
US 20190317760A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0317760 A1

KESSENTINI et al . (43) Pub . Date : Oct . 17 , 2019

(54) INTERACTIVE AND DYNAMIC SEARCH
BASED APPROACH TO SOFTWARE
REFACTORING RECOMMENDATIONS

Publication Classification
(51) Int . CI .

G06F 8 / 72 (2006 . 01)
G06F 8 / 65 (2006 . 01)

(52) U . S . CI .
CPC . G06F 8 / 72 (2013 . 01) ; G06F 8 / 65 (2013 . 01)

(71) Applicant : THE REGENTS OF THE
UNIVERSITY OF MICHIGAN , Ann
Arbor , MI (US)

(57) ABSTRACT (72) Inventors : Marouane KESSENTINI , Dearborn ,
MI (US) ; Vahid ALIZADEH ,
Dearborn , MI (US) ; Mohamed Wiem
MKAOUER , Dearborn , MI (US)

(21) Appl . No . : 16 / 386 , 551
(22) Filed : Apr . 17 , 2019

Related U . S . Application Data
(60) Provisional application No . 62 / 658 , 834 , filed on Apr .

17 , 2018 .

Refactoring improves he software design while preserving
overall functionality and behavior , and is an important
technique in managing the growing complexity of software
systems . This disclosure introduces an interactive way to
refactor software systems using innovization and interactive
dynamic multi - objective optimization . The interactive
approach supports the adaption of refactoring solutions
based on developer feedback while also taking into account
other code changes that the developer may have performed
in parallel with the refactoring activity .

Online Phase Offline Phase

Ranked list of Refactorings Interactive NSGA - II to generate
refactoring solutions :
. Objective 1 : Improve the quality

Objective 2 : Reduce the number of
refactorings Dynamic update

of refactorings ranking

New search constraints :
List of accepted , modified
and rejected refactorings .

Pareto front of best
refactoring solutions Developers action

(Accept / Modify / Reject refractoring
E B - 15 Rank refactoring solutions

based on common features
{ innovization) Ordered list of refactorings

from highest - ranked solution

Online Phase

Offline Phase

Patent Application Publication

Ranked list of Refactorings

Interactive NSGA - II to generate refactoring solutions : • Objective 1 : Improve the quality
Objective 2 : Reduce the number of

refactorings

Dynamic update of refactorings ranking

New search constraints : List of accepted , modified and rejected refactorings .

Pareto front of best refactoring solutions

44444

4 444444444
Developers action (Accept / Modify / Reject refractoring

15

Rank refactoring solutions based on common features (innovization)

Ordered list of refactorings from highest - ranked solution

Oct . 17 , 2019 Sheet 1 of 19U S 2019 / 0317760 A1

FIG . 1

Patent Application Publication Oct . 17 , 2019 Sheet 2 of 19 I US 2019 / 0317760 A1 TIO

Receive Candidate
Solutions 21

ID Particular
Candidate Solution 22

Present Refractoring
Operation 23

Receive User
Feedback - 24

M

Apply Constraints Update Source
Code 25

M

26
No Exit Yes Generate New

Candidate Solutions Yes End Condition ?

FIG . 2

Patent Application Publication Oct . 17 , 2019 Sheet 3 of 19 US 2019 / 0317760 A1

Identify Candidate
Solutions

Present Refractoring
Operation - 32

Receive User
Feedback HrininArrinerinnerinnerinnerinnerinnerinnerinnerinnerinnen 33

Rescore Candidate
Solutions 34

NO / – Exit
Condition ?

Yes

FIG . 3

Patent Application Publication

www

O Dynamic INterActive Refractoring - Main Recommended Refractoring Operations

Apply

Modify
Reject

Refactoring Operation

Ranking Score
0 . 378 0 . 369 0 . 368

extractClass (GanttProject , GanttProjectExtracted , default , Nested) moveMethod (getActiveCalendar , GanttProject , GanttProjectExtracted , default)
pushDownAttribute (bExpand , TaskImpl , Gantt Task , default

delete Method (getLength , Gantt Task)

moveAttribute (myFakeCalendar , GanttProject , Gant ProjectExtracted private) moveMethod (dependencyAdded , GanttGraphicArea , TaskDependencyEvent , default)

0 . 351 0 . 349 0 . 220

MANN

More > >

Oct . 17 , 2019 Sheet 4 of 19U S 2019 / 0317760 A1

FIG . 4

Patent Application Publication Oct . 17 , 2019 Sheet 5 of 19U S 2019 / 0317760 A1

Dynamic INterActive Refactoring - Modify a Refactoring

vv

Select Refactoring moveMethod
NNNNNNNNNNNNN

t minimiiiiiiiiiii AA Identifier getActiveCalendar Visibility
* * * * * * * * * * * * * * * * * * *

Source Class Gant Project As is
+

Target Class getActiveCalendar o Private

© Protected ???????????????????

Update references

GanttProjectExtracted
Gant GraphicArea
GanttTree
GanttProjectBase
GanttProject?mpl

O Public

ruractor Cancel

NN

FIG . 5

FIG . 6A WELL

0 . 23 , 025)

0 . 24

011013)

(071024) 017

0 . 13016032

T 010 110 . 15) 0 . 05

M - M

. .

.

. .

. .

. .

.

. . .

.

Oct . 17 , 2019 Sheet 6 of 19U S 2019 / 0317760 A1

" " " "

O

OOO .

.

WWW

M VALLL

* *

*

* * * *

w

vivivivivivivivivi

* * * * * * * * * * * * * * * * *

*

* *

* * *

MUM

WWW

Www

WWWWWWWWWWWW
W

NNNNNNNNNNNNNN

??????????? ??

*

'

'

'

'

'

'

'

Patent Application Publication

'

*

*

* * *

*

*

* * * * * * * * * * * * * * * *

*

*

*

*

*

*

*

*

*

*

* * * *

* *

* * * *

.

weeeeeeeeeeeeeeeeeeeeee

FIG . 6B

w

= = = =

= = = = = = =

Oct . 17 , 2019 Sheet 7 of 19U S 2019 / 0317760 A1

*

Valve

UUUUUUU

ve

eeeeeeee
w

a na

ananananan

?????????

???????

-

-

-

-

. . asaaaaaaaa

VMWANAM

VVV
then

* * * * * * *

LIITTYY
+ +

. .

.

+

* * * *

* * * *

* * * * *

Patent Application Publication

* * * * * * * *

Patent Application Publication

euveu veuveuwe vetvetenverveelvutvecventeu veuleuweuweuheu veu veuveviveu veu veuveviveu veut

PRTRC wwwwwwwwwwwwwwwwwwww
' ' ' ' ' ' ' ' '

' ' ' '

'

' ' ' ' '

' ' ' ' ' ' '

Z

'

wvvvvvvvvvvvvvvvvv

WWWWWWWWWWW

Y

VVVVVVVVVVVVV

MI - M2

* *

+ +

+ + + +

+ + + + + ha

t

aratatatat

+

Oct . 17 , 2019 Sheet 8 of 19U S 2019 / 0317760 A1

FIG . 6C

Patent Application Publication Oct . 17 , 2019 Sheet 9 of 19U S 2019 / 0317760 A1

Boxplot of G , NF , MC , PR , RC
ApacjeAnt

.

: : : :

.

.

.

.

. . ! . ! . ! IIIIIII !

. ,

.

, ' ' , ' ' , ' ' , '

. .

0 . 0 - - - - - . - - - . - - - - - - . . - - - . - - - . .

Method with an einen que no hi propuesta en honor om man internet pieno
MC

FIG . 7A

Boxplot of G , NF , MC , PR , RC
GanttProject

. . . .

. ! !
: : :

Method MEA PARA A mint

FIG . 7B

Patent Application Publication Oct . 17 , 2019 Sheet 10 of 19 US 2019 / 0317760 A1

Boxplot of G , NF , MC , PR , RC
JD Ford

.

*

.

* *

: : : : : : : : : : : : . . . : :
.

.
.

.

. . . :

' ' , ' ' , ' ' , ' ' , ' ' , ' ' , ' ' ,

: :

:

:
: :

:

. : :

: ' . .
0 . 1
0 . 0

Method kan huren in the part the parent than the per part

FIG . 7C

Boxplot of G , NF , MC , PR , RC
JFreeChart

.

&

. !

0 . 01

PR

FIG . 7D

Method
U

Method Muhammad a

.

Patent Application Publication

.

. . . .

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

.

.

! !

.

. .

. . . .

.

.

liamua

.

.

.

: : :

.

FIG . 7F

OW

Log4J
Boxplot of G , NF , MC , PR , RC

FIG . 7E

JHotDraw
Boxplot of G , NF , MC , PR , RC

onten yang pernah

Oct . 17 , 2019 Sheet 11 of 19

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. i

RC

.

.

. . .

.

.

US 2019 / 0317760 A1

Patent Application Publication Oct . 17 , 2019 Sheet 12 of 19 US 2019 / 0317760 A1

Boxplot of G , NF , MC , PR , RC
MROIFord

+ + ???

' '

' '

. . . .
' ' '

' '

' ' '

.

: : .

. .

. .

. .

.

.

. . .

.

.

.
. .

.

.

. 10 . 0
Method Sets RSS RESSESSARS

FIG . 7G

Boxplot of G , NF , MC , PR , RC
Nutch

4 . 2
4 1

Method SkSANAS SEARSSRSS Sike
RO

FIG . 7H

Patent Application Publication Oct . 17 , 2019 Sheet 13 of 19 US 2019 / 0317760 A1

Boxplot of G , NF , MC , PR , RC
Rhino

. . .

. . . .

. , , , …
.

“

fr
. . .

. …

. . .

. . . .

. .

.

.

.

. . , , , , , , ,

.

0 . 1
Method ESCARGERSESSES Skecks

FIG . 71
Boxplot of G , NF , MC , PR , RC

Xerces]

ETHEMENT
M

Errrrrr , ?????????

. . … .

?

. . …

Method ? ASAKARS ARRRRRRRRORS

FIG . 71

Patent Application Publication Oct . 17 , 2019 Sheet 14 of 19 US 2019 / 0317760 A1

LE
* * *

* * * * * * * * * * * * * * * * * * *

We

* * * * * * * * *

144 . . .

. . . .

FIG . 8

Patent Application Publication Oct . 17 , 2019 Sheet 15 of 19 US 2019 / 0317760 A1

Hitt *
*

. 1

FIG . 9

Patent Application Publication Oct . 17 , 2019 Sheet 16 of 19 US 2019 / 0317760 A1

LLLLLLLLLLLLLLLLLLL

* * * * *

LLLLLLLL

WILLY MILLIAN

LLLLLLLL

.

.

FIG . 10

Patent Application Publication Oct . 17 , 2019 Sheet 17 of 19 US 2019 / 0317760 A1

FIG . 11

Patent Application Publication Oct . 17 , 2019 Sheet 18 of 19 US 2019 / 0317760 A1

YYY
GanttOptions

- language : GanttLanguage
- x ; int
- y : int
- width : int
- height : int
- styleClass : String
- styleName : String
- lookAndFeel : GanttLookAndFeellnfo
- isolated : boolean
- automatic : boolean
- dragTime : boolean
- OpenTips : boolean
- redline : boolean
- locKDAVMinutes : int
- Xs Dir : String
- XS / FO : String
- workingDir : String
- myRole Manager : RoleManager
- documentsMRU : DocumentsMRU
- myUIConfig : UlConfiguration
- myChartMain Font : Font
- STaskNamePrefix : String
- toolBarPosition ; int
- bShowStatusBar : boolean
- iconSize : String

ICONS : int
+ ICONS TEXT : int
ml TEXT : int
- buttonsshow ; int
- bExportName : boolean
- bExportComplete ; boolean
- bExportRelations : boolean
- bExport3DBorders : boolean
- C $ VOptions : CSVOptions
- myMenuFont : Font
+ initByDefault ()
- startElement (String , Attributes , TransformerHandler)
- endElement (String , TransformerHandler)
- addAttribute (String , String , String , Attributeslmpl)
- emptyElement (String , Attributesimpl , TransformerHandler)

isiiiiiiiiiiiiiiiiiiiiiiiiii -

FIG . 12A

Patent Application Publication Oct . 17 , 2019 Sheet 19 of 19 US 2019 / 0317760 A1

GanttOptions
w

- x : int
- y : int
- open Tips : boolean
- xs / Dir : String
- xs / Fo : String
- iconSize : String

ICONS : int
+ TEXY + T : int
- buttonsshow : int
+ initByDefault ()
+ Save ()
getFontSpec Font)

- getFontStyle (Font)
* correct (String)
? getLanguage ()
+ getDefaultColor ()
+ getResourceColor ()
+ getLockDAVMinutes ()
* getWorkingDiro)
+ getXsiDirec ()
+ getXs / F01)
+ getOpenTips ()
+ getDragTime ()
+ getAutomatico)
* isLoaded ()
og getShowStatusBar ()

getX ()
« getY ()
+ getCSVOptions ()
? getTrueTaskNamePrefix ()
* getToolBarPosition ()
+ geticonSize ()
* getExportRelations ()
+ getExportSettings ()
+ getExportName (boolean)
+ getExportComplete (boolean)
+ getExportRelations (boolean)
* getButtonShow ()
* getButtonShow (int)

FIG . 12B

US 2019 / 0317760 A1 Oct . 17 , 2019

INTERACTIVE AND DYNAMIC SEARCH
BASED APPROACH TO SOFTWARE

REFACTORING RECOMMENDATIONS

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U . S . Provi
sional Application No . 62 / 658 , 834 , filed on Apr . 17 , 2018 .
The entire disclosure of the above application is incorpo
rated herein by reference .

FIELD

[0002] The present disclosure relates to an interactive and
dynamic search - based approach to software refactoring rec
ommendations .

fitness function (involving e . g . , code smells , software qual
ity metrics etc .) . This approach is appealing in that it is a
complete solution and requires little developer effort , but it
suffers from several serious drawbacks as well . Firstly , the
recommended refactoring sequence may change the pro
gram design radically and this is likely to cause the devel
oper to struggle to understand the refactored program .
Secondly , it lacks flexibility since the developer has to either
accept or reject the entire refactoring solution . Thirdly , it
fails to consider the developer perspective , as the developer
has no opportunity to provide feedback on the refactoring
solution as it is being created . Furthermore , as development
must halt while the refactoring process executes , fully
automated refactoring methods are not useful for floss
refactoring where the goal is to maintain good design quality
while modifying existing functionality . The developers have
to accept the entire refactoring solution even though they
prefer , in general , step - wise approaches where the process is
interactive and they have control of the refactorings being
applied .
[0007] In light of the discussion above , this disclosure
propose an approach to refactoring recommendation that (1)
provides refactoring - centric interaction based on the pref
erences and feedback of developers , (2) enables refactoring
and development to proceed in parallel and (3) collects
information in a non - intrusive manner that can be used to
inform dynamically the refactoring process in an intelligent
manner to provide better recommendations . Enabling the
developer to interact with the refactoring solution is essen
tial both to creating a better refactoring solution , and to
creating a solution that the developer understands and can
work with .
[0008] This section provides background information
related to the present disclosure which is not necessarily
prior art .

SUMMARY

BACKGROUND
[0003] Successful software products evolve through a
process of continual change . However , this process may
weaken the design of the software and make it unnecessarily
complex , leading to significantly reduced productivity ,
increased fault - proneness and cost of maintenance , and has
even led to projects being canceled . Many studies report that
software maintenance activities consume up to 90 % of the
total cost of a typical software project . It has also been
shown that software developers typically spend around 60 %
of their time in understanding the code they are maintaining .
[0004] Clearly , software developers need better ways to
manage and reduce the growing complexity of software
systems and improve their productivity . The standard solu
tion is refactoring , which involves improving the design
structure of the software while preserving its functionality .
There has been much work done on various techniques and
tools for software refactoring and these approaches can be
classified into three main categories : manual , semi - auto
mated and fully - automated approaches , as outlined below . In
manual refactoring , the developer refactors with no tool
support at all , identifying the parts of the program that
require attention and performing all aspects of the code
transformation by hand . It may seem surprising that a
developer would eschew the use of tools in this way , but
researchers have found in their empirical study of the
developers usage of the Eclipse refactoring tooling that in
almost 90 % of cases the developers performed refactorings
manually and did not use any automated refactoring tools . In
spite of its apparent popularity , manual refactoring is very
limited however , several studies have shown that manual
refactoring is error - prone , time - consuming , not scalable and
not useful for radical refactoring that requires an extensive
application of refactorings to correct unhealthy code .
[0005] By semi - automated refactoring , the situation is
referred to where a developer uses the standard refactoring
tooling available in IDEs , such as Eclipse and Netbeans , to
apply the refactorings they deem appropriate . Researchers
have analyzed data collected from 13 , 000 Java developers
using the Eclipse IDE over a 9 - month period , finding that the
trivial Rename refactoring accounted for almost 72 % of the
refactorings performed , while the combination of Rename ,
Extract Method / Variable and Move accounted for 89 . 3 % of
the total number of refactorings performed .
[0006] In fully - automated refactoring , a search - based pro
cess is employed to find an entire refactoring sequence that
improves the program in accordance with the employed

[0009] This section provides a general summary of the
disclosure , and is not a comprehensive disclosure of its full
scope or all of its features .
[0010] In one aspect , a computer - implemented method is
presented for refactoring software . The method includes :
receiving a set of candidate solutions for refactoring the
software , where each solution in the set of candidate solu
tions includes one or more refactor operations for the
software ; identifying a particular candidate solution from the
set of candidate solutions , where the particular candidate
solution includes refactor operations with highest common
ality amongst the set of candidate solutions ; presenting , by
the computer processor , a particular refactoring operation
from the particular candidate solution to a user ; receiving
feedback regarding the particular refactoring operation from
the user ; updating source code for the software based on the
feedback from the user ; and generating , by the computer
processor , another set of candidate solutions using the
updated source code , for example by applying a genetic
algorithm to a set of candidate solutions and thereby yield
ing a next generation of candidate solutions .
[0011] In another aspect , a variant of the computer - imple
mented method for refactoring software is presented . In this
variant , select candidate solutions are removed from the next
generation of candidate solutions based on feedback from
the user . For example , removing candidate solutions which

US 2019 / 0317760 A1 Oct . 17 , 2019

specific examples in this summary are intended for purposes
of illustration only and are not intended to limit the scope of
the present disclosure .

include a particular refactoring operation , such as a refac
toring operation rejected by the user .
[0012] In one embodiment , each candidate solution in the
next generation of candidate solutions is evaluated accord
ing to two fitness functions , where one of the two fitness
functions minimizes number of changes to the source code
and other of the two fitness functions maximizes software
quality .

[0013] Identifying a given candidate solution may include
calculating a composite ranking score for each candidate
solution in the set of candidate solutions , where the com
posite ranking score is calculated by computing a ranking
score for each refactor operation in a given candidate
solution based upon frequency of the refactor operation
across the set of candidate solution , and summing the
ranking score for each refactor operation in the given
candidate solution to yield the composite ranking score ,
such that the particular candidate solution is the candidate
solution having highest composite ranking score in the set of
candidate solutions .
[0014] In one embodiment , a particular refactoring opera
tion is presented by displaying an indicator to apply the
particular refactoring operation to the software , an indicator
to modify the particular refactoring operation and an indi
cator to reject the particular refactoring operation .
[0015] In response to receiving feedback from the user , a
composite ranking score is recalculated for each candidate
solution in the set of candidate solutions using the feedback
from the user . The method continues by identifying another
candidate solution from the set of candidate solutions , where
the another candidate solution has highest composite rank
ing score after the step of recalculating a composite ranking
score for each candidate solution in the set of candidate
solutions ; presenting a particular refactoring operation from
the another candidate solution to a user ; receiving feedback
regarding the particular refactoring operation from the user ;
and recalculating a composite ranking score for each for
each candidate solution in the set of candidate solutions
using the feedback from the user . The steps are repeated until
an exit condition is satisfied .
[0016] In the example embodiment , the composite ranking
score for a given candidate solution is recalculated by
adding one to the composite ranking score when the given
candidate solution includes the particular refactoring opera
tion and the feedback indicates to apply the particular
refactoring operation to the software , by adding one half to
the composite ranking score when the given candidate
solution includes the particular refactoring operation and the
feedback indicates to modify the particular refactoring
operation , and by subtracting one to the composite ranking
score when the given candidate solution includes the par
ticular refactoring operation and the feedback indicates to
reject the particular refactoring operation .
[0017] . In another aspect , a variant of the computer - imple
mented method for refactoring software is presented . In this
variant , select candidate solutions are removed from the next
generation of candidate solutions based on feedback from
the user . For example , removing candidate solutions which
include a particular refactoring operation , such as a refac
toring operation rejected by the user .
[0018] Further areas of applicability will become apparent
from the description provided herein . The description and

DRAWINGS
[0019] The drawings described herein are for illustrative
purposes only of selected embodiments and not all possible
implementations , and are not intended to limit the scope of
the present disclosure .
[0020] FIG . 1 is a diagram providing an overview of the
interactive software refactoring approach set forth in this
disclosure
[0021] FIG . 2 is a flowchart depicting an interactive
method for refactoring software ;
[0022] FIG . 3 is a flowchart depicting a portion of the
interactive method executed for a given set of candidate
solutions .
[0023] FIG . 4 illustrates exemplar refactorings recom
mended by the interactive refactoring method .
[0024] FIG . 5 illustrates recommended target classes by
the technique for a move method refactoring to modify .
[0025] FIGS . 6A - 6C are a table depicting the Tukey post
hoc analysis results between the interactive method and the
other methods
[0026] FIG . 7A - 7J are boxplots of G , NF , MC , PR , and RC
on all the ten systems based on 30 independent runs ; label
of the methods : M1 (proposed approach) = Interactive + In
novization NSGA - II , M2 = Innovization NSGA - II ,
M3 = Kessentini , M4 = Ouni , M5 = Harman , M6 = O ' Keeffe ,
M7 = Jdeodorant
[0027] FIG . 8 is a graph showing MC @ k results on the
different systems with k = 1 , 5 , 10 and 15 , respectively .
[0028] . FIG . 9 is a graph showing PR @ k results on the
different systems with k = 1 , 5 , 10 and 15 .
10029] FIG . 10 is a graph showing the median NMR , NRR
and NAR results in the different systems .
[0030] FIG . 11 is a graph showing the average productiv
ity difference (TP) results on the different tasks performed
by the three groups using the interactive approach , Quni et
al . , Harman et al .
[0031] FIGS . 12A and 12B illustrate the Gantt Options
before and after refactoring .
[0032] Corresponding reference numerals indicate corre
sponding parts throughout the several views of the drawings .

DETAILED DESCRIPTION

[0033] Example embodiments will now be described more
fully with reference to the accompanying drawings .
[0034] Refactoring is defined as the process of improving
the code after it has been written by changing its internal
structure without changing its external behavior . The idea is
to reorganize variables , classes and methods to facilitate
future adaptations and enhance comprehension . This reor
ganization is used to improve different aspects of the soft
ware quality such as maintainability , extensibility , reusabil
ity , etc . Some modern Integrated Development
Environments (IDES) , such as Eclipse , Netbeans , provide
support for applying the most commonly used refactorings ,
e . g . , move method , rename class , etc . Other types of IDEs
are also contemplated by this disclosure .
[0035] In order to identify which parts of the source code
need to be refactored , most of the existing work relies on the
notion of bad smells , also called design defects or anti

US 2019 / 0317760 A1 Oct . 17 , 2019

patterns . In this disclosure , it is assumed that code smells
have been already detected , and need to be corrected .
Typically , code smells refer to design situations that
adversely affect the development of the software . When
applying refactorings to fix design defects , software metrics
can be used as an overall indication of the quality of the new
design . For instance , high intra - class cohesion and low
inter - class coupling usually indicate a high - quality system .
Different techniques for detecting code smells are known in
the art and fall within the scope of this disclosure .
[0036] A brief overview is given about two important
aspects in the Evolutionary Multi - objective Optimization
(EMO) paradigm related to the : (1) interaction with the user
and (2) dynamicity of the problem .
[0037] Interacting with the human user means allowing
the user to inject his / her preferences into the computational
search algorithm and then using these preferences to guide
the search process . To express his / her preferences , the user
needs some preference modeling tools . The most commonly
used ones are :
[0038] Weights : Each objective is assigned a weighting
coefficient expressing its importance . The larger the weight
is , the more important the objective is .
10039] Solution ranking : The user is provided with a
sample of solutions (a subset of the current population) and
is invited to perform comparisons between pairs of equally
ranked solutions in order to differentiate between solutions
that the fitness function regards as equal .
[0040] Objective ranking : Pairwise comparisons between
pairs of objectives are performed in order to rank the
problem ' s objectives where strong conflict exists between a
pair of objectives .
10041] Reference point (also called a goal or an aspiration
level vector) : The user supplies , for each objective , the
desired level that he / she wishes to achieve . This desired
level is called aspiration level .
0042 Reservation point (also called a reservation level
vector) : The user supplies , for each objective , the accepted
level that he / she wishes to reach . This accepted level is
called reservation level .
[0043] Trade - off between objectives . The user specifies
that the gain of one unit in one objection is worth degrada
tion in some others and vice versa .
[0044] Outranking thresholds : The user specifies the nec
essary thresholds to design a fuzzy predicate modeling the
truth degress of the predicate solution x is at least as good
as solution y .
10045) Desirability thresholds : The user supplies : (1) an
absolutely satisfying objective value and (2) a marginally
infeasible objective value . These thresholds represent the
parameters that define the desirability functions .
[0046] Based on these preference modeling tools , one
observes that the goal of a preference - based EMO algorithm
is to assign different importance levels to the problem ' s
objectives with the aim to guide the search towards the
Region of Interest (ROI) that is the portion of the Pareto
Front that best matches the user preferences . In fact , usually ,
the user is not interested with the whole Pareto front and thus
he / she is searching only for his / her ROI from which the
problem ' s final solution will be selected . Several preference
based EMO algorithms have been proposed and used to
solve real problems , including but not limited to PI - EMOA ,
iTDEA , NOSGA , and DF - SMS - EMOA . There are several
algorithmic challenges that should be overcome such as the

preservation of Pareto dominance , the preservation of popu
lation diversity , the scalability with the number of objec
tives , etc .
[0047] Until now , the user ' s preferences are expressed and
handled in the objective space . It is important to highlight
that one of the original aspects of the work in this disclosure ,
as detailed later , is allowing the user (a software developer)
to express his / her preferences in the decision space and then
handling these preferences to help the user finding the most
desired refactoring solution . Moreover , this approach helps
the user in eliciting his / her preferences , which is very
important for any preference - based EMO algorithm . These
preferences are introduced implicitly by moving between the
Pareto front of non - dominated solutions after obtaining
feedback from the user about just a few parts of the solution
in order to better understand his preferences . This implicit
exploration of the Pareto front will be detailed in the next
section where the formulation of the refactoring problem is
described .
[0048] The incorporation of user preferences may require
the handling of dynamicity issues related to the introduced
changes to the solution or the input (i . e . the software
system) . Handling dynamicity in EMO means solving
dynamic problems where the objective functions and / or the
constraints may change over time due to , for example , the
dynamic nature of most of software evolution problems
including software refactoring . Applying evolutionary algo
rithms (EAS) to solve Dynamic Multi - Objective Problems
(DMOPs) has received great attention from researchers
thanks to the adaptive behavior of evolutionary computation
methods . ADMOP consists of minimizing or maximizing an
objective function vector under some constraints over time .
Its general form is the following :

Minf (x , 1) = [fi (x , t) , 12 (x , t) , . . . , fM (x , t)]
8 ; (X , 1) > 0 ,
hk (x , 1) = 0 ,

(x < x ; sx ,

j = 1 , . . . P ;
k = 1 , . . . Q ; '
i = 1 , . . . n ,

where M is the number of objective functions , t is the time
instant , P is the number of inequality constraints , Q is the
number of equality constraints , x , and x ; " correspond
respectively to the lower and upper bounds of the variable x ; .
[0049] A solution x , satisfying the (P + Q) constraints is
said to be feasible , and the set of all feasible solutions
defines the feasible search space denoted by 12 . In this
formulation , a minimization multi - objective problem is con
sidered since maximization can be easily turned into mini
mization based on the duality principle by multiplying each
objective function by - 1 and transforming the constraints
based on the duality rules .
[0050] The resolution of a multi - objective problem yields
a set of trade - off solutions , called Pareto optimal solutions or
non - dominated solutions , and the image of this set in the
objective space is called the Pareto front . Hence , the reso
lution of a multi - objective problem consists in approximat
ing the entire Pareto front . In the following , some back
ground definitions are provided related to multi - objective
optimization . It is worth noting that these definitions remain
valid in the case of DMOPs .

[0051] Definition 1 : Pareto optimality — A solution x * E
22 is a Pareto optimal if Vx E 106 and 1 = { 1 , . . . , M }

US 2019 / 0317760 A1 Oct . 17 , 2019

either Vm El we have fm (x) = fm (x *) or there is at least
one m EI such that fm (x) > fm (x *) . The definition of
Pareto optimality states the x * is Pareto optimal if no
feasible vector exists that would improve some objec
tives without causing a simultaneous worsening in at
least one other objective .

[0052] Definition 2 : Pareto dominance — A solution
u = (u1 , U2 , un) is said to dominate another solution
V = (V1 , V2 , . . . , Vn) (denoted by f (u) < f (v)) if and only
if f (u) is partially less than f (v) . In other words , VmE
{ 1 , . . . , M } we have fm (u) sfm (V) and Im E { 1 , . . .
, M } where fm (u) < fm (v) .

[0053] Definition 3 : Pareto optimal set — For a given
MOP f (x) , the Pareto optimal set is p * = { x EQ - 3x '
El , f (x ') < f (x) } .

[0054] Definition 4 : Pareto optimal front — For a given
MOP f (x) and its Pareto optimal set P * , the Pareto front
is PF * = { f (x) , x EP * } .

While particular reference is made to solving dynamic
multi - objective problems , the interactive concepts for
exploring the Pareto front are not limited to multi - objective
problems .
[0055] FIG . 1 illustrates the general approach set forth in
this disclosure . The technique comprises two main compo
nents . The first component is an offline phase , executed in
the background , when developers are modifying the source
code of the system . During this phase , the multi - objective
algorithm , NSGA - II , is executed for a number of iterations
to find the non - dominated solutions balancing the two
objectives of improving the quality , which corresponds to
minimizing the number of code smells , maximizing / preserv
ing the semantic coherence of the design and improving the
QMOOD (Quality Model for Object - Oriented Design) qual
ity metrics , and the second objective of minimizing the
number of refactorings in the proposed solutions . In the
example embodiment , the mufti - objective algorithm is the
multi - objective evolutionary algorithm , NSGA - II , as
described by Deb , K . et al in “ A Fast and Elitist Multiob
jective genetic Algorigm : NSGA - II ” IEEE Transactions on
Evolutionary Computations 6 (2) : 182 - 197 (2002) which is
incorporated here in its entirety by reference . While refer
ence is made to this particular algorithm , other types of
genetic algorithms as well as other types of multi - objective
algorithms fall within the scope of this disclosure ,
[0056] The output of this first step of the offline phase is
a set of Pareto - equivalent refactoring solutions that opti
mizes the above two objectives . The second step of the
offline phase explores this Pareto front in an intelligent
manner using innovization 14 to rank recommended refac
torings based on the common features between the non
dominated solutions . In this adaptation , it is assumed that the
most frequently occurring refactorings in the non - dominated
solutions are the most important ones . Thus , the output of
this second step of the offline phase is a set of ranked
solutions 15 based on this frequency score . In the example
embodiment , NSGA - II is able to generate not only one good
refactoring solution , but a diverse set of non - dominated
solutions . This set of refactoring solutions may include
specific patterns that make them better and different than
dominated (imperfect) refactoring solutions . To extract these
patterns , the heuristic of prioritizing the recommendation of
refactorings that are the most redundant ones among the
non - dominated solutions is used . To intuition , it seems very
likely that common patterns in the set of non - dominated

solutions are very likely to be good patterns . The opposite
situation , where some non - dominated solutions share a
pattern that is of poor quality , seems highly unlikely , though
it could plausibly occur were the poor quality pattern to be
an essential enabling feature for another pattern of high
quality . While only expressing an intuition here , innoviza
tion has proven itself to be of value later in the experiments
section .
[0057] The second component of the approach is an online
phase to manage the interaction with the developer . It
dynamically updates the ranking of recommended refactor
ings at 12 based on the feedback of the developer . In one
example , this feedback can be to approve / apply or modify or
reject the suggested refactoring one by one as a sequence of
transformations . Thus , the goal is to guide , implicitly , the
exploration of the Pareto front to find good refactoring
recommendations .
[0058] FIG . 2 further depicts the interactive method for
refactoring software . Assuming at least one execution of a
genetic algorithm , a set of candidate solutions for the
refactoring the software , along with the source code of the
software of interest , serves as an input to the interactive
method as indicated at 21 . Each candidate solution in the set
of candidate solutions includes one or more recommended
refactor operations for the software .
0059] From amongst the set of candidate solutions , a
particular candidate solution is identified at 22 , where the
particular candidate solution includes refactor operations
with highest commonality amongst the set of candidate
solutions . In one example , a ranking score for each refactor
operation in a given candidate solution is computed based
upon frequency of the refactor operation across the set of
candidate solution . The ranking score for each refactor
operation in the given candidate solution is then summed to
yield a composite ranking score for the given candidate
solution . The particular candidate solution is selected as the
candidate solution having highest composite ranking score
in the set of candidate solutions . Other techniques for
assessing commonality of refactors operations are envi
sioned by this disclosure .
[0060] One or more refactoring operations from the par
ticular candidate solution are then presented at 23 to a user ,
for example by displaying the refactor operation on a display
of the system . In the example embodiment , the refactor
operation is displayed with an indicator to apply the par
ticular refactoring operation to the software , an indicator to
modify the particular refactoring operation and an indicator
to reject the particular refactoring operation , for example as
seen in FIG . 4 . The user in turn provides feedback regarding
the particular refactoring operation .
[0061] Upon receipt of the feedback from the user at 24 ,
the source code for the software is updated at 25 based on
the feedback provided by the user . For example , the source
code is modified to implement the refactor operation when
the feedback indicates that the user accepts or want to apply
the particular refactoring operation to the software . Once the
developers approve some of the recommended refactorings ,
a set of routines / templates are executed , taking as input the
current state of the code and the list of recommended
refactorings , to generate the update refactored source code
after checking a set of pre / post conditions to make sure that
the source code compiles after refactoring . Update routines /
templates are commonly found in commercial available
integrated development environments .

US 2019 / 0317760 A1 Oct . 17 , 2019

reducing the search space and thus a fast convergence to
better solutions . Of course , the continuation of the execution
of the genetic algorithm takes as input the updated version
of the system after the interactions with developers . The
whole process continues until the developers decide that
there is no necessity to refactor the system any further .
[0067] Below an example embodiment of the interactive
software refactoring method is described in greater detail .
Algorithm 0 is the main loop in the interactive approach .
Input is the source code for the target software and the output
is the refactored software . This main loop calls Algorithm 1
as indicated at line 3 . The main loop is executed until the
user is satisfied with the refactored software or the current
recommendations are not helpful and require repairs . Pseudo
code for the main loop is as follows .

Algorithm 0 : Main algorithm of the Interactive Refactoring approach

2

Input : Software System (sys)
Output : Refactored System (refsys)
begin

while - user is satisfied OR interactionScore < 0 do
11 Execute the Interactive Dynamic Multiobjective

Algorithm with user preferences
Run Algorithm 10) :

Return refsys ; 4

10062] This interactive approach for refactoring software
can be iterative at a macro level . That is , the process is
repeated until an exit condition is met as indicated at 26 . In
one example , the user merely indicates whether they are
satisfied with the updated software and the process is
terminated . If the user remains unsatisfied with the updated
software , a new set of candidate solutions are generated at
27 , for example by applying the genetic algorithm and
thereby yielding a next generation of candidate solutions .
[0063] Previously rejected refactoring operations should
not be considered during the subsequent iteration . Thus ,
select candidate solutions are removed from the next gen
eration of candidate solutions at step 28 . More specifically ,
candidate solutions which include at least one refactoring
operation that was rejected by the user are removed from the
next generation of candidate solutions .
[0064] With the context of a set of candidate solutions , the
interactive approach for refactoring software can also be
iterative at a micro level as described in relation to FIG . 3 .
Starting with a set of candidate solutions , the interactive
session with the user starts by selecting a particular candi
date solution at 31 , where the particular candidate solution
includes refactor operations with highest commonality
amongst the set of candidate solutions as described above in
relation to step 22 . Likewise , the interactive session presents
one of refactoring operations from the particular candidate
solution to a user at 32 and in turn receives user feedback for
the particular candidate solution at 33 . These three steps are
the same as steps 22 , 23 and 24 of FIG . 2 .
10065] Next , each of the candidate solutions in the set of
candidate solutions is rescored based on the user feedback .
Based on the updated ranking of the candidate solutions and
the refactoring operations associated therewith , the interac
tive process is repeated until an exit condition is met as
indicated at 35 . In one example , there are two exit condi
tions . The first condition is when the developer decides to
stop the interactive refactoring solution , for example to
focus on functional changes . The second condition is when
the composite ranking score for one or more of the candidate
solutions becomes a negative value . In this case , it is
desirable to re - execute the genetic algorithm to generate a
new set of candidate solutions based on the user feedback .
Other types of exit conditions are contemplated by this
disclosure . Since the rankings are updated dynamically , the
interactive approach implicitly moves between non - domi
nated solutions of the Pareto front . Once an exit condition is
met , the source code can be updated and a new set of
candidate solutions may be generated . Upon the occurrence
of an exit condition at step 35 , the interactive process
continues at step 25 of FIG . 2 in the example embodiment .
[0066] With continued reference to FIG . 1 , after a number
of interactions , developers may have modified or rejected a
high number of suggested refactorings or have introduced
several new code changes (new functionalities , fix bugs ,
etc .) . Whenever the developers stop the refactoring session
by closing the suggestions window , the first component of
the approach is executed again in the background to update
the last set of non - dominated refactoring solutions , for
example by continuing the execution of NSGA - II based on
the two objectives defined in the first component but also the
new constraints summarizing the feedback of the developer .
In fact , the rejected refactorings by the developer is consid
ered as constraints to avoid generating solutions containing
several already rejected refactorings . This may lead to

[0068] In the example embodiment , a solution consists of
a sequence of n refactoring operations involving one or
multiple source code elements of the system to refactor . The
vector - based representation is used to define the refactoring
sequence . Each vector ' s dimension has a refactoring opera
tion and its index in the vector indicates the order in which
it will be applied . For every refactoring , pre - and post
conditions are specified to ensure the feasibility of the
operation .
[0069] The initial population is generated by randomly
assigning a sequence of refactorings to a randomly chosen
set of code elements , or actors . The type of actor usually
depends on the type of the refactoring it is assigned to and
also depends on its role in the refactoring operation . An actor
can be a package , class , field , method , parameter , statement
or variable . Table 1 below depicts , for each refactoring , its
involved actors and its corresponding parameters .

TABLE 1
List of considered refactorings for the solution representation

Refactorings Actors Roles
Extract class

Extract interface

Inline class
Move field

e??

class
field
method
class
method
class
class
field
class
method
class
field
class
method
class
field

source class , new class
moved fields
moved methods
source class , new interface
moved abstract methods
source class , target class
source class , target class
moved field
source class , target class
moved method
super class , subclasses
moved field
super class , subclasses
moved method
subclasses , super class
moved field

Move method

Push down field

Push down method
UU

Pull up field

US 2019 / 0317760 A1 Oct . 17 , 2019

TABLE 1 - continued - continued
List of considered refactorings for the solution representation Algorithm 1 Dynamic Interactive NSGA - II at generation t

Refactorings Actors Roles

Pull up method 12 :
13 :

Move class 14 :

class
method
package
class
method
field

subclasses , super class
moved method
source package , target package
moved class
source class , new class
moved fields

Extract method

-

ÖN

These refactorings are merely exemplars and not intended to
be limiting of the types of refactorings implemented by the
system .
[0070] The size of a solution , i . e . the vector ' s length is
randomly chosen between upper and lower bound values .
The determination of these two bounds is similar to the
problem of bloat control in genetic programming where the
goal is to identify the tree size limits . Since the number of
required refactorings depends mainly on the size of the
target system , for each target project performed , several trial
and error experiments using the HyperVolume (HV) perfor
mance indicator to determine the upper bound after which ,
the indicator remains invariant . For the lower bound , it is
arbitrarily chosen . The experiments section will specify the
upper and lower bounds used in this study . Table 2 shows an
example of a refactoring solution including three operations
applied to a simplified version of a solution applied to
JVacation v1 . 0 , a Java open - source trip management and
scheduling software .

N

N

N

M ?? ? M

N

M

M ??? ??? ??? ??? ???

Sys Get Refactored – System () ;
UserFeedback « FALSE ;

end if
S = 0 , i = 1 ;
Q Variation (Pd) ;
R = PU Qi
Per evaluate (P , C , , Sys) ;
(F1 , F2 , . . .) + NonDominatedSort (R .) ;
repeat

S , S , UF ; ;
i + i + 1

until (IS _ 1 = N)
F , Fij / / Last front to be included
if IS11 = N then

Pit1 Sii
else

P2 + 1 < - U ; - 1 - 1 Fj ;
/ * Number of points to be chosen from F , * /

K N – IP : + 11 ;
/ * Crowding distance of points in Fl * /
Crowding - Distance - Assignment (F1) ;
Quick – Sort (F1) ;
/ * Choose K solutions with largest distance * /
P + 1 = P4 + 1 U Select (F? , k) ;

end if
if t + 1 = Threshold then

UserFeedback = TRUE ;
/ * Select and rank the best front * /

29 :

??? ???

?? ??

TABLE 2
Example of a solution representation

Operation Source / entity Target entity

Move Method ctrl . booking . LodgingModel

Extract Class
ctrl . booking . Booking Controller : : handleLodging ViewEvent
(java . awt . event . ActionEvent) : void
ctrl . booking . SelectionModel : : - flightList + addFlight () : void +
clearFlight () : void
ctrl . booking . Booking Controller : : createBookings () : void

ctrl . booking . FlightList

Move Method ctrl . CoreModel

- continued

Algorithm 1 Dynamic Interactive NSGA - II at generation t

[0071] Algorithm 1 is primarily concerned with generat
ing a set of candidate solutions for refactoring the target
software . The first iteration of the algorithm identifies the
Pareto front of the non - dominated refactoring solutions
based on the fitness functions described below . Subsequent
iterations use interaction data from the user to reduce the
search space of possible refactoring solutions and improve
the future suggestions by repairing the Pareto front . Psuedo
code for this primary algorithm is set forth below .

39 :
40 :

Rank - Solution (F1) ;
Threshold < Threshold + t + 1 ;

end if
End

41 :
42 :

Algorithm 1 Dynamic Interactive NSGA - II at generation t

trim # ö ö

Input
Sys : system to evaluate , Pt : parent population
Output
Pt + 1
Begin
/ * Test if any user interaction occurred in the previous

iteration * /
if UserFeedback = TRUE then

/ * Rejected refactoring operations as constraints * /
Ct = GetConstraints () ;
/ * Updated source code after applying changes * /

Initially , a determination is made as to whether any user
interaction occurred in a previous iteration as indicated at
line 7 . If feedback is available from a previous iteration ,
rejected refactoring operations are set as constraints for the
genetic algorithm and the source code is updated based on
the user feedback .
10072] . Next , the genetic algorithm is executed as seen in
lines 14 - 35 . In each search algorithm , the variation operators
used at line 15 play the key role of moving within the search
space with the aim of driving the search towards optimal
solutions .
[0073] For the crossover , a one - point crossover operator is
used in the example embodiment . It starts by selecting and
splitting at random two parent solutions . Then , this operator

ö ö ö

US 2019 / 0317760 A1 Oct . 17 , 2019

function that counts the number of modified code elements
in a refactoring . Any solution with refactorings being per
formed on the same code elements will have better (lower)
fitness value for this objective . Such a definition of the
objective is in favor of code locality since it encourages
refactoring the same code fragment , as developers prefer to
refactor the specific elements with which they are most
familiar instead of applying scattered changes throughout
the whole system . The proposed fitness function is different
from that employed in the previous work where only the
number of applied refactorings are counted . In fact , each
refactoring type may have a different impact on the system
in terms of number of code changes it engenders , something
that can be identified using the new formulation .
[0076] With regard to maximizing software quality as an
objective , many studies have utilized structural metrics as a
basis for defining quality indicators for a good system
design . As an illustrative example , a proposed a set of
quality measures , using the ISO 9126 specification , called
QMOOD is described by J . Bansiya et al . in “ A hierarchical
model for object - oriented design quality assessment . IEEE
Transactions on Software Engineering ” . 28 (1) : 4 - 17 . '
(2002) . Each of these quality metrics is defined using a
combination of low - level metrics as detailed in Tables 3 and

TABLE 3

QMOOD metrics description .

creates two child solutions by putting , for the first child , the
first part of the first parent with the second part of the second
parent , and vice versa for the second child . This operator
must ensure the respect of the length limits by eliminating
randomly some refactoring operations . It is important to
note that in multi - objective optimization , it is better to create
children that are close to their parents in order to have a more
efficient search process . For mutation , the bit - string muta
tion operator is used that picks probabilistically one or more
refactoring operations from the solutions and replace or
modify or delete them . While the crossover operator does
not introduce or modify a refactoring of a solution but just
the sequence (a swap between refactoring of different solu
tions) , the mutation operator definitely can add or modify or
delete a refactoring when applied to any solution of the
population . When a mutation operator is applied , the goal is
to slightly change the solution for the purpose to probably
improve its fitness functions . Three operations are used for
the mutation operator that are randomly selected when a
mutation is applied to a solution . Thus , the mutation operator
can introduce new refactorings by either adding completely
new ones or modifying the controlling parameters of an
existing refactoring . For example , move method (m1 , A , B)
could be replaced by movemethod (ml , A , C) or movemethod
(m3 , A , B) , where ml , A and B are the controlling parameters
of the refactoring move method . Furthermore , the selection
operator allows to regenerate part of the population ran
domly at every iteration thus new refactoring will be intro
duced since new solutions are generated during the execu
tion process .
[0074] When applying the change operators , the different
pre - and post - conditions are checked to ensure the applica
bility of the newly generated solutions . For example , to
apply the refactoring operation movemethod a number of
necessary pre - conditions should be satisfied such as the
method and the source and target classes should exists . A
post - condition example is to check that the method exists
and was moved to the target class and did not exist anymore
in the source class . More details about the adapted pre - and
post - conditions for refactors are described by M . Fowler et
al can in Refactoring : Improving the design of existing
programs ' . Proc . Conference Name , Conference Location ,
1999 . A repair operator that randomly selects new refactor
ings to replace those creating conflicts can also be applied .
[0075] The generated solutions are evaluated at line 17
using two fitness functions : minimize the number of code
changes and maximize software quality . With regard to
minimizing the number of code changes as an objective , the
application of a specific suggested refactoring sequence may
require an effort that is comparable to that of re - implement
ing part of the system from scratch . Taking this observation
into account , it is essential to minimize the number of
suggested operations in the refactoring solution since the
designer may have some preferences regarding the percent
age of deviation with the initial program design . In addition ,
most developers prefer solutions that minimize the number
of changes applied to their design . Thus , it is formally
defined the fitness function as the number of modified
actors / code elements (packages , classes , methods , attri
butes) by the generated refactorings solution

f (x) = 2 ; _ _ " # code _ elements (R ; , x)

Design Metric Design Property Description

Design Size Design Size in
Classes (DSC)
Number Of
Hierarchies
(NOH)

Hierarchies

Average Number Abstraction
of Ancestors
(ANA)
Direct Access Encapsulation
Metric (DAM)

Coupling Direct Class
Coupling
(DCC)

Total number of classes in the
design .
Total number of “ root ” classes in
the design
(counKMaxInheritence Tree
(class) = 0) »
Average number of classes in
the inheritance tree for each
class
Ratio of the number of private
and protected attributes to the
total number of attributes in a
class .
Number of other classes a class
relates to , either through a
shared attribute or a parameter
in a method .
Measure of how related methods
are in a class in terras of used
parameters .
It can also be computed by :
1 - LackOfCohesionOfMethods
Count of number of attributes
whose type is user defined
class (es) .
Ratio of the number of inherited
methods per the total number of
methods within a class .

Cohesion Cohesion
Among
Methods of
class (CAMC)

Composition

Inheritance

Measure Of
Aggregation
(MOA)
Measure of
Functional
Abstraction
(MFA)
Number of
Polymorphic
Methods (NOP)

Polymorphism Any method that can be used by
a class and its descendants .
Counts of the number of
methods in a class excluding
private , static and final ones .
Number of public methods in class . Messaging

(1)
Class Interface
Size (CIS)
Number of
Methods (NOM)

Complexity Number of methods declared in a
class .

where x is the solution to evaluate , n is the number of
refactorings in the solution x and # code _ elements is a

US 2019 / 0317760 A1 Oct . 17 , 2019

TABLE 4
Quality attributes and their computation equations .

Quality attributes
Definition
Compulation

Reusability

where each dimension corresponds to a vocabulary term .
The cosine of the angle between two vectors is considered
as an indicator of similarity .
[0080] . With continued reference to Algorithm 1 , the inter
active component of the algorithm is executed at line 39 . The
interactive component encompasses executing Algorithm 2
and Algorithm 3 in succession . In an example embodiment ,
the interactive component is executed so long as a number
of interactions remains less than a threshold .
10081) Algorithm 2 investigates if there are some common
principles among the generated non - dominated refactoring
solutions .

Flexibility

Understandability

Algorithm 2 Rank Refactoring Operation procedure

A design with low coupling and high cohesion
is easily reused by other designs .
- 0 . 25 * Coupling + 0 . 25 * Cohesion + 0 . 5 *
Messaging + 0 . 5 * DesignSize
The degree of allowance of changes in the
design .
0 . 25 * Encapsulation - 0 . 25 * Coupl mg + 0 . 5 *
Composition + 0 . 5 * Polymorphism
The degree of understanding and the easiness
of learning the desigi
0 . 33 * Abstraction + 0 . 33 * Encapsulation - 0 . 33 *
Coupling + 0 . 33 * Cohesion - 0 . 33 *
Polymorphism - 0 . 33 * Complexity – 0 . 33 *
Design Size
Classes with given functions that are
publicly stated in interfaces to be used by
0 . 12 * Cohesion + 0 . 22 * Polymorphism + 0 . 22 *
Messaging + 0 . 22 * DesignSize - 10 . 22 * Hierarchies
Measurement of design ' s allowance to
incorporate new functional requirements .
0 . 5 * Abstraction – 0 . 5 * Coupling + 0 . 5 *
Inheritance + 0 . 5 * Polymorphism
Design efficiency in fulfilling the required
functionality .
0 . 2 * Abstraction + 0 . 2 * Encapsulation + 0 . 2 *
Composition + 0 . 2 * Inheritance + 0 . 2 *
Polymorphism

Functionality

Extendibility

10 :

Effectiveness

1 : Input
2 : NS : Non - dominated SolutionSet of the first front
3 : Output
4 : HM : HashMap of refactorings along with their occurrences .
5 : Begin
6 : HM Ø ;
7 : / * Compute the number of occurrence of each refactoring operation * /
8 : for i = 1 to | NS | do

for each j = 1 to INS ; do
/ * If a refactoring operation does not exist in the list ,
add its hash and set its occurrence number to 1 * /

11 : if (NSi ; HM) then
12 : HM – HM U Hash (NS ; . ;) ;

HM [Hash (NS .)] = 1 ;
/ * If a refactoring operation exists in the list ,
increment its occurrence number * /

else
16 : HM [Hash (NS ; ;)] = HM [Hash (NS ;)] + 1
17 : end if
18 : end for
19 : end for
20 : End

13 :
14 :

indicates text missing or illegible when filed 15 :

[0077] The QMOOD model has been used previously in
the area of search - based software refactoring and so it is
used to estimate the effect of the suggested refactoring
solutions on software quality . QMOOD has the advantage
that it defines six high - level design quality attributes (reus
ability , flexibility , understandability , functionality , extend
ibility , and effectiveness) that can be calculated using 11
lower level design metrics . Its objective function is defined
as :

The algorithm checks if the optimal refactoring solutions
have some common features such as identical refactoring
operations among most or all of the solutions , and a specific
common order / sequence in which to apply the refactorings .
To so do , a composite ranking score is calculated for each
candidate solution in the set of candidate solutions , where
the composite ranking score is calculated by computing a
ranking score for each refactor operation in a given candi
date solution based upon frequency of the refactor operation
across the set of candidate solution and summing the ranking
score for each refactor operation in the given candidate
solution to yield the composite ranking score . This example
ranking calculation is set forth below .

QA ; (S)
Quality = 5

(3)
3 LTR . ; = Ray]

where QA , is the quality attribute number i being calculated
based on the returned structural metrics from the system S .
[0078] Since it may not be sufficient to consider structural
metrics , the design coherence measures of a previous work
is used to ensure that every refactoring solution preserves
the semantics of the design . The assumption starts that the
vocabulary of an actor is borrowed from the domain termi
nology and therefore can be used to determine which part of
the domain semantics an actor encodes . Thus , two actors are
likely to be semantically similar if they use similar vocabu
laries .

n size (S ;)
[Rij = Rx , y]

j = 0 i = 0
Rank (Rx , y) = - TE [O . . . 1] In sizes ;)

MAX E [Ri , j = Rx , y]
L = 0 ; = 0

[0079] The vocabulary can be extracted from the names of
methods , fields , variables , parameters , types , etc . The design
coherence similarity is calculated between actors using an
information retrieval - based technique , namely cosine simi
larity . Each actor is represented as an n - dimensional vector ,

where Rx . , is the refactoring operation number x (index in
the solution vector) of solution number y , and n is the number
of solutions in the front . S , is the solutionof index i . All the
solutions of the Pareto front are ranked based on the score
of this measure applied to every solution .
[0082] Once the Pareto front solutions are ranked , the
second step of the interactive step is executed as described
in Algorithm 3 . The refactorings of the best solution , in

US 2019 / 0317760 A1 Oct . 17 , 2019

terms of ranking , are recommended to the developer based
on their order in the vector . In one example , the candidate
solution having the highest composite ranking score in the
set of candidate solutions is presented to the user as indi
cated at line 14 . In the example embodiment , the developer
can review the ranked list of refactorings and then apply ,
modify or reject the refactoring . If the developer prefers to
modify the refactoring , then the algorithm can help them
during the modification process as shown in FIG . 5 .
[0083] In fact , the tool proposes to the developer a set of
recommendations to modify the refactoring based on the
history of changes applied in the past and the semantic
similarity between code elements (classes , methods , etc .) .
For example , if the developer wants to modify a move
method refactoring then , having specified the source method
to move , the interactive algorithm automatically suggests a
list of possible target classes ranked based on the history of
changes and semantic similarity . This is an interesting
feature since developers often know which method to move ,
but find it hard to determine a suitable target class . The same
observation is valid for the remaining refactoring types .
Another action that the developers can select is to reject /
delete a refactoring from the list .
[0084] After every action selected by the developer , the
ranking is updated based on the user feedback as indicated
at line 26 . That is , in response to receiving feedback from the
user , a composite ranking score is recalculated for each
candidate solution in the set of candidate solutions using the
feedback from the user . In the example embodiment , the
composite rank score for a given candidate solution is
updated as follows :

[0087] To check the applicability of the refactorings , the
pre - conditions of individual refactorings on the version are
continuously checked after manual edits . Thus , the ranking
of the solutions will change after every interaction . If many
refactorings are rejected , the NSGA - II algorithm will con
tinue to execute while taking into consideration all the
feedback from developers as constraints to satisfy during the
search . The rejected refactors should not be considered as
part of the newly generated solutions and the new system
after refactoring will be considered in the input of the next
iteration of the NSGA - II .
[0088] In non - interactive refactoring systems , the set of
refactorings , suggested by the best - chosen solution , needs to
be fully executed in order to reach the solution ' s promised
results . Thus , any changes applied to the set of refactorings
such as changing or skipping some of them could deteriorate
the resulting system ' s quality . In this context , the goal of this
disclosure is to cope with the above - mentioned limitation by
granting to the developer ' s the possibility to customize the
set of suggested refactorings either by accepting , modifying
or rejecting them . One novelty of this disclosure is the
approach ' s ability to take into account the developer ' s
interaction , in terms of introduced customization to the
existing solution , by conducting a local search to locate a
new solution in the Pareto Front that is nearest to the newly
introduced changes . It is believed that the approach may
narrow the gap that exists between automated refactoring
techniques and human intensive development . It allows the
developer to select the refactorings that best matches his / her
coding preferences while modifying the source code to
update existing features .
[0089) To illustrate the interactive algorithm , the refactor
ing of JVacation v1 . 0 (https : / / sourceforge . net / projects / jva
cation) , a Java open - source trip management and scheduling
software is considered . A developer updated an existing
feature by adding one more field (Premium member ID) in
the personal information form that a user has to fill out when
booking a flight
[0090] As JVacation architecture is based on the Model /
View / Controller model , adding this extra field would trigger
small updates on the View by adding a textbox in the
personal information input form , Also the controller that
handles the booking process needs to be revised . At the
model level , an attribute needs to be added to the class that
hosts the booking information . Finally , an update on the
database level is needed to save the newly modified booking
objects .
10091] To simplify the illustration , the update has been
limited to these above - mentioned changes knowing that , in
order to completely implement this function , several other
updates may be needed in other views and controllers in
order to show , for example , the newly added field , as part of
the information related to the passengers ' records for a given
flight . The developer was asked to refactor the software
system while performing the given task , therefore , the
developer has initially launched the plugin that triggered the
interactive algorithms . The developer was assisted in only
selecting the initial default parameters for the optimization
algorithm (such as the minimum and maximum chromo
some lengths) .
[0092] After generating the upfront list of best refactoring
solutions , three solutions are selected from the Pareto front
that were involved in the interactive session to simplify this
running example . Each solution has a fitness score com

(4) size (S ;)
Rank (S ;) =) Rankt Rk , i) + (RON AppliedRefactoringsList) –

(RON RejectedRefactoringsList) +
0 . 5 * (RON ModifiedRfactorings List)

where S ; is the solution to be ranked , the first component
consists of the sum of the ranks of its operations as explained
previously and the second component will take the value of
1 if the recommended refactoring operation was applied by
the developer , or - 1 if the refactoring operation was rejected
or 0 . 5 if it was partially modified by the developer . The
recommended refactorings will be adjusted based on the
updated ranking score .
[0085] It is important to note that the ranking score for
each non - dominated solution is calculated using the
innovization component and then the solution with the
highest score is presented to the developer . In fact , refac
torings tend to be dependent on one another thus it is
important to ensure the coherence of the recommended
solution .
[0086] After a number of modified or rejected refactorings
or several new code changes introduced , the generated
Pareto front of refactoring solutions needs to be updated
since the system was modified in different locations . In this
example , refactorings from the best ranked solution are
presented to the user until the number of rejected refactoring
operations exceeds a threshold as indicated at line 12 .
Processing then returns back to complete Algorithm 1 .

US 2019 / 0317760 A1 Oct . 17 , 2019

posed of the median of quality improvement calculated
based on the structural measures of the refactored system for
each solution , and the number of operations within each
solution . The previous section describes , these fitness val
ues , for each solution , in terms of quality improvement and
refactoring effort compared to the original system values
before refactoring . This information is shown in Table 5 .

TABLE 5
Quality attributes value on the JVacation system .

Original
System Quality Attribute Solution 1 Solution 2 Solution 3

Reusability 1 . 74225
Flexibility 1 . 82

Understandability - 4 . 5408

(+ 0 . 5)
1 . 79225

(+ 0 . 001)
1 . 820

(+ 0 . 08)
- 4 . 5398

(+ 0 . 5)
1 . 21314

(+ 0 . 007)
19 . 7295
9 . 5406
0 . 198

Functionality 1 . 16314

(+ 0 . 4)
1 . 79225

(+ 0 . 001)
1 . 820

(+ 0 . 07)
- 4 . 5398

(+ 0 . 6)
1 . 21314

(+ 0 . 012)
19 . 7300

9 . 5406
0 . 202

14

(+ 0 . 5)
1 . 79225

(+ 0 . 001)
1 . 820

(+ 0 . 087)
- 4 . 5398

(+ 0 . 5)
1 . 21314

(+ 0 . 011)
19 . 7299

9 . 5406
0 . 209

19

Extendibility 19 . 7225

9 . 5406 Effectiveness
Quality Gain
Number of operations

[0095] To cope with this issue , another interesting idea
would be to calculate the overlap between solutions . Still ,
choosing the most appropriate solution can be challenging as
the developer has to manually break the tie between solu
tions by comparing between their specific refactorings . This
comparison may not be straightforward because specific
refactorings between to candidate solutions may both be of
an interest to the developer , for example , when comparing
between solution 1 and solution 2 , both solutions contain a
move - method operation that agree on moving a function
called getSaluation (but disagree on the target class .
[0096] Since this function belongs to the booking panel ,
the participating entities are of interest to the developer , so
no choice can be automatically done based on the develop
er ' s preferred entities . Moreover , both target classes (respec
tively LabelSpinner and LabelEdit) , each proposed by one
solution , belong to the same package (gui . components) and
they are semantically close , so the fitness function values
cannot be used to break the tie . In this scenario , only the
developer would be qualified to take the decision of either
accepting one operation over the other or maybe rejecting
both operations . Thus , simply filtering solutions based on
the developer ' s preferred entities may fall short in this kind
of scenarios . Furthermore , asking the developer to exhaus
tively break the tie between shortlisted solutions can become
tedious .
[0097] In this context , the interactive process differs from
simply filtering operations based on a given preference as it
learns from the developer ' s decision making and dynami
cally break the tie between Pareto - equivalent solutions by
up - grading those with the highest number of successful
recommendations (applied refactorings) while penalizing
those who contain rejected operations , To illustrate this
process , Table 6 describes each solution ' s refactorings along
with its rank after the execution of the first step of the
interactive algorithm . For the purpose of simplicity , a first
fragment of each solution is considered . The solutions are
ranked based on Equation 3 to identify the most common
refactorings between the non - dominated solutions . This is
achieved by counting the number of occurrences of opera
tion within the Pareto front solution set , this number will be
averaged by the maximum number of occurrences found .

11

[0093] One of the classic challenges in multi - objective
optimization is the choice of the most suitable solution for
the developer . The straightforward solution for this problem
would be to manually investigate all solutions , i . e . , execute
all refactoring operations for each solution and allow the
developer to compare between several refactored designs .
This task can easily become tedious due to the large number
of solutions in the Pareto front .
[0094] To facilitate the selection task , decision making
support tools can be used to automate the selection of
solutions based on the decision maker ' s preferences . In the
context , these preferences can be considered as the packages
and classes that the developer is interested in when imple
menting the requested feature . Thus , another straightforward
heuristic would be to automatically shortlist solutions that
only refactor entities that are of interest to developers .
Unfortunately , this will not necessarily reduce drastically the
number of preferred solutions especially if the system is
small .

TABLE 6

Three simplified refactoring solutions recommended for JVacation v1 . 0 .
Operation Source entity Target entity

Solution 1 fitness scores before normalization (0 . 198 , 4)

Move Method
Extract Class
Move Method
Move Method

ctrl . booking . BookingController : : handleLodgingViewEvent (java . awt . event . ActionEvent) : void
ctrl . booking . SelectionModel : : - flightList + addFlight () : void + clearFlight () : void
ctrl . booking . Booking Controller : : createBookings () : void
gui . panels . booking . b Travelers Panel : : getSalutation () . java . lang . String

Solution 1 Rank
Solution 2 fitness scores before normalization (0 . 202 , 5)

ctrl . booking . LodgingModel
ctrl . booking . FlightList
ctrl . Core Model
gui . components . LabelSpinner
3 . 960

Move Method
Move Method
Inline Class
Extract Class
Move Method

ctrl . booking . BookingController : : handleLodgingViewEvent (java . awt . event . ActionEvent) : void
gui . panels . maintenance . mLodgingsPanel : : getStart () . java . util . Date
ctrl . ModelChange Event
ctrl . booking . SelectionModel : : - travelerList + addTraveler () : void + clearTraveler () : void
gui . panels . booking . b Travelers Panel : : getSalutation () : java . lang . String

Solution 2 Rank

ctrl . booking . lodgingList
gui . components . LabelCombo
ctrl . CoreModel
ctrl . booking . Traveler List
gui . components . LabelSpinner
4 . 064

US 2019 / 0317760 A1 Oct . 17 , 2019

TABLE 6 - continued
Three simplified refactoring solutions recommended for JVacation v1 . 0 .

Operation Source entity Target entity
Solution 3 fitness scores before normalization (0 . 209 , 6)

Move Method
Move Method
Extract Class
Extract Class
Inline Class
Move Class

ctrl . booking . Booking Controller : : handleLodging ViewEvent (java . awt . event . ActionEvent) : void
gui . panels . maintenance . mLodgings Panel : : getStart () : java . util . Date
ctrl . booking . SelectionModel : : - flightList + addFlight () : void + clearFlight () : void
ctrl . booking . SelectionModel : : - travelerList + addTraveler () : void + clearTraveler () : void
ctrl . ModelChange Event
Db . factory . DBObjectFactory

Solution 3 Rank

ctrl . booking . lodgingList
gui . components . Date Edit
ctrl . booking . FlightList
ctrl . booking . TravelerList
ctrl . Core Model
db
3 . 471

TABLE 7 - continued
Four different interaction examples with the developer applied
on the refactoring solutions recommended for JVacation v1 . 0 .

Operation
Decision
Changes

Solution Set
Initial rank
Interation1
Iteration 2
Iteration3
Operation

[0098] In the interaction part , the recommended refactor
ing wanted to move a function that defines the trip ' s starting
date to a LabelCombo class . The developer thought that
moving it to DateEdit class makes more sense instead
because the return value of the moved function is of type
Date and DateEdit is semantically closer to the method . So
the refactorings were partially modified by the developer
and the ranking score of the second solution was increased
by 0 . 5 for Solution 2 but by 1 for Solution 3 since it has
already a move method operation that suggests moving the
same method to the chosen class by the developer , i . e . , the
applied operation exists in that solution .
[0099] In the third interaction , the recommended refactor
ing suggests merging two classes CoreModel and Model
ChangeEvent . The first class gathers , for a given customer ,
all his / her bookings and sums up the total price , since the
price may be later on reduced based on the customer ' s
premium number (field to be added) the developer decided
to keep the class intact and thus the operation was rejected
and so the score of the top Solution 2 was decreased by 1 .
The solution with the highest rank is selected for execution
and its related operations are shown to the user based on
their order in the vector . Table 7 summarizes the various
interactions between the developer and the suggested refac
torings from the three above mentioned solutions when
adding the new feature .

R3 : InlineClass (ctrl . ModelChange Event , ctrlCoreModel)
Rejected

Applied Refactorings List = { R1 . R2 }
RejectedRefactorings List = { R3 }

Solution1 Solution2 * Solution 3
3 . 960 4 . 064 3 . 471
3 . 960 5 . 064 (+ 1) 4 . 471 (+ 1)
3 . 960 5 . 564 (+ 0 . 5) 5 . 471 (+ 1)
3 . 960 4 . 564 (- 1) 5 . 471

R4 : ExtractClass (ctrl . booking . SelectionModel : :
flightList + addFlight () : void + clearFlight () : void ,

ctrl . booking . FlightList)
Applied

Applied Refactorings List = { RimR2 , R4 } ,
RejectedRefactorings List = { R3 }

Solution1 Solution2 Solution3 *
3 . 960 4 . 064 3 . 471
3 . 960 5 . 064 (+ 1) 4 . 471 (+ 1)
3 . 960 5 . 564 (+ 1) 5 . 471 (+ 1)
3 . 960 4 . 564 (- 1) 5 . 471

4 . 960 (+ 1) 4 . 564 6 . 471 (+ 1)

Decision
Changes
Solution Set
Initial rank
Iteration1
Iteration2
Iteration3
Iteration4

TABLE 7
Four different interaction examples with the developer applied
on the refactoring solutions recommended for JVacation v1 . 0 .

Operation

Decision
Changes
Solution Set
Initial rank
Interation1
Operation

R1 : MoveMethod (ctrl . booking . Booking Controller
: : handleLodgingViewEvent ; void ,

ctrl . booking . LodgingList)
Applied

AppliedRefactorings List = { R1 }
RejectedRefactorings List = { }

Solution1 Solution2 * Solution3
3 . 960 4 . 064 3 . 471
3 . 960 5 . 064 (+ 1) 4 . 471 (+ 1)

R2 : Move Method (gui . panels . maintenance .
mLodgings Panel : : getStart () : java . util . Date ,

guicomponents . LabelCombo)
Modified to : R2 :

MoveMethod (gui . panels . maintenance .
mLodgingsPanel : : getStart () : java . util . Date ,

guicomponents . Date Edit)
AppliedRefactorings List = { R1 , R2 } ,

RejectedRefactorings List = { }
Solution1 Solution 2 * Solution3

3 . 960 4 . 064 3 . 471
3 . 960 5 . 064 (+ 1) 4 . 471 (+ 1)
3 . 960 5 . 564 (+ 0 . 5) 5 . 471 (+ 1)

[0100] The first recommended refactoring of the top
ranked solution (Solution 2) suggests moving an event
function from the controller class of the booking process ,
since the developer is required to investigate this class and
since this function is not called during the booking proce
dure , moving it out of the class will reduce the number of
investigated functions , so the operation was applied by the
developer and accordingly the ranking score was increased
by 1 for both Solutions 2 and 3 since they include this
refactoring in their solutions .
[0101] Upon the rejection of the third suggested refactor
ing , the ranking score of solution 3 has become higher than
the one of solution 2 , this has triggered the fourth recom
mended operation to be issued from solution 3 instead . All
the refactorings that belong to the intersection between
solution 3 and the lists of applied / rejected refactorings will
be skipped during the recommendation process .
[0102] For instance , the first and second operation of
solution 3 will be skipped as they have been already applied
by the developer , and the third operation will be suggested
during the fourth interaction . This operation suggests the
extraction of a class from the selection mode of the booking
process . Since this refactoring will facilitate the distinction
between functions related to the flight from those related to
the passengers , the developer has approved the operation .
The algorithm will stop recommending new refactorings
either on the request of the developer or when the system

Decision

Changes

Solution Set
Initial rank
Interation1
Interation2

US 2019 / 0317760 A1 Oct . 17 , 2019

achieves acceptable quality improvement in terms of reduc
ing the number of design defects and improving quality
metrics . These parameters can be specified by the developer
or the team manager .
[0103] To evaluate the ability of the refactoring frame
work to generate good refactoring recommendations , a set of
experiments were conducted based on eight open source
systems and two industrial projects . The obtained results are
subsequently statistically analyzed with the aim of compar
ing the proposal with a variety of existing approaches . The
relevant data related to our experiments and a demo about
the main features of the tool can be found in http : / / kessen
tini . net / tse18 . The research questions and validation meth
odology were presented followed by experimental setup .
Then the obtained results were described and discussed .
[0104] Three categories of research questions were
defined to measure the correctness , relevance and benefits of
the interactive multi - objective refactoring approach compar
ing to the state of the art based on several practical scenarios .
It is important to evaluate , first , the correctness of the
recommended refactoring . Since it is not sufficient to make
correct refactoring recommendations , the benefits of apply
ing the recommended refactorings in terms of fixing code
smells and improving quality attributes were evaluated .
Programmers are not interested , in practice , to apply all the
correct and useful recommended refactorings due to limited
resources thus both the relevance of our recommendations
and the ranking efficiency from programmers perspective
based on several real - world scenarios including productivity
and post - study questionnaires were evaluated . Various exist
ing refactoring approaches were considered as a baseline for
this proposed interactive refactoring technology to define an
accurate estimation of possible improvements .
[0105] The research questions are as follows :
[0106] RQ1 : Correctness , Relevance and Comparison

with State of The Art .
[0107] RQ1 - a : Correctness . To what extent the results
of our approach are similar to the ones proposed by
developers compared to fully - automated refactoring
techniques ?

10108] RQ1 - b : Benefits - antipatterns correction . To
what extent code smells can be fixed using our
approach compared to fully - automated refactoring
techniques ?

[0109] RQ1 - c : Benefits - improving quality . To what
extent can our approach improve the overall quality of
software systems compared to fully - automated refac
toring techniques ?

[0110] RQ1 - d : Relevance to programmers . To what
extent can our approach make meaningful recommen
dations compared to fully - automated refactoring tech
niques ?

[0111] RQ2 : Interaction Relevance . To what extent can our
approach efficiently rank the recommended refactorings :

[0112] RQ3 : Impact based on Practical Scenarios .
[0113] RQ3 - a : To what extent our approach can
improve the productivity of programmers when fixing
bugs compared to fully - automated refactoring tech
niques ?

[0114] RQ3 - b : To what extent our approach can
improve the productivity of programmers when adding
new features compared to fully - automated refactoring
techniques ?

[0115] To answer the research questions described above ,
an overview about the adopted validation methodology that
include the following tasks are given :

[0116] Task 1 : Generate date for baseline methods by
using other existing state - of - the - art automated refac
toring tools and methods offline . (RQla - d)

[0117] Task - 2 : Manually refactor a system . (RQla) .
[0118] Task - 3 : Use the tool (DINAR) to collect final set
of recommendations (RQ1a - d , RQ2) .

[0119] Task - 4 : Rate solutions and recommendations of
different methods and tools . (RQ1d , RQ2)

[0120] Task - 5 : Code smells detection after refactoring .
(RQ1b)

[0121] Task 6 : Measure quality metrics after refactor
ing . (RQ1c)

[0122] Task 7 : Fix bugs on refactored / unrefactored sys
tems . (RQ3a)

[0123] Task 8 : Implement features on refactored / un
refactored systems . (RQ3b)

[0124] Task 9 : Post - study questionnaire . (RQ3c)
[0125] For each task , different evaluation metrics (Preci
sion , Recall , number of fixed antipatterns , the quality gain ,
manual correctness , number of modified / rejected / accepted
recommendations and execution time) which are described
in this section are defined and used . These metrics are
calculated and compared for different refactoring techniques
which are applied on a variety of software projects under the
specific above scenarios . Table 8 shows the summary of the
connections between the research questions , metrics and
tasks detailed in this section .

TABLE 8

Summary of the research questions , their goals , defined metrics to answer and analyze
them , and the associated tasks to collect data and calculate the metrics .

RQ # RQ Goal Sub - RQ Sub - Goal Metric (s) Task (s) #
RQ1 Relevant

Solutions
RQ1 - a Similarity RC , PR 1 , 2 , 3

1 , 3 , 5
1 , 3 , 6
1 , 3 , 4
3 , 4 RQ2 Efficient ranking

RQ1 - b Fixing code smells NF
RQ1 - C Overall quality
RQ1 - d Meaningful recommendation MC

NAR , NRR , NMR ,
PR @ k , MC @ k

RQ - 3a Productivity / fixing bugs
RQ3 - b Productivity / adding features
RQ3 - C questionnaire

Q3 Usefulness TP

US 2019 / 0317760 A1 Oct . 17 , 2019

6 and Gai = 91 - 9

[0126] In order to have a consistent comparison , the
refactoring solutions recommended by the approach after all
interactions with the developers (last set of solutions) is
considered . Therefore , these sets of refactoring solutions are
referred to as the approach results afterward . To create a
baseline , the participants in the study are asked to analyze
and apply manually several refactoring types using Eclipse
IDE on several code fragments extracted from different
systems where most of them correspond to code smells
identified in previous studies as worth removing by refac
toring . This golden set is defined based on the following two
main criteria : 1 refactorings that fix a design flaw and did
not change the behavior or introduce bugs , and 2) refactor
ings that improve a set of quality metrics (based on the
QMOOD model) and did not change the behavior or intro
duce bugs . These refactoring solutions are referred to as
expected refactorings afterward .
[0127] To answer RQ1 , it is important to validate the
proposed refactoring solutions from both quantitative and
qualitative perspectives . For RQ1 - a , precision and recall
scores are calculated to compare between refactorings rec
ommended by each approach and those expected based on
the participants opinion :

where q ; and q ; represents the value of the QMOOD quality
attribute i after and before refactoring , respectively . For
RQ1 - d , the participant is asked in the study to evaluate ,
manually , whether the suggested refactorings are feasible
and efficient at improving the software quality and achieving
their maintainability objectives . The metric Manual Correct
ness (MC) is defined to mean the number of meaningful
refactorings divided by the total number of recommended
refactorings . The meaningful refactorings are recognized by
taking the majority of votes from the developers . This
procedure is analogous to the real - world situations based on
our the experience with industrial partners . Therefore , MC is
given by the following equation

Meaningful Refactorings
MC = + Recommended Refactorings

Approach Solution Expected Refactoringsm factorings e [0 , 1] an RCrecall = = Expected Refactorings

DD PRprecision =
Approach Solution? Expected Refactorings

Approach Solution torings e [0 , 1]

[0128] When calculating the precision and recall , a refac
toring is considered as a correct recommendation if all the
controlling parameters are the same like the expected ones .
For RQ1 - b , another quantitative evaluation is considered
which is the percentage of fixed code smells (NF) by the
refactoring solution . The detection of code smells after
applying a refactoring solution is performed using the detec
tion rules described by M . Kessentini et al of Design Defects
Detection and Correction by Example “ , IEEE 19th Interna
tional Conference on Program Comprehension (ICPC) '
(2011 . 2011) . Formally , NF is defined as :

0129] To avoid the computation of the MC metric being
biased by the developer ' s feedback , the developers are asked
to manually evaluate the correctness of the recommended
refactorings of the approach on the systems that they did not
refactor using the tool . Therefore , the developers did not
evaluate the results of their own results of interactive
refactoring but the resultant refactorings recommended on
other systems where other developers applied the approach .
The main motivation for the manual correctness metric is
evaluated manually on each refactoring one - by - one to check
their validity . Thus , the results produced by the different
tools were evaluated were not limited to the comparison
with the expected results . The comparison with the expected
results to provide an automated way to evaluate the results
and avoid the developers being biased by the results of the
tool (developers did not know anything about the refactor
ings suggested by the different tools when they provided
their recommendations) .
[0130] The metrics MC , RC , PR , NF and G are used to
perform the comparisons and answer respectively RQla - d .
Some other useful metrics were considered to answer RQ2
that count the percentage of refactorings that were accepted
(NAR) or rejected (NRR) or applied with some modifica
tions (NMR) . Formally , these metrics are defined as :

(7) NF =
fixed code smells

code smells - € [0 , 11

(10) # Accepted Refactorings
NAR = LE [0 , 1] # Recommended Refactorings

(11) NRR =
Rejected Refactorings

Recommended Refactorings 10 , ce [0 , 1]
(12) # Modified Refactorings

NMR = ' # Recommended Refactorings

The detection of code smells is very subjective and some
developers prefer not to fix some smells because the code is
stable or some of them are not important to fix . To this end ,
we considered for RQ1 - c another metric , G , based on
QMOOD that estimates the quality improvement of the
system by comparing the quality before and after refactoring
independently from the number of fixed design defects . The
average of the six QMOOD attributes were used : reusability ,
flexibility , understandability , Extendability , Functionality
and effectiveness . All of them are formalized using a set of
quality metrics . Hence , the gain for each of the considered
QMOOD quality attributes and the average total gain in
quality after refactoring can be easily estimated as :

[0131] To answer RQ2 , the relevance of the recommended
refactorings were evaluated in the top k where k = 1 , 5 , 10 and
15 using the following metrics PR @ k and MC @ k . The same
equations defined for RQ1 with the only difference that the
considered suggested refactorings are exclusively those

US 2019 / 0317760 A1 Oct . 17 , 2019
14

located in the top k positions of the ranked list of refactor
ings at multiple instances after the execution of the innoviza
tion component .
[0132] To answer RQ3 , the aim to assess how the refac
toring actually increases the software quality and produc
tivity in that the effort to fixing bugs (R3 - a) or adding new
features (R3 - b) should reduce after performing the refactor
ings . The software developers were asked to participated in
the study to add new features and fix a set of bugs . To avoid
that the achieved results might be due to the different levels
of ability of the developers groups , a counter - balanced
design was adapted where each participant performed two
tasks , one on the original system and one on the refactored
system . The details of these scenarios will be described later .
To estimate the impact of the suggested refactorings on the
productivity of developers , the following metric TP was
defined to measure the time required to perform the same
activities on the system with and without refactoring :

number of updates performed on both systems , it is critical
to ensure that they remain of high quality so to reduce the
time required by developers to introduce new features in the
future .
[0136] These 10 systems were selected for our validation
because they range from medium to large - sized open - source
projects , which have been actively developed over the past
10 years , and their design has not been responsible for a
slowdown of their developments . Table 9 provides some
descriptive statistics about these 10 programs .

TABLE 9
Statistics of the studied software projects

Code
smells

Applicable
Refactorings System Release # classes KLOC

61 240
21

170
41

22
51

80
36
96

60
0 61 (13)

Xerces - J
JHotDraw
JFreeChart
Gantt Project
Apache Ant
Rhino
Log4J
Nutch
JDI
MROI

V2 . 7 . 0
V6 . 1
v1 . 0 . 9
v1 . 10 . 2
v1 . 8 . 2
v1 . 7R1
v1 . 2 . 1
v1 . 1
v5 . 8
V6 . 4

991
585
521
245
1191
305
189
207
638
786

minutes required to perform
task i on the system after refactoring
minutes required to perform task i

on the system before refactoring

79 50
TP ; = 0

247
264

24
94
119

The productivity results were compared to other approaches
to test the hypothesis if better quality of the software may
increase the productivity of developers . To answer RQ3 - b , a
post - study questionnaire was used that collects the opinions
of developers on the tool as detailed below .
[0133] A set of well - known open - source Java projects and
two systems from industrial partner were used . The
approach was applied to eight open - source Java projects :
Xerces - J , JHotDraw , JFreeChart , Gantt Project , Apache Ant ,
Rhino and Log4J and Nutch . Xerces - J is a family of soft
ware packages for parsing XML . JFreeChart is a free tool for
generating charts . Apache Ant is a build tool and library
specifically conceived for Java applications . Rhino is a
JavaScript interpreter and compiler written in Java and
developed for the Mozilla / Firefox browser . GanttProject is a
cross - platform tool for project scheduling . Log4J is a popu
lar logging pack - age for Java . Nutch is an Apache project
for web crawling . JHotDraw is a GUI framework for draw
ing editors .
[0134] In order to get feedback from the original devel
opers of a system , experiments in two large industrial
projects provided by our industrial partner were considered .
The first project is a marketing return on investment tool ,
called MROI , used to predict the sales of cars based on the
demand , dealers information , advertisements , etc . The tool
can collect , analyze and synthesize a variety of data types
and sources related to customers and dealers . It was imple
mented over a period of more than eight years and frequently
changed to include and remove new / redundant features .
[0135] The second project is a Java - based software sys
tem , JDI , which helps the company to create the best
schedule of orders from the dealers based on thousands of
business constraints . This system is also used by the com
pany to improve their vehicles sales by selecting the right
vehicle configuration to match the expectations of their
customers . JDI is highly structured and software developers
have developed several versions of it over the past 10 years .
Due to the importance of the application and the high

[0137] The study involved 14 participants from the Uni
versity of Michigan and 8 software developers . Participants
include 6 master students in Software Engineering , 8 Ph . D .
students in Software Engineering and 8 software developers .
All the participants are volunteers and familiar with Java
development and refactoring . The experience of these par
ticipants on Java programming ranged from 2 to 19 years .
The participants were carefully selected to make sure that
they already applied refactorings during their previous expe
riences in development .
[0138] All the graduate students have already taken at
least one position as software engineer in industry for at least
two years as software developer and most of them (11 out of
14 students) participated in similar experiments in the past ,
either as part of a research project or during graduate courses
on Software Quality Assurance or Software Evolution
offered at the University of Michigan . Furthermore , 6 out the
14 students (the selected master students) are working as
full - time or part - time developers in the software industry .
10139] . Participants were first asked to fill out a pre - study
questionnaire containing five questions . The questionnaire
helped to collect background information such as their role
within the company , their programming experience , and
their familiarity with software refactoring . In addition , all
the participants attended one lecture about software refac
toring and passed six tests to evaluate their performance in
evaluate and suggest refactoring solutions .
[0140] Three groups were formed . The groups were
formed based on the pre - study questionnaire and the test
results to ensure that all the groups have almost the same
average skill level . The participants were divided into
groups according to the studied systems , the techniques to be
tested and developers ' experience .
[0141] Each of the first two groups (A and B) is composed
of three masters students and four Ph . D . students . The third
group is composed of eight software developers , since they
agreed to participate only in the evaluation of their two
software systems . It is important to note that the third group

US 2019 / 0317760 A1 Oct . 17 , 2019
15

TABLE 10 - continued
Survey organization .

Participants
groups

Software
Projects Approaches Tasks

Group B JDeodorant ,
Kessentini ,
Harman

Apache Ant
Rhino
Log4J
Nutch
JDI
MROI

questionnaire
Fixing bugs
Adding features

Group C Interactive
NSGA - II ,
O ' Keeff ,
Ouni ,
JDeodorant

formed by the developers is part of the original developers
of the two evaluated systems .
0142] To answer research questions from the perspective
of evaluating the interactive approach performance against
the state - of - the - art refactoring techniques , the approach was
compared to four other existing fully - automated search
based refactoring techniques and the multi - objective
approach without the interaction component (NSGA - II
Innovization) . Studied techniques include : Kessentini which
is described by Kessentin et . al . in “ Design Defects Detec
tion and Correction by Example ” IEEE 19th International
Conference on Program Comprehension ” (ICPC) (2011) ;
O ' Keeffe which is described by O ' Keefee et . al . in “ Search
based refactoring for software maintenance ” Journal of
Systems and Software 81 (4) : 502 - 516 . (2008) ; Ouni which
is described by Ouni et al . in “ Multi - criteria Code Refac
toring Using Search - Based Software Engineering : An Indus
trial Case Study ” , ACM Transactions on Software Engineer
ing and Methodology (TOSEM) , 2016 ; and Harman which
is described by Harman et al . in “ Pareto optimal search
based refactoring at the design level ” Proceedings of the 9th
annual conference on Genetic and evolutionary computa
tion . London , England , ACM : 1106 - 1113 . (2007) .
[0143] Experiments considered another popular design
defects detection and correction tool , JDeodorant , that does
not use heuristic search techniques . Further information
about the JDeodorant tool can be found in “ JDeodorant :
identification and application of extract class refactorings "
33 ' d international Conference on Software Engineerying
(2011) . The current version of JDeodorant is implemented as
an Eclipse plug - in that identifies some types of design
defects using quality metrics and then proposes a list of
refactoring strategies to fix them . Since JDeodorant just
recommends a few types of refactoring with respect to the
ones considered by the tool . In this case , the comparison is
restricted to the same refactoring types supported by JDe
odorant such as Move Method , Extract Method and Extract
Class .
101441 The approach differs with the above fully - auto
mated techniques in two factors : innovization and interac
tive features . Therefore , it is important to evaluate the
impact of every factor on the quality of the results . If the
innovization makes the largest contribution , which is
another fully automated search - based approach , the results
cannot support the hypothesis related to the outperformance
of interactive refactoring . Thus , the approach to NSGA - Il is
compared with the innovization feature using the same
mufti - objective optimization but without the use of the
interactive feature .
[0145] All these existing techniques are fully - automated
and do not provide any interaction with the developers to
update their solutions .
[0146] Table 10 summarizes the survey organizations
including the list of systems and algorithms evaluated by the
groups of participants .

[0147] Parameter setting influences significantly the per
formance of a search algorithm on a particular problem . For
this reason , for each algorithm and for each system , a set of
experiments is performed using several population sizes : 50 ,
100 , 200 , 300 and 500 . The stopping criterion was set to
100 , 000 evaluations for all algorithms in order to ensure
fairness of comparison . The other parameters ' values were
fixed by trial and error and are as follows : crossover prob
ability = 0 . 8 ; mutation probability = 0 . 5 where the probability
of gene modification is 0 . 3 ; stopping criterion = 100 , 000
evaluations . In order to have significant results , for each
couple (algorithm , system) , the trial and error method is
used in order to obtain a good parameter configuration . Trial
and error is a fundamental method of problem solving . It is
characterized by repeated and varied attempts of algorithm
configurations .
[0148] Regarding the evaluation of fixed code smells , the
following code smell types were focused on : Blob , Spaghetti
Code (SC) , Functional Decomposition (FD) , Feature Envy
(FE) , Data Class (DC) , Lazy Class (LC) , and Shotgun
Surgery (SS) . These code smell types were chosen in the
experiments because they are the most frequent and hard to
fix based on several studies . These design flaws are auto
matically detected using the detection rules of previous work
based on genetic programming . A set of metrics - based rules
that can automatically detect the different types of code
smells considered in our experiments have been generated
and manually validated . . Table 6 reports the number of code
smells for each system . Only real design flaws that were
manually validated are considered in this validation .
[0149] The upper and lower bounds on the chromosome
length used in this study are set to 10 and 350 , respectively .
Several SBSE problems including software refactoring are
characterized by a varying chromosome length . This issue is
similar to the problem of bloat control in genetic program
ming where the goal is to identify the tree size limits . To
solve this problem , several trial and error experiments were
performed where the average performance of the algorithm
using the hypervolume (HV) performance indicator while
varying the size limits between 10 and 500 operations was
assessed .
[0150] Each group of participants received a question
naire , a manuscript guide to help them to fill the question
naire , the tools and results to evaluate and the source code
of the studied systems as described in the following five
scenarios :
[0151] In the first scenario , a total of 90 classes were
selected from all the systems that include design defects (9

TABLE 10
Survey organization .

Participants
groups

Software
Projects Approaches Tasks

Group A Xerces - J
JHotDraw
JFreeChart
Gantt Project

Interactive
NSGA - II ,
O ' Keeffe ,
Ouni

Interactive
refactoring
Manual refactoring
Post - study

US 2019 / 0317760 A1 Oct . 17 , 2019
16

classes to fix per system) . Then every participant was asked
to manually apply refactorings to improve the quality of the
systems by fixing an average of two of these defects . As an
outcome of this scenario is a set of expected refactorings
which are able to calculate the differences between the
recommended refactorings and the expected ones (manually
suggested by the developers) .
[0152] In the second scenario , the developers were asked
to evaluate the suggested solutions of the algorithm . A
cross - validation was performed between the ratings of each
group to avoid the computation of the MC metric being
biased by the developer ' s feedback . Thus , the developers in
each group rated results generated by the other developers in
the same group .
[0153] In the third scenario , a set of 6 bugs per system
were collected from the bug reports of the studied release for
every project and asked the groups to fix them based on the
refactored and non - refactored version . The tasks are com
pletely different and they are applied to different packages /
classes of the same version of the systems . Furthermore , the
participants did not know if they are working on the system
before or after refactoring . No specific order was followed
when asking the developers to work on the tasks . Only 3 out
of the 22 participants worked as part of the experiments on
the systems before refactoring and then the systems after
refactoring . A counter - balanced design was adapted where
every developer to fix 2 bugs on the version before refac
toring and then 2 other bugs in the version after refactoring .
The bugs that require almost the same effort to fix in terms
of number of changes , with an average of 15 changes were
selected .
[0154] In the fourth scenario , the groups were asked to add
two simple features to every system before refactoring , and
then two other features on the system after refactoring . All
the features require almost the same number of changes to
be introduced or deleted with an average of 23 code changes
per feature . In the third and fourth scenarios , the bugs to fix
and features to add are related to the classes that are
refactored by the developers when using the tool .
[0155] The participants were asked to justify their evalu
ation of the solutions and these justifications are reviewed by
the organizers of the study (one faculty member , one post
doc , one Ph . D . student and one Master ' s student) . Partici
pants do not know the particular experiment research ques
tions and the used algorithms .
[0156] In the fifth scenario , the participants were asked to
use the tool during a period of two hours on the different
systems and then collected their opinions based on a post
study questionnaire . To better understand subjects ' opinions
with regard to usefulness of the approach in a real setting ,
the post - study questionnaire was given to each participant
after completing the refactoring tasks using the interactive
approach and all the techniques considered in our experi
ments . The questionnaires collected the opinions of the
participants about their experience in using the approach
compared to manual and fully - automated refactoring tools .
Participants were asked to rate their agreement on a Likert
scale from 1 (complete disagreement) to 5 (complete agree
ment) with the following statements :

[0157] 1) The interactive dynamic refactoring recom
mendations are a desirable feature in integrated develop
ment environments (IDES) .

[0158] 2) The interactive manner of recommending
refactorings by our approach is a useful and flexible
way to refactor systems compared to fully - automated
or manual refactorings .

The remaining questions of the post - study questionnaire
were about the benefits and also limitations (possible
improvements) of the interactive approach .
[0159] Since meta - heuristic algorithms are stochastic opti
mizers , they can provide different results for the same
problem instance from one run to another . For this reason ,
the experimental study is based on 30 independent simula
tion runs for each problem instance . The following statistical
tests show that all the comparisons performed between our
approach and existing ones are statistically significant based
on all the metrics and the systems considered in the experi
ments .
[0160] One - way ANOVA statistical test were used with a
95 % confidence level (a = 5 %) to find out whether the sample
results of different approaches are different significantly .
Since one - way ANOVA is an omnibus test , a statistically
significant result determines whether three or more group
means differ in some undisclosed way in the population .
One - way ANOVA is conducted for the results obtained from
each software project to investigate and compare each
performance metric (dependent variable) between various
studied algorithems (independent variable - groups) The null
hypothesis (H) that population means of each metric are
equal for all methods ((VSoftware Projects :
uzimetric = ur2 metric = . . . Fummetric where metric E { G , NF ,
MC , PR , RC }) against the alternative (H) that they are not
equal and at least one method population mean is different .
[0161] There are some assumptions for one - way ANOVA
test which are assessed before applying the test on the data .
Outliers : There were no outliers in the data , as assessed by
inspection of a boxplot for values greater than 1 . 5 box
lengths from the edge of the box . Normal Distribution : Some
of the dependent variables were not normally distributed for
each method , as assessed by Shapiro - Wilk ' s test . However ,
the one - way ANOVA is fairly robust to deviation from
normality . Since the sample size is more than 15 (there are
30 observations in each group) and the sample sizes are
equal for all groups (balanced) , non - normality is not an issue
and does not affect Type I error . Homogeneity of variances :
The one - way ANOVA assumes that the population variances
of the dependent variables are equal for all groups of the
independent variable . If the variances are unequal , this can
affect the Type I error rate . There was homogeneity of
variances , as assessed by Levene ' s test for equality of
variances (p > 0 . 05) .
[0162] The results of one - way ANOVA tests for all pair of
software projects and metrics indicates that the group means
were statistically significantly different (p > 0 . 05) and , there
fore , one can reject the null hypothesis and accept the
alternative hypothesis which says there is difference in
population means between at least two groups . Table 11
reports the obtained value of F - statistics with the between
and within groups degree of freedoms equal to 6 and 203 ,
respectively . In one - way ANOVA , the F - statistic is the ratio
of variation between sample means over variation within the
samples . The larger value of F - statistics represents the group
means are further apart from each other and are significantly
different . Also , it shows that the observation within each
group are close to the group mean with a low variance within
samples . Therefore , a large F - value is required to reject the

US 2019 / 0317760 A1 Oct . 17 , 2019
17

null hypothesis that the group means are equal . The obtained
F - statistics results are correspond to very small p - values .
[0163] One - way ANOVA does not report the size of the
difference . Therefore , one can calculatedEta squared ()
which is a measure of the effect size (strength of association)
and it estimates the degree of association between the
independent factor and dependent variable for the sample .
Eta squared is the proportion of the total variance that is
attributed to a factor (the “ refactoring methods ” in this
study) . Table 12 reports Eta squared values for each pair of
software projects and metrics . These values shows to what
extent different algorithms are the cause of variability of the
metrics . For instance , it says 90 % of the total variance of
metric G for Apache Ant software project is accounted for by
different algorithms effect , not error or other effects .
[0164] Tukey post hoc analysis is carried out in order to
find out between which group (s) the significant difference is
occurred . Basically , it tests all possible group comparisons .
FIGS . 6A - 6C present the results of comparison of the
proposed interactive method to the others . This table repre
sents the point estimate of the difference between each pair
of means and is computed from the sample data , Also , it
includes the confidence interval showing the difference
between population means and is centered on point estimate .
If this interval does not include zero , indicates that the
difference between the means is statistically significant . The
95 % individual confidence level indicates that one can be
95 % confident that each interval contains the real difference
for that particular comparison . The results shows that all
pairwise comparisons between our method and others for
each pair of (software / metric) are statistically significant at
the 0 . 05 level except for G and NF of JFreeChart as their
results highlighted in the table of the results . Therefore , the
difference between the means of these two metrics , and
NF , for JFreeChart project is 0 .
[0165] To this end , the Vargha - Delaney A was used to
measure which is a non - parametric effect size measure . In
this context , given the different performance metrics (such
as PR , RC , MC , etc .) , the A statistic measures the probability
that running an algorithm B1 (interactive NSGA - II) yields
better performance than running another algorithm B2 . If the
two algorithms are equivalent , then A = 0 . 5 . In the experi
ments , the following results were found : a) on small and
medium scale software projects (Gantt Project , Rhino , Log4J
and Nutch) the approach is better than all the other algo
rithms based on all the performance metrics with an effect
size higher than 0 . 94 ; and b) on large scale software projects
(JDI , MROI , Apache Ant , Xerces - J , JHotDraw and
JFreeChart) , the approach is better than all the other algo
rithms with an A effect size higher than 0 . 87 .
[0166] For the results for RQla , FIGS . 7A - 7) summarizes
the findings regarding the obtained precision (PR) and recall
(RC) results on the 10 systems . A considerable number of
proposed refactorings were found , with an average of more
than 82 % and 86 % respectively in terms of precision and
recall , were already applied by the software development
team and suggested manually (expected refactorings) . The
recall scores are higher than precision ones since we found
that the refactorings suggested manually by developers are
incomplete compared to the solutions provided by our
approach . In addition , the slight deviation with the expected
refactorings found is not related to incorrect operations but
to the fact that the developers were interested mainly in

fixing the severest code smells or improving the quality of
the code fragments that they frequently modify .
[0167] FIG . 7A - 7) also confirms the out - performance of
the interactive refactoring approach compared to existing
fully - automated techniques and since a statistically signifi
cant difference between the means of metrics is confirmed ,
the better results are not obtained by chance . The precision
and recall scores were consistent on all the ten systems
which confirm that the results are independent from the size
of the systems , number of refactorings and number of code
smells . The closest results are those obtained by NSGA - II
based on innovization (without interaction) and the multi
objective refactoring approach of Ouni et al . This may
confirm that the obtained results are more due to the inter
action component of our approach . A detailed qualitative
discussion will be presented later in RQid .
[0168] For results for RQlb , the ability of the approach
was evaluated to fix several types of code smell . FIG . 7A - 7J
depict the percentage of fixed code smells (NF) . It is higher
than 82 % on all the ten systems , which is an acceptable score
since developers may reject or modify some refactorings
that fix some code smells because they do not consider them
very important (their goal is not to fix all code smells in the
system) or the current version of the code becomes stable .
Some systems , such as Rhino and Gantt , have a higher
percentage of fixed code smells with an average of more
than 88 % . This can be explained by the fact that these
systems include a higher number of code smells than others .
[0169] However , the percentage of fixed code smells (NF)
is slightly lower than some fully - automated refactoring
techniques . This is can be explained by the reason that the
main goal of developers during the interaction process is not
to fix the maximum number the code smells detected in the
system (which was the goal) thus they rejected or modified
some refactorings suggested by our tool . In addition , the
approach is based on a multi - objective algorithm to find a
trade - off between improving the quality and reducing the
number of changes . Therefore , the slight loss in NF is
explained by the fact that they are not considering fixing
code smells as one of the objectives , and justified by a better
improvement in the quality of the refactored system .
[0170] For results for RQ1c , FIGS . 6 and 7A - 7J show that
the refactorings recommended by the approach and applied
by developers improved the quality metrics value (G) of the
ten systems . For example , the average quality gain for the
two industrial systems was the highest among the ten
systems with more than 0 . 3 . The improvements in the
quality gain confirm that the recommended refactorings
helped to optimize different quality metrics . The function
ality attribute has the lowest improvement on the different
systems . This may be explained by the fact that refactoring
is expected to preserve the behavior of existing functional
ities . The interactive approach clearly also outperforms
existing fully - automated techniques . One of the reasons
could be related to the fact that the optimization of the
quality attributes is considered as part of the fitness func
tions unlike some of the existing techniques .
[0171] For results for RQid , the results of the empirical
qualitative evaluation (MC) in FIGS . 7A - 7J are reported . As
reported in this figure , the majority of the refactoring solu
tions recommended by our interactive approach were correct
and approved by developers . On average , for all of the ten
studied projects , 87 % of the proposed refactoring operations
are considered as semantically feasible , improve the quality

US 2019 / 0317760 A1 Oct . 17 , 2019

and are found to be useful by the software developers of the
experiments . The highest MC score is 93 % for the Gantt
project and the lowest score is 86 % for JFreeChart . Thus , it
is clear that the results are independent of the size of the
systems and the number of recommended refactorings . Most
of the refactorings that were not manually approved by the
developers were found to be either violating some post
conditions or introducing design incoherence .
10172] FIGS . 7A - 7J shows that the approach provides
significantly higher manual correctness results (MC) than all
other approaches having MC scores respectively between
60 % and 78 % , on average as MC scores on the different
systems .
[0173] To provide more qualitative evaluation , some of
the feedback was considered that was received from the
developers since they are part of the original developers of
these systems . For example , these developers rejected a set
of move methods because they believed that these methods
should stay in their original class . The original class in this
case is responsible for implementing several security con
straints (e . g . login information) around database access . The
number of security constraints is very high and they were
implemented in several methods grouped into one class .
Although this set of methods created a blob , the developers
assessed that they should stay together because there is a
logic behind implementing them in that way , and splitting
the behavior may require a redesign of the application .
[0174] In another case , the developers elected to extract a
class that regroups several methods implementing a parser to
extract dealer information . However , this refactoring was
not recommended by our approach since the methods were
located in a small class that did not contain any code smell
or quality violation symptoms . Thus , the refactoring applied
by the developers was more based on the features imple
mented in the methods . This refactoring is hard to recom
mend even with the considered semantics / textual similarity
measures since few comments exist in these methods and
furthermore their implementation structures look very dif
ferent . These observations explain the reasons why some the
refactorings recommended by our approach was rejected by
the developers and also the differences with those that are
manually recommended by the developers .
10175] . In general , it was found that most of the common
patterns in the Pareto front are not individual operations , but
a short sequence of refactorings . Thus , it is believed that
most of these patterns are targeting specific quality issues
and hence the applied refactorings are not individual opera
tions but small refactoring patterns . This observation was
found to be valid when manually checked the interactive
results of the tool .
[0176] . A general interesting observation from the experi
ments is that evolutionary search involves both diversifica
tion and convergence , so the question is does innovization
emphasize convergence at the cost of sacrificing diver
gence ? One would argue against this , for the following
reasons . In the context of this refactoring problem , it is very
rare to observe no overlap between non - dominated solutions
for several reasons such as the large size of refactoring
solutions and the fact that some common quality issues
should be fixed (high priority) . In fact , at least few quality
issues (e . g . code smells) need to be fixed independently from
the other objectives . Thus , it is normal to always observe
some overlap between the refactoring solutions . Regarding
diversification , the ranking of the refactoring solutions is

only used after the generation of the Pareto front so this
ranking is not part of the fitness function used in the search .
The goal is to implicitly explore the front based on the
feedback of the developers to identify the region of interest
and prioritize the solutions that contain common patterns . It
is believed that these common patterns distinguish non
dominated solutions from dominated ones . The diversifica
tion is not penalized because we do not consider the
innovization heuristic as part of the fitness functions but as
a post - processing step to prioritize solutions (and not elimi
nating them) .
(0177] The results of the interactive approach (MI) and the
innovization NSGA - II method (M2) were compared in
FIGS . 6 and 7A - 7jin order to contrast the impact of inter
activity component . The best solution (at the knee point)
based on the innovization feature (without interaction) was
evaluated based on all studied metrics . The results confirm
that the interactive approach outperforms NSGA - II with the
only use of innovation (without interaction) in terms of G ,
NF , MC , PR , and RC . However , the results of NSGA - II with
innovization are better than regular multi - objective refac
toring approaches (e . g . Ouni et al . , etc .) thus it is clear that
the positive results of this approach are due to the combi
nation of the two factors : innovization and interactive fea
tures .
[0178] The superior performance of this interactive
approach can be explained by several factors . First , other
approaches used only structural indications (quality metrics)
to evaluate the refactoring solutions and thus a high number
of refactorings lead to a semantically incoherent design . The
interactive approach reduces the number of semantic inco
herencies when suggesting refactorings and during the inter
action with the developers . Second , the innovization com
ponent improved the quality of the suggested refactoring
solutions by using an interactive approach as compared to a
regular NSGA - II where the developers need to select one
solution from the Pareto front that cannot be updated
dynamically . Third , JDeodorant proposes some pre - defined
patterns to fix some types of code smells that cannot be
sometimes generalized .
[0179] To summarize and answer RQ1 , the experimenta
tion results confirm that the interactive approach helps the
participants to refactor their systems efficiently by finding
more relevant refactoring solutions and improve the quality
of all the ten systems under study . In addition , the interactive
approach provides better results , on average , than all of the
existing fully - automated refactoring techniques .
[0180] For results for RQ2 , the ability of the interactive
approach to help software developers to find quickly good
refactorings based on an efficient ranking of the proposed
operations was also evaluated . The MC @ k and PR @ k were
compared , where k was varied between 1 , 5 , 10 and 15 as
described in FIG . 8 and FIG . 9 where the lowest MC @ 1 is
93 % and the highest is 100 % on the different ten systems
confirming that the highest - ranked refactoring was almost
always correct and relevant for the developers .
0181] The MC @ 15 presents the lowest results , which is
to be expected since it was evaluated the manual correctness
of the top 15 recommended refactorings at several interac
tions and this increases the probability that it contains few
irrelevant refactorings . However , the average MC @ 15 still
could be considered acceptable with an average of more than
81 % . The same observations are also valid for the PR @ k ;
however the results are a bit lower than for MC @ k . The

US 2019 / 0317760 A1 Oct . 17 , 2019
19

average PR @ k results were respectively 94 % , 89 % , 84 %
and 80 % for k = 1 , 5 , 10 and 15 . Thus , it is clear that the
ranking function used by our interactive approach to explore
the Pareto front is efficient .
[0182] Considering three other metrics NAR (percentage
of ac - cepted refactorings) , NMR (percentage of modified
refactorings) and NRR (percentage of rejected refactorings) ,
the efficiency of the interactive approach is further evaluated
to rank the refactorings . These metrics are recorded using a
feature that implemented in our tool to record all the actions
performed by the developers during the refactoring sessions .
FIG . 10 shows that , on average , more than 71 % of the
recommended refactorings were applied by the devel - opers .
In addition , an average of 17 % of the recommended refac
torings were modified by the developers , while 12 % of the
suggested refactorings were rejected by the developers .
Thus , it is clear that the recommendation tool successfully
suggested a good set of refactorings to apply . To conclude ,
this approach efficiently ranked the recom - mended refactor
ings and helped software developers to quickly find good
refactorings recommendations .
[0183] For results for RQ3a , FIG . 11 shows that the time
is reduced by 61 % and 57 % to finalize respectively the two
tasks of fixing bugs when programmers worked on the
refactored program using our interactive approach . These
results outperform the productivity improvements obtained
when programmers worked on similar tasks of fixing bugs of
the refactored programs by Ouni et al . and Harman et al . For
Ouni et al . , the productivity improvements are between 41 %
and 37 % while Harman et al . are between 33 % and 31 % .
The results are correlated with the quality improvements of
the evaluated programs , as discussed in the previous sec
tions . Thus , a better quality of the software may increase the
productivity of programmers when fixing bugs .
10184) For results for RQ3b , similar results to RQ3a are
obtained for the tasks of adding new features . FIG . 11 shows
that the time is reduced by 51 % and 48 % to finalize
respectively the two tasks of adding new features when
programmers worked on the refactored program using the
interactive approach . These results outperform the produc
tivity improvements obtained when programmers worked on
similar tasks of adding features of the refactored programs
by Ouni et al . and Harman et al . For Ouni et al . , the
productivity improvements are between 38 % and 31 % ,
while Harman et al . are between 29 % and 23 % . The results
are correlated with the quality improvements of the evalu
ated programs . Thus , a better quality of the software may
increase the productivity of programmers when adding new
features . Overall , the productivity gain when programmers
worked on adding new features is lower than the one
observed for fixing bugs . This could be related to the fact
that the complexity of adding new features was higher than
fixing bugs and the locations where refactorings are intro
duced .
[0185] The metric (TP) to measure the time to perform the
different bugs fixing and adding new features task on the
systems before and after refactoring included the execution
time of the different (interactive and fully - automated) refac
toring techniques to generate the new systems after refac
toring . While the execution time of the interactive approach
is slightly higher than fully - automated approaches with an
average of 6 minutes comparing to Ouni et al . and Harman
et al . on the different systems used in both scenarios , the
overall time that developers spent to perform the new tasks

is much lower when working on the new systems after
refactoring based on our approach comparing to the state of
the art . Thus , the extra manual effort required by the
interactive approach is compensated by higher productivity
and better accuracy of the results . It is believed that the
slightly higher execution time by the interactive approach
comparing to fully automated search - based refactoring
despite the extramanual effort is explained by the fact that
the user feedback can reduce dramatically the search space
to converge toward better recommendations . Furthermore ,
the efficient ranking of refactorings to be inspected by
programmers help a lot in reducing the interaction time .
Finally , it should be highlighted that programmers spend
considerable time evaluating long list of refactoring recom
mendations after the execution of fully - automated
approaches which is comparable to the manual interaction
effort required during the execution of our interactive
approach .
[0186] In the following , a qualitative example is described
to illustrate the observed time reduction when updating a
feature on the refactored code . The scenario consists of
modifying the existing loading and saving of CSV files
feature in Gant . The updated feature will enable the modi
fication of colors used in the charts to highlight specific
project tasks to match different priorities (e . g . red for high
priority task , green for low priority task , etc .) then modify
the current CSV format to support the use of colors in the
Gantt chart . To implement this feature , several methods have
to be modified that append to different classes before refac
toring . The main class related to this feature is GanttOptions
that includes 68 methods and highly coupled with 14 classes
which can be considered as a blob . The interactive refac
toring tool proposed a sequence of 29 refactorings to be
applied to this class and some related classes (CSVOptions
and U1Configuration) . The sequence of refactorings
included Extract class . Move field . Move method , Push
Down field , PushDown method and Extract method that
refactored the GanttOptions as illustrated in FIGS . 12 A and
12B .
[0187) The new version of GanttOptions contained only
43 methods and several methods and fields were moved
from / to CSVOptions and U1Configuration . Thus , the devel
opers introduced less number of changes to update the
methods related to changing the colors of the chart tasks and
the format of the CSV files since they were cohesively
moved to GanttOptions after refactorings rather than being
distributed between CSVOptions and UlConfiguration .
These refactorings not only reduced the number of changes
but also improved the coupling and cohesion within these
classes since other methods and fields were moved from
CSVOptions which reduced as well the time for developers
to identify the relevant methods and fields to modify to
integrate the new features .
[0188] For results for RQ3c , the post - study questionnaire
results show the average agreement of the participants was
4 . 8 and based on a Likert scale for the first and second
statements , respectively . This confirms the usefulness of the
interactive approach for the software developers considered
in our experiments .
[0189] Most of the participants mention that the interac
tive approach is faster than manual refactoring since they
spent a long time with manual refactoring to find the
locations where refactorings should be applied . For
example , developers spend time when they decide to extract

US 2019 / 0317760 A1 Oct . 17 , 2019
20

a class to find the methods to move to the newly created class
or when they want to move a method then it takes time to
find the best target class by manual exploration of the source
code . Thus , the developers liked the functionality of our tool
that helps them to modify a refactoring and finding quickly
the right parameters based on the recommendations .
[0190] The interactive algorithm automatically suggests a
list of possible target classes ranked based on the history of
changes and semantic similarity . Furthermore , refactorings
may affect several locations in the source code , which is a
time - consuming task to perform manually , but they can
perform it instantly using our tool .
[0191] The participants found the tool helpful for both
/ loss refactoring , to maintain a good quality design and also
for root canal refactoring to fix some quality issues such as
code smells . The developers justify their conclusions by the
following interesting observations about the tool : a) the list
of recommended refactorings helps them to choose the
desired refactoring very quickly , and b) the tool offers them
the possibility to modify the source code (to add new
functionality) while doing refactoring since the list of rec
ommendations is updated dynamically . So developers can
switch between both activities : refactoring and modifying
the source code to modify existing functionalities , c) the tool
allows developers to access all the functionality of the IDE
(e . g . , Eclipse) , d) the suggested refactorings by our interac
tive tool can fix code smells (root canal refactoring) or
improve some quality metrics (floss canal refactoring) due to
the use of the multiobjective approach .
[0192] Another important feature that the participants
mention is that the interactive approach allows them to take
the advantages of using multi - objective optimization for
software refactoring without the need to learn anything
about optimization and exploring explicitly the Pareto front
to select one ideal solution . The implicit exploration of the
Pareto front in an interactive fashion represents an important
advantage of the tool along with the dynamic update of the
recommended list of refactoring using innovization . In fact ,
the developers found a lot of difficulties using the multi
objective tool of to explore the Pareto front to find a good
refactoring solution . In addition , they did not appreciate the
long list of refactoring suggested other solutions since they
want to take control of modifying and rejecting some
refactorings . In addition , the validation of this long list of
refactorings is time - consuming . Thus , they appreciate that
the tool suggests refactoring one by one and update the list
based on the feedback of developers .
[0193] The techniques described herein may be imple
mented by one or more computer programs executed by one
or more processors . The computer programs include pro
cessor - executable instructions that are stored on a non
transitory tangible computer readable medium . The com
puter programs may also include stored data . Non - limiting
examples of the non - transitory tangible computer readable
medium are nonvolatile memory , magnetic storage , and
optical storage .
[0194] Some portions of the above description present the
techniques described herein in terms of algorithms and
symbolic representations of operations on information .
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others
skilled in the art . These operations , while described func
tionally or logically , are understood to be implemented by

computer programs . Furthermore , it has also proven conve
nient at times to refer to these arrangements of operations as
modules or by functional names , without loss of generality .
[0195] Unless specifically stated otherwise as apparent
from the above discussion , it is appreciated that throughout
the description , discussions utilizing terms such as process
ing ” or “ computing ” or “ calculating ” or “ determining " or
" displaying " or the like , refer to the action and processes of
a computer system , or similar electronic computing device ,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system memories
or registers or other such information storage , transmission
or display devices .
[0196] Certain aspects of the described techniques include
process steps and instructions described herein in the form
of an algorithm . It should be noted that the described process
steps and instructions could be embodied in software , firm
ware or hardware , and when embodied in software , could be
downloaded to reside on and be operated from different
platforms used by real time network operating systems .
[0197] The present disclosure also relates to an apparatus
for performing the operations herein . This apparatus may be
specially constructed for the required purposes , or it may
comprise a general - purpose computer selectively activated
or reconfigured by a computer program stored on a computer
readable medium that can be accessed by the computer . Such
a computer program may be stored in a tangible computer
readable storage medium , such as , but is not limited to , any
type of disk including floppy disks , optical disks , CD
ROMs , magnetic - optical disks , read - only memories
(ROMs) , random access memories (RAMs) , EPROMs ,
EEPROMs , magnetic or optical cards , application specific
integrated circuits (ASICs) , or any type of media suitable for
storing electronic instructions , and each coupled to a com
puter system bus . Furthermore , the computers referred to in
the specification may include a single processor or may be
architectures employing multiple processor designs for
increased computing capability .
[0198] The algorithms and operations presented herein are
not inherently related to any particular computer or other
apparatus . Various general - purpose systems may also be
used with programs in accordance with the teachings herein ,
or it may prove convenient to construct more specialized
apparatuses to perform the required method steps . The
required structure for a variety of these systems will be
apparent to those of skill in the art , along with equivalent
variations . In addition , the present disclosure is not
described with reference to any particular programming
language . It is appreciated that a variety of programming
languages may be used to implement the teachings of the
present disclosure as described herein .
[0199] The foregoing description of the embodiments has
been provided for purposes of illustration and description . It
is not intended to be exhaustive or to limit the disclosure .
Individual elements or features of a particular embodiment
are generally not limited to that particular embodiment , but ,
where applicable , are interchangeable and can be used in a
selected embodiment , even if not specifically shown or
described . The same may also be varied in many ways . Such
variations are not to be regarded as a departure from the
disclosure , and all such modifications are intended to be
included within the scope of the disclosure .

US 2019 / 0317760 A1 Oct . 17 , 2019
21

What is claimed is :
1 . A computer - implemented method for refactoring soft

ware , comprising :
receiving , by a computer processor , a set of candidate

solutions for refactoring the software , where each solu
tion in the set of candidate solutions includes one or
more refactor operations for the software ;

identifying , by the computer processor , a particular can
didate solution from the set of candidate solutions ,
where the particular candidate solution includes refac
tor operations with highest commonality amongst the
set of candidate solutions ;

presenting , by the computer processor , a particular refac
toring operation from the particular candidate solution
to a user ;

receiving , by the computer processor , feedback regarding
the particular refactoring operation from the user ;

updating , by the computer processor , source code for the
software based on the feedback from the user ; and

generating , by the computer processor , another set of
candidate solutions using the updated source code .

2 . The computer - implemented method 1 further com
prises identifying a given candidate solution by calculating
a composite ranking score for each candidate solution in the
set of candidate solutions , where the composite ranking
score is calculated by computing a ranking score for each
refactor operation in a given candidate solution based upon
frequency of the refactor operation across the set of candi
date solution and summing the ranking score for each
refactor operation in the given candidate solution to yield the
composite ranking score , such that the particular candidate
solution is the candidate solution having highest composite
ranking score in the set of candidate solutions .

3 . The computer - implemented method of claim 2 wherein
presenting a particular refactoring operation includes dis
playing an indicator to apply the particular refactoring
operation to the software , an indicator to modify the par
ticular refactoring operation and an indicator to reject the
particular refactoring operation .

4 . The computer - implemented method of claim 3 further
comprises , in response to receiving feedback from the user ,
recalculating a composite ranking score for each candidate
solution in the set of candidate solutions using the feedback
from the user .

5 . The computer - implemented method of claim 4 further
comprises

a) identifying another candidate solution from the set of
candidate solutions , where the another candidate solu
tion has highest composite ranking score after the step
of recalculating a composite ranking score for each
candidate solution in the set of candidate solutions ;

b) presenting a particular refactoring operation from the
another candidate solution to a user ;

c) receiving feedback regarding the particular refactoring
operation from the user ; and

d) recalculating a composite ranking score for each for
each candidate solution in the set of candidate solutions
using the feedback from the user .

6 . The computer - implemented method of claim 5 further
comprises repeating steps a) - d) until an exit condition is
satisfied .

7 . The computer - implemented method of claim 4 further
comprises recalculating a composite ranking score for a
given candidate solution by adding one to the composite

ranking score when the given candidate solution includes the
particular refactoring operation and the feedback indicates to
apply the particular refactoring operation to the software , by
adding one half to the composite ranking score when the
given candidate solution includes the particular refactoring
operation and the feedback indicates to modify the particular
refactoring operation , and subtract one to the composite
ranking score when the given candidate solution includes the
particular refactoring operation and the feedback indicates to
reject the particular refactoring operation .

8 . The computer - implemented method of claim 1 further
comprises generating another set of candidate solutions by
applying a genetic algorithm to a set of candidate solutions
and thereby yielding a next generation of candidate solu
tions .

9 . The computer - implemented method of claim 8 wherein
applying a genetic algorithm includes evaluating each can
didate solution in the next generation of candidate solutions
according to two fitness functions , where one of the two
fitness functions minimizes number of changes to the source
code and other of the two fitness functions maximizes
software quality .

10 . The computer - implemented method of claim 8 further
comprises removing one or more candidate solutions from
the next generation of candidate solutions based on feedback
from the user .

11 . A computer - implemented method for refactoring soft
ware , comprising :

receiving , by a computer processor , a set of candidate
solutions for refactoring the software , where each solu
tion in the set of candidate solutions includes one or
more refactor operations for the software ;

selecting , by the computer processor , a particular candi
date solution from the set of candidate solutions ;

presenting , by the computer processor , a particular refac
toring operation from the particular candidate solution
to a user ;

receiving , by the computer processor , feedback regarding
the particular refactoring operation from the user ;

updating , by the computer processor , source code for the
software based on the feedback from the user ; and

applying , by the computer processor , a genetic algorithm
to the set of candidate solutions and using the updated
source code , thereby yielding a next generation of
candidate solutions .

12 . The computer - implemented method of claim 11
wherein presenting a particular refactoring operation
includes displaying an indicator to apply the particular
refactoring operation to the software , an indicator to modify
the particular refactoring operation and an indicator to reject
the particular refactoring operation .
13 . The compute - implemented method of claim 12 further

comprises receiving an indication to apply the particular
refactoring operation from the user and updating the source
code for the software in accordance with the particular
refactoring operation .

14 . The compute - implemented method of claim 12 further
comprises receiving an indication to modify the particular
refactoring operation from the user and updating the source
code for the software in accordance with the particular
refactoring operation .

15 . The compute - implemented method of claim 12 further
comprises receiving an indication to reject the particular
refactoring operation from the user and removing select

US 2019 / 0317760 A1 Oct . 17 , 2019
22

candidate solutions from the next generation of candidate
solutions , where the select candidate solutions include the
particular refactoring operation .

16 . The computer - implemented method 11 further com
prises identifying a given candidate solution by calculating
a composite ranking score for each candidate solution in the
set of candidate solutions , where the composite ranking
score is calculated by computing a ranking score for each
refactor operation in a given candidate solution based upon
frequency of the refactor operation across the set of candi
date solution and summing the ranking score for each
refactor operation in the given candidate solution to yield the
composite ranking score , such that the particular candidate
solution is the candidate solution having highest composite
ranking score in the set of candidate solutions .

17 . The computer - implemented method of claim 16
wherein presenting a particular refactoring operation
includes displaying an indicator to apply the particular
refactoring operation to the software , an indicator to modify
the particular refactoring operation and an indicator to reject
the particular refactoring operation .

18 . The computer - implemented method of claim 17 fur
ther comprises , in response to receiving feedback from the
user , recalculating a composite ranking score for each can
didate solution in the set of candidate solutions using the
feedback from the user .

19 . The computer - implemented method of claim 18 fur
ther comprises

a) identifying another candidate solution from the set of
candidate solutions , where the another candidate solu
tion has highest composite ranking score after the step

of recalculating a composite ranking score for each
candidate solution in the set of candidate solutions ;

b) presenting a particular refactoring operation from the
another candidate solution to a user ;

c) receiving feedback regarding the particular refactoring
operation from the user ; and

d) recalculating a composite ranking score for each for
each candidate solution in the set of candidate solutions
using the feedback from the user .

20 . A computer - implemented method for refactoring soft
ware , comprising :

receiving , by a computer processor , a set of candidate
solutions for refactoring the software , where each solu
tion in the set of candidate solutions includes one or
more refactor operations for the software ;

selecting , by the computer processor , a particular candi
date solution from the set of candidate solutions ;

presenting , by the computer processor , a particular refac
toring operation from the particular candidate solution
to a user ;

receiving , by the computer processor , feedback regarding
the particular refactoring operation from the user ;

applying , by the computer processor , a genetic algorithm
to the set of candidate solutions , thereby yielding a next
generation of candidate solutions ; and

removing , by the computer processor , select candidate
solutions from the next generation of candidate solu
tions based on feedback from the user , where the select
candidate solutions include the particular refactoring
operation .

