,j,k)
. (4)

We use ci to denote the average event size at oi, the required memory mk for
server ek can thus be calculated as:

mk =
n∑

i=1

pi∑

j=1

x(i,j,k) × q(i,j,k) × ci + omi . (5)

According to the Little’s law, given the scaling plan p and placement plan x,
the expected response time for the events to finish their processing steps in a
data-flow graph is:

R(p, x) =
n∑

i=1

pi∑

j=1

m∑

k=1

x(i,j,k)q(i,j,k)

λi
+

∑

s(i,j)∈S

ω(i,j)

pipj
×

∑

g∈Ei

∑

h∈Ej

[
ci

b(g,h)
+ l(g,h)

]

,

(6)

where Ei = {ek|k ∈ [1,m]∧j ∈ [1, pi]∧x(i,j,k) = 1} is the set of hired edge servers
whose purpose is to accommodate all operator instances of oi. And finally, the
total cost of hiring edge servers can be calculated as:

C(p, x) =
m∑

k=1

w(k) × epk, (7)

where w(k) is the function to identify whether server ek is hired, w(k) = 1 if∑n
i=1

∑pi

j=1 x(i,j,k) > 0, otherwise 0.



468 Q. Peng et al.

3.2 Problem Formulation

Based on the system assumption and configuration, we have interest to know,
for a given data-flow graph of a DSP application, how to find the joint operator
scaling and placement plan with the minimal cost while fulfilling the user-defined
response time constraint. The resulting problem of joint operator scaling and
placement can be formulated as follow:

Min : C(p, x) (8)
s.t : R(p, x) ≤ D (9)

n∑

i=1

pi∑

j=1

q(i,j,k) ≤ emk , ∀ek ∈ E (10)

n∑

i=1

pi∑

j=1

x(i,j,k) ≤ esk, ∀ek ∈ E (11)

pi ≥ 1, i ∈ {1, 2, ..., n} (12)

where D is the user-defined response time constraint. Equations (8) and (9)
indicate that the target of our problem is to minimize the cost of hiring edge
servers while meeting user-defined response time constraint. Equations (10) and
(11) are the memory and slot constraints of edge servers, i.e., the slots and
memory consumed by the operator instances placed in the same edge server
should not exceed the capacity of that server. Equation (12) is the functional
constraint, i.e., each logical operator should be implemented by at least one
operator instance.

4 Proposed Joint Scaling and Placement Approach

According to [2] and [8], both the operator scaling and placement problems are
NP-hard. In this section, we first propose a Binary-Genetic-Algorithm (BGA)
based method to find the preliminary solutions in polynomial time complexity,
then we perform a bottleneck-analysis-based refinement (BAR) to them for the
improvement of resource utilization and response-time reduction. Figure 3 shows
the process of our proposed two-stage approach.

4.1 BGA-Based Method for Preliminary Solution

Genetic Algorithm (GA) [6] is a kind of evolutionary algorithm capable of find-
ing the near-optimal solutions of complex optimization problem by means of
simulating the evolution of species. The original GA is designed for solving con-
tinues problem, rather than discrete integer-programming ones such as operator
placement or workflow scheduling. Therefore, we employ BGA and design a
novel encoding scheme and fitness evaluation strategy for it to solve the problem
preliminarily.



Joint Operator Scaling and Placement in Edge Computing 469

Binary-Genetic-
Algorithm (BGA)

Bottle-analysis-based 

Resource pool

Preliminary 
solution solution

Stage I Stage II

Fig. 3. The process of proposed two-stage approach.

The encoding operation aims at representing a feasible joint solution in a
BGA-solvable way. In the binary encoding scheme, each segment in a chromo-
some contains a series of binary digits whose decimal meaning is the index of
a possible operator-slot combination which will be needed for fitness evalua-
tion. Figure 4 shows an example of encoding. The encoded solution is illustrated
in Fig. 2, where there are 2 available edge servers in resource pool and thus the
chromosome has 2 segments. There are 3 logical operators in the data-flow graph
and {o1, o2} are allowed to be deployed as a bundle to one slot. The status of
slots range from {0, 1, 2, 3, 4}, where 0 indicates the current slot is idle and 4
indicates that a bundle of operator instances for o1 and o2 is placed. Each edge
server has 3 slots and thus the length of each segment is 	log2 u(3, 1, 3)
, where
u(n, b, k) is the function to identify how many operator-slot combinations there
will be for server ek and it can be calculated as follows:

u(n, b, k) =
(n + b + esk)!
esk!(n + b)!

, (13)

where b is the number of bundle operators, and the corresponding operator-slot
combination for fitness evaluation can be generated from index with the time
complexity of O(n + b) [13]. As shown in Fig. 4, this process can be regarded as
finding the unique combination from a virtual mapping table.

To find the desired joint solution that fulfills user-defined latency and cost
expectation, we design a fitness function with lower values being better as:

f(c) =

⎧
⎨

⎩

R(c.p, c.x), F (c) = 1 ∧ R(c.p, c.x) > D
C(c.p,c.x)

CT
× D, F (c) = 1 ∧ R(c.p, c.x) ≤ D

+∞, F (c) = 0
(14)

where c denotes a joint solution, c.p and c.x denote the scaling and placement
plan respectively, F (c) the function to identify whether a joint solution c satis-
fies the constraint based on Eqs. (10), (11), and (12), R(c.p, c.x) the estimated
response time of solution c based on Eq. (6), C(c.p, c.x) the cost of hiring edge
servers based on Eq. (7), and CT the total cost of available edge servers. To guar-
antee the monotonic property of the fitness function, we scale the total cost to
(0,D] and associate the fitness values of those unfeasible solutions with infinity.



470 Q. Peng et al.

4 4 1 3 3 0

Server s2Server s1

Slot status

Binary encoding

0 1 1 0 0 1 0 0 1 1 0 1

Server s1

Index Combination

1 0, 0, 0

2 0, 0, 1

13 0, 3, 3

25 1, 4, 4

13
25

Virtual Mapping TableServer s2

Fig. 4. An example of binary encoding scheme.

Suppose that the population size and iteration time are k and l respectively.
The complexity of population initialization, fitness evaluation, crossover, and
mutation are O(km(n+b)), O(klm(n+b)), O(km), and O(km) respectively. Thus
the total time complex of the proposed BGA-based method is O(klm(n + b)).

4.2 Bottleneck-Analysis-Based Solution Refinement

To further refine the preliminary solutions yielded by BGA, we perform a bottle-
neck analysis to identify the key logical operator of the DSP system, and employ
a best-fit-decreasing-(BFD)-based method to find suitable slots for accommo-
dating the newly instantiated key operator instance. The philosophy for doing
so is that there are still idle slots for hired servers in preliminary solutions and
they can be utilized to further improve the response time. The major problem is
to find where is the bottleneck of current system, i.e., the key logical operator
which can reduce more response time if we launch more instances to it, and how
many operator instances should be launched for it to which idle slots. The key
logical operators usually have longer queue lengths than others, thus we find
the logical operator with the longest queue length as the bottleneck of current
system. Then, we launch a new instance to it and try to assign it to an available
slot with the highest processing capability. This loop will repeat until all idle
slots are utilized or no further operator can be instantiated to any idle slots.



Joint Operator Scaling and Placement in Edge Computing 471

Algorithm 1: Bottleneck-analysis-based Refinement
Input: Scaling plan p; Placement plan x; Set of idle slots S ; Logical

operator set O; Edge resources pool R = {E,B,L}
Output: Refined scaling plan p and placement plan x

1 S ← rank S according to edge servers’ CPU capability in descending
order ;

2 B ← ∅

3 while |S| �= 0 do
4 if |B| = |O| then
5 break;

6 Q ← ∅;
7 foreach x(i,j,k) ∈ x do
8 if x(i,j,k) = 1 then
9 q ← evaluate the queue length according to Eq.(4);

10 Q[i] ← O[i] + q ;

11 i ← min(Q[j]) where j ∈ {1, 2, ..., n} ∧ j /∈ B;
12 St ← S; s ← St.pop(); pi ← pi + 1; x′ ← x; x′

(i,pi,s)
← 1;

13 while F (x′) = 0 ∨ T (x) < T (x′) do
14 if |St| = 0 then
15 B ← B ∪ {i}; x′ ← x; s ← ∅;
16 break;

17 x′
(i,pi,s)

← 0;
18 s ← St.pop();
19 x′

(i,pi,s)
← 1;

20 x ← x′;
21 S ← S − s;

22 Return p, x;

Algorithm 1 shows the process of such a bottleneck-analysis-based solution
refinement, short for BAR. It starts with ranking all available slots by their
hosts’ CPU capability. Then, it initializes B, which denotes the logical operators
that can not be instantiated in any slot, with empty set. The main loop aims at
finding the bottleneck of the current solution (as shown in lines 6–11) and tries
to launch a new instance to available slots in a best-fit-decreasing way (as shown
in lines 12–21). The time complexity of ranking all available slots is O(m log m),
finding the bottleneck of the current solution is O(m log m), and the attempt to
launch a new operator instance for the current bottleneck is O(m). Therefore, the
complexity of the BAR method is O(m log m+m(m log m+m)) = O(m2 log m),
and the total time complexity of our approach is O(m2 log m + klm(n + b)) =
O(m2 log m + mn).



472 Q. Peng et al.

5 Experiments

To validate the performance of the proposed method, we conduct a series of case
studies based on real-world DSP applications and edge server configurations.
The proposed algorithms are implemented using Matlab and the experiment
environment is implemented on top of Simpy, which is a process based discrete
event simulation framework. We evaluate the performance of our method and
baselines in terms of response time and deployment cost.

5.1 Experiment Settings

App3: Network intrusion detection App4: New York taxi trajectory analysis

App1: Trending hashtags

Map
Partition

Group
Reduce

Map
Partition

Map
Partition

Join Map
Partition

Partition

Partition

FlatMap

FlatMap

Time
Stamps

Filter Map Filter

Map

FlatMap

Window

Window

Source operator Transformation operator Sink operator

Fig. 5. Data-flow graphs of the real-world DSP applications.

Figure 5 shows the data-flow graphs of 4 real-world DSP applications, i.e., (1)
trending hashtags for social media; (2) data enrichment for vehicles information;
(3) intrusion detection for IT security or network; and (4) trajectory analysis
for the taxi in New York city. The amount of required computation, i.e., oci ,
for processing per event at each logical operator and its average size, i.e., ci,
are measured by running these applications at Apache Flink (version 1.7.2).
The response time constraint of these four applications is set to 160 ms, 300 ms,
400 ms, and 630 ms, respectively.

We consider there are four different types of edge servers in an edge resource
pool in terms of computation capacity, i.e., tiny, small, medium, and large;
Table 2 shows their configurations. 100 servers are selected to build up an edge
resource pool to support the DSP applications, each of which randomly follows
one of the above four configurations. As [18] did, the bandwidths between edge
servers are generated by normal distribution with a mean value of 300 Mbps
[10], and the latencies between them are generated from a uniform distribution
between 0.085 ms and 3.576 ms. The price of edge servers follows the latest
Amazon EC2 server pricing which is pay-as-you-go with one hour billing interval.



Joint Operator Scaling and Placement in Edge Computing 473

Table 2. Configuration of edge servers

Type Model Cores CPU speed RAM Price (cent)

Tiny Raspberry Pi 2 4 474 MIPS @ 1GHz 1GB 2.55

Small Advantech EIS-D210 4 3,846 MIPS @ 1.5GHz 4 GB 5.1

Medium ZTE ES600S 8 32,885 MIPS @ 2.8GHz 32 GB 38.4

Large Inspur NE5260M5 16 27,135 MIPS @ 2.1GHz 64 GB 76.8

The event input rates are set to range from 50 to 500 to verify the effectiveness
of the proposed method and baselines under different user request loads. Each
case is performed 50 times and the average response time and cost are reported.

5.2 Baseline Approaches

We consider the simplex BGA and two state-of-the-art DSP operator placement
approaches, i.e., ODRP and GS+RTA, as baselines:

– BGA: it takes the preliminary solution yielded by our BGA-based method
(as illustrated in Sect. 4.1) as the final joint scaling and placement solution,
no further refinement is performed;

– ODRP [4]: it considers the worst end-to-end delay from the source to sink
as the response time of a data-flow graph, then formulates the joint operator
replication and placement as an integer-linear-programming problem, and
finally employs IBM CPLEX optimizer to solve it;

– GS+RTA: RTA [3] is a heuristic method to shorten the response time of
data-flow graph by improving the placement of the path with the largest
end-to-end delay. Because it does not consider the scaling of operators, we
implement a greedy scaling strategy for it and name it as GS+RTA.

5.3 Comparison of Response Time

Results: Figure 6 compares the response time of the joint operator scaling and
placement solution obtained by our proposed BGA+BAR and baselines at dif-
ferent event arrival rates. It can be clearly seen that the response time constraint
violation rates of both BGA+BAR and ODRP are zero, while it is 5.26% and
11.84% for BGA and GS+RTA, respectively. Our proposed BGA+BAR also can
deliver a shorter response time than BGA and GS+RTA (i.e., 3.64% lower than
BGA on average in four applications, and 10.56% lower than GS+RTA).

Analysis: BGA+BAR outperforms BGA, because the proposed BAR method
is capable of eliminating the inherent drawbacks of the employed genetic algo-
rithm and further improving the quality of solutions by performing a bottleneck-
analysis-based refinement. BGA+BAR outperforms GS+RTA, because the
meta-heuristic method that we have employed is capable of breaking out of local
optima and finding solutions with higher quality. The reason why ODRP deliv-
ers the lowest response time is that it regards the worst end-to-end delay as the



474 Q. Peng et al.

145

150

155

160

100 200 300 400 500

Event arrival rate

R
es

po
ns

e 
tim

e 
(m

s)
BGA+BAR BGA ODRP GS+RTA

APP 1

240

260

280

300

100 200 300 400 500

Event arrival rate

R
es

po
ns

e 
tim

e 
(m

s)

APP 2

325

350

375

400

100 200 300 400 500

Event arrival rate

R
es

po
ns

e 
tim

e 
(m

s)

APP 3

520

560

600

640

100 200 300 400 500

Event arrival rate

R
es

po
ns

e 
tim

e 
(m

s)

APP 4

Deadline

BGA+BAR BGA ODRP GS+RTA Deadline BGA+BAR BGA ODRP GS+RTA Deadline

BGA+BAR BGA ODRP GS+RTA Deadline

Fig. 6. Response time evaluation.

response time. However, this is considered too conservative and it is inefficient to
find cost-effective solutions especially when the response time constraint is met.
In contrast, our QoS model considers the whole data-flow graph by employ-
ing the queuing-network-theory to evaluate its response time, which makes our
model more objective and thus capable of yielding more cost-effective solutions.

5.4 Comparison of Cost

Results: Figure 7 shows the comparison of cost between our method and base-
lines at different event arrival rates. It is easy to see that BGA+BAR achieves
the lowest cost in all cases (i.e., 39.56% lower than ODRP on average in all four
Apps, and 30.85% lower than GS+RTA on average).

Analysis: The reasons of why BGA+BAR yields more cost-effective solutions
than baselines lie in threefold: (1) we employ queuing-network, which takes all
event flowing paths in a data-flow graph into consideration, instead of only con-
sidering the shortest path, to build our QoS model. Therefore, our model is capa-
ble of estimating the response time more objectively; (2) the proposed binary
encoding scheme for BGA can significantly reduce the search space by introduc-
ing the unique operator-slot combination and virtual mapping table mechanism;
(3) the proposed BAR method does not invest any new edge resources to the
current resource pool. Therefore, the solutions yielded by BGA+BAR have the
same cost as those of BGA but have lower response time and higher resource
utilization.



Joint Operator Scaling and Placement in Edge Computing 475

0

500

1000

1500

100 200 300 400 500

Event arrival rate

C
os

t (
ce

nt
)

BGA+BAR BGA ODRP GS+RTA

APP 1

0

500

1000

1500

100 200 300 400 500

Event arrival rate

C
os

t (
ce

nt
)

APP 2

0

500

1000

1500

100 200 300 400 500

Event arrival rate

C
os

t (
ce

nt
)

APP 3

0

500

1000

1500

2000

100 200 300 400 500

Event arrival rate

C
os

t (
ce

nt
)

APP 4
BGA+BAR BGA ODRP GS+RTA BGA+BAR BGA ODRP GS+RTA

BGA+BAR BGA ODRP GS+RTA

Fig. 7. Cost evaluation.

6 Conclusion and Further Work

This paper targets at the joint operator scaling and placement problem for DSP
applications in edge computing environments. We consider that the data-flow
graphs of DSP applications are configurable instead of static, and propose a
queuing-network-based model to evaluate the response time and cost of a joint
scaling and placement solution. Then, we formulate the proposed problem into
an integer-programming problem and develop a two-stage approach to solve it.
Experiments based on real-world datasets have demonstrated that our methods
can achieve lower cost while meeting user-defined QoS constraint than baselines.

In our further studies, the following concerns will be addressed: (1) the fluc-
tuation of event arrival rate and edge server performance should be well ana-
lyzed and further predicted to generate joint solutions with higher quality; (2)
heavy-tailed distributions, e.g., pareto distribution, are suitable for modeling the
process of events arrival and being processed, some stochastic approaches should
be investigated for the further improvement of the accuracy of our system model.

References

1. Amarasinghe, G., de Assuno, M.D., Harwood, A., Karunasekera, S.: A data stream
processing optimisation framework for edge computing applications. In: 2018 IEEE
21st International Symposium on Real-Time Distributed Computing (ISORC), pp.
91–98. IEEE (2018)

2. Benoit, A., Dobrila, A., Nicod, J.M., Philippe, L.: Scheduling linear chain streaming
applications on heterogeneous systems with failures. Future Gener. Comput. Syst.
29(5), 1140–1151 (2013)



476 Q. Peng et al.

3. Cai, X., Kuang, H., Hu, H., Song, W., Lü, J.: Response time aware operator place-
ment for complex event processing in edge computing. In: Pahl, C., Vukovic, M.,
Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 264–278. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03596-9 18

4. Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Optimal operator replication
and placement for distributed stream processing systems. ACM SIGMETRICS
Perform. Eval. Rev. 44(4), 11–22 (2017)

5. Cardellini, V., Lo Presti, F., Nardelli, M., Russo Russo, G.: Optimal operator
deployment and replication for elastic distributed data stream processing. Concurr.
Comput. Pract. Exp. 30(9), e4334 (2018)

6. Gen, M., Lin, L.: Genetic algorithms. In: Wiley Encyclopedia of Computer Science
and Engineering, pp. 1–15 (2007)

7. Gibert Renart, E., da Silva Veith, A., Balouek-Thomert, D., Dias de Assuncao,
M., Lefèvre, L., Parashar, M.: Distributed operator placement for IoT data ana-
lytics across edge and cloud resources. In: CCGrid 2019 - 19th Annual IEEE/ACM
International Symposium in Cluster, Cloud, and Grid Computing, pp. 1–10.
IEEE/ACM (2019)

8. Hidalgo, N., Rosas, E.: Self-adaptive processing graph with operator fission for
elastic stream processing. J. Syst. Softw. 127, 205–216 (2017)

9. Hiessl, T., Karagiannis, V., Hochreiner, C., Schulte, S., Nardelli, M.: Optimal place-
ment of stream processing operators in the fog. In: 2019 IEEE 3rd International
Conference on Fog and Edge Computing (ICFEC), pp. 1–10. IEEE (2019)

10. Hu, W., et al.: quantifying the impact of edge computing on mobile applications.
In: Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems, p. 5.
ACM (2016)

11. Kaur, N., Sood, S.K.: Efficient resource management system based on 4vs of big
data streams. Big Data Res. 9, 98–106 (2017)

12. Mai, L., et al.: Chi: a scalable and programmable control plane for distributed
stream processing systems. Proc. VLDB Endow. 11(10), 1303–1316 (2018)

13. Myrvold, W., Ruskey, F.: Ranking and unranking permutations in linear time. Inf.
Process. Lett. 79(6), 281–284 (2001)

14. Nardelli, M., Cardellini, V., Grassi, V., Presti, F.L.: Efficient operator placement
for distributed data stream processing applications. IEEE Trans. Parallel Distrib.
Syst. 30(8), 1753–1767 (2019)

15. Networking, C.V.: Cisco Global Cloud Index: Forecast and Methodology, 2016–
2021. Cisco Public, San Jose (2018). White paper

16. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: 22nd Inter-
national Conference on Data Engineering (ICDE 2006), pp. 49–49. IEEE (2006)

17. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

18. da Silva Veith, A., de Assunção, M.D., Lefèvre, L.: Latency-aware placement of
data stream analytics on edge computing. In: Pahl, C., Vukovic, M., Yin, J., Yu,
Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 215–229. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03596-9 14

19. Taneja, M., Davy, A.: Resource aware placement of iot application modules in
fog-cloud computing paradigm. In: 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pp. 1222–1228. IEEE (2017)

20. Yang, S.: Iot stream processing and analytics in the fog. IEEE Commun. Mag.
55(8), 21–27 (2017)

https://doi.org/10.1007/978-3-030-03596-9_18
https://doi.org/10.1007/978-3-030-03596-9_14


Graph-Based Optimal Data Caching
in Edge Computing

Xiaoyu Xia1, Feifei Chen1, Qiang He2(B), Guangming Cui2, Phu Lai2,
Mohamed Abdelrazek1, John Grundy3, and Hai Jin4

1 Deakin University, Burwood, Australia
{xiaoyu.xia,feifei.chen,mohamed.abdelrazek}@deakin.edu.au

2 Swinburne University of Technology, Hawthorn, Australia
{qhe,gcui,tlai}@swin.edu.au

3 Monash University, Clayton, Australia
john.grundy@monash.edu

4 Huazhong University of Science and Technology, Wuhan, China
hjin@hust.edu.cn

Abstract. In an edge computing environment, edge servers are deployed
at base stations to offer highly accessible computing capacities and ser-
vices to nearby users. Data caching is thus extremely important in edge
computing environments to reduce service latency. The optimal data
caching strategy in the edge computing environment will minimize the
data caching cost while maximizing the reduction in service latency. In
this paper, we formulate this edge data caching (EDC) problem as a con-
strained optimization problem (COP), prove that the EDC problem is
NP-complete, propose an optimal approach named IPEDC to solve the
EDC problem using the Integer Programming technique, and provide a
heuristic algorithm named LGEDC to find near-optimal solutions. We
have evaluated our approaches on a real-world data set and a synthesized
data set. The results demonstrate that IPEDC and LGEDC significantly
outperform two representative baseline approaches.

Keywords: Optimization · Edge computing · Data caching

1 Introduction

Over the last decade, the world has witnessed an exponential growth of mobile
traffic over the internet, which is predicted to expand by 1,000 times over the
coming decade with a huge increase in Internet of Things (IoT) connected devices
[1]. The enormous network traffic load often causes network congestion that
significantly impacts users’ quality of experience, especially service latency. To
attack this challenge, edge computing, a new distributed computing paradigm,
has emerged to allow computing capacities such as CPUs, memory and storage
to be distributed to edge servers at the edge of the cloud [2]. Each edge server is
powered by one or more physical servers and deployed at base stations that are
geographically close to users. Mobile and IoT app vendors can hire computing
capacities on edge servers so that they can host their services to offer their app

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 477–493, 2019.
https://doi.org/10.1007/978-3-030-33702-5_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_37&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_37


478 X. Xia et al.

users low service latency [3]. Such services are referred to as edge services in the
remainder of this paper.

As an increasing number of mobile devices start to access edge services,
a large proportion of the rapidly growing mobile traffic will go through edge
servers. Enormous data will be transmitted by edge servers. Caching data, espe-
cially popular data such as viral videos and photos from Facebook, on edge
servers will minimize the latency in users’ data retrieval. Users can retrieve data
from a nearby edge server instead of retrieving it from the cloud if the data
is cached on that edge server. This is especially important for latency-sensitive
applications, e.g., gaming, navigation, augmented reality, etc. Popular data often
accounts for a large percentage of the mobile traffic data over the internet. Thus,
caching popular data on edge servers can significantly reduce the traffic load on
the internet backbone. It is expected to reduce mobile traffic data by 35% [4].
From an app vendor’s perspective, it can also considerably reduce data transfer
costs by decreasing the volume of data transferred from the cloud to its users.

Given a piece of popular data, a straightforward solution is to cache it on all
the edge servers in a particular area for nearby app users to access. This way,
the latency in all app users’ data retrieval can be minimized. However, based on
the pay-as-you-go pricing model, the app vendor will need to hire substantial
resources on edge servers for caching the data. This incurs excessive caching cost
and is impractical for most, if not all, app vendors. Thus, from an app vendor’s
perspective, it is critical to find an optimal data caching strategy that mini-
mizes the caching cost incurred while guaranteeing the low latency in its users’
data retrieval. We refer to this data caching problem in the edge computing
environment as an edge data caching (EDC) problem. While existing research
investigates data caching in the edge computing environment from either the net-
work infrastructure provider’s or users’ perspectives, we make the first attempt
to study the EDC problem based on graph from the app vendor’s perspective.

In this work, we make the following major contributions:

– We model and formulate the EDC problem as a constrained optimization
problem (COP) from the app vendor’s perspective.

– We prove that the EDC problem is NP-complete based on the minimum
dominating set problem.

– We develop an optimal approach named IPEDC for solving the EDC problem
with the Integer Programming technique.

– We develop a heuristic approach named LGEDC for finding near-optimal
solutions to the EDC problem efficiently in large-scale scenarios.

– We evaluate our approaches against two representative baseline approaches
with experiments conducted on both real-world data and synthesized data.

The rest of paper is organized as follows. Section 2 motivates this research
with an example. Section 3 discusses our approaches for solving the EDC prob-
lem. Section 4 evaluates the approaches experimentally. Section 5 reviews the
related work. Section 6 concludes this paper and points out future work.



Graph-Based Optimal Data Caching in Edge Computing 479

2 Motivating Example

Video services accounted for 54% of the total internet traffic in 2017 and the
ratio is expected to grow to 79% by 2022 [5]. Thus, a representative example
of data cached on edge servers is video data. App vendors such as YouTube
currently store their video data on their servers in the cloud. When a video goes
viral over the internet, a large number of mobile YouTube users make requests
for it. This creates immense pressure on the service in the cloud. Caching this
piece of data on edge servers, especially in areas with high user density, brings
it closer to the users and reduces the latency of data retrieval.

In an edge computing environment, edge servers can communicate with their
neighbor edge servers and share their computing capacities and storage via high-
speed links [6] (server adjacency constraint). This allows workloads in a partic-
ular area to be balanced across the edge servers covering that area [6]. Thus, the
edge servers in a particular area can be modeled as a graph where a node repre-
sents an edge server and an edge represents the link between two edge servers.
Moreover, the coverage areas of adjacent edge servers often intersect to avoid
blank areas not covered by any edge servers. A user in the intersection area can
connect to one of the edge servers covering this user (server coverage constraint).

Fig. 1. An example EDC scenario

Figure 1 presents an example area with six edge servers, i.e., {v1, ..., v6}, each
covering a specific geographic area. The number next to each edge server is the
number of app users covered by that edge server. Let us assume a YouTube video
goes viral and it is predicted that a large number of mobile YouTube users in
this area will request this video. Please note that there is a large body of research
work available on the prediction of popular videos [7] and thus in this research we
assume that the number of mobile YouTube users who will request this popular
video can be predicted. From YouTube’s perspective, caching this video on all
the edge servers can easily accommodate all the mobile YouTube users in this
area. However, it is usually not cost-effective considering that YouTube will pay



480 X. Xia et al.

for the resources on the edge servers hired for caching the data, e.g., storage and
bandwidth. Thus, the data caching strategy must minimize the data caching
cost and ensure that all the app users in this area can retrieve the video from
one of the edge servers. This edge data caching (EDC) problem is inherently a
constrained optimization problem (COP).

The data caching cost and data retrieval latency can be evaluated using a vari-
ety of metrics. A user’s data retrieval latency consists of two components: the
latency between the user and its nearby edge server, and the latency between edge
servers. As the first component is very small and not influenced by the data caching
strategy, it is not considered in the formulation of the data caching strategy. To
quantify the optimization objective and constraints in the COP in a generic man-
ner, we measure the data caching cost using the number of cached data replicas
and the data retrieval latency using the number of hops, i.e., links between edge
servers. For example, the cost of caching the video on all the six edge servers in
Fig. 1 is 6. The server adjacency constraint requires that all the users must be able
to retrieve the data from an edge server less than two hops. For example, this con-
straint holds for the u in the top left corner if the video is cached on v1, v2 or v4
and it does not hold if the video is only cached on v3, v5 and/or v6. The rationale
behind this constraint is that edge servers can communicate with their neighbor
edge servers, but they are not designed or linked to route (potentially large) data
across multiple hops. Based on the generic metrics for data caching cost and data
retrieval latency, specific pricing policies and latency models can be integrated into
our COP model. For example, knowing the size of the data to be cached and the
prices for the storage and bandwidth for caching the data, the data cache cost can
be calculated based on the number of cached data replicas.

There might be multiple caching strategies that minimize the data caching
cost while fulfilling the latency constraint for every app user. Different edge
servers usually cover different numbers of app users, depending on the user den-
sity in their coverage areas. Thus, one of those caching strategies is to maximize
the total latency reduction across all the covered app users. From YouTube’s
perspective, the other optimization objective is thus to maximize the benefit
produced by the cached data replicas, which is measured by the total reduction
in data retrieval latency for all the app users.

The model and approach proposed in this research are generic and applicable
to various apps. Thus, data are cached on edge servers in whole and we do not
consider the situation where data can be partially cached, e.g., video segments.
In addition, the scale of the EDC problem in the real-world scenarios can be
much larger than the example presented in Fig. 1. Finding an optimal solution
to a large-scale EDC problem is not trivial.

3 Our Approach

3.1 Definitions

In this research, the n edge servers in a particular area are modeled as a graph.
For each edge server vi, the graph has a corresponding node. For each pair



Graph-Based Optimal Data Caching in Edge Computing 481

of linked edge servers (vi, vj), the graph has a corresponding edge et. We use
G(V,E) to represent the graph, where V is the set of nodes in G and E is the set
of edges in G. In the remainder of this paper, we will speak inter-changeably of an
edge server and its corresponding node in graph G, denoted as v. The notations
adopted in the paper are summarized in Table 1.

As discussed in Sect. 2, we formulate the EDC problem in a generic manner
by measuring the data retrieval latency by the number of hops between edge
servers and the data caching cost by the number of cached data replicas.

Compared with cloud’s virtually unlimited computing capacities, an edge
server usually has limited computing capacities due to its size limit [8,9]. At
runtime, many app vendors will need to hire the computing capacities for hosting
their services and caching their data for their own app users. Thus, an app vendor
is unlikely to hire a huge amount of computing capacities on an edge server for
caching a lot of its data. It is more cost-effective for most, if not all, app vendors
to cache the most popular data on edge servers to serve its nearby users. Thus,
in this paper, we investigate the scenarios where data is processed and cached
individually. The model and the approaches proposed will build the foundation
for more sophisticated edge caching scenarios, e.g., caching multiple data.

Table 1. Summary of notations

Notation Description

bu the maximum benefit for user u

bu,j the benefit of caching replica on server vj for app user u

CU the set of users covered by the selected edge server set S

cui the set of users covered by edge server vi

di,j the distance from server vi to server vj

dT the threshold of distance

du the minimum distance from app user u to retrieve replica

E = {e1, e2, ..., em} finite set of links between edge servers

G the graph presenting a particular area

R = {r1, r2, ..., rn} the set of binary variables indicating cache replicas on edge servers

S the set of selected servers to cache data replica

U = {u1, u2, ..., uk} finite set of users

V = {v1, v2, ..., vn} finite set of edge servers

Given a piece of data and a set of edge servers vi (1 ≤ i ≤ n), a data caching
strategy is a vector R = <r1, ..., rn>, where ri (1 ≤ i ≤ n) denotes whether the
data is cached on edge server vi:

ri =

{
0 if data is not cached on edge server vi

1 if data is cached on edge server vi
(1)

In graph G, the distance between two nodes vi and vj is the number of hops
on the shortest path between them. Thus, given an app user u, its data retrieval



482 X. Xia et al.

latency is measured by the number of hops between the edge server covering u
and the nearest edge server with the data in its cache.

du = min{di,j , rj = 1, vj ∈ V },∀u ∈ Ui (2)

The main objective of edge data caching is to ensure a low data retrieval
latency for app users. Thus, R must fulfill the latency constraint - every app
user must be able to retrieve the data from an edge server within a certain
number of hops:

du < dT ,∀u ∈ Ui (3)

As discussed in Sect. 2, each edge server can only communicate with its neigh-
bors. Thus, there is dT = 2. However, this can be relaxed, e.g., dT = 3, 4, ..., if
the high latency incurred is considered acceptable by the app vendor and new
techniques enable data to be transmitted through multiple edge servers rapidly.

To evaluate and compare different data caching strategies, we use the con-
cept of data caching benefit, which is calculated based on the reduction in data
retrieval latency measured by the number of hops reduced by cached data. The
caching benefit produced by caching data on vj for user u covered by vi denoted
by bu,j , is calculated as follows:

bu,j =

{
0 if di,j ≥ dT

dT − di,j if di,j < dT
(4)

In the edge computing environment, an app user u ∈ U might be covered by
multiple edge servers. App user u can retrieve the data from any of those edge
servers that have the data in the cache. Thus, the data caching benefit produced
by the data caching strategy for an app user u is:

bu = max{rj ∗ bu,j , vj ∈ V } (5)

From the app vendor’s perspective, one of the optimization objectives is to
minimize the data caching cost incurred by R and measured by the number of
cached data replicas:

minimize cost(R) (6)

The second optimization objective is to maximize the data caching benefit,
measured by the total reduction in all users’ data retrieval latency produced by
R based on (5):

maximize benefit(R) (7)

3.2 Edge Data Caching Optimal Model

The EDC problem can be modeled as a constrained optimization problem
(COP). One of the two optimization objectives can be prioritized over the other
with the Lexicographic Goal Programming technique, depending on the app
vendor’s preference.



Graph-Based Optimal Data Caching in Edge Computing 483

(a) Strategy R1 (b) Strategy R2 (c) Strategy R3

Fig. 2. Example data caching strategies

A COP consists of a finite set of variables X = x1, . . . , xn, with domain
D1, ...,Dn listing the possible values for each variable in X, and a set of con-
straints C = c1, c2, . . . , ct over X. A solution to a COP is an assignment of a
value to each variable in X from its domain such that all constraints in C are
satisfied. The COP model for the EDC problem is formally expressed as follows.

For a graph G = (V,E), where V = {v1, .., vn, } and E = {e1, ..., em}, there
are a set of variables R = {r1, .., rn}, where D(ri) = {0, 1},∀i ∈ {1, ..., n}, ri
being 1 if the a data replica is cached on the ith node, 0 otherwise. The constraints
for the COP model are:

bu = max(ri ∗ bu,i),∀u ∈ {1, ..., k},∀i ∈ {1, ..., n} (8)

1 ≤ bu ≤ 2,∀u ∈ {1, ..., k} (9)

Constraint family (8) is converted from (5). It ensures that every app user
will always retrieve the data from the nearest edge server. Constraint family (9)
enforces the latency constraint to ensure that every app user can retrieve the
data from an edger server within 2 hops.

There might be multiple solutions fulfilling (8) and (9). In Fig. 2(a) and (b),
two possible data caching strategies are R1 = {0, 1, 1, 1, 0, 0}, which caches the
data on v1, v2, and v3 and R2 = {1, 0, 0, 0, 0, 1}, which caches the data on v1 and
v6. Both R1 and R2 fulfill (8) and (9). However, R2 caches two data replicas,
incurring a lower data caching cost than R1. Thus, the below objective function
that minimizes the total number of data replicas cached over G is included in
the COP model to capture the app vendor’s first optimization objective:

min
n∑

i=1

ri (10)

The app vendor’s second optimization objective also needs to be captured
by the COP model. Let us assume two solutions as demonstrated in Fig. 2(b)
and (c), R2 = {1, 0, 0, 0, 0, 1}, which caches the data on v1 and v6, and R3 =
{0, 1, 0, 1, 0, 0}, which caches the data on v2 and v4, both fulfilling the latency
constraint and achieving the app vendor’s first optimization objective. However,
compared with v1 and v6, v2 and v4 cover more app users, 39 versus 13 in total.
Thus, R3 allows more app users to retrieve the data from edge servers directly.



484 X. Xia et al.

Thus, from the app vendor’s perspective, R3 produces more caching benefits than
R2 at the same data caching cost. The below objective function that maximizes
the data caching benefits of all app users based on (5) is included in the COP
model to capture the app vendor’s second optimization objective:

max
k∑

u=1

bu (11)

Integer Programming problem solvers, e.g., IBM CPLEX Optimizer1 and
Gurobi2, can be employed to solve the above COP. The optimal solution is the
data strategy that achieves both (10) and (11) while fulfilling (8) and (9). In
this paper, objective (10) (minimize the total number of data replicas) is prior-
itized over objective (11) (maximize the data caching benefits) as an example
for discussion. In real-world applications, objective (11) can be given a higher
priority than (10) if the app vendor is willing to minimize its app users’ latency
at a high data caching cost.

Given multiple data to be cached over time, multiple COPs need to be solved
to find one data caching strategy for each piece of data. Those COPs share the
same G. Thus, the shortest distance between every two nodes in G can be pre-
computed offline to facilitate rapid calculation of (2) as well as app users’ cache
benefits (5) at runtime.

3.3 Problem Hardness

In this section, we demonstrate that the COP of EDC is NP-complete by proving
the following theorems.

Theorem 1. The COP of EDC is in NP.

Proof. As there are (nk + k) constraints in total, any solution to the COP can
be validated in polynomial time by checking whether the solution satisfies the
constraint group (8) and (9). Thus, the COP of EDC is in NP.

Theorem 2. The COP of EDC is NP-complete.

Proof. To prove this problem is NP-complete, we introduce the minimum dom-
inating set problem (MDS). MDS problem is known to be NP-complete. Given
an undirected graph G = (V,E), where |V | = n and |E| = m. The metrics Cn,n

presents the connection between vertices. Ci,j = 1 if vi and vj are connected,
otherwise Ci,j = 0. The formulation is displayed below:

object : min
n∑

i=1

vi (12a)

s.t. : vi ∈ {0, 1}, i = {1, .., n} (12b)
n∑

j=1

Ci,j ≥ 1,∀i ∈ {1, ..., n} (12c)

1 https://www.ibm.com/analytics/cplex-optimizer.
2 http://www.gurobi.com/.

https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com/


Graph-Based Optimal Data Caching in Edge Computing 485

Now we prove that the minimum dominating set problem can be reduced to
an instance of the EDC problem. The reduction is done in two steps: (1) let each
edge server cover only one app user; (2) let each app user be covered by only
one edge server. Due to the reduction, objective (8) can be ignored because the
total user benefits are always the same with the same number of servers selected
for caching this data. Given an instance MDS(v, e, Cn,n), we can construct an
instance EDC(r, e,Bn,k) with the reduction above in polynomial time while
|r| = |v| and n = k, where Bn,k is the benefit matrix from (4). In this case, any
solution s satisfying objective (12a) and constraint (12b) also satisfies objective
(10). Moreover, the constraint (12c) means that for each vertex vi not in the
solution s, there exists at least one neighbour of vi in s. From this point, user
u covered by vertex vi can obtain benefit bu ≥ 1. Thus, if the solution s fulfills
constraint (12c), it also fulfills constraints (8) and (9). Therefore, the COP of
EDC is reducible from MDS and it is NP-complete.

3.4 A Near-Optimal Algorithm

Finding the optimal solution to the NP-complete EDC problem is intractable in
large-scale scenarios. Thus, this section proposes a heuristic algorithm for finding
a near-optimal solution to large-scale EDC problems efficiently.

A naive and straightforward heuristic is to always cache data on the edge
server with the most app users. However, selecting an edge server with many
neighbor edge servers allows the app users covered by those neighbor edge servers
to retrieve cached data within one hop. Based on this heuristic, we present a link-
oriented greedy algorithm, namely LGEDC, that always selects the node with the
most edges in G to cache the data. The pseudo code is presented in Algorithm 1.
In the worst-case scenario, LGEDC selects no more than n edge servers, while
the computational complexity of the function selectMaximumEdgsServer is
O(n). Thus, the computational complexity of LGEDC is O(n2).

EDC problem has two objectives (10) and (11). Here, we select the prior-
itized objective (10) (minimize the total number of data replicas) to calculate
the approximation ratio of LGEDC. The approximation ratio can be calculated
based on Theorem 3.

Theorem 3. LGEDC is O(n)-approximation.

Proof. Let us assume that the optimal solution OPT selects k edge servers to
cache data. Figure 3 presents a worst-case EDC scenario, where n edge servers
are linked as a circle and each edge server covers its own group of distinct app
users. In this case, Algorithm 1 will select v1, v2, ..., vn−2 to cache data, as the app
users in vn covered by vn can be served by v1, the app users covered by vn−1 can
be served by vn−2. The solution S of LGEDC selects at most n− 2 edge servers
to cache data. Thus, there is |S|

|OPT | = n−2
k , and LGEDC is O(n)-approximation.



486 X. Xia et al.

Algorithm 1. LGEDC Algorithm
1: Initialization:
2: CU, S ← ∅

3: End of initialization
4: repeat
5: v ← selectMaximumEdgesServer()
6: S ← S ∪ {v}
7: CU ← CU ∪ cui

8: until CU = U
Fig. 3. The worst-case in LGEDC

4 Experimental Evaluation

We conducted two sets of experiments to evaluate the performance of IPEDC and
LGEDC. The COP discussed in Sect. 3 is solved with IBM’s CPLEX Optimizer.
All the experiments are conducted on a machine equipped with Intel Core i7-8550
processor (8 CPUs, 1.8 GHz) and 8 GB RAM, running Windows 10.

4.1 Baseline Approaches

In these experiments, we evaluate the performance of our approaches against two
representative baseline approaches, namely Random and Greedy-Covered-Users:

– Random: This approach randomly selects edge servers, one after another, to
cache data until the latency constraint (3) is fulfilled.

– Greedy-Covered-Users (GU): This approach always selects the edge server
that covers the most app users to cache data until the latency constraint (3)
is fulfilled.

4.2 Experimental Settings

Data Sets: Two sets of experiments are conducted, one on the public real-world
EUA data set3 [2] and the other on a synthetic data set. The latter is synthesized
to simulate more general EDC scenarios. In the experiments on the synthesized
data set, a certain number of edge servers are randomly distributed within a
particular area with app users generated also randomly. In the experiments,
edges are randomly generated according to the edge density to ensure the graph
is connected.

Parameter Settings: To comprehensively evaluate IPEDC and LGEDC, we
vary two parameters in the experiments to simulate different EDC scenarios,
as presented in Table 2. This way, we can also evaluate how the changes in the
parameters impact the performance of our approaches. Every time a parameter
varies, the experiment is repeated 100 times and the results are averaged:

3 https://github.com/swinedge/eua-dataset.

https://github.com/swinedge/eua-dataset


Graph-Based Optimal Data Caching in Edge Computing 487

– The number of edge servers (n). This parameter impacts the size of graph G
and varies from 10 to 40 in steps of 10.

– Edge density (d). In the second set of experiment,s given n edge servers in a
particular area, a total of e edges are generated randomly according to the
edge density calculated with d = e/n. This parameter impacts the density of
graph G and varies from 1 to 3 in steps of 0.5.

Performance Metrics: Four metrics are used in the experiments for the eval-
uation, three for effectiveness and one for efficiency: (1) Data Caching Cost cost,
the lower the better; (2) Data Caching Benefit benefit, the higher the better; (3)
Benefit per Data Replica bpr, the higher the better; (4) Computation Overhead
time, the lower the better.

According to (11), cost is calculated by summing the benefits of all app users.
Thus, to stabilize the impact of the number of app users, we always select or
generate a total of 100 app users in the experiments set #2.

Table 2. Parameter settings

Number of edge servers Edge density Data set

Set #1 10, 20, 30, 40 1 Real-World

Set #2.1 10, 20, 30, 40 1 Synthetic

Set #2.2 10 1, 1.5, 2, 2.5, 3 Synthetic

4.3 Experimental Results

The results of the experiments are shown in Figs. 4, 5 and 6, corresponding to
Set #1, #2.1 and #2.2.

Effectiveness: Fig. 4 presents the results of experiment set #1. Overall, of all
the four approaches, IPEDC achieves the highest benefit per replica at
the lowest data caching cost, while LGEDC is the second lowest in cost
with the second highest in benefit per data replica. Figure 4(b) shows that
IPEDC achieves the lowest data caching benefit. In the experiments, objective
(10) is prioritized over (11). With the priority to minimize the data caching cost,
retrieving data from edge servers via one hop is more preferable. Thus, IPEDC
will aim for a solution that barely fulfills (9), i.e., a solution that suffices to allow
the most users to retrieve data from edge servers via one hop. Figure 4(a) shows
that the average data caching costs achieved by IPEDC and LGEDC
are much lower than other two approaches, 7.71 for IPEDC and 14.43
for LGEDC versus 19.44 for GU and 19.14 for Random. Figure 4(a) also shows
that, as the number of edge servers increases from 10 to 40, the data caching
cost achieved by IPEDC increases from 3.48 to 11.14 on average, much slower
than LGEDC (5.01 to 24.01), Random (6.78 to 31.98) and GU (6.57 to 32.7).



488 X. Xia et al.

Figure 4(b) shows that the increase in the number of edge servers will increase
the data caching benefits achieved by all four approaches, from 497.13 to 1164.28
for IPEDC, 530.30 to 1289.99 for LGEDC, 612.17 to 1397.02 for GU and 579.48
to 1368.11 for Random. Figure 1(c) demonstrates the significant advantage
of IPEDC over the other approaches in achieving cost-effective data
caching strategies. On average, it outperforms LGEDC by 54.54%, GU by
84.09% and Random by 90.83%. As the number of edge servers increases, the
benefits per replica achieved by all approaches decrease. The increase in the
number of edge servers deployed in a specific area increases the connectivity
between the edge servers. This increases app users’ chances of retrieving data
via one hop, which lowers the average benefit produced by each data replica.

Figure 5 depicts the results from experiment Set # 2.1. Overall, IPEDC
achieves the highest data per replica at the lowest data caching cost
again. Its advantage over the other approaches is significant. In this set of exper-
iments, the edge servers are set up in a similar way as Set #1. Therefore, the

(a) cost vs. n (b) benefit vs. n (c) bpr vs. n (d) time vs. n

Fig. 4. Experiment Set #1

(a) cost vs. n (b) benefit vs. n (c) bpr vs. n (d) time vs. n

Fig. 5. Experiment Set #2.1

(a) cost vs. d (b) benefit vs. d (c) bpr vs. d (d) time vs. d

Fig. 6. Experiment Set #2.2



Graph-Based Optimal Data Caching in Edge Computing 489

results shown in Fig. 5(a) are similar to those shown in Fig. 4. However, Fig. 5(b)
shows that the data caching benefit does not increase with the increase in
the number of edge servers. The reason is that, unlike experiment Set #1, the
number of app users in experiment Set #2.1 does not increase. Thus, the data
caching benefit does not increase accumulatively as in Fig. 4(b). This is also the
same reason for the rapid decrease in the benefit per data replica demonstrated
in Fig. 5(c).

Figure 6 shows the results in experiment Set #2.2 where the graph density
varies. In terms of the average data caching cost and benefit per data replica,
IPEDC outperforms the other approaches with large margins, 44.17%
against LGEDC, 55.81% against GU and 56.77% against Random on average
in data caching cost, 45.85% against LGEDC, 83.25% against GU and 89.30%
against Random on average in benefit per data replica. Interestingly, Fig. 6 shows
that the edge density impacts the approaches in a very different way
from the number of edge servers. Figure 6(a) shows that as the edge density
increases from 1.0 to 3.0, the data caching cost achieved by IPEDC decreases
from 2.92 to 1.47. This is because the increase in the edge density allows each
edge server to be linked to more edge servers. This increases the app users’
chances of retrieving data from edge servers via one hop. IPEDC does not need
to cache as many data replicas to ensure that all app users are served by edge
servers within one hop. As a result, the average data caching cost decreases.
For the same reason, the data caching benefit decreases, as demonstrated in
Fig. 6(b). The increase in the connectivity between edge servers also allows more
app users to be able to retrieve data via one hop. As a result, the benefit per data
replica increases, as demonstrated in Fig. 6(c), from 52.84 to 96.60 for IPEDC,
from 32.70 to 75.25 for LGEDC, from 29.82 to 57.46 for GU and from 27.74 to
52.73 for Random.

Overall, IPEDC significantly and consistently outperforms all other
approaches, with LGEDC second, in formulating cost-effective data caching
strategies, especially in EDC scenarios where edge servers are highly connected.

Efficiency: Figures 4(d), 5(d) and 6(d) present the average computation times
taken by the four approaches to find a solution to the EDC problem. We can see
in Figs. 4(d) and 5(d) that the computation overhead of IPEDC increases
rapidly when the number of edge servers increases. When there are 40 edge
servers to consider, IPEDC takes 1–2 s to find the optimal solution in Fig. 4(d).
This excessive computation overhead is inevitable in large-scale EDC scenarios
because IPEDC tries to find the optimal solution to the NP-complete EDC
problem. Thus, IPEDC is suitable for solving EDC problems with rea-
sonable sizes, while LGEDC is suitable for solving large-scale EDC
problems. The results in Fig. 6(d) indicates that IPEDC is also very efficient
in EDC scenarios where edge servers are highly connected.



490 X. Xia et al.

4.4 Threats to Validity

Construct Validity. The major threat to construct validity is the two baseline
approaches used for comparison. Due to the innovation of the EDC problem
in the edge computing environment, we chose two basic naive approaches as
baselines in our evaluation. As those baseline approaches are relatively simple,
IPEDC and LGEDC tend to achieve better experimental results. Thus, there
is a threat that the comparison does not suffice to comprehensively evaluate
IPEDC and LGEDC. To minimize this threat in the experiments, we changed
two parameters, as presented in Table 2, to simulate various EDC scenarios.
In this way, we could evaluate our approaches by not only comparison to the
baseline approaches, but also demonstrate how the changes in the parameters
impact the performance of the approaches.

External Validity. The major threat to external validity is whether IPEDC
and LGEDC can be generalized and applied in other application scenarios in the
edge computing environment. To tackle this threat, we measure the performance
of our approaches in a generic way - using the number of reduced hops for
effectiveness evaluation and the number of data replicas for efficiency evaluation.
In this way, the results of the evaluation can be interpreted based on specific
models of data retrieval latency and data caching cost. In addition, we ran the
experiments on a real-world data set and a synthetic data set. We also varied
two parameters to vary the size and the complexity of the EDC problem. This
way, the representativeness and comprehensiveness of the evaluation are ensured.
The above measures allowed us to ensure that the results were generalized, which
reduced the threat to external validity.

Conclusion Validity. The main threat to conclusion validity is the lack of sta-
tistical tests, e.g., chi-square tests. We could have conducted chi-square tests to
draw conclusions. However, we ran the experiment for 100 times in experiments
and averaged the results each time we changed a parameter. This led to a large
number of test cases, which tend to result in a small p-value in the chi-square
tests and lower the practical significance of the test results [10]. For example,
in experiment Set 2, there were a total of 1,300 runs. This number is not even
close to the number of observation samples that concern Lin et al. in [10]. Thus,
the threat to the conclusion validity due to the lack of statistical tests might be
high but not significant.

5 Related Work

Edge computing is an extension of cloud computing with distributed computing
resources and services at the edge of the cloud [11]. With the deployment of edge
servers, the problem of computation offloading arises. It has been well studied
with consideration of edge servers’ energy efficiency [12], offloading cost [13] and
so forth.

In the last few years, researchers have been investigating the challenges raised
by data caching in the edge computing environment. Conventional approaches



Graph-Based Optimal Data Caching in Edge Computing 491

for data caching are not suitable in the edge computing environment and can-
not be applied directly. Thus, new ideas and techniques are being proposed and
investigated. An optimal auction mechanism was introduced in [14] that consid-
ers the data retrieval and delivery costs. The authors showed computationally
efficient approaches for calculating the optimal decisions of cache allocation and
user pays. Halalai et al. [15] proposed Agar, a caching system, from the erasure-
coded perspective. They designed Agar based on a dynamic programming algo-
rithm for optimally caching data chunks with consideration of data popularity
and network latency.

Instead of data caching optimization across edge servers, some researchers
study how to integrate edge servers’ internal caches and external caches. In [16],
the authors proposed Cachier, a system that minimizes data retrieval latency by
coordinating the loading balance between edge servers and the cloud in a dynam-
ical manner. The authors of [17] integrated in-network caching and edge caching
to guarantee the quality of time-sensitive multimedia transmissions over the
5G wireless network. They also provided three hierarchical edge caching mecha-
nisms, including a random hierarchical caching approach, a proactive hierarchical
caching approach and a game-theory-based hierarchical caching approach. Zhang
et al. [18] proposed an architecture to enhance edge caching by using computa-
tion resources of edge servers. They presented a caching scheme by implementing
smart vehicles as edge servers to provide external caches.

To the best of our knowledge, our work is the first attempt to solve the Edge
Data Caching (EDC) problem from the app vendor’ perspective in the edge
computing environment. We also realistically and innovatively solve the EDC
problem in a generic manner to minimize the data caching cost and maximum the
data caching benefit with the server coverage constraint and the server adjacency
constraint.

6 Conclusion

In this paper, we formulated the new Edge Data Caching (EDC) problem in the
edge computing environment as a constrained optimization problem from the
app vendor’s perspective. To find an optimal solution, we proposed IPEDC, an
approach based on the Integer Programming technique with two optimization
objectives: (1) to minimize the data caching cost measured by the number of
cached data replicas; and (2) to maximum the data caching benefit measured by
the total reduction in app users’ data retrieval latency. However, we also proved
that the EDC problem is NP-complete. We then provided a heuristic approach
named LGEDC for finding near-optimal solutions to the EDC problem. We
conducted extensive experiments based on a real-world data set and a synthetic
data set to evaluate the performance of IPEDC and LGEDC in different EDC
scenarios. The results demonstrate that IPEDC significantly outperforms all
other approaches in formulating cost-effective EDC solutions, while LGEDC
solves large-scale EDC problems efficiently.

This research has established the foundation for the EDC problem and
opened up a number of research directions. In our future work, we will first



492 X. Xia et al.

consider the problem of caching multiple data at the same time for an app
vendor. Other issues that can be investigated include data popularity, security
constraints, etc.

Acknowledgement. This research is partially funded by Australian Research Council
Discovery Projects (No. DP170101932 and DP180100212).

References

1. Osseiran, A., et al.: The foundation of the mobile and wireless communications
system for 2020 and beyond: challenges, enablers and technology solutions. In:
IEEE 77th Vehicular Technology Conference (VTC2013-Spring), pp. 1–5 (2013)

2. Lai, P., et al.: Optimal edge user allocation in edge computing with variable sized
vector bin packing. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018.
LNCS, vol. 11236, pp. 230–245. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03596-9 15

3. Tran, T.X., Hosseini, M.-P., Pompili, D.: Mobile edge computing: recent efforts
and five key research directions. IEEE COMSOC MMTC Commun. Front. 12(4),
29–33 (2017)

4. M. ETSI.: Mobile edge computing - introductory technical white paper (2014)
5. Cisco visual networking index: global mobile data traffic forecast update,

2017–2022 (2019). https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-738429.html

6. Chen, L., Zhou, S., Xu, J.: Computation peer offloading for energy-constrained
mobile edge computing in small-cell networks. IEEE/ACM Trans. Netw. 26(4),
1619–1632 (2018)

7. Tatar, A., De Amorim, M.D., Fdida, S., Antoniadis, P.: A survey on predicting the
popularity of web content. J. Internet Serv. Appl. 5(1), 1–20 (2014)

8. Chen, M., Hao, Y., Lin, K., Yuan, Z., Hu, L.: Label-less learning for traffic control
in an edge network. IEEE Netw. 32(6), 8–14 (2018)

9. Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., Wang, W.: A survey on
mobile edge networks: convergence of computing, caching and communications.
IEEE Access 5, 6757–6779 (2017)

10. Lin, M., Lucas Jr., H.C., Shmueli, G.: Research commentary-too big to fail: large
samples and the p-value problem. Inf. Syst. Res. 24(4), 906–917 (2013)

11. Yannuzzi, M., et al.: A new era for cities with fog computing. IEEE Internet Com-
put. 21(2), 54–67 (2017)

12. Wang, F., Xu, J., Wang, X., Cui, S.: Joint offloading and computing optimization
in wireless powered mobile-edge computing systems. IEEE Trans. Wirel. Commun.
17(3), 1784–1797 (2018)

13. Yao, H., Bai, C., Xiong, M., Zeng, D., Fu, Z.: Heterogeneous cloudlet deployment
and user-cloudlet association toward cost effective fog computing. Concurr. Com-
put. Pract. Exp. 29(16), e3975 (2017)

14. Cao, X., Zhang, J., Poor, H.V.: An optimal auction mechanism for mobile edge
caching. In: 38th IEEE International Conference on Distributed Computing Sys-
tems (ICDCS), pp. 388–399 (2018)

15. Halalai, R., Felber, P., Kermarrec, A.-M., Täıani, F.: Agar: a caching system for
erasure-coded data. In: 37th IEEE International Conference onDistributed Com-
puting Systems (ICDCS), pp. 23–33 (2017)

https://doi.org/10.1007/978-3-030-03596-9_15
https://doi.org/10.1007/978-3-030-03596-9_15
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html


Graph-Based Optimal Data Caching in Edge Computing 493

16. Drolia, U., Guo, K., Tan, J., Gandhi, R., Narasimhan, P.: Cachier: edge-caching
for recognition applications. In: 37th IEEE International Conference onDistributed
Computing Systems (ICDCS), pp. 276–286 (2017)

17. Zhang, X., Zhu, Q.: Hierarchical caching for statistical qos guaranteed multime-
dia transmissions over 5G edge computing mobile wireless networks. IEEE Wirel.
Commun. 25(3), 12–20 (2018)

18. Zhang, K., Leng, S., He, Y., Maharjan, S., Zhang, Y.: Cooperative content caching
in 5g networks with mobile edge computing. IEEE Wirel. Commun. 25(3), 80–87
(2018)



Load-Aware Edge Server Placement for
Mobile Edge Computing in 5G Networks

Xiaolong Xu1, Yuan Xue1, Lianyong Qi2(B), Xuyun Zhang3, Shaohua Wan4,
Wanchun Dou5(B), and Victor Chang6

1 School of Computer and Software, Nanjing University of Information Science
and Technology, Nanjing, China

njuxlxu@gmail.com, xueyuannuist@gmail.com
2 School of Information Science and Engineering,

Qufu Normal University, Qufu, China
lianyongqi@gmail.com

3 Department of Electrical and Computer Engineering, University of Auckland,
Auckland, New Zealand

xuyun.zhang@auckland.ac.nz
4 School of Information and Safety Engineering,

Zhongnan University of Economics and Law, Wuhan, Hubei, China
shaohua.wan@ieee.org

5 State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China

douwc@nju.edu.cn
6 School of Computing & Digital Technologies,

Teesside University, Middlesbrough, UK
Victor.Chang@xjtlu.edu.cn

Abstract. Edge computing is a promising technique for 5G networks to
collect a wide range of environmental information from mobile devices
and return real-time feedbacks to the mobile users. Generally, the edge
servers (ESs) are both contributing in macro-base station (MABS) sites
for large-scale resource provisioning and micro-base station (MIBS) sites
for light-weighted resource response. However, to lower the investment
of construing the edge computing systems in the MIBS sites, limited
number of ESs are employed, since there is an intensive distribution of
MIBSs in 5G networks. Thus, it remains challenging to guarantee the
execution efficiency of the edge services and the overall performance of
the edge computing systems with limited ESs. In view of this challenge,
a load-aware edge server placement method, named LESP, is devised
for mobile edge computing in 5G networks. Technically, a decision tree is
constructed to identify the MIBSs served by a definite ES and confirm the
data transmission routes across MIBSs. Then, the non-dominated sorting
genetic algorithm II (NSGA-II) is employed to obtain the balanced ES
placement strategies. Furthermore, simple additive weighting (SAW) and
multiple criteria decision making (MCDM) techniques are leveraged to
recognize the optimal ES placement strategy. Finally, the experimental
evaluations are implemented and the observed simulation results verify
the efficiency and effectiveness of LESP.

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 494–507, 2019.
https://doi.org/10.1007/978-3-030-33702-5_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_38&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_38


Load-Aware Edge Server Placement for Mobile Edge Computing 495

Keywords: 5G networks · Edge computing · Edge server placement

1 Introduction

Nowadays, with the development of Internet of Things (IoT), the increment rate
of smart mobile device scale has reached a ninety-two percent per year since
2006 [1]. Cellular providers intend to enhance mobile applications which require
high quality and low latency to these mobile devices [2]. However, considering
the spectrum technologies in the fourth generation (4G) networks, the remain-
ing spectrum resources are insufficient to support the harsh requirements for the
delay and the bandwidth from mobile applications such as telesurgery, health
monitoring and transportation cruise control, which compels providers to sur-
mount the lack of the spectrum resources [3].

Aiming to remedy the shortage of spectrum resources, cellular providers
employ a brand-new spectrum technology called the millimeter-wave (mm-Wave)
in 5G, which is capable of taking full advantage of spectrum resources [4]. Techni-
cally, the wave length of the mm-wave is 1 m to 10 mm, which results in 5G band-
width reaching up to 273.5 GHz. Nevertheless, the attenuation degree of mm-Wave
signal is severely impacted by fog/cloud conditions [5]. For the sake of decreasing
the attenuation of the mm-Wave signal and make use of spectrum resources, the
base stations in 5G are divided into macro base stations (MABSs) and micro base
stations (MIBSs) in line with their coverage [6]. Then, arranging MIBSs intensively
increases the spectrum density and improves the spectrum efficiency.

As massive 5G smart applications appear continuously, it is approximately
impossible to deal with computation-intensive services locally due to the limited
computing resources in smart mobile devices [7]. Thus, mobile devices ask for the
computing resources provided by the cloud platform to execute the services [8].
In spite of that the pressure for mobile devices to handle services is relieved by
the cloud, the quality of experience (QoE) for users is hard to satisfy, especially
for the real-time applications like virtual reality (VR) games. Therefore, edge
computing, as a significant paradigm, is utilized to shorten the delay and make
users experience the applications real-timely. Detailedly, edge computing endows
the computing resources to edge servers (ESs), the gathered applications on the
network edge are in a position to obtain the resources in the ES close by.

On account of that mobile applications are usually in the vicinity of MIBSs,
ESs are co-located with MIBSs, which are seen as the edge nodes (ENs) to
cooperate with MABS for executing the applications. Nonetheless, MIBSs are
arranged intensively because of its relatively narrow range. With a view to the
high cost of purchasing ESs, it is unpractical to equip each MIBS with an ES,
which makes some tasks offloaded to a distant ES and generates unbearable
delay for users. In addition, the finite computing resources in ESs are unable
to handle such abundant tasks, which makes some services wait in the queue of
ESs and severely affects the efficiency of service execution. Hence, to ensure the
stability and the performance of ESs, it is urgent to achieve the load balance of
ESs. Given these facts, it is a truly difficult challenge to realize the reasonable ES
placement for improving the performance of all ESs by reducing the transmission



496 X. Xu et al.

delay and achieving load balance. A load-aware edge server placement method
named as LESP, is devised for edge computing in 5G networks in this paper. In
conclusion, the primary contributions are presented as follows.

– A decision tree is structured to record the routings of edge services according
to the balanced distribution of load.

– Non-dominated sorting genetic algorithm II (NSGA-II) is used to formulate
the appropriate balanced ES placement strategies.

– Simple additive weighting (SAW) and multiple criteria decision making
(MCDM) are adopted to select the optimal ES placement strategy.

– Simulation experiments are conducted to confirm the efficiency of the devised
method LESP.

The remaining part of this paper is divided into five sections. The system
model is shown in Sect. 2. A load-aware edge server placement method is designed
in Sect. 3. The simulation experiment results and the comparison analysis are
conducted in Sect. 4. Related Works are summed up in Sect. 5. Conclusions are
outlined in Sect. 6.

2 System Model

In this section, the overview of the ES placement framework in 5G networks is
presented first. Then, according to the specific ES placement strategy, transmis-
sion delay and load balance analyses are conducted. Finally, the ES placement
problem is formulated as a multi-objective optimization problem.

2.1 Resource Model

In 5G networks, multiple macro-base stations (MABSs) are deployed to provi-
sion services for mobile applications and the MABS covers several micro-base
station (MIBS) to improve the service quality [9]. With wireless signals, the
MIBSs receive service requests from mobile devices. In Fig. 1, the framework for
supporting edge computing in 5G networks is shown. In the range of the MABS,
several MIBSs are deployed to receive service requests. Assume that there are
Q MIBSs in the range of the MABS, denoted as M = {m1,m2, . . . ,mQ}. As
MIBSs fail to meet the process requirements of massive services, the computing
and storage capacity of MIBSs are extended through realizing the cooperative
placement of ESs and MIBSs. Thus, the ESs are co-located with the specific
MIBSs for helping process transmitted services, denoted as S = {s1, s2, . . . , sN}.
Notably, the number of ESs is not equal to the number of MIBSs. Besides, with
the virtualization technique in edge computing, the capacity of the ES is mea-
sured by the number of virtual machines (VMs) in the ES, denoted as ϕn [10,11].
Provided that all VMs in the ES are occupied, unprocessed edge services need
to wait for the completion of the services in the previous round.



Load-Aware Edge Server Placement for Mobile Edge Computing 497

Fig. 1. An edge computing framework in 5G networks.

2.2 Transmission Delay Model

The transmission delay is composed of the transmission time from the MIBS to
the destination ES, the waiting time of the edge services in the ES, the service
execution time of the ES and the transmission time of the feedbacks.

In view of that not all MIBSs are cooperating with the ES, we first adopt
a binary variable BN

Q to judge whether the q-th (q = 1, 2, . . . , Q) MIBS mq is
co-located with the n-th (n = 1, 2, . . . , N) ES sn.

Bn
q =

{
1, if mq is cooperatively placed with sn,
0, otherwise. (1)

The time consumption of data transmission from the MIBS to the destination
ES is calculated by

DTq = (1 − Bn
q ) · dsq

θ
· ωq, (2)

where dsq represents the data size of the edge service in mq and θ represents the
data transmission rate between MIBSs. In addition, ωq is the number of passing
MIBSs in the process of data transmission.

By means of the virtualization technique, the resource units in ESs are nor-
malized as VMs. Therefore, the service execution time in sn is

ETq =
dsq

ruq · ρ
, (3)

where ruq represents the VMs demanded by the edge service transmitted from
sn and ρ is the processing power of each VM.



498 X. Xu et al.

In order to calculate the waiting time of the edge services in the ES, the
waiting rounds of the edge services need to be calculated first, which is shown as

R = wrn, (4)

where wrn represents the waiting rounds in n-th ES sn.
Let ETr denote the corresponding execution time of processing all services

in the z-th round. The waiting time of edge services offloaded from sn is calcu-
lated by

WTq =

⎧⎨
⎩

0, if wrn = 0,
R−1∑
r=1

max(ETr), otherwise.
(5)

The transmission time of feedbacks from sn is calculated by

FTq =
ds′

q

θ
· ωq, (6)

where ds
′
q is the data size of the processing results of the edge service offloaded

from mq.
The total transmission delay of the edge service in mq is calculated by

Dq = DTq + ETq + WTq + FTq. (7)

The average delay for all edge services is calculated by

A =
1
Q

·
Q∑

q=1

Dq. (8)

2.3 Load Balance Model

The load balance conditions of ESs are measured by the load balance variance.
Specifically, the occupy conditions of ESs and the number of running VMs are
described. Fn is a binary variable to judge whether sn is occupied, which is
calculated by

Fn =
{

1, if sn is occupied,
0, otherwise. (9)

Besides, Pn
q is a binary variable to judge whether the edge service in mq is

offloaded to sn for execution, which is defined by

Pn
q =

{
1, if mq offloads the service to sn,
0, otherwise. (10)



Load-Aware Edge Server Placement for Mobile Edge Computing 499

Consequently, the number of running ESs is calculated by

ξ =
N∑

n=1

Pn
q . (11)

The resource utilization of sn is measured by the usage of VM instances,
which is calculated by

RUn =
1

ϕn

Q∑
q=1

Pn
q · εq, (12)

where εq is the number of VMs required by the edge service in mq.
Thus, the average resource utilization of ESs is calculated by

U =
1
ξ

N∑
n=1

RUn. (13)

The load balance variance of sn is calculated by

bn = (RUn − U)2. (14)

Then, the average load balance variance of occupied ESs in 5G networks is
calculated by

B =
1
ξ

N∑
n=1

bn · Fn. (15)

2.4 Problem Formulation

In this paper, the ES placement is defined as a multi-objective optimization prob-
lem. We minimize the transmission delay in (8) and the load balance variance
in (15), which is given as

min A, min B. (16)

s. t. N ≤ Q, (17)
Q∑

q=1

εq ≤
N∑

n=1

ϕn. (18)

3 A Load-Aware Edge Server Placement Method

In this section, the routing confirmation of edge services is presented first. Then,
NSGA-II is adopted for the multi-objective optimization problem. Finally, SAW
and MCDM are used to select the optimal ES placement strategy.



500 X. Xu et al.

Algorithm 1. Routing Confirmation of edge services in MIBSs
Require: M , S, an empty decision tree
Ensure: Routing confirmation of edge services

Set flagq (q=1, 2, ..., Q) as 0
Co-locate each ES with a random MIBS
for the edge server sn in S do

for the MIBS mq in M do
if sn is co-located with mq then

Offload the edge service in mq to sn
Insert mq into the decision tree
mq.flag = 1

else
Calculate the distance between sn and mq

end if
end for

end for
for the MIBS mq in M do

if mq.flag = 0 then
Seek out the minimum distance
Calculate the depth difference g between the subtrees

end if
if | g |≤ 1 then

Offload the service and insert mq into the current subtree
else

Offload the service and insert mq into the opposite subtree
end if

end for
return Routing confirmation of edge services

3.1 Routing Confirmation of Edge Services

Aiming to offload the edge services from MIBSs to ESs, the transmission routings
of edge services need to be confirmed. As all ESs have been placed, decision trees
are used to record the routes of edge services from MIBSs. A two-dimensional
matrix is set up and for each ES, the distance between the ES and every MIBS
is entered into the matrix. The MIBS with the smallest distance value offload
the edge services to the ES. Provided that there are more than one ES which
have the same distance with a certain MIBS, the number of MIBSs connected
to each ES is compared and the edge service in the MIBS is offloaded to the ES
which connects the few MIBSs.

The specific routing confirmation of edge services is presented in Algorithm1.
First, the flag of each MIBS is initialized as 0, which means the MIBS has not
been traversed. Then, every ES is co-located with a MIBS randomly. The MIBSs
which are co-located with an ES offload the edge service to the co-located ES.
Finally, other MIBSs determine the offloading destination ES according to the
ES load situation.



Load-Aware Edge Server Placement for Mobile Edge Computing 501

3.2 Edge Server Placement Strategy Generation Based on NSGA-II

In order to minimize the transmission delay and the load balance variance of all
ESs, NSGA-II is used to solve the multi-objective optimization problem in (16).
Firstly, the ES placement strategy is encoded, which is known as a gene. As a
gene represents a placement strategy of a certain ES, multiple genes represent
the placement strategy of all ESs, which constitute a chromosome. The integer
coding method is adopted and the ESs are encoded by 1, 2, . . . , N .

Aiming at select optimal solutions in a chromosome, fitness functions work
as the standards. As shown in Sect. 2, the transmission delay and the load bal-
ance variance are the standards to select the appropriate solution. For further
selection, the size of population H, the crossover capacity Rc and the mutation
capacity Rm and the maximum iteration times V are determined.

Based on the existing population, crossover and mutation operations are
conducted to generate new solutions. The crossover in this paper is single-point
crossover, which means that two chromosomes swap genes around a predeter-
mined intersection. Through combining two chromosomes, a better chromosome
is obtained. In addition, the genes are modified randomly to generate chromo-
somes which have higher fitness values, known as mutation operation. During
the mutation operation, each gene has the same possibility to modify.

For 2H solutions after the crossover and mutation operation, the selection
operation is conducted to select H solutions. Specifically, the fitness functions
of each solution are calculated based on the model.

According to the usual dominating principle, the solutions are sorted and the
selection operation is conducted. The population generates non-dominated layers
and each placement strategy owns a crowding distance respectively. Through the
comparison of the crowding distances, the appropriate individuals are used to
form the next population, which is calculated by

jg = jDg + jLg = |Dj+1 − Dj−1| + |Lj+1 − Lj−1|, (19)

where jg represents the j-th ES placement strategy. jDg as well as jLg represents
the objective functions. Dj+1 and Lj+1 represent the objective values of the
j+1-th placement strategy. Dj−1 and Lj−1 represent the objective values of the
j−1-th placement strategy.

3.3 Edge Server Placement Strategy Selection Using SAW
and MCDM

For the last generated chromosome, SAW and MCDM are employed to select
the optimal ES placement strategy. The transmission delay is normalized as

V (D) =
{

Dmax−D
Dmax−Dmin ,Dmax − Dmin �= 0,

1,Dmax − Dmin = 0,
(20)

where Dmax and Dmin represent the maximum and minimum transmission delay
of the solutions in the last population respectively.



502 X. Xu et al.

Moreover, the load balance variance is normalized as

V (L) =
{

Lmax−L
Lmax−Lmin , Lmax − Lmin �= 0,

1, Lmax − Lmin = 0,
(21)

where Lmax and Lmin represent the maximum and minimum load balance vari-
ance of the solutions in the last population respectively.

Aiming to achieve the optimization of normalized transmission delay and
load balance, the utility value of the h-th solution needs to calculated, which is
shown as

V (Ch) = w1V (D) + w2V (L), (22)

where w1 and w2 are the weight of transmission delay and load balance variance
respectively.

Based on the utility value of the solution, the optimal strategy is selected by

V (C) =
H

max
h=1

V (Ch)(1 ≤ h ≤ H). (23)

3.4 Method Overview

In this paper, a load-aware edge server placement method is devised to minimize
the transmission delay and the load balance variance. The specific procedure of
this method is shown in Algorithm2. First, a decision tree is structured and the
routing of edge services is determined. Then, NSGA-II is adopted to generate
balanced ES placement strategies. Finally, SAW and MCDM are utilized to
identify the optimal ES placement strategy from the generated population.

Algorithm 2. Load-aware edge server placement
Require: M , S
Ensure: The optimal edge server placement strategy

e = 1
while e ≤ E do

Complete routing confirmation by Algorithm 1
e = e + 1

end while
Obtain balanced ES placement strategies by NSGA-II
for h = 1 to H do

Calculate utility values by formulas (20-22)
end for
Select the optimal ES placement strategy by formula (23)
return The optimal edge server placement strategy



Load-Aware Edge Server Placement for Mobile Edge Computing 503

4 Experimental Evaluation

In this section, the efficiency and effectiveness of LESP are verified by con-
ducting simulation experiments. Firstly, the parameter settings are presented in
Table 1. Then, the comparative methods are introduced. Finally, the influences
of different MIBS scales on the transmission delay and load balance variance
performance of LESP and the comparative methods are evaluated.

Table 1. Parameter settings

Parameter description Value

The total number of MIBSs 200

The number of VMs in each edge server 40

The number of VMs required by each MIBS [1, 7]

The transmission rate between MIBSs 5000 Mb/s

The execution capacity of edge server 2000 MHz

The scales of MIBSs 5, 10, 15, 20, 25, 30

4.1 Simulation Setup

We adopt 5 different ES scales in the experiments and the number of ESs is
set to 5, 10, 15, 20, 25 and 30. To more intuitively evaluate the performance of
LESP, two comparative methods are utilized, which are shown as follows.

(a) Number of ESs=5 (b) Number of ESs=10 (c) Number of ESs=15

(d) Number of ESs=20 (e) Number of ESs=25 (f) Number of ESs=30

Fig. 2. The utility value of solutions at different MIBS scales.



504 X. Xu et al.

– Greedy-D : Each MIBS offloads its edge service to the nearest ES. Considering
that the nearest ES is likely to have no spare computing resources, the edge
service is offloaded to a neighbor ES with enough needed computing resources.
The system would repeat this procedure until all edge services have been
offloaded.

– Greedy-L: Each MIBS offloads its edge service to the ES which has most
idle computing resources. Provided that several ESs have the similar resource
usage, the service is offloaded to the ES which is nearest to the resource MIBS.
This procedure is repeated until all edge services have been offloaded.

4.2 Performance Evaluation

When the MIBS scales are 5, 10, 15, 20, 25 and 30 respectively, the weight of
V (D) and V (L) in the formula (22) are changed, which are from 0 to 1. In Fig. 2,
as the weight of V (D) and V (L) change, the utility value alters correspondingly.
Considering that there is a linear relationship between the two weights and the
utility value, the utility value graph is divided into two sections and there is a
minimum utility value. By means of comparing utility values, the most balanced
ES placement strategy is selected. The solution with the maximum utility value
is selected as the optimal ES placement strategy.

4.3 Comparison Analysis

For different MIBS scales, the comparisons between LESP and comparative
methods are presented. The transmission delay and the load balance variance
are functioned as two key criteria. The corresponding experimental results are
shown in Figs. 3 and 4.

Fig. 3. Comparison of the delay for different MIBS scales between OSPM and com-
parative methods.



Load-Aware Edge Server Placement for Mobile Edge Computing 505

Fig. 4. Comparison of the load balance variance for different MIBS scales between
OSPM and comparative methods.

(1) Comparison of Transmission Delay. In the experiment, the processing
efficiency of each ES is defined as equal. Therefore, with the determination of edge
service routings, the service execution time is the same in LESP, Greedy-D and
Greedy-L. In Fig. 3, as the size of the ES expands, the transmission delay decreases
becauseMIBSs aremore likely to offload edge services to a closeES than to a remote
ES. Nevertheless, Greedy-L aims to minimize load balance variance and the edge
services are likely to be offloaded to relatively remote ES, achieving the balanced
distribution of load and high transmission delay. Intuitively, LESP is less capable of
optimizing transmission delay than Greedy-D and is more effective than Greedy-L
in the aspect of optimizing transmission delay.

(2)ComparisonofLoadBalanceVariance. The loadbalance variance ismea-
sured by the occupancy of VM instances. When the ES scale is small, the data waits
for limited computing resources in the ES in the queue and the total number of
rounds processed by the ES is large. In Fig. 4, as the number of ES increases, more
computing resources are vacated and the total round of service executiondecreases.
In contrast to Greedy-L, Greedy-D is designed to minimize transmission delay. In
Greedy-D, the edge services are offloaded to the nearest ESwhoseVMs are all occu-
pied, making the destination ES overload. Intuitively, the ability to optimize load
balancing of LESP is inferior to Greedy-L and superior to Greedy-D.

5 Related Work

Nowadays, as the wireless and mobile communication technologies develop
rapidly, the number of smart mobile devices increased dramatically. These smart
mobile devices, which possess numerous compute-intensive applications, lead to
a large quantity of data needed to be processed [12,13]. However, smart mobile
devices are unable to deal with the data for its limited computing resources.
Therefore, the 5th generation mobile network (5G), as a novel paradigm, is pro-
posed to help devices offload the data to the remote infrastructures such as the



506 X. Xu et al.

cloud for processing. In [14], Islam et al. probed into a radio access technology
called non-orthogonal multiple access (NOMA). NOMA can relieve the pressure
from the scarce spectrum resource in 5G for its greater spectrum efficiency. Niu
et al. discussed the applying of the millimeter wave (mm-wave) in 5G. The small
cell access and the wireless backhaul are investigated to accelerate the mm-wave
deployment [13].

Nevertheless, the remote distance between smart mobile devices and the
remote infrastructure generates an unbearable delay for users. Hence, edge com-
puting emerges. Edge servers, which own the computing and storage capabili-
ties, are placed close to mobile devices for decreasing the delay [15,16]. In [17],
Nunna et al. investigated the combination of 5G and mobile edge computing.
In addition, Rimal et al. considered providing mobile edge computing (MEC)
capabilities of integrated fiber-wireless (FiWi), making MEC fit in 5G [18]. If
all computing tasks are offloaded to the edge servers without planning. The effi-
ciency of edge servers is influenced hugely [19,20]. Therefore, it is significant
to realize the optimal edge server placement to achieve the load balance and
improve the delay.

6 Conclusion and Future Work

Edge computing emerges as an appropriate paradigm in 5G networks to collect
environmental parameters and return processing results to users. As the num-
ber of edge services increases, chances are that the execution efficiency of edge
services is hardly to guarantee with limited ESs. In this paper, we formulate the
ES placement problem as a multi-objective problem. A load-aware edge server
placement method named LESP is devised. To demonstrate that LESP is effi-
cient and feasible, the performance of LESP is evaluated through experimental
simulations.

In the future, we will improve LESP to adapt to the real scene. The different
processing capacities of ESs will be specified and the corresponding offloading
strategies will be revised.

Acknowledgment. This work was supported by the National Key Research and
Development Program of China (No. 2017YFB1400600). Besides, this research is sup-
ported by the National Natural Science Foundation of China under grant no. 61702277,
no. 61872219 and no. 616722763. This research is also supported by College Students’
Enterprise and Entrepreneurship Education Program of NUIST, CSEEEP.

References

1. Chen, M., Qian, Y., Hao, Y., Li, Y., Song, J.: Data-driven computing and caching
in 5G networks: architecture and delay analysis. IEEE Wireless Commun. 25(1),
70–75 (2018)

2. Sun, S., Rappaport, T.S., Shafi, M., Tang, P., Zhang, J., Smith, P.J.: Propagation
models and performance evaluation for 5G millimeter-wave bands. IEEE Trans.
Veh. Technol. 67(9), 8422–8439 (2018)



Load-Aware Edge Server Placement for Mobile Edge Computing 507

3. Gringoli, F., Patras, P., Donato, C., Serrano, P., Grunenberger, Y.: Performance
assessment of open software platforms for 5G prototyping. IEEE Wireless Com-
mun. 25(5), 10–15 (2018)

4. Skouroumounis, C., Psomas, C., Krikidis, I.: Heterogeneous FD-mm-wave cellular
networks with cell center/edge users. IEEE Trans. Commun. 67(1), 791–806 (2019)

5. Ordonez-Lucena, J., Ameigeiras, P., Lopez, D., Ramos-Munoz, J.J., Lorca, J.,
Folgueira, J.: Network slicing for 5G with SDN/NFV: concepts, architectures, and
challenges. IEEE Commun. Mag. 55(5), 80–87 (2017)

6. Duan, P., Jia, Y., Liang, L., Rodriguez, J., Huq, K.M.S., Li, G.: Space-reserved
cooperative caching in 5G heterogeneous networks for industrial IoT. IEEE Trans.
Industr. Inf. 14(6), 2715–2724 (2018)

7. Rodrigues, T.G., Suto, K., Nishiyama, H., Kato, N.: Hybrid method for minimizing
service delay in edge cloud computing through VM migration and transmission
power control. IEEE Trans. Comput. 66(5), 810–819 (2016)

8. Li, H., Ota, K., Dong, M.: Learning IoT in edge: deep learning for the internet of
things with edge computing. IEEE Netw. 32(1), 96–101 (2018)

9. Kim, Y., Kwak, J., Chong, S.: Dual-side optimization for cost-delay tradeoff in
mobile edge computing. IEEE Trans. Veh. Technol. 67(2), 1765–1781 (2017)

10. Boulogeorgos, A.A.A., et al.: Terahertz technologies to deliver optical network
quality of experience in wireless systems beyond 5G. IEEE Commun. Mag. 56(6),
144–151 (2018)

11. Li, M., Yu, F.R., Si, P., Zhang, Y.: Green machine-to-machine communications
with mobile edge computing and wireless network virtualization. IEEE Commun.
Mag. 56(5), 148–154 (2018)

12. Beyranvand, H., Lévesque, M., Maier, M., Salehi, J.A., Verikoukis, C., Tipper,
D.: Toward 5G: FiWi enhanced LTE-A HetNets with reliable low-latency fiber
backhaul sharing and WiFi offloading. IEEE/ACM Trans. Networking 25(2), 690–
707 (2016)

13. Mozaffari, M., Kasgari, A.T.Z., Saad, W., Bennis, M., Debbah, M.: Beyond 5G
with UAVs: foundations of a 3D wireless cellular network. IEEE Trans. Wireless
Commun. 18(1), 357–372 (2019)

14. Richardson, T., Kudekar, S.: Design of low-density parity check codes for 5G new
radio. IEEE Commun. Mag. 56(3), 28–34 (2018)

15. Lyu, X., Tian, H., Ni, W., Zhang, Y., Zhang, P., Liu, R.P.: Energy-efficient admis-
sion of delay-sensitive tasks for mobile edge computing. IEEE Trans. Commun.
66(6), 2603–2616 (2018)

16. Ning, Z., Kong, X., Xia, F., Hou, W., Wang, X.: Green and sustainable cloud of
things: enabling collaborative edge computing. IEEE Commun. Mag. 57(1), 72–78
(2019)

17. Bi, S., Zhang, Y.J.: Computation rate maximization for wireless powered mobile-
edge computing with binary computation offloading. IEEE Trans. Wireless Com-
mun. 17(6), 4177–4190 (2018)

18. Wang, R., Yan, J., Wu, D., Wang, H., Yang, Q.: Knowledge-centric edge computing
based on virtualized D2D communication systems. IEEE Commun. Mag. 56(5),
32–38 (2018)

19. Wang, K., Yin, H., Quan, W., Min, G.: Enabling collaborative edge computing for
software defined vehicular networks. IEEE Network 99, 1–6 (2018)

20. Hou, W., Ning, Z., Guo, L.: Green survivable collaborative edge computing in
smart cities. IEEE Trans. Industr. Inf. 14(4), 1594–1605 (2018)



PAPS: A Framework for Decentralized
Self-management at the Edge

Luciano Baresi, Danilo Filgueira Mendonça, and Giovanni Quattrocchi(B)

Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy

{luciano.baresi,danilo.filgueira,giovanni.quattrocchi}@polimi.it

Abstract. The emergence of latency-sensitive and data-intensive appli-
cations requires that computational resources be moved closer to users
on computing nodes at the edge of the network (edge computing). Since
these nodes have limited resources, the collaboration among them is crit-
ical for the robustness, performance, and scalability of the system. One
must allocate and provision computational resources to the different com-
ponents, and these components must be placed on the nodes by consider-
ing both network latency and resource availability. Since centralized solu-
tions could be impracticable for large-scale systems, this paper presents
PAPS (Partitioning, Allocation, Placement, and Scaling), a framework
that tackles the complexity of edge infrastructures by means of decen-
tralized self-management and serverless computing. First, the large-scale
edge topology is dynamically partitioned into delay-aware communities.
Community leaders then provide a reference allocation of resources and
tackle the intricate placement of the containers that host serverless func-
tions. Finally, control theory is used at the node level to scale resources
timely and effectively. The assessment shows both the feasibility of the
approach and its ability to tackle the placement and allocation problem
for large-scale edge topologies with up to 100 serverless functions and
intense and unpredictable workload variations.

Keywords: Edge computing · Serverless computing · Resource
management · Service placement · Geo-distributed infrastructures

1 Introduction

The advent of mobile computing and the Internet of Things (IoT) is paving
the ground to new types of applications. For most real-time, interactive appli-
cations, the latency from devices to cloud data centers can be prohibitive, and
the transport and analysis of exponentially larger volumes of data may result in
bottlenecks and consequently low throughput. Edge computing aims to fill this
gap by means of densely-distributed computing nodes. Locality and decentral-
ization mitigate network latency and helps reduce the amount of data that is
transported to and processed by centralized servers.

The management of these geo-distributed infrastructures poses significant
challenges. One must provision and allocate computational resources to the var-
ious components, but these components must be placed on edge nodes by taking
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 508–522, 2019.
https://doi.org/10.1007/978-3-030-33702-5_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_39&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_39


PAPS: A Framework for Decentralized Self-management at the Edge 509

into account both latency and resource availability. The analysis of current work-
load, availability of resources, and performance of application components is key
for the efficient placement of components and the allocation of resources, but it
must be carried out in a timely manner for the entire topology. Network latency
and time-consuming decisions, typical of centralized approaches, may jeopardize
the overall effectiveness, especially with highly volatile workloads—a likely-to-
happen scenario with densely distributed edge nodes that serve the needs of
mobile/IoT devices.

On a parallel thread, serverless computing [2,11] is emerging as a novel cloud
computing execution model that allows developers to focus more on their appli-
cations and less on the infrastructure. The user must only submit the application
logic (stateless functions) to be executed. In turn, the provider offers dedicated
containers for its execution and is in charge of resource allocation, capacity plan-
ning, and function deployment.

This paper proposes PAPS (Partitioning, Allocation, Placement, and Scal-
ing), a framework for tackling the automated, effective, and scalable manage-
ment of large-scale edge topologies through decentralized self-management and
serverless computing. The approach partitions the large-scale edge topology into
delay-aware network communities. Community leaders then tackle the joint allo-
cation of resources and the placement of serverless functions—w.r.t both SLAs
and the aggregate demand for each function. Finally, edge nodes exploit control
theory to scale required containers timely while also giving valuable feedback to
community leaders.

A prototype implementation of PAPS allowed us to assess the proposal on
a set of experiments. Obtained results witness the feasibility of the approach
and its ability to tackle the placement and allocation problem for large-scale
edge topologies with up to 100 distinct functions and intense and unpredictable
fluctuations of the workload. To the best of our knowledge, this is the first work
that tackles the orchestration of such a high number of geo-distributed nodes
and application components.

The rest of the paper is organized as follows. Section 2 presentes the con-
text and introduces PAPS. Sections 3, 4, and 5 describe the self-management
capabilities provided by PAPS at system, community, and node levels. Section 6
discusses the evaluation, Sect. 7 surveys related approaches, and Sect. 8 concludes
the paper.

2 Context and PAPS

This paper focuses on a MEC topology [7,12] composed of a finite set of geo-
distributed nodes N . Figure 1 presents such a topology, where mobile and IoT
devices access the system through cellular base stations. Each station is con-
nected to a MEC node i ∈ N through the fronthaul network. MEC nodes
in N are interconnected through the backhaul network. The total propagation
delay Di,j between an end-user device that accesses the system through the base



510 L. Baresi et al.

station co-located with the MEC node i ∈ N and that is served by the MEC
node j ∈ N is defined as:

Di,j =

{
γi + δi,j , if i ! = j

γi, if i = j
(1)

where γi and δi,j are respectively the fronthaul and backhaul propagation delays.

Fig. 1. Example topology of geo-distributed MEC nodes.

Our framework targets the dynamic allocation and placement of the contain-
ers required for the execution of serverless functions [2]. Even if the allocation
model of different serverless vendors can vary [6], typically functions are given
access to a fixed CPU share proportional to their memory requirement. In addi-
tion, we assume a deployment descriptor for each function that provides the
memory required by the container in charge of executing the function and the
SLA between the MEC operator and the application provider, that is, the owner
of the function to execute.

The SLA associated with each function is specified through: a Response Time
(RTSLA), which states the upper limit for the round trip time between the
arrival of a request to execute a function, its execution, and the returned value
(if the invocation is synchronous), and a Maximum Execution Time (EMAX),
which limits its execution time. The latter is a common attribute in cloud-based
serverless computing platforms, and it is key for us to guide the decision on the
joint allocation and placement of the function.

In this context, for a given topology N and a set of admitted functions F ,
the adaptation problem is twofold: one must decide how many containers are
needed for each function and where (onto which nodes) should each container be
placed. Each allocated container works as a server for a specific function f ∈ F .
Most vendors of serverless solutions try to use existing containers, if possible,
and allocate new ones as soon as they are needed. In contrast, if one queued



PAPS: A Framework for Decentralized Self-management at the Edge 511

requests for a short period Q, resources (containers) may become available, and
thus the number of used resources may decrease. The perceived response time is
then defined as:

RT = D + Q + E (2)

where D represents the total propagation delay (see Eq. 1), Q the queuing time,
and E the execution time. MEC operators must scale the number of containers
allocated to each function f ∈ F and place them onto MEC nodes in N to
minimize the difference between RT and RTSLA. The goal is twofold: (i) to
maximize the efficient use of resources, and thus the number of functions and
users that can be admitted into the system; (ii) to prevent SLA violations.

This paper introduces PAPS, a framework to manage the allocation and
placement problems in large-scale edge systems. Figure 2 shows that the self-
management capabilities provided by PAPS work at three different levels: sys-
tem, community, and node level. The next three sections describe how each level
works in detail.

Monitored workload from co-located base stations

Community Member

Serverless Platform
Workload 

Control System

Community Leader

Supervisor
Community membership Status & inter-node delays

Target 
allocation  & placement

MEC node

MEC
topology

Base
station

Community-level
self-management

Node-level
self-management

System-level
self-management

Target 

allocation & placement

Monitored
response time

Actual
allocation

Fig. 2. PAPS in a nutshell.

3 System-Level Self-management

Self-management at system level aims to tackle the complexity of managing the
large scale decentralized infrastructure by partitioning it into delay-aware net-
work communities. In complex networks, a network is said to have a community
structure if its nodes can be (easily) grouped into (potentially overlapping) sets
of nodes such that each set is densely connected internally [14]. PAPS extends
this definition and considers a set of logically interconnected MEC nodes, whose
propagation delay from one another is below a threshold, as a delay-aware net-
work community.



512 L. Baresi et al.

These communities provide a reduced space in which a solution to the place-
ment and allocation problem can be computed. Furthermore, they allow for the
decentralization of resource management (w.r.t. a single orchestrator) and its
localization within distinct geographical areas.

The definition of these communities may follow different approaches. PAPS
assumes the availability of a supervisor that has a global view of the MEC topol-
ogy and uses a dedicated search algorithm to create communities. This algorithm
takes the maximum inter-node delay (DMAX) and the maximum community size
(MCS) as parameters. The former is used to produce a sub-graph (GDA). Each
of its vertices maps to a node in the MEC topology, and an edge exists between
two vertices if the network delay between their respective MEC nodes is lower
than DMAX . The second parameter limits the number of MEC nodes that can
belong to a community, and it is useful to limit the complexity of community-
level self-management.

The produced sub-graph GDA in then used to feed the algorithm in charge of
creating the communities. In particular, we adopt the SLPA method [14], whose
complexity is O(t ∗ n), where t is a predefined maximum number of iterations
(e.g. t ≤ 20) and n is the number of nodes. Since the complexity is linear, the
solution can also be used for very large topologies. Xie et al. [14] suggest a
modest value (t = 20) for the maximum number of iterations needed to find
good quality communities.

MEC nodes are co-located with fixed infrastructures. We assume that nodes
and inter-node delays are expected to remain stable. However, topological
changes caused by catastrophic failures, system upgrades, and other eventuali-
ties may require the adaptation of the community structure. The primary goal
of the supervisor is, therefore, to ensure that communities remain consistent
in their size and membership. While defining the best approach to tackle the
adaptation of community structures, we took into account the amount of infor-
mation that needs to be monitored, as well as the complexity of the community
search procedure. The presence and health of the MEC nodes across the topol-
ogy can be obtained through light-weight heartbeat messages sent by each node
to the supervisor. This approach is commonly adopted in distributed systems of
different scales and does not prejudice the scalability of the proposed solution.

The supervisor harnesses its global system view to tackle the adaptation of
the community structure. We model the system-level adaptation as a master-
slave MAPE loop [13] in which: Monitoring is performed by all nodes through
heartbeat messages that contain the inter-node delay to all other nodes; the
supervisor performs Analysis and Planning by deciding when and how to adapt
the community structure in the advent of topological changes; Execution means
that each affected node adapts by updating its community membership.

4 Community-Level Self-management

Self-management at community-level aims to ensure that the MEC nodes in the
community operate under feasible conditions, that is, it aims to minimize the



PAPS: A Framework for Decentralized Self-management at the Edge 513

likelihood of SLA violations to occur and, if they occur, to react to bring the
community back to its equilibrium.

Inter-community Allocation. A first challenge that emerges when the MEC sys-
tem is partitioned into communities refers to resource allocation to shared com-
munity members. This is to say that one must decide the share of resources
that each overlapping community gets from its common members. One trivial,
but possibly inefficient, solution is to privilege one community and give it all
the “shared” resources: disadvantaged communities might need more resources
while the common members might be underutilized by the privileged community.
Since changes to the workload are expected to happen frequently, and without
any warning, resources from common nodes must flow from one overlapping
community to the other to prevent SLA violations.

PAPS tackles this problem by weighting the aggregate demand and capacity
of each overlapping community. The aggregate demand refers to the number of
containers needed to cope with the aggregate workload. The latter refers to the
rate of requests that come from the base stations co-located with MEC nodes
whose network latency w.r.t. the common node is below the inter-node delay
threshold (DMAX), plus a proportional demand share from the base station(s)
co-located with the common node itself. The aggregate capacity, in turn, refers to
the sum of the resources from the previous nodes, excluding the common node.
A share of the capacity of the common node is then allocated to each overlapping
community proportionally to their aggregate demand-capacity ratio.

Algorithm 1 details our inter-community allocation approach. This procedure
is greedily performed for all MEC nodes in the topology that belong to two or
more overlapping communities.

Algorithm 1. CapacityDemandRatio(community, node,DMAX)

1: neighborsInRange ← getNeighbors(community, node, DMAX)
2: aggDemand ← 0, aggCapacity ← 0
3: for all n ∈ neighborsInRange do
4: aggDemand ← getAggregateDemand(n)
5: aggregateCapacity ← getAggregateCapacity(n)
6: end for
7: ovCount ← getOverlappingCount(node)
8: demandShare ← getDemand(node) / ovCount
9: aggDemand ← aggDemand + demandShare

10: return aggDemand / aggCapacity

Intra-community Allocation and Placement. The intra-community allocation
aims to distribute resources among member nodes given the aggregate demand
and capacity within the community. Each community has a leader responsible
for solving the joint allocation and placement problem introduced in Sect. 2.
Such a centralization within decentralization (i) allows the placement problem



514 L. Baresi et al.

to be solved in a single step for the whole community, and (ii) eliminates the need
for a more complex coordination protocol. More importantly, the leader-based
approach allows the placement problem to be solved by well-known centralized
optimization techniques.

The complexity of the container placement problem implies high-resolution
time and prevents communities to promptly adapt to workload fluctuations.
Before a solution is computed, the workload may have significantly changed,
and limit the efficiency and efficacy of the solution. Pro-active adaptation could
be used to mitigate this problem. For example, if the workload is character-
ized by a well-known probabilistic distribution (e.g., a Poisson distribution), the
allocation problem might then benefit from techniques such as queueing theory
to predict the number of containers that are needed to keep the response time
below a threshold. Unfortunately, the decentralized infrastructure model makes
the previous assumption less realistic. Not only users can freely enter and exit
different areas, but the aggregate workload to be served by each MEC node is
limited compared to typical cloud data centers and thus may vary more abruptly.
Because of this, PAPS favors a reactive adaptation approach for solving the joint
allocation and placement problem.

Our solution draws inspiration from the Ultra-Stable system architecture [10].
The community-level self-management acts as the second control loop in the
Ultra-Stable system. When workload fluctuations are significant enough to
impact or to throw the node-level self-management out of its limits, the
community-level self-management provides the community with a new allocation
and placement solution. In turn, the node-level self-management works as the
primary feedback loop in the Ultra-Stable system. Through its sensors, the MEC
node monitors subtle changes in the environment (i.e., in the actual workload for
each function). It accordingly responds, through its actuators by changing the
actual number of containers hosted for each function. Hence, the community-
level placement does not target a single solution, but a solution space in which
the scaling of containers at node-level ultimately takes place.

The community-level self-management consists of an instance of the regional
planner MAPE loop [13]. Each community member takes advantage of its priv-
ileged position within the MEC topology to monitor and analyze the workload
coming from adjacent base stations (see Fig. 1). The number of containers needed
to cope with a given workload while satisfying the SLA is determined at the node
level by using a feedback loop with a short control period—compatible with
the container start-up time (i.e., up to a few seconds). In turn, the community
leader extrapolates this information to plan for the number of containers needed
to satisfy the SLA given the aggregate workload over a longer control period—
compatible with the time needed to compute the optimal placement (i.e., up to
a few minutes).

Informed load balancers composing the community infrastructure use the
computed optimal allocation and placement to route the workload coming
from different base stations to their respective destinations (i.e., MEC nodes).



PAPS: A Framework for Decentralized Self-management at the Edge 515

Each affected node in the community executes the plan with the update of the
target allocation. Depending on how the new placement solution diverges, com-
munity members may have to remove/add function(s).

Our decentralized solution provides each MEC node with the freedom to
decide the actual number of containers it hosts for each placed function based
on monitored workload, SLA, and available computing resources. As the work-
load fluctuates, the response time deviates from its target value, and the node-
level controller takes care of the timely creation and termination of containers
to optimize resource usage while preventing SLA violations. The community-
level solution is enforced by members in case of resource contention until a new
optimal allocation and placement solution is enacted by the community leader.

Optimal Container Placement. PAPS is agnostic about the formulation of the
optimal allocation and placement problem. In this paper, we formulate it as a
mixed integer programming (MIP) problem as follows:

min
x

∑

i∈N

∑

j∈N

∑

f∈F
di,j ∗ xf,i,j (3a)

subject to di,j ∗ xf,i,j ≤ xf,i,j ∗ Df ∀i ∈ N , ∀j ∈ N , ∀f ∈ F (3b)
∑

i∈N

∑

f∈F
cf,i ∗ mf ∗ xf,i,j ≤ Mj ∀j ∈ N (3c)

∑

j∈N
cf,i ∗ xf,i,j = cf,i ∀i ∈ N , ∀f ∈ F (3d)

where the decision variable 0 ≤ xf,i,j ≤ 1 denotes the fraction of the demand for
containers cf,i, from any base station co-located with node i ∈ N , for function
f ∈ F , hosted on node j ∈ N . The objective function (Eq. 3a) minimizes the
overall network delay that results from placing containers. The first constraint
(Eq. 3b) limits the propagation delay. Specifically, Df is calculated by using the
following equation:

Df = β ∗ (RTSLA,f − EMAX,f ) (4)

where 0 < β ≤ 1 defines the fraction of the marginal response time RTSLA,f −
EMAX,f for function f ∈ F that can be used for networking. Conversely, the
complement 1 − β defines the fraction of the marginal response time used for
queuing requests for function f hosted on node j:

Qf,j = (1 − β) ∗ (RTSLA,f − Ef,j) (5)

where Ef,j is the monitored execution time for function f hosted on node j. The
queue component Qf,j is particularly important for the control-theoretic solution
for scaling containers (see Sect. 5) since it provides an additional margin for the
control actuation and thus mitigates the likelihood of overshooting.

The second constraint (Eq. 3c) ensures that the number of containers placed
at a node j does not violate its memory capacity Mj . An additional constraint
(Eq. 3d) ensures that the required containers for all f ∈ F are properly placed.



516 L. Baresi et al.

5 Node-Level Self-management

Self-management at node-level aims to efficiently and effectively scale the con-
tainers needed to satisfy the SLA (response time) of each admitted function
given the fluctuations in the workload and the target allocation defined by the
community leader. With a static allocation of resources, the response time of a
function can change due to various reasons: for example, variations in the work-
load, changes in the execution time (e.g., due to input variation), and distur-
bances in the execution environment (e.g., at the operating system or hardware
level). While some factors are harder to quantify and account for, others can be
monitored and taken into account while determining the number of containers
needed to prevent SLA violations. Our framework leverages a control-theoretic
approach [3] to scale containers at node-level.

The control system is responsible for the deployment of containers onto the
pool of virtual machines running on the MEC node. We consider a dedicated
controller for each admitted function f ∈ F . Considering a discrete time, for
each function, we define λ(k) as the function of the measured arrival rate of
requests at each control time k, while λ̄(k) is the corresponding vector for all
admitted functions.

At time k, the function is executed in a c(k) number of containers, while
c̄(k) is the vector for all f ∈ F . The disturbances are defined as d̄ and cannot be
directly controlled and measured. Finally, τ̄ is the system output and corresponds
to the response time vector that comprises all functions, whereas τ̄◦ corresponds
to the vector of the desired response time for each function (or control set-point).

In our current set-up, function τ̄◦(k) does not vary over time, that is, we tar-
get a constant response time for each function. These values should be less than
the agreed SLA to avoid violations. For example, a reasonable target response
time for non-critical functions is 0.8 ∗ SLA, while a lower value like 0.4 ∗ SLA
implies a more conservative allocation and can be used for safety-critical appli-
cations. Moreover, since a response time cannot be measured instantaneously,
but by aggregating it over a predefined time window, many aggregation tech-
niques could be used without any change to the model and controller. In our
framework, we compute the average of the response time values in τ̄ within each
control period, but stricter aggregation functions, such as the 99th percentile,
could be used given the needs of the service provider.

We also use a characteristic function to model the system with enough details
to govern its dynamics. We assume that this function needs not be linear but
regular enough to be linearizable in the domain space of interest. Moreover, we
consider this function be dependent on the ratio between the number of allocated
containers c and the request rate λ. The characteristic function monotonically
decreases towards a possible lower horizontal asymptote, as we can assume that
once available containers are enough to allow a function to reach the foreseen
degree of parallelism, the addition of further containers would provide no benefits
in terms of response time. We found that a practically acceptable function is:



PAPS: A Framework for Decentralized Self-management at the Edge 517

f

(
c(k)
λ(k)

)
= ũ(k) = c1 +

c2

1 + c3
c(k)
λ(k)

(6)

where parameters c1, c2, and c3 were obtained through profiling of each function.
As control technique, we rely on PI controllers because they are able to effec-

tively control systems dominated by a first-order dynamic [1] (i.e., representable
with first-order differential equations) such as the studied ones. Algorithmically,
for each admitted function:

e := τ◦
r − τr;

xR := xRp + (1 − p) ∗ ep;

c := λ ∗ finv((α − 1)/(p − 1) ∗ (xR + e));

c := max(min(Kmax, c), Kmin);

xRp := (p − 1)/(α − 1) ∗ f(c/λ) − e;

ep := e;

where e is the error, the p subscript denotes “previous” values, that is, those
that correspond to the previous step, f and finv correspond to the characteristic
function and its inverse, respectively, α ∈ [0, 1) and p ∈ [0, 1) are the single pole
of the controller and the system respectively, and xR is the state of the controller.
The higher the value of α is, the faster the error converges—ideally to zero—at
the expense of a more fluctuating allocation.

At each control step, the function controllers run independently (i.e., without
synchronization) to compute the next number of containers for the correspond-
ing function, which is added to vector ĉ. The number of containers in ĉ is not
immediately actuated since the sum of required containers could be greater than
the entire capacity of the resource pool. Instead, ĉ is passed to a contention man-
ager. This component outputs a vector c̄, which contains the actual number of
containers per function, defined as:

c̄(k) =

{
ĉ(k), if no resource contention
solveContention(ĉ(k)), otherwise

(7)

where function solveContention scales the values in ĉ according to the thresholds
defined by the placement solution provided by the community leader (see Sect. 3).
The contention manager also updates the state of each controller (variable xRp

)
to make it become consistent with the actual allocation.

6 Experimental Evaluation

We created a prototype implementation of the PAPS framework1 based on Peer-
Sim2. The implementation was used to evaluate the allocation, placement, and
scaling mechanisms of PAPS, given different partitioning of the MEC topology.
A node in the topology was implemented as a dynamic pool of threads, where

1 Source code available at: https://github.com/deib-polimi/PAPS.
2 http://peersim.sourceforge.net/.

https://github.com/deib-polimi/PAPS
http://peersim.sourceforge.net/


518 L. Baresi et al.

Fig. 3. Communities found in a
large scale topology with 250
nodes.

Table 1. Results.

RT

Test Conf V μ σ 95th

OPT 10/50 6.4% 84.9 13.9 111.9

CT 10/50 0.6% 74.4 4.9 81.2

OPT 10/75 7.1% 89.6 15.1 113.4

CT 10/75 0.7% 75.6 7.8 81.8

OPT 10/100 8.9% 92.7 18.7 146.8

CT 10/100 0.9% 76.3 8.1 86.0

OPT 25/50 6.8% 92.6 16.7 176.0

CT 25/50 0.9% 75.6 10.7 85.8

OPT 25/75 10.5% 95.1 19.9 210.7

CT 25/75 1.8% 88.1 12.0 101.6

OPT 25/100 11.7% 101.6 23.0 221.3

CT 25/100 2.0% 85.8 20.0 107.3

OPT 50/50 7.4% 114.9 23.6 243.6

CT 50/50 1.4% 77.7 9.9 89.8

OPT 50/75 12.4% 118.9 27.6 260.6

CT 50/75 1.6% 78.7 15.6 91.6

OPT 50/100 14.0% 125.9 29.6 270.6

CT 50/100 2.2% 90.6 17.3 114.7

one container is a thread that executes the incoming requests. All the experi-
ments were run using two servers running Ubuntu 16.04 and equipped with an
Intel Xeon CPU E5-2430 processor for a total of 24 cores and 328 GB of memory.

The maximum number of containers that can be allocated onto a node
depends on its memory capacity and the memory requirements of the functions
that are to be deployed: 96 GB and 128 MB, respectively, in our experiments.

First, we assumed a large-scale edge topology of 250 nodes and normally dis-
tributed node-to-node latencies. We used the SLPA algorithm to partition the
topology in communities of 10, 25, and 50 nodes (parameter MCS) with mem-
bership probability r = 0.35. Figure 3 shows the partitioning when MCS was
set 25. Colored squares represent edge nodes within a single community; those
that belong to overlapping communities are rendered with multi-color circles.

Then, we run two types of experiments to evaluate (i) the feasibility, perfor-
mance, and scalability of the approach and (ii) the benefit of having a multi-
layered self-management solution. The first experiment, called testOPT, tested the
behavior of communities under an extremely fluctuating workload by only using
community-level allocation and placement. Each node kept the target resources
allocated to each running function constant between two community-level deci-



PAPS: A Framework for Decentralized Self-management at the Edge 519

sions. The second experiment, called testCT, used both community-level and
node-level adaptations to provide more refined and dynamic resource allocation
for the incoming random workload.

For each of the three community sizes, we tested the system with an increas-
ing number of types of functions: 50, 75, 100. Each execution lasted 10 min and
tested one of the nine combinations of community sizes and number of functions.
For each configuration we executed 5 runs of testOPT and 5 runs of testCT for
a total of 90 experiments.

The control periods of the community-level and node-level self-management
were set to 1 min and 5 s, respectively. If no feasible optimal solution is found at
the community level, PAPS solves a constraint-relaxed version of the optimiza-
tion problem of Sect. 4, and the next placement starts after 1 min. Moreover, we
set the fraction of the marginal response time β to 0.5 and the value of the pole
of the node-level controller (see Sect. 5) to 0.9.

The workloads were generated by using normal distributions for both function
execution times (Ek), while inter-arrival rates were generated by using three
different scenarios (low, regular, high) that were chosen randomly every 15 s to
simulate an extremely fluctuating traffic. Within each scenario, the time between
two requests was computed by using an exponential distribution. Finally, the
RTSLA of all the functions was set to 120 ms, and ETMAX was set to 90 ms.

Table 1 shows obtained results, where Test can be either testOPT or testCT,
Conf shows used configuration (e.g., 10/50 means each community had 10 nodes,
and there were 50 different function types), V shows the percentage of control
periods in which the average response time violated the SLA, while columns μ,
σ and 95th show, respectively, the overall average, the standard deviation, and
the 95th percentile of the response time of the system aggregated over the five
repetitions. If we focus independently on testOPT and testCT, we can observe
that even by increasing the number of nodes and functions the percentage of
failures is kept under 14.0% and 2.2%, respectively. These are reasonable values
if we consider we used extremely variable workloads (changes every 15 s). Note
that the control period used for the community-level decision is four times longer
than the time between two scenarios. Instead, if we compare the results of both
tests, we can easily notice the benefit of the node-level self-management. The
control-theoretical planners reduce the number of violations by one order of
magnitude: for example, from 6.4% to 0.6% in configuration 10/50, from 10.5%
to 1.8% in configuration 25/75, and from 14% to 2.2% in configuration 50/100.
Moreover, on average, the standard deviation and the 95th percentile of the
response time are significantly lower in all testCT experiments.

The charts of Fig. 4 help better visualize obtained results. Figure 4(a) and
(b) show the average response time for testOPT and testCT with configuration
10/50, where the horizontal line at 120 ms is the SLA. The first chart shows
some violations, while the second chart only shows one violation close to 500 s
and the response time is more constant (lower standard deviation) given the
faster actuation of the node-level manager. Figure 4(c) and (d) show the number
of requests (lighter line) and the allocation (darker line) during the execution of



520 L. Baresi et al.

Fig. 4. Experiment results.

a function on a single node for the two types of experiments (same configuration
as before). testOPT exploits a longer control period given the complexity of the
optimization problem. Therefore, the allocation is often sub-optimal and quite
approximated w.r.t. the actual user needs (workload). On the other hand, the
faster adaption used in testCT allowed the system to fulfill user needs better
and follow the actual workload more closely.

7 Related Work

A few works combine the benefits of serverless and edge computing. Baresi
et al. [4] propose a serverless architecture for Multi-Access Edge Computing
(MEC). The authors also propose a framework [5] for the opportunistic deploy-
ment of serverless functions onto heterogeneous platforms, but they do not tackle
the allocation and placement problem across nodes.

The platform proposed by Nastic et al. [9] extends the notion of serverless
computing to the edge via a reference architecture to enable the uniform devel-
opment and operation of data analysis functions. An orchestrator receives the
information on how to con the application as high-level objectives and decides
how to orchestrate the underlying resources. The implementation of the orches-
tration is left open.

Nardelli et al. [8] propose a model for the deployment of containerized appli-
cations. The number of required containers is defined by the user, the solution
acquires and releases virtual machines and places containers onto these machines.



PAPS: A Framework for Decentralized Self-management at the Edge 521

A possibly-new deployment configuration is defined in each adaptation cycle.
In contrast, PAPS is in charge of both the target number of containers—to cope
with agreed SLAs—and their placement onto MEC nodes. While PAPS works at
the level of both nodes and communities, the multi-level formulation proposed
in [8] could only be adopted in the latter case.

Zanzi et al. [16] propose a multi-tenant resource orchestration for MEC sys-
tems. The authors introduce a MEC broker that is responsible for procuring
slices of the resources available in the MEC system to the various tenants based
on their privilege level. At each optimization cycle, the broker decides on plac-
ing single-component applications onto the MEC node of choice (gold users), or
onto any feasible node according to resource availability and network delay. We
have instantiated our framework with a similar MEC topology, but our solution
tackles the placement of a dynamic number of instances of various serverless
functions onto stateless containers. We take into account the response time as
SLA and a varying workload from different sources in the topology.

Yu et al. [15] propose a fully polynomial-time approximated solution for tack-
ling the joint QoS-aware application placement and data routing problem in an
edge system. Their formulation also admits multiple workload sources across
the topology. Differently from PAPS, they focus on the placement of single-
instance, single-component applications. While their solution tackles the alloca-
tion of bandwidth and the routing of data, it does not consider the allocation of
computational resources, which is a crucial requirement in edge-centric systems.

A number of other works tackle the placement of applications onto geo-
distributed infrastructures. Due to their combinatorial nature, tackled problems
are usually NP-Hard [15], and many of the existing solutions are based on heuris-
tics and approximations. These solutions are demonstrated for a limited number
of nodes and applications or do not consider abrupt workload variations. PAPS
targets different objectives, where scalability and unpredictable workload are
first-class requirements. It tackles the optimal resource allocation and compo-
nent placement by scaling containers at the node level through control theory.

8 Conclusions and Future Work

This paper presents PAPS, a comprehensive framework for the effective and scal-
able self-management of large edge topologies that works at different levels. It
partitions the edge topology into smaller communities. Each community elects
a leader that is in charge of placing and allocating containers for the incoming
workload. Each node exploits control theory to scale containers properly and
timely. The evaluation demonstrates the feasibility of the approach, its perfor-
mance under extremely fluctuating workloads, and highlights the benefit of the
multi-level solution.

As for future work, we plan to integrate PAPS into a real-world serverless
framework and to extend our community-level allocation and placement algo-
rithm to consider also the cost of migrating containers.



522 L. Baresi et al.

References

1. Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design, and Tuning, vol. 2.
ISA Research Triangle Park, Durham (1995)

2. Baldini, I., Castro, P., et al.: Serverless computing: current trends and open prob-
lems. In: Research Advances in Cloud Computing, pp. 1–20 (2017)

3. Baresi, L., Guinea, S., Leva, A., Quattrocchi, G.: A discrete-time feedback con-
troller for containerized cloud applications. In: Proceedings of the 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, pp. 217–
228. ACM (2016)

4. Baresi, L., Filgueira Mendonça, D., Garriga, M.: Empowering low-latency applica-
tions through a serverless edge computing architecture. In: De Paoli, F., Schulte, S.,
Broch Johnsen, E. (eds.) ESOCC 2017. LNCS, vol. 10465, pp. 196–210. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67262-5 15

5. Baresi, L., Mendonça, D.F., Garriga, M., Guinea, S., Quattrocchi, G.: A unified
model for the mobile-edge-cloud continuum. ACM Trans. Internet Technol. 19,
29:1–29:21 (2019)

6. Lloyd, W., et. al.: Serverless computing: an investigation of factors influencing
microservice performance. In: Proceedigns of the 6th IEEE International Confer-
ence on Cloud Engineering, pp. 159–169 (2018)

7. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and com-
putation offloading. IEEE Comm. Surv. Tutorials 19(3), 1628–1656 (2017)

8. Nardelli, M., Cardellini, V., Casalicchio, E.: Multi-level elastic deployment of con-
tainerized applications in geo-distributed environments. In: Proceedings of the 6th
IEEE International Conference on Future Internet of Things and Cloud, pp. 1–8
(2018)

9. Nastic, S., Rausch, T., et al.: A serverless real-time data analytics platform for
edge computing. IEEE Internet Comput. 21, 64–71 (2017)

10. Parashar, M., Hariri, S.: Autonomic computing: an overview. In: Unconventional
Programming Paradigms, pp. 257–269 (2005)

11. Roberts, M.: Serverless architectures. https://martinfowler.com/articles/server-
less.html. Accessed May 2018

12. Several authors: Mobile edge computing (mec); framework and reference architec-
ture. Technical report, ETSI GS MEC, January 2019. http://www.etsi.org/deliver/
etsi gs/MEC/001 099/003/01.01.01 60/gs MEC003v010101p.pdf

13. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35813-5 4

14. Xie, J., Szymanski, B.K., Liu, X.: SLPA: uncovering overlapping communities in
social networks via a speaker-listener interaction dynamic process. In: Proceedings
of the 11th IEEE International Conference on Data Mining Workshops, pp. 344–
349 (2011)

15. Yu, R., Xue, G., Zhang, X.: Application provisioning in FOG computing-enabled
Internet-of-Things: a network perspective. In: Proceedings of the 37th IEEE
International Conference on Computer Communications, INFOCOM, pp. 783–791
(2018)

16. Zanzi, L., Giust, F., Sciancalepore, V.: M2ec: a multi-tenant resource orchestration
in multi-access edge computing systems. In: Proceedings of the 19th IEEE Wireless
Communications and Networking Conference, WCNC, pp. 1–6 (2018)

https://doi.org/10.1007/978-3-319-67262-5_15
https://martinfowler.com/articles/server-less.html
https://martinfowler.com/articles/server-less.html
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v010101p.pdf
https://doi.org/10.1007/978-3-642-35813-5_4


Measuring the Fog, Gently

Antonio Brogi, Stefano Forti(B), and Marco Gaglianese

Department of Computer Science, University of Pisa, Pisa, Italy
stefano.forti@di.unipi.it

Abstract. The availability of suitable monitoring tools and techniques
will be crucial to orchestrate multi-service applications in a context- and
QoS-aware manner over new Fog infrastructures. In this paper, we pro-
pose FogMon, a lightweight distributed prototype monitoring tool, which
measures data about hardware resources (viz., CPU, RAM, HDD) at the
available Fog nodes, end-to-end network QoS (viz., latency and band-
width) between those nodes, and detects connected IoT devices. FogMon
is organised into a peer-to-peer architecture and it shows a very limited
footprint on both hardware and bandwidth. The usage of FogMon on a
real testbed is presented.

Keywords: Fog computing · Lightweight monitoring · Network QoS ·
Hardware resources · Internet of Things · Peer-to-peer architectures

1 Introduction

In the last decade, Cloud computing has shaped the way in which software
services are delivered to their final users, fostering the emergence of computing
as the fifth utility (beyond water, electricity, gas, and telephony) [14]. At the
same time, the Internet of Things (IoT) has been expanding at a very rapid
pace, currently producing about 2.5 × 1018 bytes of data daily [1] and being
increasingly often associated to limited computing capabilities at the edge of
the network to support IoT-enabled applications [15,32,40]. As a consequence,
established deployment models [13] for IoT applications consist typically either of

– IoT+Cloud deployments [32] where Things send data to Cloud data centres
for further processing/analytics purposes, awaiting for a response, and only
minor computation happens locally, or of

– IoT+Edge deployments [33] where data is processed locally at the edge of the
Internet to determine reactions to sensed events.

On one hand, the IoT+Cloud model gives access to unlimited computing capa-
bilities but often results in high latencies and network congestion [36], which is
not tolerable whenever the deployed application has to meet stringent Quality
of Service (QoS) requirements (e.g., it is life-, business- or mission-critical). On
the other hand, the IoT+Edge model enacts faster responses to sensed events by
processing data closer to the IoT sources and it does not require moving large
amounts of data through the Internet, as computation is performed directly on
edge devices (e.g., access points, routers, personal devices). This results in lower
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 523–538, 2019.
https://doi.org/10.1007/978-3-030-33702-5_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_40&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_40


524 A. Brogi et al.

Fig. 1. Fog orchestration layer [9].

latencies and faster response times but shows important shortcomings, espe-
cially when data should be collected across different systems or when limited
edge capabilities (e.g., battery-powered or resource-constrained devices) cannot
satisfy the application (hardware, software, QoS) requirements.

In this context, the Fog computing paradigm emerged aiming at exploiting
computation capabilities all through the continuum from the IoT to the Cloud
[44]. The Fog relies on the assumption that application (micro-)services should
be deployed wherever their (functional and non-functional) requirements can be
satisfied at best [17]. The central Cloud is still considered for service deploy-
ment, but other intermediary computing capabilities are also used to support
computation between edge devices and the Cloud. As a result, for instance, it
is possible to reduce the traffic by pre-processing and filtering the data before
it is sent to the Cloud, and to substantially reduce response times by suitably
placing critical application services closer to the edge of the network.

Bonomi et al. [9] first proposed a software architecture for Fog computing
platforms. Particularly, they considered it crucial to implement an orchestra-
tion layer for Fog services, as sketched in Fig. 1. The Fog orchestration layer,
based on a Monitor-Analyse-Plan-Execute (MAPE) loop, was expected to pro-
vide dynamic, adaptive life-cycle management of multi-service applications in a
distributed manner. Since then, a large amount of research has been devoted to
the Analyse phase [11] (to informedly decide where to (re-)deploy application
services) and some work studied the Plan (to identify the actions sequence to (re-
)deploy services) and Execute (to actually (re-)deploy services) phases combined
together [30,35,41]. However, to the best of our knowledge, very little effort went
towards designing models and implementing tools covering the Monitor phase
in Fog computing orchestration platforms [39].

Monitoring is indeed an important part of the Fog orchestration layer and
a challenging one to design and implement. It is important because its output
can be exploited both to decide where to deploy application services for the
first time, as well as to decide when and where to migrate them in case the
requirements of one or more services cannot be met at runtime. As a matter of



Measuring the Fog, Gently 525

fact, all proposed approaches for the Analyse phase require the availability of
historical or real-time monitoring data about the available Fog infrastructure to
suggest (sub-)optimal multi-service application (re-)deployments. Monitoring is
also challenging to implement because it has to deal with various peculiarities of
Fog infrastructures, such as (possibly) limited hardware resources and unstable
connectivity at the Edge, platform heterogeneity, and node failures.

In this paper, we present FogMon, a first distributed and lightweight proto-
type monitoring tool for Fog computing infrastructures, capable of measuring
and statistically aggregating data about hardware resources (viz., CPU, RAM,
HDD) at the available Fog nodes, and end-to-end network QoS (viz., latency and
bandwidth) between those nodes, and connected IoT devices. As we will discuss,
FogMon is written in C++ and released as open-source software, it is fully con-
figurable by its users and it has been dockerised so to permit deployment across
different platforms. Last but not least, it relies upon a two-tier peer-to-peer
(P2P) architecture and gossiping protocols to feature some tolerance to node or
network failures and to promptly spread monitoring data across the network.

The rest of this paper is organised as follows. We present the design and
implementation of FogMon in Sect. 2, and we discuss a case study in Sect. 3,
where FogMon was run a real Fog computing testbed consisting of 13 Cloud and
Fog nodes. Related work is discussed in Sect. 4, while some concluding remarks
are drawn in Sect. 5.

2 Design and Implementation of FogMon

FogMon is an open-source C++ monitoring prototype1 for Fog computing infras-
tructures. The tool is made from two types of software agents, viz. Follower and
Leader nodes, as shown in the example topology of Fig. 2. Follower nodes are
responsible for probing all monitored metrics and are grouped into sets, each set
being associated to a Leader node.

Leaders, besides monitoring data about their own deployment node, period-
ically aggregate data gathered from the probing performed by all the Follower
nodes they manage. Furthermore, Leaders are organised into an overlay peer-
to-peer network and share data aggregated from their Followers with all other
Leaders through gossiping.
As aforementioned, the current FogMon prototype can monitor:

– overall, used and available hardware resources at each node (i.e., CPU, mem-
ory, hard disk), which can be used to know whether a node can support a
given application service to be deployed,

– average, maximum and minimum end-to-end network QoS (i.e., latency and
bandwidth) between available Fog nodes, which can be used to know whether
a link can suitably support communication among two distinct services, and

– availability of IoT devices, which are to be exploited by those services that
require sensing from (or acting onto) cyber-physical systems.

1 Available at: https://github.com/di-unipi-socc/FogMon.

https://github.com/di-unipi-socc/FogMon


526 A. Brogi et al.

Leader
Node

Follower
Node

Follower
Node

P2P

Leader
Node

client/server

Follower
Node

Follower
Node

Leader
Node 

Follower
Node Follower

Node

Follower
Node

Fig. 2. FogMon topology example.

The current FogMon prototype relies on Hyperic Sigar [4] for gathering infor-
mation about hardware, on ICMP via ping to measure end-to-end latency, on
iperf3 [5] and Assolo [20] to collect bandwidth probes, and on the C++ libse-
rialport [6] to discover connected IoT devices. Communication among Followers
and Leaders is performed through JSON messages (using the tool rapidjson [43])
over non-persistant TCP connections. To facilitate its cross-platform deploy-
ment, FogMon is released as two Docker images which can be used to build and
run the prototype on any Docker-compliant platform.

Figure 3 gives an overview of the packages and classes composing FogMon. The
node and the connections package contains the agent classes, which implement
the monitoring logic and the TCP interactions, respectively. The storage pack-
age is used to handle the SQLite3 database instance local to each Follower and
Leader node. Interfaces and classes prefixed by IMaster or Master are used by
the Leaders, all other are related to the Followers. The iot package contains the
classes (and interfaces) which can be instantiated (or extended) to discover and
monitor available IoT devices. Finally, the shared package contains the classes in
common between Leader and Follower nodes, which are mainly used for building
the JSON messages to be sent via TCP connections.

In what follows, we will describe the Follower (Sect. 2.1) and Leader
behaviour (Sect. 2.2) during the functioning of FogMon, and comment on how
the prototype can tolerate hardware or network failures and scale over possibly
large infrastructures (Sect. 2.3).



Measuring the Fog, Gently 527

2.1 Follower Nodes

Fog infrastructures are expected to be highly dynamic environments, where Fol-
lower nodes can leave and join the network at any moment in time, due to their
own decision as well as to node or network failures. The topology of the Fog-

Mon monitoring network is constructed upon a proximity criterion based on the
latency distance among Follower and Leader nodes.

When a new Follower joins the environment monitored by FogMon, we assume
that, initially, it only knows the address2 of one (or some) Leader node(s). Any
new Follower joining the network connects to the known Leader and retrieves a
list of the identifiers of all other available Leaders, consequently it measure the
latency distance (i.e., the round-trip time) against each of them. According to
the obtained measurements, the Follower node associates to the closest Leader.
Doing so guarantees that the latency experienced from each Follower to the
associated Leader is as low as possible and splits Followers among the available
Leaders. Such a procedure is also repeated in case a Follower cannot reach the
associated Leader anymore due to network or node failures. Hereinafter, we refer
to the set of Followers under the same Leader as a group.

Fig. 3. FogMon classes structure.

2 We assume that Leaders act as superpeers [24] that are (possibly) deployed to faster,
more powerful and more reliable nodes. The known Leader node acts as a registry of
Leader identifiers (viz., IP addresses and ports) of all other Leaders, and we assume
it to be deployed at a known location.



528 A. Brogi et al.

After joining the network, Follower nodes can start their normal functioning
as illustrated in Fig. 4. At the Follower, a thread dedicated to data reporting,
also probes node hardware capabilities and communicates them – along with all
other updates – to the associated Leader at set intervals. The same thread is
also in charge of receiving from the Leader updates concerning new Followers
joining the same group, and new Leaders joining the network. Such information
is then exploited by a second thread which periodically monitors the network
QoS of end-to-end links as follows, by updating the oldest K measurements of
latency and bandwidth. Table 1 lists all main parameters that users can set in
FogMon.

It is worth detailing the process of bandwidth probing performed by the Fol-
lower node, as it is important to avoid that monitoring such QoS parameter con-

Follower thread
tests 

search latency
tests older than a
certain time 

LeaderFollower thread
report 

test hardware

Follower2

send report

[for each test]

test latency

search bandwidth
tests older than a
certain time 

[for each test]

test bandwidth

[while running]

[while running]

seach IoT
devices 

start bandwidth test

port for the bandwidth test

get followers

list of followers

get leaders

list of leaders

loop

loop

loop

loop

Fig. 4. Overall Follower functioning.



Measuring the Fog, Gently 529

gests the Fog network. To tame the effects of iperf3 active3 – therefore intrusive
– bandwidth measurements, FogMon also relies on Assolo passive measurements,
which are way less intrusive at the price of some measurement unreliability. To
combine the best of the two tools, we follow a hybrid approach like the one of
[26]. Particularly, FogMon always runs first an intrusive measurement, and then
it exploits the packet dispersion method [21] until the probed value is coher-
ent (up to a set difference) with the last intrusive measurement stored in the
database.

Finally, FogMon monitors IoT devices connected4 to each node along with
their description. Latency and bandwidth associated to interaction between a
certain node and an IoT device between the considered node and the node to
which the IoT device connect5.

2.2 Leader Nodes

Leaders main purposes are to manage monitoring of all Followers in their group
(intra-group monitoring), to collect hardware monitoring data from other groups,
and to compute estimates of the bandwidth and latency values between Followers
belonging to distinct groups (inter-group monitoring), based on exchanged data
of intra-group measurements.

As aforementioned, Leaders collect data from the Followers they directly
monitor by leveraging a push/pull protocol, in which Follower nodes periodically

Table 1. Configurable parameters in FogMon.

Parameter Description

Report time The time between two different reports sent by
the Follower

Test time The interval waited between two iterations of the QoS tests

Latency time The number of seconds that have to pass for a latency test
to be repeated on the same link

Bandwidth time The number of seconds that have to pass for a bandwidth
test to be repeated on the same link

Heartbeat The time before a non-responding Follower is eliminated
from those in the group of a Leader

3 Active bandwidth measurements consist of sending as many bytes as possible over
a certain end-to-end link and measuring the ratio between the employed time and
the amount of transmitted data. Despite being very reliable, this approach tends to
make unstable the connectivity between the considered nodes.

4 Currently, the prototype discovers IoT devices connected through serial ports, any
other standard (e.g., Bluetooth, ZigBee) can be supported by extending the IoT

package of FogMon.
5 IoT devices directly connected to a node are assumed to reach it with negligible

latency and infinite bandwidth.



530 A. Brogi et al.

report their probed data. When needed, Leaders can also request specific data
on-demand. Additionally, each Leader stores data on the hardware of all nodes by
leveraging gossiping protocol involving all other Leaders. The exploited gossiping
protocol, based on [23], is proven to guarantee that any new piece of information
is spread to every other node in the super-peers network, in a logarithmic number
O(log L) of communication rounds in the number L of available Leaders, with a
linearithmic number O(L log L) of messages. Particularly, at every set interval
of time, each Leader selects another random Leader and sends the complete
report about its group of Followers. At the end of this operation, the Leader also
eliminates the Followers that did not send any report within the set heartbeat
time.

As aforementioned, inter-group network QoS values are approximated by
Leader nodes. For what concerns the latency �A,B between two Followers A and
B referring to distinct Leaders L1 and L2 respectively, FogMon computes it as:

�A,B = �A,L1 + �L1,L2 + �L2,B

Such an approximation assumes that the latency between Leaders is always
higher with respect to the latency between each Follower node and its Leader.
The assumption is reasonable as per the proximity criterion that is used to build
up the FogMon network.

Analogously, the available bandwidth capacity βA,B from node A to node B
is approximated as the maximum of outgoing bandwidth of A and the maximum
of the incoming bandwidth of B:

βA,B = min
k,h

(max(βA,k),max(βh,B) )

Such an approximation assumes that common access technologies (e.g., xDSL,
3G, 4G) are asymmetric and represent a bottleneck in the communication, espe-
cially among nodes that reside at the edge of the Internet. Again, this is a
reasonable assumption as per the current technological trend, where we expect
the upload (or download) bandwidth of one of the considered peers to cap their
communication capacity.

2.3 Remarks

Before presenting some quantitative results on the behaviour of FogMon over
a real testbed, we briefly comment here on the fault-tolerance and scalability
properties of the approach.

First, the replication of monitored data at each Leader node and the eventual
consistency of such data achieved through gossiping make our system capable of
resisting to failures of some Leader nodes. Indeed, in such an event, Followers can
join the group of a new (different) Leader and start again their monitoring activ-
ity. Also, it is worth mentioning the fact that each group can run autonomously
from others, so that the approach also tolerates temporary network disruptions
between Leaders.



Measuring the Fog, Gently 531

As far as scalability is concerned, the two-tiered architecture of FogMon con-
tributes to mitigating the complexity of monitoring large-scale infrastructures.
The most expensive measurement in our approach is the monitoring of network
QoS – particularly bandwidth – which requires to perform, in principle, O(N2)
measurements, where N is the number of available nodes. Now, considering a
network of N nodes to be monitored, with L Leaders among them (L ≤ N),
each Leader will approximately manage O(NL ) nodes overall. Thus, O(N

2

L2 ) QoS
measurements will be performed within every single group. By suitably setting6

L = O(
√

N), the originally quadratic complexity of monitoring end-to-end QoS
becomes linear in the number of nodes, i.e. O(N

2

L2 ) = O( N2

(
√
N)2

) = O(N).

3 Case Study

To experiment our FogMon prototype, we have exploited the testbed Fog network
sketched in Fig. 5, which consists of 3 public Cloud virtual machines (VMs) on
Amazon AWS and 3 on Microsoft Azure, 1 private Cloud VM on the Cloud dat-
acentre of the University of Pisa, 4 RaspberryPi3 B+, and 3 other RaspberryPi3
deployed in private homes7.

The nodes of the testbed feature different networking technologies. Namely:

– node A relies on ADSL Internet access with a nominal speed of 7 Mbps and
1 Mbps in download and upload, respectively,

– node B relies on VDSL Internet access with a nominal speed of 70 Mbps and
20 Mbps in download and upload, respectively,

– node C relies on VDSL Internet access with a nominal speed of 20 Mbps and
3 Mbps in download and upload, respectively,

– nodes D1–D4 are within the Gigabit LAN of the Department of Computer
Science, and reach out the university datacentre through fibre links.

After the initialisation of the FogMon overlay, the groups reported in Table 2
were formed, and monitoring of the network started. For the purposes of this
case study, we considered and experimented with three different configurations
of FogMon parameters, as shown in Table 3. Throughout the experiments we

6 In real large-scale settings, it is up to the infrastructure manager to guarantee a
sufficient number of Leaders is available in the Fog network monitored by FogMon.
More precisely, we expect Leaders to be deployed either to Cloud nodes or to Fog
nodes that naturally manage a subset of Followers (e.g., gateways, building servers,
ISP switches).

7 The VMs on AWS feature 1 vCPU, 1 GB of RAM and 8 GB of storage, and run
Amazon Linux 2, based on RedHat Enterprise Linux and CentOS. The VMs on
Microsoft Azure feature 1 vCPU, 4 GB of RAM and 7 GB of storage, and run
Debian 9.9. The VM on the university datacentre features 1 vCPU, 2 GB of RAM
and 30 GB of storage, ad runs Ubuntu 18.04. RaspberryPi3 nodes feature a Cortex-
A53 (ARMv8) 64-bit SoC 1.4 GHz processor, 1 GB of RAM and 16 GB of storage,
and run Raspbian 4.14, but for node A which runs Fedora 28.



532 A. Brogi et al.

Fig. 5. FogMon testbed.

Table 2. Groups formed in the experimental testbed.

Leader Followers

Unipi Datacentre A, B, D1, D2, D3, D4

AWS Cloud AWS Follower, C

Azure Cloud Azure Followers

keep fixed other parameters8 as they have shown not to significantly affect the
performance of FogMon over our testbed.

The goal of this case study was two-fold, aiming at assessing the footprint of
FogMon on hardware and bandwidth and aiming at evaluating the accuracy of
the obtained measurements. First, we wanted to actually measure FogMon foot-
print on both hardware resources and bandwidth. Over three consecutive hours
of functioning, the prototype has shown a very contained impact on hardware
resources and on bandwidth usage as shown in Table 4.

More detailedly, CPU consumption stayed on average around 2% on all the
available nodes, whilst RAM consumption settled on a constant value of 3 MB,
both for the Leader and Follower agents. When it comes to bandwidth, we
exploited the bmon [3] tool to retrieve information on how much data was sent
or received from our nodes. We focussed our analyses on the home nodes as all
other connections featured Gigabit speeds, thus bandwidth usage from FogMon

8 With reference to Table 1, reporting time was set to 30 s, latency time was set to
30 s and heartbeat time was set to 120 s.



Measuring the Fog, Gently 533

Table 3. FogMon configurations.

Config Test time Bandwidth time

config1 30 s 600 s

config2 20 s 300 s

config3 10 s 60 s

Table 4. FogMon footprint on hardware and bandwidth.

Resource Consumption

config1 config2 config3 avg

CPU 1.5% 1.8% 2% 1.75%

RAM 3 MB 3MB 3 MB 3MB

Down/Up Bandwidth 0.5/0.9% 1.2/3.6% 1.5/4.3% 1.1/2.9%

was affecting them only negligibly. Similarly to hardware footprint, the band-
width footprint of FogMon on nominal connection speeds was contained, settling
on average around 1.1% for the download and on 2.9% for the upload.
For what concerns measurements accuracy, we focussed on the error related to
bandwidth and latency. We first run our prototype FogMon throughout 3 h with
a single Leader node – at the University of Pisa datacentre – so to obtain actual
end-to-end measurements for all node couples (having all other nodes running
the Follower agent). When comparing the collected values with the ones obtained
in the settings of Fig. 5, the average errors of latency and bandwidth proved to
be bound by 14% and 18%, respectively, in all three parameter configurations.
Overall, for inter-group measurements, the error is always bound by 5% (both for
latency and bandwidth), whilst for inter-group estimated values it never exceeds
25%. It is worth noting that, if considering QoS profiles for latency (e.g., ≤ 5 ms,
5–15 ms, 15–20 ms) and bandwidth (e.g., ≤ 7 Mbps, 7–20 Mbps, 20–50 Mbps),
the monitoring accuracy substantially grows and gets closer to 95%.

4 Related Work

While quite many tools have been proposed to monitor Cloud environments, only
few efforts have been devoted so far to specifically monitor Fog infrastructures,
as pointed out by Taherizade et al. [39] in their comprehensive review.

Some monitoring tools, like Ganglia [27] or DARGOS [31] (are intended to)
monitor node resources, and do not measure inter-node latency or bandwidth.

GMonE [29] aims at offering a comprehensive monitoring suite for (IaaS,
PaaS and Saas) Cloud platforms. However, GMonE does not monitor end-to-
end network QoS nor IoT, and it has not been adapted to run over heteroge-
neous (Fog, multi-Cloud) deployment environments. Similarly, Zenoss [7] is a



534 A. Brogi et al.

commercial agent-less monitoring platform targeting VM, application, and ser-
vice monitoring in Cloud environments. End-to-end network QoS monitoring is
only offered for latency measurements through plug-in extensions, and limited
support is given to deal with failure scenarios typical of Fog infrastructures. Still,
no support is offered for detecting connected IoT devices.

Zabbix [38] is an agent-based tool designed to monitor network resources.
While Zabbix is quite resource efficient with a small footprint, there are some
concerns on its stability and robustness [34]. Nagios Core [8], originally con-
ceived for the Cloud, is a tool that can be used to monitor both node hardware
resources and network QoS capabilities, like end-to-end bandwidth. While its
extensibility [22] could suggest its consideration for Fog monitoring, there are
some concerns on its ease of configuration and scalability [28]. Amazon AWS
offers the possibility to deploy its CloudWatch Agent [2] to on-premises servers.
This permits extending the Amazon Cloud infrastructures with Fog nodes. How-
ever, CloudWatch Agent does not monitor end-to-end network QoS metrics.

Only a couple proposals have been recently put forward to specifically mon-
itor Fog infrastructures. Brandón et al. [10] have recently prototyped a Python
framework (FMonE) that is capable of monitoring node resources across Fog
infrastructures. FMonE however does not monitor end-to-end network QoS met-
rics, nor interactions with the IoT, which are instead needed for realizing QoS-
aware orchestration of Fog services [12,39]. Also Souza et al. [37] have proposed a
monitoring tool for Fog infrastructures that is capable of monitoring some node
resources and end-to-end latency (but not bandwidth).

Table 5 summarises the dimensions supported by the aforementioned monitor-
ing tools. Summing up, to the best of our knowledge, none of the available tools
for Cloud or Fog infrastructure monitoring is capable of measuring all met-
rics and information collected and aggregated by FogMon on hardware resources

Table 5. Overview of available monitoring tools (extended from [39]).

Ref Hardware Network QoS Non-functional reqs.

CPU Ram Disk IoT Latency Bandwidth Scalable Robust Non-intrusive

Nagios Core [8] ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ∼
DARGOS [31] ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓

Zenoss [7] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Ganglia [27] ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ∼
Zabbix [38] ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓

Lattice [16] ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

FMonE [10] ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

GMonE [29] ✓ ✓ ✓ ✗ ✓ ✓ – – –

Osmotic [37] ✓ ✓ ✗ ✗ ✓ ✗ – ✗ ✓

CloudWatch [2] ✓ ✓ ✓ ∼ ✗ ✗ ✓ ✓ ✓

FogMon ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ means support, ✗ no support, ∼ partial support, - information not available



Measuring the Fog, Gently 535

(viz., CPU, RAM, HDD), on end-to-end network QoS parameters (viz., latency
and bandwidth) and on available IoT devices, in a scalable, robust, and non-
intrusive manner.

5 Concluding Remarks

In this paper, we delved into the architecture and the implementation of a pro-
totype distributed monitoring tool for Fog infrastructures, FogMon, focussing on
the methods it exploits to probe and monitor some relevant metrics, and we run
some experiments with the prototype by performing a series of tests within an
actual testbed. FogMon constitutes a first step towards collecting and aggregating
those data on Fog infrastructures that will be needed to perform dynamic and
adaptive life-cycle management of Fog services. FogMon can monitor hardware
resources of the available nodes (viz., CPU, RAM, HDD), end-to-end network
QoS (viz., latency and bandwidth) between Fog nodes, and discover available
IoT devices.

Notably, FogMon shows a very small footprint both on hardware resources
and on network bandwidth. Moreover, a peer-to-peer architecture – avoiding
single points of failure – has been employed to make FogMon tolerant to some
node and network failures.

Naturally, many lines for future work are possible by extending the current
version of FogMon. Particularly, we intend to:

– exploit FogMon to actually feed predictive tools for Fog application deploy-
ment or management (e.g., FogTorchΠ [12] or FogDirMime [19]), and to assess
the quality of their predictions,

– reduce the error on inter-group bandwidth measurements by also explor-
ing alternative methods for approximating bandwidth probing among Leader
nodes (e.g., via matrix completion techniques [18,25,42])

– include a (topology-aware) Leader election mechanism so to fully automate
the creation of the network overlay,

– assess the scalability and fault-tolerance of the prototype over a large-scale
Fog infrastructure, while exploring the possibility of reducing the number of
replicas of the monitored data, and

– further engineer the prototype and extend it with some authentication mech-
anism so to being able to verify that a node entering the network can be
actually trusted.

Acknowledgements. This work has been partly supported by the project
“DECLWARE: Declarative methodologies of application design and deployment”
(PRA 2018 66), funded by University of Pisa, Italy, and by the project “GIÒ: a Fog
computing testbed for research & education”, funded by the Department of Computer
Science of the University of Pisa, Italy.



536 A. Brogi et al.

References

1. Cloud key marketing trends for 2017 and ideas for exceeding customer expectations,
IBM Marketing (2017)

2. Amazon CloudWatch. https://aws.amazon.com/it/cloudwatch/
3. bmon - portable bandwidth monitor. https://linux.die.net/man/1/bmon
4. Hyperic’s system information gatherer (sigar). https://github.com/hyperic/sigar/

wiki/overview
5. Iperf. https://software.es.net/iperf/
6. Libserialport. https://sigrok.org/wiki/Libserialport
7. Zenoss (2014). http://www.zenoss.com/
8. Barth, W.: Nagios: System and Network Monitoring. No Starch Press,

San Francisco (2008)
9. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for

internet of things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and
Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–
186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05029-4 7

10. Brandón, Á., Pérez, M.S., Montes, J., Sanchez, A.: Fmone: a flexible monitoring
solution at the edge. Wirel. Commun. Mob. Comput. 2018, 15 (2018)

11. Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to Place Your Apps in the Fog-State
of the Art and Open Challenges. preprint arXiv:1901.05717 (2019)

12. Brogi, A., Forti, S., Ibrahim, A.: How to best deploy your fog applications, prob-
ably. In: 2017 IEEE 1st International Conference on Fog and Edge Computing
(ICFEC), pp. 105–114. IEEE (2017)

13. Brogi, A., Forti, S., Ibrahim, A., Rinaldi, L.: Bonsai in the Fog: an active learn-
ing lab with Fog computing. In: 2018 Third International Conference on Fog and
Mobile Edge Computing (FMEC), pp. 79–86. IEEE (2018)

14. Buyya, R., et al.: A manifesto for future generation cloud computing: research
directions for the next decade. ACM Comput. Surv. (CSUR) 51(5), 105 (2018)

15. CISCO: the internet of things: Extend the cloud to where the things are. Cisco
White Paper (2015)

16. Clayman, S., Galis, A., Mamatas, L.: Monitoring virtual networks with lattice. In:
2010 IEEE/IFIP Network Operations and Management Symposium Workshops
(NOMS Wksps), pp. 239–246. IEEE (2010)

17. Dastjerdi, A.V., Buyya, R.: Fog computing: helping the internet of things realize
its potential. Computer 49(8), 112–116 (2016)

18. Du, W., Liao, Y., Tao, N., Geurts, P., Fu, X., Leduc, G.: Rating network paths for
locality-aware overlay construction and routing. IEEE/ACM Trans. Networking
(TON) 23(5), 1661–1673 (2015)

19. Forti, S., Ibrahim, A., Brogi, A.: Mimicking FogDirector application management.
Software-Intensive Cyber-Phys. Syst. 34(2–3), 151–161 (2019)

20. Goldoni, E., Rossi, G., Torelli, A.: Assolo, a new method for available bandwidth
estimation. In: 2009 Fourth International Conference on Internet Monitoring and
Protection, ICIMP 2009, pp. 130–136. IEEE (2009)

21. Hu, N.: Network monitoring and diagnosis based on available bandwidth mea-
surement. Technical report, Carnegie-Mellon University, Pittsburgh, PA School of
Computer Science (2006)

22. Issariyapat, C., Pongpaibool, P., Mongkolluksame, S., Meesublak, K.: Using Nagios
as a groundwork for developing a better network monitoring system. In: 2012
Proceedings of PICMET 2012 Technology Management for Emerging Technologies
(PICMET), pp. 2771–2777. IEEE (2012)

https://aws.amazon.com/it/cloudwatch/
https://linux.die.net/man/1/bmon
https://github.com/hyperic/sigar/wiki/overview
https://github.com/hyperic/sigar/wiki/overview
https://software.es.net/iperf/
https://sigrok.org/wiki/Libserialport
http://www.zenoss.com/
https://doi.org/10.1007/978-3-319-05029-4_7
http://arxiv.org/abs/1901.05717


Measuring the Fog, Gently 537

23. Jelasity, M.: Gossip. In: Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A.
(eds.) Self-organising Software. NCS, pp. 139–162. Springer, Berlin (2011). https://
doi.org/10.1007/978-3-642-17348-6 7

24. Jesi, G.P., Montresor, A., Babaoglu, O.: Proximity-aware superpeer overlay topolo-
gies. IEEE Trans. Netw. Serv. Manag. 4(2), 74–83 (2007)

25. Liao, Y., Du, W., Geurts, P., Leduc, G.: DMFSGD: a decentralized matrix factor-
ization algorithm for network distance prediction. IEEE/ACM Trans. Networking
(TON) 21(5), 1511–1524 (2013)

26. Marttinen, A., et al.: Estimating kpis in deployed heterogeneous networks. IEEE
Commun. Mag. 54(10), 158–165 (2016)

27. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system:
design, implementation, and experience. Parallel Comput. 30(7), 817–840 (2004)

28. Mongkolluksamee, S., Pongpaibool, P., Issariyapat, C.: Strengths and limitations
of Nagios as a network monitoring solution. In: Proceedings of the 7th International
Joint Conference on Computer Science and Software Engineering (JCSSE 2010),
Bangkok, Thailand. pp. 96–101 (2010)

29. Montes, J., Sánchez, A., Memishi, B., Pérez, M.S., Antoniu, G.: GMonE: a com-
plete approach to cloud monitoring. Future Gener. Comput. Syst. 29(8), 2026–2040
(2013)

30. Noghabi, S.A., Kolb, J., Bodik, P., Cuervo, E.: Steel: Simplified development and
deployment of edge-cloud applications. In: 10th {USENIX} Workshop on Hot Top-
ics in Cloud Computing (HotCloud 18) (2018)

31. Povedano-Molina, J., Lopez-Vega, J.M., Lopez-Soler, J.M., Corradi, A., Foschini,
L.: Dargos: a highly adaptable and scalable monitoring architecture for multi-
tenant clouds. Future Gener. Comput. Syst. 29(8), 2041–2056 (2013)

32. Rahimi, M.R., Ren, J., Liu, C.H., Vasilakos, A.V., Venkatasubramanian, N.: Mobile
cloud computing: a survey, state of art and future directions. Mobile Networks
Appl. 19(2), 133–143 (2014)

33. Satyanarayanan, M., et al.: Edge analytics in the internet of things. IEEE Pervasive
Comput. 14(2), 24–31 (2015)

34. Simmonds, E., Harrington, J.: SCF/FEF Evaluation of Nagios and Zabbix Moni-
toring Systems, pp. 1–9 (2009). www.scopus.com, cited By: 2

35. Skarlat, O., Bachmann, K., Schulte, S.: Fogframe: Iot service deployment and exe-
cution in the fog. KuVS-Fachgespräch Fog Comput. 1, 5–8 (2018)

36. Song, Y., Yau, S.S., Yu, R., Zhang, X., Xue, G.: An approach to QoS-based task
distribution in edge computing networks for IoT applications. In: 2017 IEEE Inter-
national Conference on Edge Computing (EDGE), pp. 32–39. IEEE (2017)

37. Souza, A., Cacho, N., Noor, A., Jayaraman, P.P., Romanovsky, A., Ranjan, R.:
Osmotic monitoring of microservices between the edge and cloud. In: 2018 IEEE
20th International Conference on High Performance Computing and Communica-
tions; IEEE 16th International Conference on Smart City; IEEE 4th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 758–765
(2018)

38. Tader, P.: Server monitoring with zabbix. Linux J. 2010(195), 7 (2010)
39. Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V.: Monitoring self-

adaptive applications within edge computing frameworks: a state-of-the-art review.
J. Syst. Softw. 136, 19–38 (2018)

40. Vögler, M., Schleicher, J.M., Inzinger, C., Dustdar, S.: Diane-dynamic IoT appli-
cation deployment. In: 2015 IEEE International Conference on Mobile Services,
pp. 298–305. IEEE (2015)

https://doi.org/10.1007/978-3-642-17348-6_7
https://doi.org/10.1007/978-3-642-17348-6_7
www.scopus.com


538 A. Brogi et al.

41. Wöbker, C., Seitz, A., Mueller, H., Bruegge, B.: Fogernetes: deployment and man-
agement of fog computing applications. In: NOMS 2018–2018 IEEE/IFIP Network
Operations and Management Symposium, pp. 1–7. IEEE (2018)

42. Xie, K., et al.: Sequential and adaptive sampling for matrix completion in net-
work monitoring systems. In: 2015 IEEE Conference on Computer Communica-
tions (INFOCOM), pp. 2443–2451. IEEE (2015)

43. Yip, M.: Rapidjson-a fast json parser/generator for c++ with both sax/dom style
api. THL A29. https://github.com/miloyip/rapidjson (2015)

44. Yousefpour, A., et al.: All one needs to know about fog computing and related edge
computing paradigms: a complete survey. J. Syst. Architect. 98, 289–330 (2019)

https://github.com/miloyip/rapidjson


Mobile Apps with Dynamic Bindings Between
the Fog and the Cloud

Dionysis Athanasopoulos1(B) , Mitchell McEwen2, and Austen Rainer1

1 School of EEECS, Queen’s University Belfast, Belfast, UK
{D.Athanasopoulos,A.Rainer}@qub.ac.uk

2 DXC Technology, Wellington, New Zealand
mmcewen3@dxc.com

Abstract. The back-ends of mobile apps usually use services executed on remote
(e.g., cloud) machines. The transmission latency may though make the usage of
remote machines a less efficient solution for data that need short analysis time.
Thus, apps should further use machines located near the network edge, i.e., on the
Fog. However, the combination of the Fog and the Cloud introduces the research
question of when and how the right binding of the front-end to an edge instance
or a remote instance of the back-end can be decided. Such a decision should
not be made at the development or the deployment time of apps, because the
response time of the instances may not be known ahead of time or cannot be
guaranteed. To make such decisions at run-time, we contribute the conceptual
model and the algorithmic mechanisms of an autonomic controller as a service.
The autonomic controller predicts the response time of edge/remote instances of
the back-end and dynamically decides the binding of the front-end to an instance.
The evaluation results of our approach on a real-world app for a large number of
datasets show that the autonomic controller makes efficient binding-decisions in
the majority of the datasets, decreasing significantly the response time of the app.

Keywords: Fog · Mobile back-end · Autonomic control-loop · Predictive
model

1 Introduction

Amelia is an avid eBay user, always ready to snap up a bargain. And generally enjoys
the thrill of a bidding fight right up to the final moments. She wants to buy a nearly
new Xbox but she finds it difficult to decide on the best bidding price. Thus, she down-
loaded on her phone an auction app that predicts bidding prices [1]. However, Amelia
complains she lost some final-moment bidding fights due to delays in the app response.

What Amelia does not know is that data collected on her phone are moved to the
Cloud and the output of the analysis is sent back to her. While the Cloud offers power-
ful machines for efficient data-analytics, the latency of the transmission may make the
usage of the Cloud a less efficient solution for data that need short analysis time [2].
To make apps more efficient, service instances (i.e., replicas) of a back-end should be
further deployed on the Fog. The Fog constitutes machines located near the network
c© Springer Nature Switzerland AG 2019

S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 539–554, 2019.
https://doi.org/10.1007/978-3-030-33702-5_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_41&domain=pdf
http://orcid.org/0000-0002-0720-1986
http://orcid.org/0000-0001-8868-263X
https://doi.org/10.1007/978-3-030-33702-5_41


540 D. Athanasopoulos et al.

edge (e.g., laptops, small-scale data-centers) [3]. The combination of the Fog and the
Cloud though introduces the research question of when and how the right binding of
the front-end of an app to an edge or a remote instance can be decided1.

Concerning the first part of the question, bindings should not be decided at the
development or the deployment time of apps (as the state-of-the-art does), because
the response time of instances may not be known ahead of time or cannot be guaran-
teed. Thus, we face the challenge of deciding the binding of the front-end at run-time.
Regarding the second part of the question, we consider that the response time of an
instance depends on the execution time of the instance on a machine and on the network
latency to reach out the machine2. Thus, we face the challenge to predict the response
time of instances based on the input datasets and the machines used for deploying the
instances. On top of that, the efficiency challenge of predicting response times from a
large number of datasets is raised, since the number of the datasets increases over time.

To address the above challenges, we contribute the conceptual model and the algo-
rithmic mechanisms of an autonomic controller-as-a-service (one for each back-end)
that is deployed on the Fog and further acts as a proxy between the front-end and the
back-end instances3. Each time the front-end interacts with the autonomic controller,
the latter dynamically predicts the response time of the instances and decides the bind-
ing of the front-end to an instance. To do it in an autonomic manner, the controller
follows the control loop of self-adaptive software [4]. Specifically, the controller moni-
tors the past invocations to the instances, analyses a few representative (addressing the
efficiency challenge) input datasets, (re-)builds predictive models of the response time
of the instances, and dynamically decides the binding of the front-end to an instance.

To evaluate our approach, we implement a research prototype of the autonomic
controller-as-a-service of the auction app (Fig. 1). A large number of datasets, col-
lected from the UC Irvine machine-learning repository [5], is given as input to the app.
The experimental results show that the autonomic controller makes efficient binding-
decisions in the majority of the datasets, decreasing significantly the response time of
the app.

The rest of the paper is structured as follows. Section 2 describes the related
approaches and compares them against ours. Sections 3 and 4 specify the conceptual
model and the algorithmic mechanisms of the controller. Section 5 presents the eval-
uation of our approach. Section 6 discusses the threats to the validity of our work.
Section 7 summarizes our contribution and discusses future directions of our research.

2 Related Work

The approaches that use the Fog and the Cloud for the execution of mobile apps have
focused on the development or the deployment time of apps. Concerning the non-
automated approaches, [6] provides suggestions for mapping back-ends to machines

1 The front-end includes the programming clients that interact with the service back-end.
2 The locally stored datasets are synchronized to the remote storage. We do not consider the

synchronization time in the current work.
3 We assume at least an edge and a remote instance have been pre-deployed (whose endpoints are

registered to the controller). We leave as future work the decision of the number of instances.



Mobile Apps with Dynamic Bindings Between the Fog and the Cloud 541

Fig. 1. Auction app extended with the autonomic controller and multiple back-end instances.

at deployment time. The suggestions mainly aim at reducing the network latency, the
energy consumption and the financial cost of renting machines. [7] proposes a method-
ology for assessing the security level of deployment plans.

Regarding the automated approaches, [8–10] generate deployment plans that min-
imize the network latency, the delay of machines to serve apps and the renting cost,
respectively. [11,12] generate deployment plans that minimize the network usage.
[13,14] produce deployment plans that reduce the power consumption. [15] generates
deployment plans based on the renting cost and the end-users’ budgets. [16] selects
machines at deployment time based on their ranking with respect to the delay of
machines and the power consumption. [17] regenerates deployment plans via modeling
the delay of machines as a function of the elapsed discrete-time. Finally, [18] regener-
ates deployment plans when the latency of back-ends exceeds a time threshold.

Overall, only two approaches monitor the app execution to regenerate deployment
plans [17,18]. However, [17,18] are reactive (i.e., they suspend the app execution) and
lay between apps and operating systems (e.g., redeployment engines). Contrarily, our
approach runs at the application layer and pro-actively (without suspending the app
execution) self-decides the binding of the front-end.

3 Conceptual Model of Autonomic Controller-as-a-Service

The autonomic controller-as-a-service (Fig. 2) mainly consists of its API (Sect. 3.1), its
dynamic binding-mechanism (Sect. 3.2) and its control loop (Sect. 4).

3.1 API of Autonomic Controller

The API offers all of the operations of the back-end. From the Web-service technology
perspective, an API is exposed by using the REST [19] or the SOAP [20] protocol. We
define the notion of the API in a generic manner as follows.



542 D. Athanasopoulos et al.

Fig. 2. The UML diagram of the conceptual model of autonomic controller.

Definition 1. Each operation of the API of an autonomic controller corresponds to a
programming method4 of the API of the back-end. Each operation accepts/returns a
(possibly empty) set of input/output parameters.

Given that the XML/JSON schemas of input/output parameters can be easily trans-
formed to programming objects (e.g., JAXB5), we define the notion of the parameter
based on the object-oriented paradigm as follows.

Definition 2. A parameter p is characterized by a name and a built-in or complex data-
type. A complex data-type is a group of parameters or a reference to another parameter.

Returning to the auction app, we assume the back-end uses the k-means clustering
algorithm [22]. The single operation of the API accepts the following parameters: a
dataset and the numbers of clusters and algorithm iterations. The last two parameters
have a built-in data-type (int), while the first parameter has the complex data-type of
a list of multi-dimensional data-points (List<Double[] dataPoint> dataset). In
turn, a data-point is a parameter that has a complex data-type too. The latter is defined
by a vector of coordinates, where each coordinate has a built-in data-type (Double).

Based on Definition 2, a parameter has a hierarchical structure. However, only the
leaves of the structure carry actual data-values. Returning to our example, while a two-
layer structure is formed, only the second/lowest layer (Double[] dataPoint) con-
tains actual data (a.k.a., the coordinates of data-points). Our approach pre-processes
multi-layer parameters and converts them to a set of unstructured ones. We define the
notion of the unstructured parameter as follows.

Definition 3. The unstructured parameters of a multi-layer parameter p is the set of
the leaf data-types {x} of p. Each unstructured parameter x is defined by a tuple (n, c)
that consists of the name n and the cardinality c of the corresponding leaf data-type.
The cardinality c equals to product of the cardinalities of the grouping structures that
are met in the path followed to reach n from the root node of p.

4 The programming methods are explicitly defined in a SOAP-based API or they can be deter-
mined by parsing the suffix of the URI of the API in a RESTful API [21].

5 https://docs.oracle.com/javase/tutorial/jaxb/intro/index.html.

https://docs.oracle.com/javase/tutorial/jaxb/intro/index.html


Mobile Apps with Dynamic Bindings Between the Fog and the Cloud 543

The multi-layer parameter, p = List < Double[] dataPoint > dataset, in our
example is converted to the singleton set, {x} = {(dataPoint, c)}, where c is the car-
dinality of the list structure (the list is the only node that precedes x in the path from
the root)6. Hereafter, we use the term parameter to refer to an unstructured parameter.

3.2 Dynamic Binding-Mechanism of Autonomic Controller

The dynamic binding-mechanism comprises the components of the Dynamic Binding,
the Autonomic Control-Loop and the Service Proxy, as depicted in Fig. 2.

The Dynamic Binding implements all of the operations of the API of the back-end.
In particular, the implementation of the operations of the Dynamic Binding handles
calls from the front-end to the operations of the back-end. The Dynamic Binding first
pre-processes the input data (to form the unstructured parameters), following uses the
Autonomic Control-Loop to predict the response time of the edge/remote instances
and then finds the instance that has the lowest predicted response-time. Finally, the
Dynamic Binding uses the Service Proxy7 to forward an operation call to the
selected instance. To this end, the Dynamic Binding instantiates the target parame-
ters of the operation of the selected instance via considering the one-to-one mapping
between the parameters of the called operation of the controller API and the parame-
ters of the mapped operation of the selected instance. The mapping exists because the
controller API is the same with that of the edge and remote instances.

4 Autonomic Control-Loop

The autonomic control-loop of the controller extends the generic Monitor-Analyze-
Plan-Execute and Knowledge loop (MAPE-K) of self-adaptive software as follows [4].
Our Monitoring mechanism records the response time of the invocation of edge/remote
instances, i.e., the elapsed time between when the invocation is made and when the
response is returned back. In other words, the response time is the sum of (i) the exe-
cution time of an instance on a machine and (ii) the network latency. The Analysis
mechanism (re-)constructs predictive models of response times and expresses them as
a function of the input parameters (Sect. 4.1). A separate model is constructed for each
instance because instances are usually deployed on different machines. The Planning
mechanism dynamically (re-)creates groups of parameter values and stores a represen-
tative value for each group, along with the corresponding monitoring response-times
(Sect. 4.2). The mechanism uses the constructed models and the stored parameter-
values to predict response times and select the instance that has the lowest predicted
response-time. The Execution mechanism invokes the selected instance via implement-
ing a proxy. The latter firstly instantiates the target parameters of the invoked operation

6 If the cardinality is not declared in parameter schemas, then our approach considers a large
pre-defined value as an artificial cardinality.

7 The relationship between the Dynamic Binding and the Service Proxy is UML compo-
sition (depicted by filled diamond) so as to hide the edge/remote instances from the front-end.



544 D. Athanasopoulos et al.

of the instance via considering the one-to-one mapping that exists between the parame-
ters of the called operation of the controller API and the parameters of the mapped oper-
ation of the instance (Sect. 3.2). Finally, the constructed predictive-models, the groups
of parameter values and the monitoring response-times are stored as the Knowledge of
the loop.

4.1 Analysis Mechanism

We firstly define the notions of predictive model and prediction error used by the mech-
anism. We also specify the algorithmic steps and the time complexity of the mechanism.

The mechanism constructs a separate predictive-model for each instance and espe-
cially, for each operation of an instance, as defined below.

Definition 4 (Predictive model of an operation). The predictive model, pop, of an

operation, op, of a service instance is defined by the tuple,
(
x[D,N ], ŷ[D], y(x)

)
:

– x[D,N ]: D past values of each one of the N input parameters of op
– ŷ[D]: D monitoring response-times of op
– y(x): a polynomial function of x that predicts the response time of op.

Definition 5 (Prediction error for an operation). The prediction error, e, for the
response time of an operation op, of a service instance for the current values, x[N ],
of the input parameters of op, equals to the relative distance of the predicted (for x)
response-time, y, from the monitoring response-time, ŷ, of op: e = |y(x)−ŷ|

ŷ .

Analysis Algorithm. Considering that polynomials describe the performance of pro-
grams well [23], the algorithm builds polynomial functions to predict response times.
A widely used technique to build polynomials is the regression technique [24]. How-
ever, it takes all possible variable combinations forming long expressions with possibly
unneeded terms. To build compact expressions, greedy techniques have been proposed
[24,25]. We extend the sparse-term technique of [25]. Our technique further selects the
term that is dominant (i.e., it has the lowest prediction-error) and confident (i.e., its
prediction error is higher than a threshold).

The algorithm steps are specified in Algorithm 1. Algorithm 1 accepts as input the
current values of the input parameters, the past and the current monitoring response-
times and the polynomial function of the predictive model of an operation of a ser-
vice instance. The inputs of Algorithm 1 further include a threshold ω of the lowest
prediction-error. Algorithm 1 initially calculates the prediction error (Algorithm 1 (1–
4)). If the error is higher than ω, Algorithm 1 rebuilds the predictive model via fit-
ting all of the possible single-variable terms to the past and the current response-times
(Algorithm 1 (8)). To fit a term to the response times, Algorithm 1 applies the lin-
ear least-square regression-technique [24] (Algorithm 1 (5–10)). Finally, Algorithm 1
selects and returns the term that is dominant and confident (Algorithm 1 (11–20)).



Mobile Apps with Dynamic Bindings Between the Fog and the Cloud 545

Algorithm 1. Analysis Mechanism
Input: x[D, N ], ŷ[D], y(x), ω
Output: y(x)

1: e ← |y(x[D,N])−ŷ[D]|
ŷ[D] ;

2: if e > ω then
3: T ← FIT(x, ŷ);
4: y(x) ← SELECT(T, x, ŷ);

5: function FIT( x[D, N ], ŷ[D] ): T

6: for all 1 ≤ j ≤ N do
7: y(x) ← a ∗ xb

8: FIND a, b :
D
∑

i=1
(y(x[i, j]) − ŷ[i])2 is minimized

9: T.ADD(y(x));

10: end function

11: function SELECT( T , x[D, N ], ŷ[D] ): y(x)

12: for all y(x) ∈ T do
13: for all 1 ≤ i ≤ D do

14: e += |y(x[i,N])−ŷ[i]|
ŷ[i] ;

15: e ← e
|D| ;

16: if e < min and e ≥ ω then
17: min ← e;
18: miny ← y(x);

19: y(x) ← miny ;
20: end function

Time Complexity. The complexity scales with the numbers D (parameter values)
and N (fitted terms), O(N * D). Since N is much lower than D (we use a sparse-
term technique, which is time efficient), the complexity is captured by the expression,
O(N * D) ≈ O(D). Moreover, the complexity does not scale with the number of the
back-end instances (even if Algorithm 1 is repeated for each instance), because this
number is expected to be (in the order of tens or lower) much lower than D (Sect. 4.2).

4.2 Planning Mechanism

We firstly define the notion of the partition used by the mechanism. We also specify the
algorithmic steps of the mechanism, along with its time complexity.

The mechanism partitions the domain of the values of each parameter and stores a
representative value for each partition. Each partition is defined as an one-dimension
interval. The partitions of a parameter are a set of intervals with consecutive integer-
endpoints, as defined below.

Definition 6 (Partitions of the values domain of a parameter). Let xmin and xmax

be the min and the max domain values of a parameter, x. The set, r, of the Q partitions
of the domain values of x is:



546 D. Athanasopoulos et al.

r =
{

r1, . . . , rj , . . . , rQ

}
, where:

r1 =
[
xmin, xmin + len(x)

]

rj =
[
xmin + len(x) * (j − 1) + 1, xmin + len(x) * j

]
, j ∈ [2, Q − 1]

rQ =
[
xmin + len(x) * (Q − 1), xmax

]

The partition length that is used in Definition 6 is defined as follows.

Algorithm 2. Planning Mechanism
Input: x[N ], r[N ], v[N ], {instances}, {y(x)}
Output: instance

1: PARTITION( r, v, x );
2: instance ← SELECT({instances}, x, {y(x)});

3: procedure PARTITION( r[N ], v[N ], x[N ] )

4: for all 1 ≤ i ≤ N do
5: adjustment ← false;
6: if x[i] > xmax[i] then
7: xmax[i] ← x[i];
8: adjustment ← true;
9: else if x[i] < xmin[i] then

10: xmin[i] ← x[i];
11: adjustment ← true;

12: if adjustment = true then

13: l ← xmax[i]−xmin[i]
Q ;

14: r1[i] ←
[

xmin[i], xmin[i] + l
]

;

15: v1[i] ← UPDATE(v1[i], r1[i]);
16: for all 2 ≤ j ≤ Q do

17: rj [i] ←
[

xmin[i] + l * (j − 1) + 1, xmin[i] +l * j
]

;

18: vj [i] ← UPDATE(vj [i], rj [i]);

19: rQ[i] ←
[

xmin[i] + l * Q, xmax[i]
]

;

20: vQ[i] ← UPDATE(vQ[i], rQ[i]);

21: for all 1 ≤ j ≤ Q do
22: if xj [i].c ∈ rj [i] then
23: if |vj [i]| = 0 then
24: vj [i] ← ADD(vj [i], xj [i].c);

25: end procedure

Definition 7 (Partition length). Let xmin and xmax be the min and the max domain
values of a parameter, x, and Q be a number of partitions. The partition length
len(x) is calculated by dividing the range of values of x in Q equally-sized intervals:
�xmax−xmin

Q �
The representative values (one for each partition) of parameter are defined below.



Mobile Apps with Dynamic Bindings Between the Fog and the Cloud 547

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

pe
rc
en
ta
ge
s

Q=50

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

Q=100

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

pe
rc
en
ta
ge
s

Q=150

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

Q=200

Fig. 3. The percentages of the correct binding-decisions for the auction app.

Definition 8 (Representative values of parameter). Let r be the set of the partitions
of the domain values of a parameter x. The Q representative values of the Q partitions

are defined by the set, v =
{

x1.c, . . . , xj .c, . . . , xQ.c
}
, where xj .c ∈ rj .

The Planning mechanism dynamically (re-)defines the partitions (see below) when-
ever a new parameter-value arrives that is not represented by an existing partition.

Planning Algorithm. Algorithm 2 accepts as input the current values of the input
parameters of an operation of an API, along with the existing partitions of the param-
eters. The inputs of Algorithm 2 further include the available instances of the API and
the set of the polynomial functions of the current predictive-models of the instances.
If the current values of the parameters do not belong to the existing partitions,
Algorithm 2 redefines the partitions by adjusting their endpoints (Algorithm 2 (5–
11)) and accordingly redistributing their representative values8 (Algorithm 2 (13–20)).
Algorithm 2 adds the current values of the parameters to the proper partitions only if
the partitions do not contain values (Algorithm 2 (21–24)). Algorithm 2 predicts the
response times of the instances for the current parameter-values and returns back the
instance that has the lowest predicted response-time (see Footnote 8).

8 Due to the algorithmic simplicity, we do not specify the functions UPDATE, ADD and
SELECT.



548 D. Athanasopoulos et al.

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

pe
rc
en
ta
ge
s

Q=50

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

Q=100

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

pe
rc
en
ta
ge
s

Q=150

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

Q=200

Fig. 4. The percentages of the datasets used for rebuilding predictive models.

Time Complexity. The complexity scales with the numbers N (parameters), Q (param-
eter partitions), Q (parameters values) and service instances, O(N * Q2). Since the
number of the instances of a single back-end is expected to be (in the order of tens)
much lower than the numbers of the other factors (e.g., Q ranges in the order of hun-
dreds), the complexity does not asymptotically scale with the number of instances.

5 Experimental Evaluation

We evaluate our approach on five benchmarks (Sect. 5.1). Prior to presenting the results,
we set up below our experiments.

We extended an existing auction app9 with a data-analytics back-end that uses the
k-means clustering algorithm. We implemented a research-prototype (in Java) of the
autonomic controller and we exposed it as a RESTful Web service. Datasets collected
from UC Irvine machine-learning public repository10 were given as input to the app. We
used all of the datasets where the number (resp., dimensions) of the data points in the
respective dataset was less than 12000 (resp., 12). We did it due to the computational
constraints of the used machines. As also the evaluation results show in Sect. 5.1, the
usage of extra datasets from the repository would have been redundant. In that way, we
concluded to use 1456 datasets. We run the experiments 1456 times, each time adding

9 https://github.com/jagmohansingh/auction-system.
10 http://archive.ics.uci.edu/ml/index.php.

https://github.com/jagmohansingh/auction-system
http://archive.ics.uci.edu/ml/index.php


Mobile Apps with Dynamic Bindings Between the Fog and the Cloud 549

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

pe
rc
en
ta
ge
s

Q=50

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

Q=100

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

pe
rc
en
ta
ge
s

Q=150

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

Q=200

Fig. 5. The percentages of the monitoring response-times used for rebuilding predictive models.

an extra dataset, starting with one dataset and progressing with the remaining datasets
in a random order.

The front-end of the app runs on a mobile phone11, the edge instance and the auto-
nomic controller on a laptop12 (connected to the same LAN with the mobile phone),
and the remote instance on a virtual machine deployed to the Google cloud13. All of
the instances of the service back-end are exposed as RESTful Web services. We do not
present experiments that use multiple edge/remote instances, since the complexity of
our approach does not asymptotically scale with the number of instances (Sect. 4.2).

5.1 Evaluation Results

B1. How many binding decisions are correct?
For each dataset given as input to the controller, the latter makes a binding decision
between the edge and the remote instances. We repeated this experiment for differ-
ent numbers Q of partitions (Q affects how many times the predictive models are
reconstructed). Figure 3 depicts the percentages of the correct binding-decisions
(i.e., the number of the correct decisions is divided by the number of all of the

11 1.9GHz CPU, 4GB RAM, Android 8.0.
12 2.70GHz CPU, Intel Core i5-5257U, 64-bit Windows 10 Home, 8GB RAM.
13 2.2GHz 2 vCPU, Intel Xeon E5 v4 (Broadwell) platform, 7.5GB RAM, Windows server 2016

(the cost of renting a more powerful machine for our experiments was very high).



550 D. Athanasopoulos et al.

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

pe
rc
en
ta
ge
s

Q=50

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

Q=100

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

pe
rc
en
ta
ge
s

Q=150

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

datasets

Q=150

Fig. 6. The overhead added by the autonomic control-loop to the response time of the app.

decisions). We observe from the results that the percentages of the correct deci-
sions are increasing with the increase of the number of the datasets and are finally
stabilized at the 90% of the total number of the decisions.

B2. How many datasets are used for rebuilding predictive models?
We present in Fig. 4 the percentages of the datasets that are used for rebuilding
the predictive models in the previous experiment (i.e., the number of the used
datasets is divided by the number of all of the datasets). The percentages of the
used datasets for rebuilding models decrease with the increase of the number of
the provided datasets. Especially, a small percentage (20%–30%) of the total num-
ber of the datasets is used for rebuilding models. Thus, the inclusion of extra
datasets from the repository in the experiment for rebuilding models would have
been redundant.

B3. How many monitoring response-times are used for rebuilding predictive models?
Figure 5 depicts the percentages of the monitoring response-times of the
edge/remote instances used in the previous experiments (i.e., the number of the
used response-times is divided by all of the monitoring response-times). The per-
centages of the used response-times decrease with the increase of the number
of the provided datasets. Especially, a small percentage (20%–30%) of the total
number of the monitoring response-times is used. Note that the curves of the per-
centages of the used datasets and the used response-times (Figs. 4 and 5) are anal-
ogous.

B4. What is the overhead to the response-time of the app added by our approach?
We present in Fig. 6 the percentages of the overhead to the response time of the app
added by the autonomic mechanisms (i.e., the execution time of the mechanisms is
divided by the response time of the app). The overhead comes to the 10%–15% of
the response time of the app. Note that the overhead is higher in the first datasets



Mobile Apps with Dynamic Bindings Between the Fog and the Cloud 551

0 200 400 600 800 1,000 1,200
0

200

400

600

small- & medium-sized datasets

re
sp
on

se
ti
m
e
[m

se
c]

(i) Remote instance only

0 200 400 600 800 1,000 1,200
0

200

400

600

small- & medium-sized datasets

(ii) Edge instance only

0 20 40 60 80 100 120 140
0

2

4

·104

large-sized datasets

re
sp
on

se
ti
m
e
[m

se
c]

(iii) Remote instance only

0 20 40 60 80 100 120 140
0

2

4

·104

large-sized datasets

(iv) Edge instance only

0 200 400 600 800 1,000 1,200
0

200

400

600

small- & medium-sized datasets

re
sp
on

se
ti
m
e
[m

se
c]

(v) Autonomic controller

0 20 40 60 80 100 120 140
0

2

4

·104

large-sized datasets

(vi) Autonomic controller

Fig. 7. The response time of the app when it uses the edge/remote instances or the controller.

because the reconstruction of the predictive models and the parameter partitions
occur more frequent for these datasets.

B5. What is the improvement to the response time of the app?
To examine the improvement, we divide the datasets into small-, medium-, and
large-sized datasets. We consider that the size of a dataset equals to the number of
the datapoints of the dataset14. The first two charts of Fig. 7 present the response
times of the app when it uses the remote instance only or the edge instance only for
small- and medium-sized datasets. The next two charts present the response times
of the app for large-sized datasets15. The last two charts present the response times

14 We define the equally-sized intervals of the dataset sizes, (1, 4000], (4000, 8000] and (8000,
12000], which correspond to small-, medium-, and large-sized datasets, respectively.

15 The scale of the y-axis in the first two charts is different from the scale in the next two charts.



552 D. Athanasopoulos et al.

of the app when it uses the controller. Comparing Fig. 7(vi) against Fig. 7(iii), we
observe that the controller selects the remote instance for large-sized datasets. On
the contrary, comparing Fig. 7(v) against Fig. 7(ii), we observe that the controller
selects the edge instance for small- and medium-sized datasets.
The above observations verify our intuition that Cloud machines are much more
efficient than Fog machines on large-sized datasets. Since the controller selects
for small- and medium-sized datasets the edge instance (instead of the original
option of the remote instance), the response time of the app is improved. To quan-
tify that improvement, we calculate for each small- and medium-sized dataset
the percentage of the decrease of the response time of the app by using the for-
mula, yremote−yedge

yremote
. Overall, the average improvement over all of the small- and

medium-sized datasets comes to the 50% of the original response-time of the app.

6 Threads to Validity

A possible threat to the internal validity of the study is the exclusion from the experi-
ments of the datasets that have more than 12000 datapoints and 12 dimensions. How-
ever, this threat may be mitigated based on the observation from the results that our
approach needs only the first 20%–30% of the datasets to stabilize the number of the
correct binding-decisions. Regarding the external validity, our study does not explicitly
associate the built predictive-models to the software/hardware properties of machines
or to the machine/network load. To reduce this threat, our approach builds separate
predictive-models for each service instance. Additionally, each model is built as a func-
tion of the response time of an instance that is equal to sum of the execution time of the
instance on a machine and of the network latency. In this way, the models are indicative
of the network latency and the delay of machines to serve apps at the time periods and
the network locations when and where the monitoring measurements were made.

7 Conclusions and Future Work

We contributed with the specification of the conceptual model and the algorithmic
mechanisms of an autonomic controller for edge/remote instances of a mobile back-
end. The evaluation results showed that the number of the correct binding-decisions is
the 90% of the total number of decisions, the number of the monitoring data (datasets
and response times) used for reconstructing predictive models is the 20%–30% of the
total number of data, the added overhead comes to the 10%–15% of the response time of
an app, and the app response-time is decreased to the 50% of its original response-time.

A future research-direction is to consider the synchronization time (spent by the
edge/remote instances for storing datasets) in the construction of predictive models.
Another direction is to explicitly associate the predictive models to the machine and the
network properties/load. A final direction is to enhance the autonomic controller with
the capability to dynamically (de-)register service instances that are (not) available on
the Fog and the Cloud.

Acknowledgments. The work was partially funded from the Victoria University of Wellington
in New Zealand. We further express many thanks to Prof. B. Pernici for her valuable reviews.



Mobile Apps with Dynamic Bindings Between the Fog and the Cloud 553

References

1. Kaur, P., Goyal, M., Lu, J.: Pricing analysis in online auctions using clustering and regression
tree approach. In: Cao, L., Bazzan, A.L.C., Symeonidis, A.L., Gorodetsky, V.I., Weiss, G.,
Yu, P.S. (eds.) ADMI 2011. LNCS (LNAI), vol. 7103, pp. 248–257. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-27609-5 16

2. Plebani, P., et al.: Information logistics and fog computing: the DITAS approach. In: Inter-
national Conference on Advanced Information Systems Engineering, pp. 129–136 (2017)

3. Varghese, B., et al.: Realizing edge marketplaces: challenges and opportunities. IEEE Cloud
Comput. 5(6), 9–20 (2018)

4. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. 36(1), 41–
50 (2003)

5. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017)
6. Ashouri, M., Davidsson, P., Spalazzese, R.: Cloud, edge, or both? Towards decision support

for designing IoT applications. In: International Conference on Internet of Things: Systems,
Management and Security, pp. 155–162 (2018)

7. Brogi, A., Ferrari, G.L., Forti, S.: Secure cloud-edge deployments, with trust. CoRR,
abs/1901.05347 (2019)

8. Brogi, A., Forti, S.: Qos-aware deployment of IoT applications through the fog. IEEE Inter-
net Things J. 4(5), 1185–1192 (2017)

9. Deng, R., Lu, R., Lai, C., Luan, T.H., Liang, H.: Optimal workload allocation in fog-cloud
computing toward balanced delay and power consumption. IEEE Internet Things J. 3(6),
1171–1181 (2016)

10. Brogi, A., Forti, S., Ibrahim, A.: Deploying fog applications: how much does it cost, by the
way? In: International Conference on Cloud Computing and Services Science, pp. 68–77
(2018)

11. Mohan, N., Kangasharju, J.: Edge-fog cloud: a distributed cloud for Internet of Things com-
putations. In: Cloudification of the Internet of Things, pp. 1–6 (2016)

12. Mohan, N., Kangasharju, J.: Edge-fog cloud: a distributed cloud for Internet of Things com-
putations. CoRR, abs/1702.06335 (2017)

13. Brogi, A., Forti, S., Ibrahim, A.: How to best deploy your fog applications, probably. In:
International Conference on Fog and Edge Computing, pp. 105–114 (2017)

14. Gupta, H., Dastjerdi, A.V., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for modeling and
simulation of resource management techniques in the Internet of Things, edge and fog com-
puting environments. Softw. Pract. Exp. 47(9), 1275–1296 (2017)

15. Tran, D.H., Tran, N.H., Pham, C., Kazmi, S.M.A., Huh, E.-N., Hong, C.S.: OaaS: offload as
a service in fog networks. Computing 99(11), 1081–1104 (2017)

16. Guo, X., Singh, R., Zhao, T., Niu, Z.: An index based task assignment policy for achieving
optimal power-delay tradeoff in edge cloud systems. In: IEEE International Conference on
Communications, pp. 1–7 (2016)

17. Yousefpour, A., Ishigaki, G., Jue, J.P.: Fog computing: towards minimizing delay in the Inter-
net of Things. In: IEEE International Conference on Edge Computing, pp. 17–24 (2017)

18. Saurez, E., Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B.: Incremental deploy-
ment and migration of geo-distributed situation awareness applications in the fog. In: ACM
International Conference on Distributed and Event-Based Systems, pp. 258–269 (2016)

19. Richardson, L., Ruby, S.: Restful Web Services, 1st edn. O’Reilly, Sebastopol (2007)
20. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall,

Upper Saddle River (2005)
21. Fokaefs, M., Stroulia, E.: Using WADL specifications to develop and maintain REST client

applications. In: 2015 IEEE International Conference on Web Services, pp. 81–88 (2015)

https://doi.org/10.1007/978-3-642-27609-5_16


554 D. Athanasopoulos et al.

22. Smola, A.J., Vishwanathan, S.V.N.: Introduction to Machine Learning. Cambridge Univer-
sity Press, Cambridge (2008)

23. Goldsmith, S., Aiken, A., Wilkerson, D.S.: Measuring empirical computational complexity.
In: International Symposium on Foundations of Software Engineering, pp. 395–404 (2007)

24. Huang, L., Jia, J., Yu, B., Chun, B.-G., Maniatis, P., Naik, M.: Predicting execution time
of computer programs using sparse polynomial regression. In: International Conference on
Neural Information Processing Systems, pp. 883–891 (2010)

25. Athanasopoulos, D., Pernici, B.: Building models of computation of service-oriented soft-
ware via monitoring performance indicators. In: International Conference on Service-
Oriented Computing and Applications, pp. 173–179 (2015)



Re-deploying Microservices in Edge and
Cloud Environment for the Optimization

of User-Perceived Service Quality

Xiang He(B), Zhiying Tu(B), Xiaofei Xu(B), and Zhongjie Wang(B)

School of Computer Science and Technology, Harbin Institute of Technology,
Harbin, China

september hx@outlook.com,

{tzy hit,xiaofei,rainy}@hit.edu.cn

Abstract. Deploying microservices in edge computing environment
shortens the distance between users and services, and consequently,
improves user-perceived service quality. Because of resource constraints
of edge servers, the number and Service Level Agreement (SLA) of
microservices that could be deployed on one edge server are limited.
This paper considers user mobility, i.e., location changes of massive users
might significantly result in deterioration of user-perceived service qual-
ity. We propose a method of looking for an optimized microservice re-
deployment solution by means of add, remove, adjust, and switch, to
make sure service quality that massive users perceive always conforms to
their expectations. Three algorithms are adopted for this purpose, and
an experiment in real-world edge-cloud environment is also conducted
based on Kubernetes to re-deploy microservice systems automatically.

Keywords: Microservices · Edge and cloud environment · Service
system re-deployment · Service quality · User mobility

1 Introduction

Recently, lots of research have been conducted on Cloud - Edge - Mobile devices
architecture in Edge Computing. In such architecture, the distance between users
and services can be shortened by deploying services on edge servers. Microser-
vices architecture and container technology have been adopted so that the ser-
vices can be easily deployed, and services can be migrated to a cloud-native
architecture [1], which makes the system adapt to the user demand changes.

User demands cannot remain unchanged all the time. User mobility, func-
tional requirement changes, and quality expectation changes are typical changes
in user demands. Deployment of microservices in cloud and edge environment
should make changes accordingly to keep users satisfied. In this paper, we con-
sider user mobility as the trigger of microservice system re-deployment.

In this paper, the following factors are considered: (1) Multi-services: A ser-
vice system is composed of many services with different functionalities and SLAs,
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 555–560, 2019.
https://doi.org/10.1007/978-3-030-33702-5_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_42&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_42


556 X. He et al.

and a user might need to request two or more services to satisfy his needs; (2)
Multi-SLAs: Each microservice in the system might offer different SLAs; at a
certain time, its SLA is deterministic, but it would switch to another SLA after
re-deployment; (3) Multi-users: Massive users are simultaneously requesting ser-
vices, and it is necessary to keep the quality of service that a service system offers
always above their expectations; (4) Resource constraints: Computing resources
offered by each edge server is different and limited.

Our work is to look for an optimized re-deployment solution, and the main
contributions of the paper are listed below:

– We define the optimization problem of microservice system evolution which
takes multi-services, multi-SLA, and multi-users into consideration. This
extends traditional placement research to make it more fit for real world.

– We use Genetic algorithm (GA), heuristic algorithm (HA) and Artificial Bee
Colony algorithm (ABC) to look for an optimized re-deployment solution.
A set of experiments are conducted under four representative user mobility
scenarios and the results have validated algorithm performance.

– We develop a tool based on docker and Kubernetes to execute a re-deployment
solution in real-world edge-cloud computing environment, which empowers a
service system the capacity of automatic and continuous re-deployment.

The remainder of this paper is organized as follows. Section 2 introduces
definitions. Section 3 describes algorithms. Section 4 details the experimental and
protosystem. Section 5 reviews related work. Section 6 concludes the paper.

2 Problem Formulation

Definition 1 (Service). The set of services are describes as S. A service s is
described as a set of triple {(lsla, r, n)}, and for each s ∈ S: id is the unique
id which is used to distinguish different instances of the same service with the
same SLA on one server; r is how much computing resources s needs to offer the
quality level lsla; n is the maximum number of users that one instance of s with
lsla can serve concurrently.

Definition 2 (Cloud/Edge Server Node). E stands for a set of server nodes,
and a node is described as e = (type, r, loc): type ∈ {EDGE,CLOUD} is the
type of e (might be an edge server or a cloud server); r is the total computing
resources e can be provided for service instances; loc is the geographic location of
e (latitude and longitude). It is important to notice the difference between cloud
and edge nodes: computing resources in a cloud node is much more sufficient
than an edge node.

Definition 3 (Re-deployment operations on microservice instances).
OI = {adjust, add, remove, retain} is used to describe four types of re-deploy-
ment operations on a microservice instance: adjust means adjusting the quality
level of an instance; add means creating a new instance; remove means deleting
an instance; retain means keeping unchanged.



Re-deploying Microservices in Edge and Cloud Environment 557

Definition 4 (Re-deployment operations on users). OU = {switch, keep}:
switch stands for switching a user’s request on a service to another; keep means
keeping a user on the same instance before and after.

Problem Definition. A service system evolves from time t to t + δ by a set of
operations on users OU = {oU |oU ∈ OU} and a set of operations on microservice
instances OI = {oI |oI ∈ OI}. The δ means that the service system doesn’t keep
evolving all the time, only be triggered when most of the user demands are not
satisfied. The optimization problem is described below:

minCe = min(
∑

oI∈OI

cost(oI) +
∑

oU∈OU

cost(oU ))

s.t.

⎧
⎨

⎩

f(ui, euij) ∗ sla(euij) >= sla(ui, sj), ∀sj ∈ S,∀ui ∈ U(t + δ)∑
inst on ek

r(inst) <= rdesign(ek), ∀ek ∈ E(t + δ)
1 ≤ ns(inst) ≤ nsdesign(inst), ∀inst ∈ Inst(t + δ)

(1)

where Inst denotes the set of instances, euij is an instance of service sj and a
user ui’s request on sj is to be satisfied by euij . f() is a function for attenua-
tion coefficient of quality level w.r.t. the distance between a user and a service
instance. r() get the amount of computing resources that inst requires, and ns()
gets the actual number of users that inst is serving, while nsmax() gets the
maximal number of users that inst can serve concurrently.

The first constraint assures that the quality level that each user could be sat-
isfied. The second constraint assures that the total resources do not exceed the
maximal resource offering by the node. The number of users that each instance
serves cannot exceed the maximal number that the instance can serve concur-
rently, which is assured by the last constraint.

3 Algorithms

In ABC, to initialize the population, one server node is picked up randomly from
the candidate list for every service that each user requests. An instance with the
lowest cost to accept the user will be chosen, and the result is treated as the
nectar. In the employed bees phrase, a non-empty service instance will be chosen,
and all users it serves will be dispatched to other instances. In the onlooker bees
phrase, some nectar will be picked randomly and dispatched to other instances
on nodes randomly. The abandoned food sources will be replaced by solutions
randomly generated in the scout bees phrase.

In GA, the initialization process is the same as ABC. The gens represent the
instances that are chosen for the user demand for every service. Some of the
genes will be randomly chosen, and they will be adapted to other instances on
the nodes which are in their candidate lists, and exchanging parts of the gens
between two solutions is treated as the crossover.

The heuristics algorithm is based on the following heuristic rules: (1) Assign
each user to the server node that is the most closest to him; (2) Existing instances



558 X. He et al.

will be considered first. Or the cost of add and adjust is compared, and the
operation with the lower cost will be chosen; (3) User demands that cannot
satisfied by the closest server node will be assigned to the next closest node;
(4) When there are no enough computing resources, existing instances will be
merged, and instances that have no user will be removed.

4 Experiments and Prototype

4.1 Experiments Setup

In the experiments, the cellular layout is used to place edge servers. The costs of
all operations come from the average time (seconds * 10) of necessary Kubernetes
operations. It is noteworthy that Kubernetes doesn’t support dynamic resource
allocation for pods, the adjust operation has to be split into one remove and
one add. The cost of switch operation is calculated by the time that 1 MB data
needed to transfer with 100 Mbps. The costs for add, remove, adjust, retain,
switch, and keep used here are 68, 25, 94, 0, 0.8, and 0.

There are three main scenarios: (1) Group to Group: Users are gathered in
some specific locations (i.e., they are in the form of groups;) and after their
moves, they are in re-grouped; (2) Random to Group: Users are distributed
randomly, and after their moves, they are gathered in groups; (3) Group to
Random: Users are gathered in groups, and then they disperse all over the area.

4.2 Scenario 1: Group to Group

In this experiment, we evaluate our algorithms with the scenario 1. We generate
three basic scenes: Scene 1, Scene 2 and Scene 3. They are three different sit-
uations that users gather together. Three experiments were conducted: moving
from Scene 1 to 2, from Scene 2 to 3, and from Scene 3 to 1. The results are
shown in Fig. 1. The x-axis stands for the number of users in the experiment,
and the y-axis is the cost of the evolution plan that algorithm generated.

As shown in Fig. 1, the cost of evolution is linearly and positively correlated
with the number of users. As the number of users grows, more user connections
should be switched from the old server node to the new one, and more service
instances must be deployed on server nodes. It shows that our ABC algorithm
performs better than the GA and HA in all three situations. Both HA and ABC
have a huge improvement compared to GA.

4.3 Scenario 2 and 3: Random to Group and Group to Random,
and Continuous Evolution

In this experiment, we explore the situations of moving from random to group
and from group to random with 10000 users and the number of server nodes that
the users are grouped by differs from 1 to 7. The performance of the algorithms
in the situation of continuous evolution is also explored.



Re-deploying Microservices in Edge and Cloud Environment 559

(a) From Scene 1 to 2 (b) From Scene 2 to 3 (c) From Scene 3 to 1

Fig. 1: Re-deployment cost w.r.t. number of users in scenario 1

(a) Random to Groups (b) Groups to Random (c) Continuous Evolution

Fig. 2: Re-deployment cost in scenarios 2&3 and continuous evolution

The results in Fig. 2(a) and (b) show the ABC still performs better than GA
and HA in these two situations. The x-axis is the number of cluster nodes and
the y-axis is the cost of evolution plan generated by the algorithms.

For continuous evolution, we execute the re-deployment algorithm three
times: Scene 1 to 2, then 2 to 3, and back to 1. And the cost in total is the
sum of the cost. Figure 2(c) shows that ABC performs better than GA and HA.
It means ABC does not overlook the global cost of the continuous evolution
while trying to find the best solution to part of the problem, and the stability
of the algorithm and the deployment of the service system are guaranteed.

4.4 Prototype

The prototype system is built with Docker and Kubernetes. Because the user
location awareness is beyond our work, it will not detailed here.

As listed in Sect. 3, there are four types of operations that we need to imple-
ment, i.e., add, remove, adjust and switch. It’s easy to implement the switch
operation by proxy and gateway on each node, so we only illustrate how to do
add, remove and adjust operations in K8s with the command tools kubectl. We
assume that all the configuration files required by K8s are prepared in advance.

For add operation, the configuration file that related to the desired service
will be used by kubectl with node-selector attribute. What to mention is we
should label the pod with the instance that is generated by the algorithm. For
remove operation, the pod id, which is associated with the instance id label,
is passed to the command tool. Unfortunately, K8s doesn’t support dynamic



560 X. He et al.

resource allocation now, thereby the adjust operation is the combination of add
operation and remove operation.

5 Related Work

Zhang et al. [2] designed a framework for dynamic service placement based on
control and game theoretic models, aiming at optimizing hosting cost dynami-
cally in Geographically Distributed Clouds. Selimi et al. [3] studied service place-
ment in Community networks to improve the quality of experience. Mahmud
et al. [4] proposed a QoE-aware application placement policy. Wang et al. [5]
proposed an ITEM algorithm to solve the service placement of Virtual Reality
applications with consideration about the QoS and the economic operations.

To sum up, in existing works there are no enough attentions having been
paid to the changing demands of multi-users in a multi-service system that
offers multi-SLAs. Being a very common scenario in real world and objective of
our work in this paper, it is a significant extension to current research.

6 Conclusions

This paper considers user mobility to re-deploying microservices in edge and
cloud environment, which can improve user-perceived service quality. Consid-
ering the challenges of multi-services, multi-users and multi-SLAs, and by six
types of basic operations and three strategies, our methods could identify an
optimized re-deployment solution effectively. And a prototype tool has been
developed. Other types of user demand changes will be considered in future
work.

Acknowledgment. Research in this paper is partially supported by the National Key
Research and Development Program of China (No. 2017YFB1400604), the National
Science Foundation of China (61802089, 61772155, 61832004, 61832014).

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
DevOps: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

2. Zhang, Q., Zhu, Q., Zhani, M.F., Boutaba, R., Hellerstein, J.L.: Dynamic service
placement in geographically distributed clouds. IEEE J. Sel. Areas Commun. 31(12),
762–772 (2013)

3. Selimi, M., Cerdà-Alabern, L., Sánchez-Artigas, M., Freitag, F., Veiga, L.: Practical
service placement approach for microservices architecture. In: 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID),
Madrid, pp. 401–410 (2017)

4. Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya, R.: Quality of Experience
(QoE)-aware placement of applications in Fog computing environments. J. Parallel
Distrib. Comput. (2018)

5. Wang, L., Jiao, L., He, T., Li, J., Mühlhäuser, M.: Service entity placement for
social virtual reality applications in edge computing. In: IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications, Honolulu, HI, pp. 468–476 (2018)



Short Papers



Mapping Business Rules to LTL Formulas

Isaac Mackey(B) and Jianwen Su

Department of Computer Science, University of California, Santa Barbara, USA
{isaac mackey,su}@cs.ucsb.edu

1 Introduction

A business service consists of a set of business processes. A service enactment is
formed by the set of process instances serving a client. Business service rules are
conditions restricting enactments derived from policies, regulations, and service-
level agreements with clients. The problem of service provisioning [3] includes
monitoring enactments to detect violations of rules at run-time. We develop a
solution to service provisioning by modeling rules with quantitative time con-
straints and automatically generating finite state machines (FSMs) as run-time
monitors. A key step is translating a class of “simple” rules to linear temporal
logic (LTL), where known algorithms [4] can translate LTL formulas to FSMs.
The central problem of this approach is the rule translation problem: Given a
rule over a service, construct an equivalent LTL formula.

A service schema S is a finite set of process names. Each process instance is
tagged with a timestamp for its completion. A service enactment η of a service
schema S is a mapping η : S → 2N such that for each p ∈ S, η(p) is a finite set
representing the timestamps of instances of p. Business rules are formula con-
structed by the following logic language. A (timed) process atom is an expression
“p@x”, where p is a process name and x is a variable, that indicates an instance
of process p happens at timestamp x. A gap atom is an expression “x�n y”
or “x�n y” (x, y are variables and n ∈Z) representing the condition x+n � y,
x+n� y, resp. A constraint is a finite conjunction of atoms. A rule is a statement
of implication from one constraint to another. The intent of a rule φ → ψ is to
require that each set of process instances in a service enactment satisfying the
constraint φ can be extended to satisfy ψ.

We translate rules into linear temporal logic, i.e. formulas built recur-
sively from process names in a service schema S and the following connec-
tives/operators:

ϕ := p | true | false | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ → ϕ | Xϕ | Yϕ | Fϕ | Pϕ
where p ∈ S, true, false are Boolean values, and ¬,∨,∧,→ are Boolean operators,
and X (next), F (future), Y (yesterday), and P (past) are temporal operators
[1, 2]. For convenience, we use Xi (i∈Z) for i consecutive X operators when i� 0
and i consecutive Y operators when i< 0.

Given an enactment η of a service schema S, the trace πη of η is defined as
follows: if κ is the largest timestamp in η, then πη = πη[0]...πη[κ] where for each
i∈ [0..κ] and each p ∈ S, πη[i](p)= true if i∈ η(p). The technical problem studied

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 563–565, 2019.
https://doi.org/10.1007/978-3-030-33702-5

https://doi.org/10.1007/978-3-030-33702-5


564 I. Mackey and J. Su

here is: Given a set of rules R over a service schema S, is there an LTL formula
ϕ such that for each enactment η of S, η satisfies every rule in R iff πη, 0 |= ϕ?

2 Mapping Rules to LTL

Consider a business rule Initial Deposit: each client should make a payment no
later than three days after a Schedule process responds to the client’s request:

rid : {Request@x, Schedule@y, y �0 x} → {Payment@z, y �0, y �3 z}

Let ϕl and ϕr be the constraint at the left- and right-hand-side (resp.) of rid.
There is a natural (faithful) representation of ϕl and ϕr as acyclic, undirected
graphs. A rule φ → ψ (over a service schema) is simple if φ ∪ ψ is acyclic and
there is exactly one variable shared by φ and ψ. Thus, we represent a simple
rule where variable y is shared as a tree rooted at node y. rid is shown below as
the graphs for ϕl and ϕr with their common node connected by a dashed line.

y

Schedule

x

Request

y

Schedule

z

Payment

{y �0 x} {y �0 z,y �3 z}

Fig. 1. A tree-like representation of the Initial Deposit rule, where y is a shared variable

We translate these constraints by observing that an edge labeled {y �0 x}
can be captured by operators X0P, and {y �0 z, y �3 z} by operators

∨
0�i�3 X

i.
The translations of ϕl and ϕr with respect to y are

τϕl,y = Schedule∧P Request, and τϕr,y = Schedule∧∨
0�i�3 X

iPayment

rid expresses a property of all sets of Request and Schedule instances with
appropriate timestamps. This corresponds to a property of all instants of a trace
that satisfy Schedule ∧ P Request. To reflect this coverage, the implication is
placed in the scope of the G operator. Then the translation of rid is

rLTL
id : G((Schedule∧P Request)→ ∨

0�i�3 X
iPayment).

Let r : φl → φr be a simple rule with a shared variable y. τϕl,y and τϕr,y are
attained by traversing the graphs of φl and φr from the root y, converting gap
atoms into LTL operators. Then the translation γ(r) of r is G(τφl,y → τφl,y). Let
S be an arbitrary service schema and R an arbitrary set of simple rules over S.
It can be shown that all enactments η of S, η satisfies R iff πη, 0 |= ∧

r∈R γ(r).



Mapping Business Rules to LTL Formulas 565

References

1. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.)
Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-15648-8 16

2. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, 1977, pp. 46–57. IEEE (1977)

3. Su, J., Wen, L., Yang, J.: From data-centric business processes to enterprise process
frameworks. In: EDOC 2017, pp. 1–9. IEEE (2017)

4. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055090

https://doi.org/10.1007/3-540-15648-8_16
https://doi.org/10.1007/BFb0055090


A SDN/NFV Based Network Slicing Creation
System

Meng Wang, Bo Cheng(B), and Junliang Chen

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

{mengwang,chengbo,chjl}@bupt.edu.cn

Abstract. The next-generation network system is envisioned to be a
multi-service network supporting different applications with multiple
requirements. In this vision, Network SLicing (NSL) is considered a key
mechanism to create multiple virtual networks over the same physical
infrastructure. However, it is a challenging problem to deploy NSL with
great flexibility. In this paper, we propose a novel SDN/NFV based NSL
creation system, which includes the design domain, execution domain,
and infrastructure domain. With these components, tenants can create
NSL freely via an easy-to-use UI on a web browser.

Keywords: Network slicing · 5G · SDN · NFV

1 Introduction

The emerging fifth-generation (5G) network is expected to support a multitude of
applications with diverse performance requirements. Recently, Network SLicing
(NSL) [2] has been introduced as a promising solution to address this challenge.
NSL is a concept that enables the operator to provide multiple dedicated virtual
networks over a common network infrastructure. In this situation, NSL [1] is
facing a rapid change by embracing Software Defined Networking (SDN) and
Network Function Virtualization (NFV).

Although some excellent works have been done on NSL, there are still some
existing problems. Firstly, most of the current NSL systems are specific and NSLs
are difficult to reuse. Secondly, an NSL provider has to deploy NSL instances
for multiple tenants. Thirdly, although there are many NFV management and
orchestration systems, few of them can orchestrate network service by integrating
both SDN and NFV. Given these facts, we propose a novel SDN/NFV based NSL
creation system.

2 System Overview

As Fig. 1 shows, our proposed NSL creation system consists of three main
domains: design domain, execution domain, and infrastructure domain. In this
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 566–568, 2019.
https://doi.org/10.1007/978-3-030-33702-5

https://doi.org/10.1007/978-3-030-33702-5


A SDN/NFV Based Network Slicing Creation System 567

Catalogs

Design 
Environment

Yaml-Based
Description

User Development Environment Descriptor Controller
Templates

Workspace Attributes

Policies

Model Library

Policy Framework

Deploy

Verification

NSL Database MS Master

VM VM VM

VM VM VM

Container Container Container

Container Container Container

NSL Orchestrator

Resource Orchestrator

n i
a

m o
D

n g
i s

e
D

n i
a

m o
D

no
it

u c
e x

E
er

ut
cu

rt
sa

r f
nI

Execution
Engine

Descriptor 
Database

Parse
Engine

Controller

Monitor

NSLD

NSL

NS VNF

VIM WAN VIM

Network Infrastructure Resource Domain 1 Network Infrastructure Resource Domain 2 Network Infrastructure Resource Domain 3

NSLR

SDN Conroller NFV MANO
VNF

NSD

Pod
NSL

Operator

NSL Manager

VNFD

PodPod
NSLD

Parse Engine
NSL Lifecycle 

Manager

VNF VNF VNF

SDN Conroller NFV MANO
VNF

NSD

Pod
NSL

Operator

NSL Manager

VNFD

PodPod
NSLD

Parse Engine
NSL Lifecycle 

Manager

VNF VNF VNF

MS Node MS NodeMS-Proxy CLI/Agent MS-Proxy CLI/Agent

ETCD

Service
Database

Resource 
Database

API

Policy

NSLD

Fig. 1. The architecture of SDN/NFV based NSL creation system.

architecture, we mainly focus on the transport network and core network, ignor-
ing the RAN domain for simplicity.

At the design domain, there are multiple sub-services available in catalogs.
Tenants can use sub-services to design their own NLS in a drag-and-drop way.
After designing, the NLS Descriptor (NSLD) is generated.

As Fig. 1 shows, NSLD is delivered to the execution domain. It is a service
execution environment designed to manage the NSL life cycle. This microservice
architecture based domain is distributed and self-organized.

At the infrastructure domain, there are multiple VIMs and Wide Area Net-
works (WANs) connecting them. In this domain, NSL instances belonging to
different tenants run simultaneously in multiple VIMs.

3 Conclusion

In this paper, we propose a novel SDN/NFV based NSL creation system. The
design domain provides an easily-operating service design environment. The exe-
cution domain is a distributed and self-organized service execution environment
with multi-tenancy support. The infrastructure domain contains multiple net-
work infrastructure resource domains. Tenants can create NSL with great flexi-
bility and full automation.

Acknowledgement. This work was supported in part by the National Key Research
and Development Program of China No.2017YFB1400603, Natural Science Foundation
of China No.61772479.



568 M. Wang et al.

References

1. Ordonez-Lucena, J., Ameigeiras, P., López, D., Ramos-Muñoz, J.J., Lorca, J.,
Folgueira, J.: Network slicing for 5G with SDN/NFV: concepts, architectures, and
challenges. IEEE Commun. Mag. 55, 80–87 (2017)

2. Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, H., Leung, V.C.M.: Network slicing
based 5G and future mobile networks: mobility, resource management, and chal-
lenges. IEEE Commun. Mag. 55, 138–145 (2017)



Neural Adaptive Caching Approach for Content
Delivery Networks

Qilin Fan1(B), Hao Yin2, Qiang He3, Yuming Jiang4, Sen Wang1,
Yongqiang Lyu2, and Xu Zhang5

1 Chongqing University, Chongqing, China
fanqilin@cqu.edu.cn

2 Tsinghua University, Beijing, China
3 Swinburne University of Technology, Melbourne, Australia

4 Norwegian University of Science and Technology (NTNU), Trondheim, Norway
5 Nanjing University, Jiangsu, China

Keywords: Caching · Deep Reinforcement Learning ·
Quality of Service

1 Introduction

The last few years have witnessed an explosive growth in Internet traffic, stem-
ming mainly from the streaming of high-quality multi-media contents. Such a
significant growth has promoted the applications of Content Delivery Networks
(CDNs). Today’s CDN providers still use some well known cache eviction algo-
rithms such as LRU, FIFO, LRU(m) due to their simplicity for implementation
to guarantee the content availability. However, these conventional cache evic-
tion algorithms may suffer major performance degradation for the two primary
reasons. First, for the performance analysis on the existing cache eviction algo-
rithms, it is generally assumed that the content requests follow a fixed Zipf
popularity distribution, referred to as the Independent Reference Model (IRM).
However, it has been observed that the performance under synthetic versus real
data traces can vary quite greatly. Second, the majority of existing content evic-
tion algorithms develop fixed control rules for making eviction decisions based
on access time, frequency, size or their simple combinations. These rules do not
generalize to different network conditions and traffic patterns.

To overcome the aforementioned limitations, in this paper, we propose a neu-
ral adaptive caching approach, called NA-Caching, that combines the benefits of
the Recurrent Neural Network (RNN) and Deep Reinforcement Learning (DRL)
to strengthen the representation learning of content requests and make adaptive
caching decisions online with the objective of maximizing the long-term aver-
age hit rates. The experimental results driven by real-traces demonstrate that
NA-Caching outperforms several candidate methods.

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 569–570, 2019.
https://doi.org/10.1007/978-3-030-33702-5

https://doi.org/10.1007/978-3-030-33702-5


570 Q. Fan et al.

2 Methodology

We introduce a novel NA-Caching approach for the adaptive cache manage-
ment. First, we adopt the GRU framework to learn the feature embedding of
contents. There are two categories of features in focus: the contextual features
that would be variant over time and the semantic features that would not change.
The Mean Relative Squared Error (MRSE) is utilized as our loss function when
applied to heavy-tailed data. Second, we utilize Deep Q-Network (DQN) to tackle
the adaptive cache management online for the individual cache server from its
own experiences. Under a regular Reinforcement Learning (RL) framework, the
sequential decision-making problem is modeled using the Markov Decision Pro-
cess (MDP) formulation. The deep version of RL adopts Deep Neural Networks
(DNN), known as Deep Q-Network (DQN) as Q-function to approximate the
action values Q(st, at|θ), where the term θ are the parameters of the Q-network
and (st, at) represents a state-action pair. The DQN can be trained by minimiz-
ing the square of Temporal Difference (TD) error:

L(θ) = E[(yt − Q(st, at|θ))2] (1)

yt = rt + γ max
a′

Q(st+1, a
′|θ−) (2)

where yt is the target value, θ− are the parameters used to compute the
target network. Specifically, the DRL agent derives an action abase randomly
from the set of base cache management solutions with ε probability. We also
adopt the prioritized experience replay method to learn more efficiently.

3 Experimental Evaluation

The dataset is collected by a video provider company in China, which spans 2
weeks and covers 1.4 million distinct videos. To compute the results given the
limited computing resources, we sample and pick 10,000 videos randomly in the
experiment. We separate the traces into two periods: (i) the warm-up period
represents the input of the prediction of video popularity; (ii) the test period
starts immediately after the warm-up period. We compare the performance of
NA-Caching with RANDOM, FIFO, LRU, PopCaching, Optimal benchmarks.

Evaluation results shows that NA-Caching significantly outperforms RAN-
DOM, LRU, FIFO in terms of average hit rates under various cache percentages.
When the cache percentage is lower than 1%, the performance gap between NA-
Caching and Optimal is around 10%. As the cache percentage increases, this gap
reduces. In addition, we observe that the marginal benefit of cache percentage
diminishes gradually. It means that the increase in the cache capacity will no
longer improve the cache hit rate significantly, and the cache hit rate is now
limited by the distribution of the content popularity. We also observe that NA-
Caching maintains a relatively stable cache hit rate. On average, NA-Caching
outperforms PopCaching, RANDOM, FIFO, LRU by 5.1%, 30.8%, 30.6% and
16.0% respectively.



Personal Service Ecosystem (PSE)
and Its Evolution Pattern Analysis

Haifang Wang(B), Yao Fu, Zhongjie Wang, Zhiying Tu, and Xiaofei Xu

School of Computer Science and Technology,
Harbin Institute of Technology, Harbin, China

{wanghaifang,rainy,tzy hit,xiaofei}@hit.edu.cn, fy777@foxmail.com

Abstract. To profile users, based on user’s behavior logs, we present a
novel model called Personal Service Ecosystem (PSE) for delineating a
user’s preferences and a method of recovering PSE (PSER). We define
nine sub-patterns to describe the local (short-term) evolution of the pref-
erences. Aggregating local evolution sub-patterns together, we give six
types of global evolution patterns. A systematic empirical study is con-
ducted, which illustrates the usability of the models and methods.

Keywords: Personal Service Ecosystem (PSE) · User preference ·
Evolution analysis · Evolution patterns · User behavior logs

1 Introduction

A PSE looks like an “electron cloud”, i.e., multi-layer concentric tracks, and
services are distributed on different tracks in terms of the “intimacy” with the
user in a specific time slot. A PSE is divided into a set of non-overlapping
sectors based on domains these services belong to. And there exist intensive
co-use relationships among these services (called service network). In a PSE,
services, tracks, the percentage of different domains, and the network structure
among services, jointly depict the preferences and habits of a user. To model
a user’s preference by a PSE, RQ1: in terms of a user’s behavior logs of
a given time slot, how is such a PSE recovered from the logs?. To
capture the evolution of user preferences [1], the variations of PSEs of multiple
successive time slots are well analyzed. By a comprehensive observation on the
evolutions, we find these evolutions follow some common patterns. RQ2 tries
to identify what types of evolution patterns of user preference exist.
In terms of the identified global evolution patterns, RQ3: how can we judge
which specific evolution pattern an object in PSEs follows?.

To answer RQ1, a method called PSER for recovering PSE from user behav-
ior logs is presented. PSER identifies all the involved services, the domains and
the underlying co-use relationships among services, calculates the “intimacy” of
each service based on the duration and frequency of the usage, and then each
service is allocated to a specific track of the PSE based on the “intimacy”. PSER

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 571–572, 2019.
https://doi.org/10.1007/978-3-030-33702-5

https://doi.org/10.1007/978-3-030-33702-5


572 H. Wang et al.

measures the percentages of the domains and the weight attached to each co-
use relationship between two services. To address RQ2, we identify six types
of global evolution patterns for the objects in PSEs, including refugee pattern,
periodic pattern, stable pattern, fluctuant pattern, emergency pattern, zombie
pattern. To answer RQ3, for a set of successive time slots, multiple PSEs can be
recovered. We present nine sub-patterns along with three parameters to delin-
eate the local evolution of an object in PSEs. Then, the global evolution of an
object can be expressed as a set of sequential sub-patterns with specific param-
eter values. Based on the six types of global evolution patterns, several rules are
listed to judge which type of global evolution pattern an object may follow.

In experiments, to collect user behavior logs, we developed an App which
was installed on Android smartphones by 50 volunteers. One representative user
is shown in Fig. 1. Differences of users on services, domains and service network
are highlighted, which illustrates the usability of PSE. The evolution analysis of
PSEs is further studied, and details are not tried in words here.

(a) Services (b) Domains (c) Service network

Fig. 1. PSE of one representative user for a specific time slot

2 Conclusion

This paper presents a novel model to profile users, an approach for recovering a
PSE, six types of global evolution patterns of objects in PSEs, and a set of rules
to predicate the global evolution pattern a member in PSEs follows. A empirical
study is conducted, which proves the usability of the model and methods.

Acknowledgment. Research in this paper is partially supported by the National Key
Research and Development Program of China (No 2017YFB1400604), the National
Science Foundation of China (61772155, 61832014, 61832004).

Reference

1. Wang, H., Wang, Z., Xu, X.: Time-aware customer preference sensing and satisfac-
tion prediction in a dynamic service market. In: Sheng, Q.Z., Stroulia, E., Tata, S.,
Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 236–251. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46295-0 15

https://doi.org/10.1007/978-3-319-46295-0_15


Adaptive Mobile Business Process Monitoring
Service with Enhanced NFV MANO

Giovanni Meroni, Marouan Mizmizi, Pierluigi Plebani(B), and Luca Reggiani

Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Piazza Leonardo da Vinci, 32 - 20133 Milan, Italy

{giovanni.meroni,marouan.mizmizi,
pierluigi.plebani,luca.reggiani}@polimi.it

1 Introduction

The transmission of monitoring data collected by the smart devices paired with
the artifacts is crucial to properly monitor business processes not confined within
an organization premises. In this scope, the recent advancements brought by the
5G networks can be helpful [3], as the Network Function Virtualization (NFV)
Management and Orchestration (MANO) gives the possibility to create virtual
networks able to guarantee Quality of Service (QoS) requirements. At the same
time, the limitation of current NFV MANO implementations concerns the time-
invariant nature of those requirements. In fact, based on how the business process
is executed, QoS requirements may change over time.

In this context, expressing only static requirements would limit the designer
of the monitoring system to balance between the cost of an always high-rate/low-
latency configuration and the risk of being unable to receive timely information
in case of configuration with a lower cost.

The goal of this work is two-fold. Firstly, we provide a method to identify the
QoS requirements of the network connectivity used to transmit the monitoring
data, where these QoS requirements can be automatically derived from a mobile
business process model properly decorated with location and time-varying moni-
toring requirements. Secondly, we discuss the limitations of current NFV MANO
specifications with the aim of contributing in the advancement of this type of
infrastructure by also allowing the enforcement of dynamic QoS requirements.

2 A Method for Specifying Slicing Requirements

In the monitoring process relying on a 5G mobile network, for each network
device participating in the process, a set of QoS constraints has to be defined.
Such constraints are related to the specific activities currently running during
the process execution. In addition, they are dependent on the location where
and the time when the activities are executed.

This work has been funded by the Italian Project ITS Italy 2020 under the Technolog-
ical National Clusters program.

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 573–574, 2019.
https://doi.org/10.1007/978-3-030-33702-5

https://doi.org/10.1007/978-3-030-33702-5


574 G. Meroni et al.

To derive time- and location-dependent slicing requirements, we propose to
consider in the process model: (i) information on the location where activities are
supposed to be executed classifying them in three categories: trajectory-based,
path-based, and area-based; (ii) information on the duration of activities and
time dependencies. In particular, Time-BPMN [2] is adopted as an extension
of the Business Process Model and Notation (BPMN) modeling language with
specific constructs to define temporal constraints for each activity, and temporal
dependencies among activities; and (iii) the QoS requirements that should be
satisfied for the involved networked devices. Here, for each activity in a process,
four states are defined: Init, when the process is instantiated; Ready, when the
activity is ready to be started; Running, when the activity is being executed;
Terminated, when the activity has been ended. For each state, it is then possible
to define the requirements that must hold.

Once time, location, and QoS information has been included to extend the
process model, slicing requirements are generated to configure an NFV MANO.
To this aim, we developed an application1 that automatically defines slicing
requirements compliant to the ETSI GS NFV-MAN specifications for Virtual
Link Descriptor (VLD) files [1] starting from the extended process model.

3 Improving NFV-MANO for Dynamic Requirements

Based on our study, we can conclude that the following modifications should be
introduced into the NFV MANO specifications to support time- and location-
varying QoS requirements. (i) The descriptor for physical networks, base stations
and machines should include location tags. Thus, the NFV MANO would know
where these components are located and which areas they can serve. (ii) The
VLD should explicitly support the definition of time- and location-dependent
information. Therefore, the time for a network slice instantiation could be for-
malized and be known by the NFV MANO. At the same time, only the infras-
tructure components serving the requested area would be affected. (iii) Resources
should be allocated, updated and forecast according to the information provided
by the processes. To this aim, future NFV MANO should include a resource
scheduler capable of also dynamically taking into considerations issues on the
infrastructure (i.e., low network coverage area) thanks to the position informa-
tion, and either anticipating counteractions or alerting the users thanks to the
time information.

References

1. ETSI, NFVISG: GS NFV-MAN 001 V1. 1.1 Network Function Virtualisation
(NFV); Management and Orchestration (2014)

2. Gagné, D., Trudel, A.: Time-BPMN. In: CEC 2009, pp. 361–367. IEEE Computer
Society (2009)

3. Li, S., Xu, L.D., Zhao, S.: 5G Internet of things: a survey. J. Ind. Inf. Integr. 10,
1–9 (2018)

1 Source code available at https://bitbucket.org/polimiisgroup/qos5g-bpmn2vld.

https://bitbucket.org/polimiisgroup/qos5g-bpmn2vld


SATP: Sentiment Augmented Topic Popularity
Prediction on Social Media

Weizhi Gong, Zuowu Zheng, Xiaofeng Gao(B), and Guihai Chen

Shanghai Key Laboratory of Scalable Computing and Systems,
Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai 200240, China
{gongwz,waydrow}@sjtu.edu.cn,{gao-xf,gchen}@cs.sjtu.edu.cn

Abstract. In this paper we propose a topic popularity prediction model
to quantifiy popularity more accurately with senmantic information and
incorporates sentiment ino popularity prediction.

Keywords: Topic popularity prediction · Sentiment analysis ·
Popularity quantification · Social media

1 Introduction

Most existing topic popularity prediction models measure popularity simply
using forwarding or view count, ignore semantic relation between posts and
topic, which may lead to inccuracy. Therefore, we propose a model to quantify
popularity more accurately with posts’ semantic information and incorporate
sentiment into popularity prediction.

2 Model Construction

For the input of a series of posts about a certain topic, we aim to output the
predicted popularity.

We first quantify the topic popularity using posts’ forwarding number
weighted by words’ relevance WR to the topic. We use the idea of PageRank
[1] to calculate word w’s relevance to the topic WR(w) in post d, defined in
Eqn. (1):

WR(wi) =
1 − θ

|d| + θ ·
∑

j→i

ρ(wi, wj)∑

k→j

ρ(wk, wj)
·WR(wj), (1)

where |d| is the length of the post that contains wi, ρ(wi, wj) is distance between
word wi and wj , which is a linear combination of their semantic distance calcu-
lated by Word2Vec and lexical distance.

We then use MPQA subjective lexicon [3] to evaluate sentiment intensity
of the subjective words and tag 64 most popular emojis with their sentiment

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 575–577, 2019.
https://doi.org/10.1007/978-3-030-33702-5

https://doi.org/10.1007/978-3-030-33702-5


576 W. Gong et al.

intensity. With the sentiment intensity of subjective words and emojis, we cre-
ate dataset to train the hybrid architecture [2] of Bi-LSTM and convolutional
network to calculate sentiment intensity of a certain post. After getting pop-
ularity and sentiment time series, we use convolutional network to learn their
dependence and learn the history influence information of each time period and
use Autoregressive model to predict future popularity.

3 Experiments

We test our model on the Twitter data from Dec. 23, 2017 to Mar. 19, 2018
on different topics. Here we use result of topic Gun Control and Trump as an
example to illustrate performance of our model. We evaluate the accuracy of
each prediction using Mean Square Error (MSE), the result is shown in Fig. 1
and Tab. 1.

Fig. 1. Prediction performance of each model on each topic, the horizontal ordinate
represents two topics, the vertical ordinate represents MSE. The “S” prefix means
combining with sentiment intensity

Table 1. Improvement of prediction for each network when combining sentiment

S-CNN/CNN S-LR/LR S-DHCC-AR/DHCC-AR

21.39% 29.10% 38.71%

4 Conclusions

In this paper we propose a topic popularity prediction model, SATP. This model
quantifies popularity using semantic information, making the quantification more
accurate and explainable. We use the idea of Autoregressive for popularity pre-
diction. To incorporate sentiment into prediction, we use CNN to learn sentiment
and popularity’s data dependence and history influence. We evaluate SATP on
Twitter dataset by comparing mean square error (MSE ).



SATP: Sentiment Augmented Topic Popularity Prediction on Social Media 577

Acknowledgement. This work was supported by the National Key R&D
Program of China [2018YFB1004703]; the National Natural Science Foundation of
China [61872238, 61672353]; the Shanghai Science and Technology Fund [17510740200];
the Huawei Innovation Research Program [HO2018085286]; the State Key Laboratory
of Air Traffic Management System and Technology [SKLAT M20180X]; and the Ten-
cent Social Ads Rhino-Bird Focused Research Program.

References

1. Gao, T., Bao, W., Li, J., Gao, X., Kong, B., Tang, Y., Chen, G., Li, X.:
DancingLines: an analytical scheme to depict cross-platform event popularity. In:
Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA
2018. LNCS, vol. 11029, pp. 283–299. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98809-2 18

2. Wang, C., Jiang, F., Yang, H.: A hybrid framework for text modeling with convo-
lutional rnn. In: ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 2061–2069 (2017)

3. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level
sentiment analysis. In: Conference on Human Language Technology and Empirical
Methods in Natural Language Processing, pp. 347–354 (2005)

https://doi.org/10.1007/978-3-319-98809-2_18
https://doi.org/10.1007/978-3-319-98809-2_18


A Hierarchical Optimizer for Recommendation
System Based on Shortest Path Algorithm

Jiacheng Dai, Zhifeng Jia, Xiaofeng Gao(B), and Guihai Chen

Shanghai Key Laboratory of Scalable Computing and Systems,
Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai 200240, China
{daijiacheng,fergusjia}@sjtu.edu.cn,

{gao-xf,gchen}@cs.sjtu.edu.cn

Abstract. Top-k Nearest Geosocial Keyword (T-kNGK) query on
geosocial network is defined to give users k recommendations based on
some keywords and designated spatial range, and can be realized by
shortest path algorithms. However, shortest path algorithm cannot pro-
vide convincing recommendations, so we design a hierarchical optimizer
consisting of classifiers and a constant optimizer to optimize the result
by some features of the service providers.

Keywords: Geosocial network · Keyword query · Spatial query

1 Problem Statement

Top-k Nearest Geosocial Keyword Search Query (T-kNGK) works on a geosocial
network. A T-kNGK query’s task is to recommend k service providers (SP’s)
that best meet the user’s requirement (keywords and location). Shortest path
algorithms are used to solve this problem. We simply take the length of the
shortest path between user u and SP v as the basis for recommendation. A
geosocial network [1] is a weighted undirected graph G = (V,E,W,K,L). We
give a simple instance Fig. 1 to illustrate its structure and contents. The weight of
an edge shows the intimacy between users or rating for SPs (mapped to [0, 1]).
Each SP v has a keyword set kv ∈ K and location lv ∈ L. The process of a
T-kNGK query is shown in Fig. 2 (together with the Hierarchical Optimizer).
The defect of T-kNGK query is that it seems to be unconvincing since it only
references one comment (one path) due to shortest path algorithm. Therefore,
we should optimize the results of T-kNGK query to enhance reliability and avoid
extreme bad cases.

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 578–580, 2019.
https://doi.org/10.1007/978-3-030-33702-5

https://doi.org/10.1007/978-3-030-33702-5


A Hierarchical Optimizer for Recommendation System 579

2 Hierarchical Optimizer

Constant Optimizer We try to let the SP’s with more comments get higher
score and reduce the score of SP’s who have few comments. We define multiplier
α to calculate the new score Scorec. αsi

= 1 + 1
β (

countsi−average

average−min1≤j≤n{countsj } )
γ

when countsi
< average and αsi

= 1 + 1
β (

countsi−average

max1≤j≤n{countsj }−average )
γ when

countsi
≥ average, where average =

Σn
j=1countsj

n , β and γ are adjustable
parameters and countsi

is the number of comments of SP si. Finally, Scorec =
αsi

× ratingsi
.

Fig. 1. An instance of geosocial
network

Fig. 2. The optimized T-kNGK query

Rank Classifier We defined four features to train a classifier which ranks the
SP’s from 1 to 5: “Matched Keyword Ratio” Ratiom = |kq∩ksi

|
|kq| , “Specific Key-

word Ratio” Ratios = |kq∩ksi
|

|ksi
| , “Count of Ratings” Countsi

, “Average Score”
Scoreavgsi

.
In the Hierarchical Optimzer, we first use Rank Classifier to rank the SP’s

we get from the shortest path algorithm and sort them by their rank. Then we
use Constant Optimizer to calculate Scorec and sort the SP’s of the same rank
by Scorec. Thus, we got the optimized results.

3 Experiments and Results

We use Yelp dataset (over 3 GB and has over 6.5 million reviews) which contains
all the data we need in the T-kNGK query and the hierarchical optimizer. For
Constant Optimizer, we set β = 5 and γ = 2. For Rank Classifier, we choose
random forest with accuracy of 82%. We use 80% of the data to train the model
and 20% to test the model. First, we run shortest path algorithm on the geoso-
cial network built on Yelp dataset and get some raw result. Then we use our
Hierarchical Optimizer to re-order the raw results and get ideal result. One of
our optimized result is shown in Fig. 3.



580 J. Dai et al.

Fig. 3. The result of optimization

Acknowledgments. This work was supported by the National Key R&D
Program of China [2018YFB1004703]; the National Natural Science Foundation of
China [61872238, 61672353]; the Shanghai Science and Technology Fund [17510740200];
the Huawei Innovation Research Program [HO2018085286]; the State Key Laboratory
of Air Traffic Management System and Technology [SKLAT M20180X]; and the Ten-
cent Social Ads Rhino-Bird Focused Research Program.

Reference

1. Sun, Y., Pasumarthy, N., Sarwat, M.: On evaluating social proximity-aware spa-
tial range queries. In: IEEE International Conference on Mobile Data Management
(MDM), KAIST, Taejeon, South Korea, pp. 72–81 (2017)



Author Index

Abdelrazek, Mohamed 86, 477
Agarwal, Shivali 431
Agastya, Chitra 243
Al-Hashimi, Bashir 390
Almi’ani, Khaled 299
Aquino, Gibeon 390
Asthana, Neeraj 243
Athanasopoulos, Dionysis 539

Bahrani, Behrooz 314
Banerjee, Ansuman 135
Baresi, Luciano 508
Barrett, Enda 251
Baudart, Guillaume 3
Bennani, Nadia 237
Binzagr, Faisal 216
Botangen, Khavee Agustus 53
Bouguettaya, Athman 369
Brogi, Antonio 523

Casati, Fabio 331
Cha, Alan 3
Chanana, Aman 243
Chang, Victor 494
Chapela-Campa, David 415
Chatterjee, Debu 331
Chattopadhyay, Soumi 135
Chen, Feifei 86, 477
Chen, Guihai 575, 578
Chen, Junliang 566
Cheng, Bo 566
Chung, Lawrence 151
Clarke, Siobhán 71
Cui, Guangming 86, 477

Dai, Jiacheng 578
Davis, James C. 3
De Giacomo, Giuseppe 102
Dell’Era, Ivan 243
Dou, Wanchun 494
Duan, Jun 243
Dumba, Braulio 345
Durán, Francisco 452

Estañol, Montserrat 102
Exposito, Ernesto 202

Fan, Qilin 569
Fernandez, Pablo 20
Forti, Stefano 523
Freymann, Andreas 36
Fu, Yao 571

Gaglianese, Marco 523
Gamez-Diaz, Antonio 20
Gandhi, Anshul 345
Gao, Xiaofeng 575, 578
Gerard, Scott 64
Ghedira-Guegan, Chirine 237
Gineste, Mathieu 202
Gong, Weizhi 575
Govindarajan, Kannan 331
Grabarnik, Genady Ya. 186
Grundy, John 86, 477

Hafeez, Ubaid Ullah 345
Han, Yanbo 231
He, Qiang 86, 477, 569
He, Xiang 555
Hosking, John 86
Howley, Enda 251
Hull, Rick 64
Hwang, Jinho 64, 186

Jayaraman, Baskar 331
Jiang, Yuming 569
Jia, Zhifeng 578
Jie, Ma 64
Jin, Hai 477
Jin, Jiong 171
Johng, Haan 151
Joosen, Wouter 267

Kalia, Anup 64
Kalia, Anup K. 151
Karakusoglu, Firat 331
Karve, Alexei 345



Katz, Michael 64
Koetter, Falko 36

Labbaci, Hamza 216
Lagaisse, Bert 267
Lai, Phu 86, 477
Lama, Manuel 415
Lan, Peng 447
Lee, Jia 461
Lee, Young Choon 299
Li, Fan 71
Li, Guangcheng 243
Li, Xiaohong 231
Liao, Zhifang 447
Liu, Chen 231
Long, Jun 447
Luo, Xin 461
Lyu, Yongqiang 569

Mackey, Isaac 563
Makki, Majid 267
Malhotra, Nikhil 431
Mandal, Atri 431
Mandel, Louis 3
Mann, Zoltán Ádám 283
Martin-Lopez, Alberto 399
McEwen, Mitchell 539
Medjahed, Brahim 216
Mendonça, Danilo Filgueira 508
Meroni, Giovanni 573
Merrett, Geoff 390
Metzger, Andreas 283
Mistry, Sajib 369
Mizmizi, Marouan 573
Mkaouer, Mohamed Wiem 58
Mucientes, Manuel 415
Muise, Christian 64

N. Toosi, Adel 314
Neiat, Azadeh Ghari 369
Nidd, Michael 186
Niedermaier, Sina 36

Orgun, Mehmet 119
Oriol, Xavier 102
Ouni, Ali 58

Pacheco, Fannia 202
Palade, Andrei 71

Palapudi, Sriram 331
Pasdar, Amirmohammad 299
Peng, Qinglan 461
Peng, Xuesong 383
Pernici, Barbara 383
Plebani, Pierluigi 573
Pointer, William 243
Prade, Johannes 283

Qi, Lianyong 494
Quattrocchi, Giovanni 508
Queiroz, Rafael 390

Rainer, Austen 539
Ray, Anupama 431
Razzaghi, Reza 314
Reggiani, Luca 573
Rocha, Camilo 452
Rofrano, John 64
Romdhani, Senda 237
Ruiz-Cortés, Antonio 20, 399

Saidani, Islem 58
Saied, Aymen 58
Salaün, Gwen 452
Segura, Sergio 399
Seidl, Robert 283
Shahzaad, Babar 369
Shaw, Rachael 251
Shen, Zhishu 171
Sheng, Quan Z. 53, 119
Shwartz, Larisa 186
Shwartz, Laura 64
Singh, Martin 314
Sohrabi, Shirin 64
Sridhara, Giriprasad 431
Su, Jianwen 563
Swarup, Daivik 431

Tagami, Atsushi 171
Taheri, Javid 353
Tavallaie, Omid 353
Teniente, Ernest 102
Thakur, Aniruddha 331
Tu, Zhiying 555, 571

Van Landuyt, Dimitri 267
Vargas-Solar, Genoveva 237

582 Author Index



Vitali, Monica 383
Vuković, Maja 64, 151

Wagner, Stefan 36
Wan, Shaohua 494
Wang, Haifang 571
Wang, Jianwu 231
Wang, Meng 566
Wang, Qing 186
Wang, Sen 569
Wang, Yan 119, 461
Wang, Zhongjie 555, 571
Wittern, Erik 3
Wu, Chunrong 461

Xia, Xiaoyu 86, 477
Xia, Yunni 461
Xiao, Jin 151
Xu, Minxian 314
Xu, Xiaofei 555, 571
Xu, Xiaolong 494

Xu, Xin 447
Xue, Yuan 494

Yabin, Dang 64
Yan, Rong 243
Yang, LiangHuai 53
Yang, Yun 86, 171
Yang, Zhongguo 231
Ye, Bin 119
Yin, Hao 569
Yongchareon, Sira 53
Yu, Jian 53

Zeng, Sai 243, 345
Zhang, Shouli 231
Zhang, Tiehua 171
Zhang, Xu 569
Zhang, Xuyun 494
Zhang, Yan 447
Zheng, Xi 171
Zheng, Zuowu 575
Zhuoxuan, Jiang 64
Zomaya, Albert Y. 353

Author Index 583


	Preface
	Organization
	Contents
	Service Engineering
	An Empirical Study of GraphQL Schemas
	1 Introduction
	2 Background
	3 Data: Two Novel GraphQL Schema Corpuses
	3.1 Commercial Corpus (Schemas Deployed in Practice)
	3.2 Open-Source Corpus (Schemas in GitHub Projects)

	4 Schema Analysis: Characteristics and Comparisons
	4.1 Schema Characteristics
	4.2 Naming Conventions
	4.3 Schema Topology and Worst-Case Response Sizes
	4.4 Delimiting Worst-Case Response Sizes Through Pagination

	5 Related Work
	6 Threats to Validity
	7 Conclusions
	References

	Automating SLA-Driven API Development with SLA4OAI
	1 Introduction
	2 Motivation and Related Work
	3 OAS in a Nutshell
	4 Our Proposal
	4.1 SLA4OAI Language
	4.2 SLA-Driven API Development Lifecycle
	4.3 Basic SLA Management Service

	5 Tool Support
	6 Validation
	7 Conclusions
	References

	On Observability and Monitoring of Distributed Systems – An Industry Interview Study
	1 Introduction
	2 Related Work
	3 Scope and Research Method
	4 Results and Discussion
	4.1 Challenges
	4.2 Requirements and Solutions

	5 Threats to Validity
	6 Conclusion
	References

	Integrating Geographical and Functional Relevance to Implicit Data for Web Service Recommendation
	1 Introduction
	2 Deriving Geographical and Functional Relevance
	3 The Recommendation Model
	4 Evaluation
	5 Conclusion and Future Work
	References

	Towards Automated Microservices Extraction Using Muti-objective Evolutionary Search
	1 Introduction
	2 Approach
	3 Empirical Evaluation
	3.1 Results

	4 Conclusions and Future Work
	References

	Towards Automated Planning for Enterprise Services: Opportunities and Challenges
	1 Introduction
	2 Use Cases
	3 Framework for AI Planning in Enterprise
	4 Challenges in AI Planning for Enterprise
	5 Conclusion
	References

	Run-Time Service Operations and Management
	A Model for Distributed Service Level Agreement Negotiation in Internet of Things
	1 Introduction
	2 Related Work
	3 System Model
	4 Hierarchical Negotiation Overlay Network (HNON)
	5 Location-Based Template Distribution
	6 Distributed SLA Negotiation
	6.1 Negotiation Request Forwarding

	7 Evaluation
	8 Conclusion and Future Work
	References

	Edge User Allocation with Dynamic Quality of Service
	1 Introduction
	2 Motivating Example
	3 Problem Formulation
	3.1 Problem Definition
	3.2 Problem Hardness

	4 Our Approach
	4.1 Integer Linear Programming Model
	4.2 Heuristic Approach

	5 Experimental Evaluation
	5.1 Baseline Approaches
	5.2 Experiment Settings
	5.3 Experimental Results and Discussion
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	References

	Automatic Business Process Model Extension to Repair Constraint Violations
	1 Introduction
	2 Generating Violation Handling Extensions in BPM
	2.1 Translating Constraints into RGDs
	2.2 Building the Dependency-Graph of RGDs
	2.3 Associating Activities to the Dependency-Graph
	2.4 Translating the Dependency-Graph into a BPMN Diagram
	2.5 Customization

	3 Executing BPM Extensions to Repair Violations
	3.1 Business Process Extension Execution Semantics
	3.2 Prototype Tool Implementation

	4 Related Work
	4.1 Constraint Repair
	4.2 Compliance in Business Process Models

	5 Conclusions
	References

	N2TM: A New Node to Trust Matrix Method for Spam Worker Defense in Crowdsourcing Environments
	1 Introduction
	2 Related Work
	2.1 Trust Value-Based Defense in Crowdsourcing
	2.2 Trust Feature-Based Defense

	3 Problem Formulation
	3.1 A Requester Taxonomy
	3.2 A Worker Taxonomy
	3.3 Crowdsourcing Trust Network (CTN)
	3.4 Problem Definition

	4 The Node to Trust Matrix (N2TM) Method
	4.1 Trust and Distrust in Paths
	4.2 Construction of a Worker Trust Matrix
	4.3 Properties of a Worker Trust Matrix

	5 Spam Worker Identification Model
	5.1 WTM Estimation Algorithm
	5.2 CNN-based Classifier

	6 Experiments
	6.1 Data Preparation
	6.2 Compared Models
	6.3 Parameter and Measure Settings
	6.4 Experimental Results

	7 Conclusion
	References

	QoS Value Prediction Using a Combination of Filtering Method and Neural Network Regression
	1 Introduction
	2 Related Work
	3 Overview and Problem Formulation
	4 Detailed Methodology
	4.1 User-Intensive Filtering
	4.2 Service-Intensive Filtering
	4.3 Find Similar Set of Users on a Similar Set of Services
	4.4 Prediction Using Neural Network Based Regression

	5 Experimental Results
	5.1 DataSets
	5.2 Comparative Methods
	5.3 Comparison Metric
	5.4 Configuration of Our Experiment
	5.5 Analysis of Results
	5.6 Impact of the Tunable Parameters on Our Experiment

	6 Conclusion
	References

	Harmonia: A Continuous Service Monitoring Framework Using DevOps and Service Mesh in a Complementary Manner
	1 Introduction
	2 Related Work
	3 Harmonia - A Continuous Service Monitoring Framework
	3.1 Ontology Alignment Among DevOps and Service Mesh Logs
	3.2 Proactive Change Detection and Notification
	3.3 Reactive Change Detection and Notification

	4 Harmonia in Action
	4.1 Experimentation Setting
	4.2 Observation and Discussion
	4.3 Threats to Validity

	5 Conclusion
	References

	Services and Data
	ESDA: An Energy-Saving Data Analytics Fog Service Platform
	1 Introduction
	2 Related Work
	3 Overview of the ESDA Fog Service Platform
	3.1 Fog-Enabled Deep Autoencoder (FEDA)
	3.2 Integrated Algorithms

	4 Experiments
	4.1 Experimental Setting
	4.2 Evaluation Results

	5 Conclusion and Future Work
	References

	Leveraging AI in Service Automation Modeling: From Classical AI Through Deep Learning to Combination Models
	1 Introduction
	2 System Overview
	2.1 Service Management Workflow
	2.2 System Architecture

	3 Problem Definition and Methodology
	3.1 Classical AI: Support Vector Machines
	3.2 Classical AI: Ensemble Methods
	3.3 Deep Learning: Convolutional Neural Networks
	3.4 Combination Models

	4 Experiments
	4.1 Dataset and Experimental Setup
	4.2 Evaluation Metrics
	4.3 Results and Discussions

	5 Related Work
	6 Conclusion and Future Work
	References

	A Wearable Machine Learning Solution for Internet Traffic Classification in Satellite Communications
	1 Introduction
	2 QoS Management in Satellite Communications
	3 Architecture Design
	3.1 Classification System
	3.2 Monitoring System
	3.3 Classification Management

	4 Implementation Design
	5 Emulated Satellite Internet Traffic
	6 Experimental Evaluation
	6.1 Classification System Results
	6.2 About the Multiplexed Connections
	6.3 About the Evolution of Internet Traffic
	6.4 About the QoS Management

	7 Conclusion
	References

	FAME: An Influencer Model for Service-Oriented Environments
	1 Introduction
	2 The FAME Approach: An Overview
	2.1 Motivation
	2.2 Architecture

	3 Influencer Identification and Prediction in FAME
	3.1 Unstructured Data Extractor (UDE)
	3.2 Structured Data Extractor (SDE)
	3.3 API Influencer Score (AIS)
	3.4 Influence Score Prediction

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	Latency-Aware Deployment of IoT Services in a Cloud-Edge Environment
	Abstract
	1 Introduction
	2 Motivation Scenario and Problem
	3 The Adaptive Service Deployment Approach
	4 Experiment
	5 Conclusion
	Acknowledgement
	References

	Trusted Data Integration in Service Environments: A Systematic Mapping
	1 Introduction
	2 Trust Challenges in Service Based Data-Provisioning
	2.1 Conducting Papers' Search and Screening
	2.2 Key-Wording Using Abstracts
	2.3 Data Extraction and Mapping Process: Quantitative Analysis

	3 Open Issues and Outlook
	4 Conclusion and Future Work
	References

	CSI2: Cloud Server Idleness Identification by Advanced Machine Learning in Theories and Practice
	1 Introduction
	2 System Design
	3 Implementation
	4 Performance Evaluation
	5 Conclusions
	References

	Services in the Cloud
	An Energy Efficient and Interference Aware Virtual Machine Consolidation Algorithm Using Workload Classification
	1 Introduction
	2 Related Research and Background
	2.1 Virtual Machine Consolidation
	2.2 Classification

	3 Energy and Interference Aware VM Consolidation
	3.1 Interference Model
	3.2 PIEA Consolidation Algorithm

	4 Classification Experimental Details and Results
	4.1 Classification Experimental Setup
	4.2 Microsoft Azure Dataset
	4.3 Error Metrics
	4.4 Classification Results

	5 Cloud Experimental Analysis
	5.1 Experimental Setup
	5.2 Cloud Performance Metrics
	5.3 Simulation Results

	6 Conclusion
	References

	Thread-Level CPU and Memory Usage Control of Custom Code in Multi-tenant SaaS
	1 Introduction
	2 Problem Statement
	3 Thread-Level Resource Usage Control
	3.1 Principal Components
	3.2 Bytecode Instrumentation

	4 Validation and Evaluation
	4.1 Implementation and Technical Setup
	4.2 Validation of F1 for Memory Usage
	4.3 Validation of F1/F2 for CPU Usage
	4.4 Evaluation of Q1
	4.5 Evaluation of Q2

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Optimized Application Deployment in the Fog
	1 Introduction
	2 Problem Formalization
	3 The FogPart Algorithm
	4 Case Study
	5 Experimental Evaluation
	6 Related Work
	7 Conclusions
	References

	Toward Cost Efficient Cloud Bursting
	1 Introduction
	2 Problem Statement
	3 Cost Efficient Cloud Bursting Scheduler
	3.1 Hybrid Cloud Scheduler
	3.2 Q-Learning Based VM Manager

	4 Evaluation
	4.1 Simulation Setup
	4.2 Results

	5 Related Work
	6 Conclusion
	References

	Optimized Renewable Energy Use in Green Cloud Data Centers
	1 Introduction
	2 Related Work
	3 System Modeling and Problem Statement
	3.1 States
	3.2 Actions
	3.3 Reward Function
	3.4 Transition Probabilities
	3.5 Optimal Policy

	4 MDP-Based Green-Aware Algorithm
	5 Performance Evaluations
	5.1 Workload Traces
	5.2 Workload Level Probabilities
	5.3 Solar Power Levels
	5.4 Evaluations with Different r Values
	5.5 Baseline Algorithms
	5.6 Experimental Results

	6 Conclusions and Future Work
	References

	Operating Enterprise AI as a Service
	1 Introduction and Motivations
	2 Related Work
	3 Background: Enterprise Business Process Management
	4 AI as an Embedded Enterprise Service
	4.1 Challenges
	4.2 AI as a Service
	4.3 Embedded ML as a BPMS Service

	5 Lessons Learned and Open Research Challenges
	References

	Towards Automated Patch Management in a Hybrid Cloud
	1 Introduction
	2 Automated Patch Management
	3 Experimental Evaluation
	4 Simulation Results
	5 Conclusion
	References

	Services on the Internet of Things
	QCF: QoS-Aware Communication Framework for Real-Time IoT Services
	1 Introduction
	2 RPL Overview
	3 QCF: QoS-Aware Communication Framework
	3.1 Creating the Parent Set
	3.2 Node Metric
	3.3 Delay Metric
	3.4 QoS Metric
	3.5 Mobility Metric
	3.6 Updating the Packet's Deadline in Each Hop

	4 Performance Evaluation
	5 Related Work
	6 Conclusion
	References

	Constraint-Aware Drone-as-a-Service Composition
	1 Introduction
	2 Motivating Scenario
	3 Related Work
	4 Multi-armed Bandit Formulation of DaaS Composition
	5 Candidate Drone Service Selection Using Skyline
	6 DaaS Composition Using Lookahead Tree Exploration
	6.1 DaaS Multi-armed Bandit Tree Lookahead

	7 Experiments and Results
	7.1 Baseline Approach
	7.2 Experimental Setup
	7.3 Results and Discussion

	8 Conclusion
	References

	An Adaptive Monitoring Service Exploiting Data Correlations in Fog Computing
	1 Introduction
	2 State of the Art
	3 Adaptive Monitoring Service
	4 Monitoring Data Reduction
	5 Validation
	6 Concluding Remarks
	References

	The Circuit Breaker Pattern Targeted to Future IoT Applications
	1 Introduction
	2 Circuit Breaker Narrowed to IoT Systems
	2.1 Structural
	2.2 Behavioural
	2.3 Communication

	3 Experimental Study
	3.1 Experimental Results

	4 Conclusions
	References

	Services in Organizations, Business and Society
	A Catalogue of Inter-parameter Dependencies in RESTful Web APIs
	1 Introduction
	2 Review Method
	2.1 Research Questions
	2.2 Subject APIs and Search Strategy
	2.3 Data Collection and Analysis

	3 Results
	3.1 Presence of Inter-parameter Dependencies
	3.2 Catalogue of Inter-parameter Dependencies

	4 Threats to Validity
	5 Related Work
	6 Conclusions and Future Work
	References

	Simplification of Complex Process Models by Abstracting Infrequent Behaviour
	1 Introduction
	2 Preliminaries
	3 WoSimp Algorithm
	3.1 Create Abstractions of Infrequent Behaviour from a Trace
	3.2 Activity Assignment to Each Abstraction

	4 Experimentation
	4.1 Datasets
	4.2 Results

	5 Conclusions
	References

	Improving IT Support by Enhancing Incident Management Process with Multi-modal Analysis
	1 Introduction
	2 Related Work
	3 Multi-modal Analysis in Incident Management
	3.1 Ticket Enrichment
	3.2 Resolution Recommendation System

	4 Dataset Details and Experiment Setup
	4.1 IT Support Ticket Data
	4.2 Image Data

	5 Evaluation
	5.1 Impact to Incident Management Process

	6 Conclusion and Future Work
	References

	A Recommendation of Crowdsourcing Workers Based on Multi-community Collaboration
	Abstract
	1 Introduction
	2 Related Work
	3 Recommendation Process
	3.1 Constructing the Worker Community Model
	3.2 Generating the Recommended List

	4 The Experiments and Their Results Analysis
	4.1 Experimental Design and Result Analysis

	5 Conclusion and Prospect
	References

	Analysis of Resource Allocation of BPMN Processes
	1 Introduction
	2 Business Process Model and Notation
	3 Resource Allocation Analysis
	References

	Services at the Edge
	Joint Operator Scaling and Placement for Distributed Stream Processing Applications in Edge Computing
	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	3.1 System Model
	3.2 Problem Formulation

	4 Proposed Joint Scaling and Placement Approach
	4.1 BGA-Based Method for Preliminary Solution
	4.2 Bottleneck-Analysis-Based Solution Refinement

	5 Experiments
	5.1 Experiment Settings
	5.2 Baseline Approaches
	5.3 Comparison of Response Time
	5.4 Comparison of Cost

	6 Conclusion and Further Work
	References

	Graph-Based Optimal Data Caching in Edge Computing
	1 Introduction
	2 Motivating Example
	3 Our Approach
	3.1 Definitions
	3.2 Edge Data Caching Optimal Model
	3.3 Problem Hardness
	3.4 A Near-Optimal Algorithm

	4 Experimental Evaluation
	4.1 Baseline Approaches
	4.2 Experimental Settings
	4.3 Experimental Results
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Load-Aware Edge Server Placement for Mobile Edge Computing in 5G Networks
	1 Introduction
	2 System Model
	2.1 Resource Model
	2.2 Transmission Delay Model
	2.3 Load Balance Model
	2.4 Problem Formulation

	3 A Load-Aware Edge Server Placement Method
	3.1 Routing Confirmation of Edge Services
	3.2 Edge Server Placement Strategy Generation Based on NSGA-II
	3.3 Edge Server Placement Strategy Selection Using SAW and MCDM
	3.4 Method Overview

	4 Experimental Evaluation
	4.1 Simulation Setup
	4.2 Performance Evaluation
	4.3 Comparison Analysis

	5 Related Work
	6 Conclusion and Future Work
	References

	PAPS: A Framework for Decentralized Self-management at the Edge
	1 Introduction
	2 Context and PAPS
	3 System-Level Self-management
	4 Community-Level Self-management
	5 Node-Level Self-management
	6 Experimental Evaluation
	7 Related Work
	8 Conclusions and Future Work
	References

	Measuring the Fog, Gently
	1 Introduction
	2 Design and Implementation of FogMon
	2.1 Follower Nodes
	2.2 Leader Nodes
	2.3 Remarks

	3 Case Study
	4 Related Work
	5 Concluding Remarks
	References

	Mobile Apps with Dynamic Bindings Between the Fog and the Cloud
	1 Introduction
	2 Related Work
	3 Conceptual Model of Autonomic Controller-as-a-Service
	3.1 API of Autonomic Controller
	3.2 Dynamic Binding-Mechanism of Autonomic Controller

	4 Autonomic Control-Loop
	4.1 Analysis Mechanism
	4.2 Planning Mechanism

	5 Experimental Evaluation
	5.1 Evaluation Results

	6 Threads to Validity
	7 Conclusions and Future Work
	References

	Re-deploying Microservices in Edge and Cloud Environment for the Optimization of User-Perceived Service Quality
	1 Introduction
	2 Problem Formulation
	3 Algorithms
	4 Experiments and Prototype
	4.1 Experiments Setup
	4.2 Scenario 1: Group to Group
	4.3 Scenario 2 and 3: Random to Group and Group to Random, and Continuous Evolution
	4.4 Prototype

	5 Related Work
	6 Conclusions
	References

	Short Papers
	Mapping Business Rules to LTL Formulas
	1 Introduction
	2 Mapping Rules to LTL
	References

	A SDN/NFV Based Network Slicing Creation System
	1 Introduction
	2 System Overview
	3 Conclusion
	References

	Neural Adaptive Caching Approach for Content Delivery Networks
	1 Introduction
	2 Methodology
	3 Experimental Evaluation

	Personal Service Ecosystem (PSE) and Its Evolution Pattern Analysis
	1 Introduction
	2 Conclusion
	References

	Adaptive Mobile Business Process Monitoring Service with Enhanced NFV MANO
	1 Introduction
	2 A Method for Specifying Slicing Requirements
	3 Improving NFV-MANO for Dynamic Requirements
	References

	SATP: Sentiment Augmented Topic Popularity Prediction on Social Media
	1 Introduction
	2 Model Construction
	3 Experiments
	4 Conclusions
	References

	A Hierarchical Optimizer for Recommendation System Based on Shortest Path Algorithm
	1 Problem Statement
	2 Hierarchical Optimizer
	3 Experiments and Results
	References


	Author Index



