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Refactoring improves he software design while preserving 
overall functionality and behavior , and is an important 
technique in managing the growing complexity of software 
systems . This disclosure introduces an interactive way to 
refactor software systems using innovization and interactive 
dynamic multi - objective optimization . The interactive 
approach supports the adaption of refactoring solutions 
based on developer feedback while also taking into account 
other code changes that the developer may have performed 
in parallel with the refactoring activity . 
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INTERACTIVE AND DYNAMIC SEARCH 
BASED APPROACH TO SOFTWARE 

REFACTORING RECOMMENDATIONS 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application claims the benefit of U . S . Provi 
sional Application No . 62 / 658 , 834 , filed on Apr . 17 , 2018 . 
The entire disclosure of the above application is incorpo 
rated herein by reference . 

FIELD 

[ 0002 ] The present disclosure relates to an interactive and 
dynamic search - based approach to software refactoring rec 
ommendations . 

fitness function ( involving e . g . , code smells , software qual 
ity metrics etc . ) . This approach is appealing in that it is a 
complete solution and requires little developer effort , but it 
suffers from several serious drawbacks as well . Firstly , the 
recommended refactoring sequence may change the pro 
gram design radically and this is likely to cause the devel 
oper to struggle to understand the refactored program . 
Secondly , it lacks flexibility since the developer has to either 
accept or reject the entire refactoring solution . Thirdly , it 
fails to consider the developer perspective , as the developer 
has no opportunity to provide feedback on the refactoring 
solution as it is being created . Furthermore , as development 
must halt while the refactoring process executes , fully 
automated refactoring methods are not useful for floss 
refactoring where the goal is to maintain good design quality 
while modifying existing functionality . The developers have 
to accept the entire refactoring solution even though they 
prefer , in general , step - wise approaches where the process is 
interactive and they have control of the refactorings being 
applied . 
[ 0007 ] In light of the discussion above , this disclosure 
propose an approach to refactoring recommendation that ( 1 ) 
provides refactoring - centric interaction based on the pref 
erences and feedback of developers , ( 2 ) enables refactoring 
and development to proceed in parallel and ( 3 ) collects 
information in a non - intrusive manner that can be used to 
inform dynamically the refactoring process in an intelligent 
manner to provide better recommendations . Enabling the 
developer to interact with the refactoring solution is essen 
tial both to creating a better refactoring solution , and to 
creating a solution that the developer understands and can 
work with . 
[ 0008 ] This section provides background information 
related to the present disclosure which is not necessarily 
prior art . 

SUMMARY 

BACKGROUND 
[ 0003 ] Successful software products evolve through a 
process of continual change . However , this process may 
weaken the design of the software and make it unnecessarily 
complex , leading to significantly reduced productivity , 
increased fault - proneness and cost of maintenance , and has 
even led to projects being canceled . Many studies report that 
software maintenance activities consume up to 90 % of the 
total cost of a typical software project . It has also been 
shown that software developers typically spend around 60 % 
of their time in understanding the code they are maintaining . 
[ 0004 ] Clearly , software developers need better ways to 
manage and reduce the growing complexity of software 
systems and improve their productivity . The standard solu 
tion is refactoring , which involves improving the design 
structure of the software while preserving its functionality . 
There has been much work done on various techniques and 
tools for software refactoring and these approaches can be 
classified into three main categories : manual , semi - auto 
mated and fully - automated approaches , as outlined below . In 
manual refactoring , the developer refactors with no tool 
support at all , identifying the parts of the program that 
require attention and performing all aspects of the code 
transformation by hand . It may seem surprising that a 
developer would eschew the use of tools in this way , but 
researchers have found in their empirical study of the 
developers usage of the Eclipse refactoring tooling that in 
almost 90 % of cases the developers performed refactorings 
manually and did not use any automated refactoring tools . In 
spite of its apparent popularity , manual refactoring is very 
limited however , several studies have shown that manual 
refactoring is error - prone , time - consuming , not scalable and 
not useful for radical refactoring that requires an extensive 
application of refactorings to correct unhealthy code . 
[ 0005 ] By semi - automated refactoring , the situation is 
referred to where a developer uses the standard refactoring 
tooling available in IDEs , such as Eclipse and Netbeans , to 
apply the refactorings they deem appropriate . Researchers 
have analyzed data collected from 13 , 000 Java developers 
using the Eclipse IDE over a 9 - month period , finding that the 
trivial Rename refactoring accounted for almost 72 % of the 
refactorings performed , while the combination of Rename , 
Extract Method / Variable and Move accounted for 89 . 3 % of 
the total number of refactorings performed . 
[ 0006 ] In fully - automated refactoring , a search - based pro 
cess is employed to find an entire refactoring sequence that 
improves the program in accordance with the employed 

[ 0009 ] This section provides a general summary of the 
disclosure , and is not a comprehensive disclosure of its full 
scope or all of its features . 
[ 0010 ] In one aspect , a computer - implemented method is 
presented for refactoring software . The method includes : 
receiving a set of candidate solutions for refactoring the 
software , where each solution in the set of candidate solu 
tions includes one or more refactor operations for the 
software ; identifying a particular candidate solution from the 
set of candidate solutions , where the particular candidate 
solution includes refactor operations with highest common 
ality amongst the set of candidate solutions ; presenting , by 
the computer processor , a particular refactoring operation 
from the particular candidate solution to a user ; receiving 
feedback regarding the particular refactoring operation from 
the user ; updating source code for the software based on the 
feedback from the user ; and generating , by the computer 
processor , another set of candidate solutions using the 
updated source code , for example by applying a genetic 
algorithm to a set of candidate solutions and thereby yield 
ing a next generation of candidate solutions . 
[ 0011 ] In another aspect , a variant of the computer - imple 
mented method for refactoring software is presented . In this 
variant , select candidate solutions are removed from the next 
generation of candidate solutions based on feedback from 
the user . For example , removing candidate solutions which 
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specific examples in this summary are intended for purposes 
of illustration only and are not intended to limit the scope of 
the present disclosure . 

include a particular refactoring operation , such as a refac 
toring operation rejected by the user . 
[ 0012 ] In one embodiment , each candidate solution in the 
next generation of candidate solutions is evaluated accord 
ing to two fitness functions , where one of the two fitness 
functions minimizes number of changes to the source code 
and other of the two fitness functions maximizes software 
quality . 

[ 0013 ] Identifying a given candidate solution may include 
calculating a composite ranking score for each candidate 
solution in the set of candidate solutions , where the com 
posite ranking score is calculated by computing a ranking 
score for each refactor operation in a given candidate 
solution based upon frequency of the refactor operation 
across the set of candidate solution , and summing the 
ranking score for each refactor operation in the given 
candidate solution to yield the composite ranking score , 
such that the particular candidate solution is the candidate 
solution having highest composite ranking score in the set of 
candidate solutions . 
[ 0014 ] In one embodiment , a particular refactoring opera 
tion is presented by displaying an indicator to apply the 
particular refactoring operation to the software , an indicator 
to modify the particular refactoring operation and an indi 
cator to reject the particular refactoring operation . 
[ 0015 ] In response to receiving feedback from the user , a 
composite ranking score is recalculated for each candidate 
solution in the set of candidate solutions using the feedback 
from the user . The method continues by identifying another 
candidate solution from the set of candidate solutions , where 
the another candidate solution has highest composite rank 
ing score after the step of recalculating a composite ranking 
score for each candidate solution in the set of candidate 
solutions ; presenting a particular refactoring operation from 
the another candidate solution to a user ; receiving feedback 
regarding the particular refactoring operation from the user ; 
and recalculating a composite ranking score for each for 
each candidate solution in the set of candidate solutions 
using the feedback from the user . The steps are repeated until 
an exit condition is satisfied . 
[ 0016 ] In the example embodiment , the composite ranking 
score for a given candidate solution is recalculated by 
adding one to the composite ranking score when the given 
candidate solution includes the particular refactoring opera 
tion and the feedback indicates to apply the particular 
refactoring operation to the software , by adding one half to 
the composite ranking score when the given candidate 
solution includes the particular refactoring operation and the 
feedback indicates to modify the particular refactoring 
operation , and by subtracting one to the composite ranking 
score when the given candidate solution includes the par 
ticular refactoring operation and the feedback indicates to 
reject the particular refactoring operation . 
[ 0017 ] . In another aspect , a variant of the computer - imple 
mented method for refactoring software is presented . In this 
variant , select candidate solutions are removed from the next 
generation of candidate solutions based on feedback from 
the user . For example , removing candidate solutions which 
include a particular refactoring operation , such as a refac 
toring operation rejected by the user . 
[ 0018 ] Further areas of applicability will become apparent 
from the description provided herein . The description and 

DRAWINGS 
[ 0019 ] The drawings described herein are for illustrative 
purposes only of selected embodiments and not all possible 
implementations , and are not intended to limit the scope of 
the present disclosure . 
[ 0020 ] FIG . 1 is a diagram providing an overview of the 
interactive software refactoring approach set forth in this 
disclosure 
[ 0021 ] FIG . 2 is a flowchart depicting an interactive 
method for refactoring software ; 
[ 0022 ] FIG . 3 is a flowchart depicting a portion of the 
interactive method executed for a given set of candidate 
solutions . 
[ 0023 ] FIG . 4 illustrates exemplar refactorings recom 
mended by the interactive refactoring method . 
[ 0024 ] FIG . 5 illustrates recommended target classes by 
the technique for a move method refactoring to modify . 
[ 0025 ] FIGS . 6A - 6C are a table depicting the Tukey post 
hoc analysis results between the interactive method and the 
other methods 
[ 0026 ] FIG . 7A - 7J are boxplots of G , NF , MC , PR , and RC 
on all the ten systems based on 30 independent runs ; label 
of the methods : M1 ( proposed approach ) = Interactive + In 
novization NSGA - II , M2 = Innovization NSGA - II , 
M3 = Kessentini , M4 = Ouni , M5 = Harman , M6 = O ' Keeffe , 
M7 = Jdeodorant 
[ 0027 ] FIG . 8 is a graph showing MC @ k results on the 
different systems with k = 1 , 5 , 10 and 15 , respectively . 
[ 0028 ] . FIG . 9 is a graph showing PR @ k results on the 
different systems with k = 1 , 5 , 10 and 15 . 
10029 ] FIG . 10 is a graph showing the median NMR , NRR 
and NAR results in the different systems . 
[ 0030 ] FIG . 11 is a graph showing the average productiv 
ity difference ( TP ) results on the different tasks performed 
by the three groups using the interactive approach , Quni et 
al . , Harman et al . 
[ 0031 ] FIGS . 12A and 12B illustrate the Gantt Options 
before and after refactoring . 
[ 0032 ] Corresponding reference numerals indicate corre 
sponding parts throughout the several views of the drawings . 

DETAILED DESCRIPTION 

[ 0033 ] Example embodiments will now be described more 
fully with reference to the accompanying drawings . 
[ 0034 ] Refactoring is defined as the process of improving 
the code after it has been written by changing its internal 
structure without changing its external behavior . The idea is 
to reorganize variables , classes and methods to facilitate 
future adaptations and enhance comprehension . This reor 
ganization is used to improve different aspects of the soft 
ware quality such as maintainability , extensibility , reusabil 
ity , etc . Some modern Integrated Development 
Environments ( IDES ) , such as Eclipse , Netbeans , provide 
support for applying the most commonly used refactorings , 
e . g . , move method , rename class , etc . Other types of IDEs 
are also contemplated by this disclosure . 
[ 0035 ] In order to identify which parts of the source code 
need to be refactored , most of the existing work relies on the 
notion of bad smells , also called design defects or anti 
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patterns . In this disclosure , it is assumed that code smells 
have been already detected , and need to be corrected . 
Typically , code smells refer to design situations that 
adversely affect the development of the software . When 
applying refactorings to fix design defects , software metrics 
can be used as an overall indication of the quality of the new 
design . For instance , high intra - class cohesion and low 
inter - class coupling usually indicate a high - quality system . 
Different techniques for detecting code smells are known in 
the art and fall within the scope of this disclosure . 
[ 0036 ] A brief overview is given about two important 
aspects in the Evolutionary Multi - objective Optimization 
( EMO ) paradigm related to the : ( 1 ) interaction with the user 
and ( 2 ) dynamicity of the problem . 
[ 0037 ] Interacting with the human user means allowing 
the user to inject his / her preferences into the computational 
search algorithm and then using these preferences to guide 
the search process . To express his / her preferences , the user 
needs some preference modeling tools . The most commonly 
used ones are : 
[ 0038 ] Weights : Each objective is assigned a weighting 
coefficient expressing its importance . The larger the weight 
is , the more important the objective is . 
10039 ] Solution ranking : The user is provided with a 
sample of solutions ( a subset of the current population ) and 
is invited to perform comparisons between pairs of equally 
ranked solutions in order to differentiate between solutions 
that the fitness function regards as equal . 
[ 0040 ] Objective ranking : Pairwise comparisons between 
pairs of objectives are performed in order to rank the 
problem ' s objectives where strong conflict exists between a 
pair of objectives . 
10041 ] Reference point ( also called a goal or an aspiration 
level vector ) : The user supplies , for each objective , the 
desired level that he / she wishes to achieve . This desired 
level is called aspiration level . 
0042 Reservation point ( also called a reservation level 
vector ) : The user supplies , for each objective , the accepted 
level that he / she wishes to reach . This accepted level is 
called reservation level . 
[ 0043 ] Trade - off between objectives . The user specifies 
that the gain of one unit in one objection is worth degrada 
tion in some others and vice versa . 
[ 0044 ] Outranking thresholds : The user specifies the nec 
essary thresholds to design a fuzzy predicate modeling the 
truth degress of the predicate solution x is at least as good 
as solution y . 
10045 ) Desirability thresholds : The user supplies : ( 1 ) an 
absolutely satisfying objective value and ( 2 ) a marginally 
infeasible objective value . These thresholds represent the 
parameters that define the desirability functions . 
[ 0046 ] Based on these preference modeling tools , one 
observes that the goal of a preference - based EMO algorithm 
is to assign different importance levels to the problem ' s 
objectives with the aim to guide the search towards the 
Region of Interest ( ROI ) that is the portion of the Pareto 
Front that best matches the user preferences . In fact , usually , 
the user is not interested with the whole Pareto front and thus 
he / she is searching only for his / her ROI from which the 
problem ' s final solution will be selected . Several preference 
based EMO algorithms have been proposed and used to 
solve real problems , including but not limited to PI - EMOA , 
iTDEA , NOSGA , and DF - SMS - EMOA . There are several 
algorithmic challenges that should be overcome such as the 

preservation of Pareto dominance , the preservation of popu 
lation diversity , the scalability with the number of objec 
tives , etc . 
[ 0047 ] Until now , the user ' s preferences are expressed and 
handled in the objective space . It is important to highlight 
that one of the original aspects of the work in this disclosure , 
as detailed later , is allowing the user ( a software developer ) 
to express his / her preferences in the decision space and then 
handling these preferences to help the user finding the most 
desired refactoring solution . Moreover , this approach helps 
the user in eliciting his / her preferences , which is very 
important for any preference - based EMO algorithm . These 
preferences are introduced implicitly by moving between the 
Pareto front of non - dominated solutions after obtaining 
feedback from the user about just a few parts of the solution 
in order to better understand his preferences . This implicit 
exploration of the Pareto front will be detailed in the next 
section where the formulation of the refactoring problem is 
described . 
[ 0048 ] The incorporation of user preferences may require 
the handling of dynamicity issues related to the introduced 
changes to the solution or the input ( i . e . the software 
system ) . Handling dynamicity in EMO means solving 
dynamic problems where the objective functions and / or the 
constraints may change over time due to , for example , the 
dynamic nature of most of software evolution problems 
including software refactoring . Applying evolutionary algo 
rithms ( EAS ) to solve Dynamic Multi - Objective Problems 
( DMOPs ) has received great attention from researchers 
thanks to the adaptive behavior of evolutionary computation 
methods . ADMOP consists of minimizing or maximizing an 
objective function vector under some constraints over time . 
Its general form is the following : 

Minf ( x , 1 ) = [ fi ( x , t ) , 12 ( x , t ) , . . . , fM ( x , t ) ] 
8 ; ( X , 1 ) > 0 , 
hk ( x , 1 ) = 0 , 

( x < x ; sx , 

j = 1 , . . . P ; 
k = 1 , . . . Q ; ' 
i = 1 , . . . n , 

where M is the number of objective functions , t is the time 
instant , P is the number of inequality constraints , Q is the 
number of equality constraints , x , and x ; " correspond 
respectively to the lower and upper bounds of the variable x ; . 
[ 0049 ] A solution x , satisfying the ( P + Q ) constraints is 
said to be feasible , and the set of all feasible solutions 
defines the feasible search space denoted by 12 . In this 
formulation , a minimization multi - objective problem is con 
sidered since maximization can be easily turned into mini 
mization based on the duality principle by multiplying each 
objective function by - 1 and transforming the constraints 
based on the duality rules . 
[ 0050 ] The resolution of a multi - objective problem yields 
a set of trade - off solutions , called Pareto optimal solutions or 
non - dominated solutions , and the image of this set in the 
objective space is called the Pareto front . Hence , the reso 
lution of a multi - objective problem consists in approximat 
ing the entire Pareto front . In the following , some back 
ground definitions are provided related to multi - objective 
optimization . It is worth noting that these definitions remain 
valid in the case of DMOPs . 

[ 0051 ] Definition 1 : Pareto optimality — A solution x * E 
22 is a Pareto optimal if Vx E 106 and 1 = { 1 , . . . , M } 
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either Vm El we have fm ( x ) = fm ( x * ) or there is at least 
one m EI such that fm ( x ) > fm ( x * ) . The definition of 
Pareto optimality states the x * is Pareto optimal if no 
feasible vector exists that would improve some objec 
tives without causing a simultaneous worsening in at 
least one other objective . 

[ 0052 ] Definition 2 : Pareto dominance — A solution 
u = ( u1 , U2 , un ) is said to dominate another solution 
V = ( V1 , V2 , . . . , Vn ) ( denoted by f ( u ) < f ( v ) ) if and only 
if f ( u ) is partially less than f ( v ) . In other words , VmE 
{ 1 , . . . , M } we have fm ( u ) sfm ( V ) and Im E { 1 , . . . 
, M } where fm ( u ) < fm ( v ) . 

[ 0053 ] Definition 3 : Pareto optimal set — For a given 
MOP f ( x ) , the Pareto optimal set is p * = { x EQ - 3x ' 
El , f ( x ' ) < f ( x ) } . 

[ 0054 ] Definition 4 : Pareto optimal front — For a given 
MOP f ( x ) and its Pareto optimal set P * , the Pareto front 
is PF * = { f ( x ) , x EP * } . 

While particular reference is made to solving dynamic 
multi - objective problems , the interactive concepts for 
exploring the Pareto front are not limited to multi - objective 
problems . 
[ 0055 ] FIG . 1 illustrates the general approach set forth in 
this disclosure . The technique comprises two main compo 
nents . The first component is an offline phase , executed in 
the background , when developers are modifying the source 
code of the system . During this phase , the multi - objective 
algorithm , NSGA - II , is executed for a number of iterations 
to find the non - dominated solutions balancing the two 
objectives of improving the quality , which corresponds to 
minimizing the number of code smells , maximizing / preserv 
ing the semantic coherence of the design and improving the 
QMOOD ( Quality Model for Object - Oriented Design ) qual 
ity metrics , and the second objective of minimizing the 
number of refactorings in the proposed solutions . In the 
example embodiment , the mufti - objective algorithm is the 
multi - objective evolutionary algorithm , NSGA - II , as 
described by Deb , K . et al in “ A Fast and Elitist Multiob 
jective genetic Algorigm : NSGA - II ” IEEE Transactions on 
Evolutionary Computations 6 ( 2 ) : 182 - 197 ( 2002 ) which is 
incorporated here in its entirety by reference . While refer 
ence is made to this particular algorithm , other types of 
genetic algorithms as well as other types of multi - objective 
algorithms fall within the scope of this disclosure , 
[ 0056 ] The output of this first step of the offline phase is 
a set of Pareto - equivalent refactoring solutions that opti 
mizes the above two objectives . The second step of the 
offline phase explores this Pareto front in an intelligent 
manner using innovization 14 to rank recommended refac 
torings based on the common features between the non 
dominated solutions . In this adaptation , it is assumed that the 
most frequently occurring refactorings in the non - dominated 
solutions are the most important ones . Thus , the output of 
this second step of the offline phase is a set of ranked 
solutions 15 based on this frequency score . In the example 
embodiment , NSGA - II is able to generate not only one good 
refactoring solution , but a diverse set of non - dominated 
solutions . This set of refactoring solutions may include 
specific patterns that make them better and different than 
dominated ( imperfect ) refactoring solutions . To extract these 
patterns , the heuristic of prioritizing the recommendation of 
refactorings that are the most redundant ones among the 
non - dominated solutions is used . To intuition , it seems very 
likely that common patterns in the set of non - dominated 

solutions are very likely to be good patterns . The opposite 
situation , where some non - dominated solutions share a 
pattern that is of poor quality , seems highly unlikely , though 
it could plausibly occur were the poor quality pattern to be 
an essential enabling feature for another pattern of high 
quality . While only expressing an intuition here , innoviza 
tion has proven itself to be of value later in the experiments 
section . 
[ 0057 ] The second component of the approach is an online 
phase to manage the interaction with the developer . It 
dynamically updates the ranking of recommended refactor 
ings at 12 based on the feedback of the developer . In one 
example , this feedback can be to approve / apply or modify or 
reject the suggested refactoring one by one as a sequence of 
transformations . Thus , the goal is to guide , implicitly , the 
exploration of the Pareto front to find good refactoring 
recommendations . 
[ 0058 ] FIG . 2 further depicts the interactive method for 
refactoring software . Assuming at least one execution of a 
genetic algorithm , a set of candidate solutions for the 
refactoring the software , along with the source code of the 
software of interest , serves as an input to the interactive 
method as indicated at 21 . Each candidate solution in the set 
of candidate solutions includes one or more recommended 
refactor operations for the software . 
0059 ] From amongst the set of candidate solutions , a 
particular candidate solution is identified at 22 , where the 
particular candidate solution includes refactor operations 
with highest commonality amongst the set of candidate 
solutions . In one example , a ranking score for each refactor 
operation in a given candidate solution is computed based 
upon frequency of the refactor operation across the set of 
candidate solution . The ranking score for each refactor 
operation in the given candidate solution is then summed to 
yield a composite ranking score for the given candidate 
solution . The particular candidate solution is selected as the 
candidate solution having highest composite ranking score 
in the set of candidate solutions . Other techniques for 
assessing commonality of refactors operations are envi 
sioned by this disclosure . 
[ 0060 ] One or more refactoring operations from the par 
ticular candidate solution are then presented at 23 to a user , 
for example by displaying the refactor operation on a display 
of the system . In the example embodiment , the refactor 
operation is displayed with an indicator to apply the par 
ticular refactoring operation to the software , an indicator to 
modify the particular refactoring operation and an indicator 
to reject the particular refactoring operation , for example as 
seen in FIG . 4 . The user in turn provides feedback regarding 
the particular refactoring operation . 
[ 0061 ] Upon receipt of the feedback from the user at 24 , 
the source code for the software is updated at 25 based on 
the feedback provided by the user . For example , the source 
code is modified to implement the refactor operation when 
the feedback indicates that the user accepts or want to apply 
the particular refactoring operation to the software . Once the 
developers approve some of the recommended refactorings , 
a set of routines / templates are executed , taking as input the 
current state of the code and the list of recommended 
refactorings , to generate the update refactored source code 
after checking a set of pre / post conditions to make sure that 
the source code compiles after refactoring . Update routines / 
templates are commonly found in commercial available 
integrated development environments . 
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reducing the search space and thus a fast convergence to 
better solutions . Of course , the continuation of the execution 
of the genetic algorithm takes as input the updated version 
of the system after the interactions with developers . The 
whole process continues until the developers decide that 
there is no necessity to refactor the system any further . 
[ 0067 ] Below an example embodiment of the interactive 
software refactoring method is described in greater detail . 
Algorithm 0 is the main loop in the interactive approach . 
Input is the source code for the target software and the output 
is the refactored software . This main loop calls Algorithm 1 
as indicated at line 3 . The main loop is executed until the 
user is satisfied with the refactored software or the current 
recommendations are not helpful and require repairs . Pseudo 
code for the main loop is as follows . 

Algorithm 0 : Main algorithm of the Interactive Refactoring approach 

2 

Input : Software System ( sys ) 
Output : Refactored System ( refsys ) 
begin 

while - user is satisfied OR interactionScore < 0 do 
11 Execute the Interactive Dynamic Multiobjective 

Algorithm with user preferences 
Run Algorithm 10 ) : 

Return refsys ; 4 

10062 ] This interactive approach for refactoring software 
can be iterative at a macro level . That is , the process is 
repeated until an exit condition is met as indicated at 26 . In 
one example , the user merely indicates whether they are 
satisfied with the updated software and the process is 
terminated . If the user remains unsatisfied with the updated 
software , a new set of candidate solutions are generated at 
27 , for example by applying the genetic algorithm and 
thereby yielding a next generation of candidate solutions . 
[ 0063 ] Previously rejected refactoring operations should 
not be considered during the subsequent iteration . Thus , 
select candidate solutions are removed from the next gen 
eration of candidate solutions at step 28 . More specifically , 
candidate solutions which include at least one refactoring 
operation that was rejected by the user are removed from the 
next generation of candidate solutions . 
[ 0064 ] With the context of a set of candidate solutions , the 
interactive approach for refactoring software can also be 
iterative at a micro level as described in relation to FIG . 3 . 
Starting with a set of candidate solutions , the interactive 
session with the user starts by selecting a particular candi 
date solution at 31 , where the particular candidate solution 
includes refactor operations with highest commonality 
amongst the set of candidate solutions as described above in 
relation to step 22 . Likewise , the interactive session presents 
one of refactoring operations from the particular candidate 
solution to a user at 32 and in turn receives user feedback for 
the particular candidate solution at 33 . These three steps are 
the same as steps 22 , 23 and 24 of FIG . 2 . 
10065 ] Next , each of the candidate solutions in the set of 
candidate solutions is rescored based on the user feedback . 
Based on the updated ranking of the candidate solutions and 
the refactoring operations associated therewith , the interac 
tive process is repeated until an exit condition is met as 
indicated at 35 . In one example , there are two exit condi 
tions . The first condition is when the developer decides to 
stop the interactive refactoring solution , for example to 
focus on functional changes . The second condition is when 
the composite ranking score for one or more of the candidate 
solutions becomes a negative value . In this case , it is 
desirable to re - execute the genetic algorithm to generate a 
new set of candidate solutions based on the user feedback . 
Other types of exit conditions are contemplated by this 
disclosure . Since the rankings are updated dynamically , the 
interactive approach implicitly moves between non - domi 
nated solutions of the Pareto front . Once an exit condition is 
met , the source code can be updated and a new set of 
candidate solutions may be generated . Upon the occurrence 
of an exit condition at step 35 , the interactive process 
continues at step 25 of FIG . 2 in the example embodiment . 
[ 0066 ] With continued reference to FIG . 1 , after a number 
of interactions , developers may have modified or rejected a 
high number of suggested refactorings or have introduced 
several new code changes ( new functionalities , fix bugs , 
etc . ) . Whenever the developers stop the refactoring session 
by closing the suggestions window , the first component of 
the approach is executed again in the background to update 
the last set of non - dominated refactoring solutions , for 
example by continuing the execution of NSGA - II based on 
the two objectives defined in the first component but also the 
new constraints summarizing the feedback of the developer . 
In fact , the rejected refactorings by the developer is consid 
ered as constraints to avoid generating solutions containing 
several already rejected refactorings . This may lead to 

[ 0068 ] In the example embodiment , a solution consists of 
a sequence of n refactoring operations involving one or 
multiple source code elements of the system to refactor . The 
vector - based representation is used to define the refactoring 
sequence . Each vector ' s dimension has a refactoring opera 
tion and its index in the vector indicates the order in which 
it will be applied . For every refactoring , pre - and post 
conditions are specified to ensure the feasibility of the 
operation . 
[ 0069 ] The initial population is generated by randomly 
assigning a sequence of refactorings to a randomly chosen 
set of code elements , or actors . The type of actor usually 
depends on the type of the refactoring it is assigned to and 
also depends on its role in the refactoring operation . An actor 
can be a package , class , field , method , parameter , statement 
or variable . Table 1 below depicts , for each refactoring , its 
involved actors and its corresponding parameters . 

TABLE 1 
List of considered refactorings for the solution representation 

Refactorings Actors Roles 
Extract class 

Extract interface 

Inline class 
Move field 

e?? 

class 
field 
method 
class 
method 
class 
class 
field 
class 
method 
class 
field 
class 
method 
class 
field 

source class , new class 
moved fields 
moved methods 
source class , new interface 
moved abstract methods 
source class , target class 
source class , target class 
moved field 
source class , target class 
moved method 
super class , subclasses 
moved field 
super class , subclasses 
moved method 
subclasses , super class 
moved field 

Move method 

Push down field 

Push down method 
UU 

Pull up field 
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TABLE 1 - continued - continued 
List of considered refactorings for the solution representation Algorithm 1 Dynamic Interactive NSGA - II at generation t 

Refactorings Actors Roles 

Pull up method 12 : 
13 : 

Move class 14 : 

class 
method 
package 
class 
method 
field 

subclasses , super class 
moved method 
source package , target package 
moved class 
source class , new class 
moved fields 

Extract method 

- 

# ÖN 

These refactorings are merely exemplars and not intended to 
be limiting of the types of refactorings implemented by the 
system . 
[ 0070 ] The size of a solution , i . e . the vector ' s length is 
randomly chosen between upper and lower bound values . 
The determination of these two bounds is similar to the 
problem of bloat control in genetic programming where the 
goal is to identify the tree size limits . Since the number of 
required refactorings depends mainly on the size of the 
target system , for each target project performed , several trial 
and error experiments using the HyperVolume ( HV ) perfor 
mance indicator to determine the upper bound after which , 
the indicator remains invariant . For the lower bound , it is 
arbitrarily chosen . The experiments section will specify the 
upper and lower bounds used in this study . Table 2 shows an 
example of a refactoring solution including three operations 
applied to a simplified version of a solution applied to 
JVacation v1 . 0 , a Java open - source trip management and 
scheduling software . 

N 

N 

N 

M ?? ? M 

N 

M 

M ??? ??? ??? ??? ??? 

Sys Get Refactored – System ( ) ; 
UserFeedback « FALSE ; 

end if 
S = 0 , i = 1 ; 
Q Variation ( Pd ) ; 
R = PU Qi 
Per evaluate ( P , C , , Sys ) ; 
( F1 , F2 , . . . ) + NonDominatedSort ( R . ) ; 
repeat 

S , S , UF ; ; 
i + i + 1 

until ( IS _ 1 = N ) 
F , Fij / / Last front to be included 
if IS11 = N then 

Pit1 Sii 
else 

P2 + 1 < - U ; - 1 - 1 Fj ; 
/ * Number of points to be chosen from F , * / 

K N – IP : + 11 ; 
/ * Crowding distance of points in Fl * / 
Crowding - Distance - Assignment ( F1 ) ; 
Quick – Sort ( F1 ) ; 
/ * Choose K solutions with largest distance * / 
P + 1 = P4 + 1 U Select ( F? , k ) ; 

end if 
if t + 1 = Threshold then 

UserFeedback = TRUE ; 
/ * Select and rank the best front * / 

29 : 

??? ??? 

?? ?? 

TABLE 2 
Example of a solution representation 

Operation Source / entity Target entity 

Move Method ctrl . booking . LodgingModel 

Extract Class 
ctrl . booking . Booking Controller : : handleLodging ViewEvent 
( java . awt . event . ActionEvent ) : void 
ctrl . booking . SelectionModel : : - flightList + addFlight ( ) : void + 
clearFlight ( ) : void 
ctrl . booking . Booking Controller : : createBookings ( ) : void 

ctrl . booking . FlightList 

Move Method ctrl . CoreModel 

- continued 

Algorithm 1 Dynamic Interactive NSGA - II at generation t 

[ 0071 ] Algorithm 1 is primarily concerned with generat 
ing a set of candidate solutions for refactoring the target 
software . The first iteration of the algorithm identifies the 
Pareto front of the non - dominated refactoring solutions 
based on the fitness functions described below . Subsequent 
iterations use interaction data from the user to reduce the 
search space of possible refactoring solutions and improve 
the future suggestions by repairing the Pareto front . Psuedo 
code for this primary algorithm is set forth below . 

39 : 
40 : 

Rank - Solution ( F1 ) ; 
Threshold < Threshold + t + 1 ; 

end if 
End 

41 : 
42 : 

Algorithm 1 Dynamic Interactive NSGA - II at generation t 

trim # ö ö 

Input 
Sys : system to evaluate , Pt : parent population 
Output 
Pt + 1 
Begin 
/ * Test if any user interaction occurred in the previous 

iteration * / 
if UserFeedback = TRUE then 

/ * Rejected refactoring operations as constraints * / 
Ct = GetConstraints ( ) ; 
/ * Updated source code after applying changes * / 

Initially , a determination is made as to whether any user 
interaction occurred in a previous iteration as indicated at 
line 7 . If feedback is available from a previous iteration , 
rejected refactoring operations are set as constraints for the 
genetic algorithm and the source code is updated based on 
the user feedback . 
10072 ] . Next , the genetic algorithm is executed as seen in 
lines 14 - 35 . In each search algorithm , the variation operators 
used at line 15 play the key role of moving within the search 
space with the aim of driving the search towards optimal 
solutions . 
[ 0073 ] For the crossover , a one - point crossover operator is 
used in the example embodiment . It starts by selecting and 
splitting at random two parent solutions . Then , this operator 

ö ö ö 
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function that counts the number of modified code elements 
in a refactoring . Any solution with refactorings being per 
formed on the same code elements will have better ( lower ) 
fitness value for this objective . Such a definition of the 
objective is in favor of code locality since it encourages 
refactoring the same code fragment , as developers prefer to 
refactor the specific elements with which they are most 
familiar instead of applying scattered changes throughout 
the whole system . The proposed fitness function is different 
from that employed in the previous work where only the 
number of applied refactorings are counted . In fact , each 
refactoring type may have a different impact on the system 
in terms of number of code changes it engenders , something 
that can be identified using the new formulation . 
[ 0076 ] With regard to maximizing software quality as an 
objective , many studies have utilized structural metrics as a 
basis for defining quality indicators for a good system 
design . As an illustrative example , a proposed a set of 
quality measures , using the ISO 9126 specification , called 
QMOOD is described by J . Bansiya et al . in “ A hierarchical 
model for object - oriented design quality assessment . IEEE 
Transactions on Software Engineering ” . 28 ( 1 ) : 4 - 17 . ' 
( 2002 ) . Each of these quality metrics is defined using a 
combination of low - level metrics as detailed in Tables 3 and 

TABLE 3 

QMOOD metrics description . 

creates two child solutions by putting , for the first child , the 
first part of the first parent with the second part of the second 
parent , and vice versa for the second child . This operator 
must ensure the respect of the length limits by eliminating 
randomly some refactoring operations . It is important to 
note that in multi - objective optimization , it is better to create 
children that are close to their parents in order to have a more 
efficient search process . For mutation , the bit - string muta 
tion operator is used that picks probabilistically one or more 
refactoring operations from the solutions and replace or 
modify or delete them . While the crossover operator does 
not introduce or modify a refactoring of a solution but just 
the sequence ( a swap between refactoring of different solu 
tions ) , the mutation operator definitely can add or modify or 
delete a refactoring when applied to any solution of the 
population . When a mutation operator is applied , the goal is 
to slightly change the solution for the purpose to probably 
improve its fitness functions . Three operations are used for 
the mutation operator that are randomly selected when a 
mutation is applied to a solution . Thus , the mutation operator 
can introduce new refactorings by either adding completely 
new ones or modifying the controlling parameters of an 
existing refactoring . For example , move method ( m1 , A , B ) 
could be replaced by movemethod ( ml , A , C ) or movemethod 
( m3 , A , B ) , where ml , A and B are the controlling parameters 
of the refactoring move method . Furthermore , the selection 
operator allows to regenerate part of the population ran 
domly at every iteration thus new refactoring will be intro 
duced since new solutions are generated during the execu 
tion process . 
[ 0074 ] When applying the change operators , the different 
pre - and post - conditions are checked to ensure the applica 
bility of the newly generated solutions . For example , to 
apply the refactoring operation movemethod a number of 
necessary pre - conditions should be satisfied such as the 
method and the source and target classes should exists . A 
post - condition example is to check that the method exists 
and was moved to the target class and did not exist anymore 
in the source class . More details about the adapted pre - and 
post - conditions for refactors are described by M . Fowler et 
al can in Refactoring : Improving the design of existing 
programs ' . Proc . Conference Name , Conference Location , 
1999 . A repair operator that randomly selects new refactor 
ings to replace those creating conflicts can also be applied . 
[ 0075 ] The generated solutions are evaluated at line 17 
using two fitness functions : minimize the number of code 
changes and maximize software quality . With regard to 
minimizing the number of code changes as an objective , the 
application of a specific suggested refactoring sequence may 
require an effort that is comparable to that of re - implement 
ing part of the system from scratch . Taking this observation 
into account , it is essential to minimize the number of 
suggested operations in the refactoring solution since the 
designer may have some preferences regarding the percent 
age of deviation with the initial program design . In addition , 
most developers prefer solutions that minimize the number 
of changes applied to their design . Thus , it is formally 
defined the fitness function as the number of modified 
actors / code elements ( packages , classes , methods , attri 
butes ) by the generated refactorings solution 

f ( x ) = 2 ; _ _ " # code _ elements ( R ; , x ) 

Design Metric Design Property Description 

Design Size Design Size in 
Classes ( DSC ) 
Number Of 
Hierarchies 
( NOH ) 

Hierarchies 

Average Number Abstraction 
of Ancestors 
( ANA ) 
Direct Access Encapsulation 
Metric ( DAM ) 

Coupling Direct Class 
Coupling 
( DCC ) 

Total number of classes in the 
design . 
Total number of “ root ” classes in 
the design 
( counKMaxInheritence Tree 
( class ) = 0 ) » 
Average number of classes in 
the inheritance tree for each 
class 
Ratio of the number of private 
and protected attributes to the 
total number of attributes in a 
class . 
Number of other classes a class 
relates to , either through a 
shared attribute or a parameter 
in a method . 
Measure of how related methods 
are in a class in terras of used 
parameters . 
It can also be computed by : 
1 - LackOfCohesionOfMethods 
Count of number of attributes 
whose type is user defined 
class ( es ) . 
Ratio of the number of inherited 
methods per the total number of 
methods within a class . 

Cohesion Cohesion 
Among 
Methods of 
class ( CAMC ) 

Composition 

Inheritance 

Measure Of 
Aggregation 
( MOA ) 
Measure of 
Functional 
Abstraction 
( MFA ) 
Number of 
Polymorphic 
Methods ( NOP ) 

Polymorphism Any method that can be used by 
a class and its descendants . 
Counts of the number of 
methods in a class excluding 
private , static and final ones . 
Number of public methods in class . Messaging 

( 1 ) 
Class Interface 
Size ( CIS ) 
Number of 
Methods ( NOM ) 

Complexity Number of methods declared in a 
class . 

where x is the solution to evaluate , n is the number of 
refactorings in the solution x and # code _ elements is a 
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TABLE 4 
Quality attributes and their computation equations . 

Quality attributes 
Definition 
Compulation 

Reusability 

where each dimension corresponds to a vocabulary term . 
The cosine of the angle between two vectors is considered 
as an indicator of similarity . 
[ 0080 ] . With continued reference to Algorithm 1 , the inter 
active component of the algorithm is executed at line 39 . The 
interactive component encompasses executing Algorithm 2 
and Algorithm 3 in succession . In an example embodiment , 
the interactive component is executed so long as a number 
of interactions remains less than a threshold . 
10081 ) Algorithm 2 investigates if there are some common 
principles among the generated non - dominated refactoring 
solutions . 

Flexibility 

Understandability 

Algorithm 2 Rank Refactoring Operation procedure 

A design with low coupling and high cohesion 
is easily reused by other designs . 
- 0 . 25 * Coupling + 0 . 25 * Cohesion + 0 . 5 * 
Messaging + 0 . 5 * DesignSize 
The degree of allowance of changes in the 
design . 
0 . 25 * Encapsulation - 0 . 25 * Coupl mg + 0 . 5 * 
Composition + 0 . 5 * Polymorphism 
The degree of understanding and the easiness 
of learning the desigi 
0 . 33 * Abstraction + 0 . 33 * Encapsulation - 0 . 33 * 
Coupling + 0 . 33 * Cohesion - 0 . 33 * 
Polymorphism - 0 . 33 * Complexity – 0 . 33 * 
Design Size 
Classes with given functions that are 
publicly stated in interfaces to be used by 
0 . 12 * Cohesion + 0 . 22 * Polymorphism + 0 . 22 * 
Messaging + 0 . 22 * DesignSize - 10 . 22 * Hierarchies 
Measurement of design ' s allowance to 
incorporate new functional requirements . 
0 . 5 * Abstraction – 0 . 5 * Coupling + 0 . 5 * 
Inheritance + 0 . 5 * Polymorphism 
Design efficiency in fulfilling the required 
functionality . 
0 . 2 * Abstraction + 0 . 2 * Encapsulation + 0 . 2 * 
Composition + 0 . 2 * Inheritance + 0 . 2 * 
Polymorphism 

Functionality 

Extendibility 

10 : 

Effectiveness 

1 : Input 
2 : NS : Non - dominated SolutionSet of the first front 
3 : Output 
4 : HM : HashMap of refactorings along with their occurrences . 
5 : Begin 
6 : HM Ø ; 
7 : / * Compute the number of occurrence of each refactoring operation * / 
8 : for i = 1 to | NS | do 

for each j = 1 to INS ; do 
/ * If a refactoring operation does not exist in the list , 
add its hash and set its occurrence number to 1 * / 

11 : if ( NSi ; HM ) then 
12 : HM – HM U Hash ( NS ; . ; ) ; 

HM [ Hash ( NS . ) ] = 1 ; 
/ * If a refactoring operation exists in the list , 
increment its occurrence number * / 

else 
16 : HM [ Hash ( NS ; ; ) ] = HM [ Hash ( NS ; ) ] + 1 
17 : end if 
18 : end for 
19 : end for 
20 : End 

13 : 
14 : 

indicates text missing or illegible when filed 15 : 

[ 0077 ] The QMOOD model has been used previously in 
the area of search - based software refactoring and so it is 
used to estimate the effect of the suggested refactoring 
solutions on software quality . QMOOD has the advantage 
that it defines six high - level design quality attributes ( reus 
ability , flexibility , understandability , functionality , extend 
ibility , and effectiveness ) that can be calculated using 11 
lower level design metrics . Its objective function is defined 
as : 

The algorithm checks if the optimal refactoring solutions 
have some common features such as identical refactoring 
operations among most or all of the solutions , and a specific 
common order / sequence in which to apply the refactorings . 
To so do , a composite ranking score is calculated for each 
candidate solution in the set of candidate solutions , where 
the composite ranking score is calculated by computing a 
ranking score for each refactor operation in a given candi 
date solution based upon frequency of the refactor operation 
across the set of candidate solution and summing the ranking 
score for each refactor operation in the given candidate 
solution to yield the composite ranking score . This example 
ranking calculation is set forth below . 

QA ; ( S ) 
Quality = 5 

( 3 ) 
3 LTR . ; = Ray ] 

where QA , is the quality attribute number i being calculated 
based on the returned structural metrics from the system S . 
[ 0078 ] Since it may not be sufficient to consider structural 
metrics , the design coherence measures of a previous work 
is used to ensure that every refactoring solution preserves 
the semantics of the design . The assumption starts that the 
vocabulary of an actor is borrowed from the domain termi 
nology and therefore can be used to determine which part of 
the domain semantics an actor encodes . Thus , two actors are 
likely to be semantically similar if they use similar vocabu 
laries . 

n size ( S ; ) 
[ Rij = Rx , y ] 

j = 0 i = 0 
Rank ( Rx , y ) = - TE [ O . . . 1 ] In sizes ; ) 

MAX E [ Ri , j = Rx , y ] 
L = 0 ; = 0 

[ 0079 ] The vocabulary can be extracted from the names of 
methods , fields , variables , parameters , types , etc . The design 
coherence similarity is calculated between actors using an 
information retrieval - based technique , namely cosine simi 
larity . Each actor is represented as an n - dimensional vector , 

where Rx . , is the refactoring operation number x ( index in 
the solution vector ) of solution number y , and n is the number 
of solutions in the front . S , is the solutionof index i . All the 
solutions of the Pareto front are ranked based on the score 
of this measure applied to every solution . 
[ 0082 ] Once the Pareto front solutions are ranked , the 
second step of the interactive step is executed as described 
in Algorithm 3 . The refactorings of the best solution , in 
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terms of ranking , are recommended to the developer based 
on their order in the vector . In one example , the candidate 
solution having the highest composite ranking score in the 
set of candidate solutions is presented to the user as indi 
cated at line 14 . In the example embodiment , the developer 
can review the ranked list of refactorings and then apply , 
modify or reject the refactoring . If the developer prefers to 
modify the refactoring , then the algorithm can help them 
during the modification process as shown in FIG . 5 . 
[ 0083 ] In fact , the tool proposes to the developer a set of 
recommendations to modify the refactoring based on the 
history of changes applied in the past and the semantic 
similarity between code elements ( classes , methods , etc . ) . 
For example , if the developer wants to modify a move 
method refactoring then , having specified the source method 
to move , the interactive algorithm automatically suggests a 
list of possible target classes ranked based on the history of 
changes and semantic similarity . This is an interesting 
feature since developers often know which method to move , 
but find it hard to determine a suitable target class . The same 
observation is valid for the remaining refactoring types . 
Another action that the developers can select is to reject / 
delete a refactoring from the list . 
[ 0084 ] After every action selected by the developer , the 
ranking is updated based on the user feedback as indicated 
at line 26 . That is , in response to receiving feedback from the 
user , a composite ranking score is recalculated for each 
candidate solution in the set of candidate solutions using the 
feedback from the user . In the example embodiment , the 
composite rank score for a given candidate solution is 
updated as follows : 

[ 0087 ] To check the applicability of the refactorings , the 
pre - conditions of individual refactorings on the version are 
continuously checked after manual edits . Thus , the ranking 
of the solutions will change after every interaction . If many 
refactorings are rejected , the NSGA - II algorithm will con 
tinue to execute while taking into consideration all the 
feedback from developers as constraints to satisfy during the 
search . The rejected refactors should not be considered as 
part of the newly generated solutions and the new system 
after refactoring will be considered in the input of the next 
iteration of the NSGA - II . 
[ 0088 ] In non - interactive refactoring systems , the set of 
refactorings , suggested by the best - chosen solution , needs to 
be fully executed in order to reach the solution ' s promised 
results . Thus , any changes applied to the set of refactorings 
such as changing or skipping some of them could deteriorate 
the resulting system ' s quality . In this context , the goal of this 
disclosure is to cope with the above - mentioned limitation by 
granting to the developer ' s the possibility to customize the 
set of suggested refactorings either by accepting , modifying 
or rejecting them . One novelty of this disclosure is the 
approach ' s ability to take into account the developer ' s 
interaction , in terms of introduced customization to the 
existing solution , by conducting a local search to locate a 
new solution in the Pareto Front that is nearest to the newly 
introduced changes . It is believed that the approach may 
narrow the gap that exists between automated refactoring 
techniques and human intensive development . It allows the 
developer to select the refactorings that best matches his / her 
coding preferences while modifying the source code to 
update existing features . 
[ 0089 ) To illustrate the interactive algorithm , the refactor 
ing of JVacation v1 . 0 ( https : / / sourceforge . net / projects / jva 
cation ) , a Java open - source trip management and scheduling 
software is considered . A developer updated an existing 
feature by adding one more field ( Premium member ID ) in 
the personal information form that a user has to fill out when 
booking a flight 
[ 0090 ] As JVacation architecture is based on the Model / 
View / Controller model , adding this extra field would trigger 
small updates on the View by adding a textbox in the 
personal information input form , Also the controller that 
handles the booking process needs to be revised . At the 
model level , an attribute needs to be added to the class that 
hosts the booking information . Finally , an update on the 
database level is needed to save the newly modified booking 
objects . 
10091 ] To simplify the illustration , the update has been 
limited to these above - mentioned changes knowing that , in 
order to completely implement this function , several other 
updates may be needed in other views and controllers in 
order to show , for example , the newly added field , as part of 
the information related to the passengers ' records for a given 
flight . The developer was asked to refactor the software 
system while performing the given task , therefore , the 
developer has initially launched the plugin that triggered the 
interactive algorithms . The developer was assisted in only 
selecting the initial default parameters for the optimization 
algorithm ( such as the minimum and maximum chromo 
some lengths ) . 
[ 0092 ] After generating the upfront list of best refactoring 
solutions , three solutions are selected from the Pareto front 
that were involved in the interactive session to simplify this 
running example . Each solution has a fitness score com 

( 4 ) size ( S ; ) 
Rank ( S ; ) = ) Rankt Rk , i ) + ( RON AppliedRefactoringsList ) – 

( RON RejectedRefactoringsList ) + 
0 . 5 * ( RON ModifiedRfactorings List ) 

where S ; is the solution to be ranked , the first component 
consists of the sum of the ranks of its operations as explained 
previously and the second component will take the value of 
1 if the recommended refactoring operation was applied by 
the developer , or - 1 if the refactoring operation was rejected 
or 0 . 5 if it was partially modified by the developer . The 
recommended refactorings will be adjusted based on the 
updated ranking score . 
[ 0085 ] It is important to note that the ranking score for 
each non - dominated solution is calculated using the 
innovization component and then the solution with the 
highest score is presented to the developer . In fact , refac 
torings tend to be dependent on one another thus it is 
important to ensure the coherence of the recommended 
solution . 
[ 0086 ] After a number of modified or rejected refactorings 
or several new code changes introduced , the generated 
Pareto front of refactoring solutions needs to be updated 
since the system was modified in different locations . In this 
example , refactorings from the best ranked solution are 
presented to the user until the number of rejected refactoring 
operations exceeds a threshold as indicated at line 12 . 
Processing then returns back to complete Algorithm 1 . 
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posed of the median of quality improvement calculated 
based on the structural measures of the refactored system for 
each solution , and the number of operations within each 
solution . The previous section describes , these fitness val 
ues , for each solution , in terms of quality improvement and 
refactoring effort compared to the original system values 
before refactoring . This information is shown in Table 5 . 

TABLE 5 
Quality attributes value on the JVacation system . 

Original 
System Quality Attribute Solution 1 Solution 2 Solution 3 

Reusability 1 . 74225 
Flexibility 1 . 82 

Understandability - 4 . 5408 

( + 0 . 5 ) 
1 . 79225 

( + 0 . 001 ) 
1 . 820 

( + 0 . 08 ) 
- 4 . 5398 

( + 0 . 5 ) 
1 . 21314 

( + 0 . 007 ) 
19 . 7295 
9 . 5406 
0 . 198 

Functionality 1 . 16314 

( + 0 . 4 ) 
1 . 79225 

( + 0 . 001 ) 
1 . 820 

( + 0 . 07 ) 
- 4 . 5398 

( + 0 . 6 ) 
1 . 21314 

( + 0 . 012 ) 
19 . 7300 

9 . 5406 
0 . 202 

14 

( + 0 . 5 ) 
1 . 79225 

( + 0 . 001 ) 
1 . 820 

( + 0 . 087 ) 
- 4 . 5398 

( + 0 . 5 ) 
1 . 21314 

( + 0 . 011 ) 
19 . 7299 

9 . 5406 
0 . 209 

19 

Extendibility 19 . 7225 

9 . 5406 Effectiveness 
Quality Gain 
Number of operations 

[ 0095 ] To cope with this issue , another interesting idea 
would be to calculate the overlap between solutions . Still , 
choosing the most appropriate solution can be challenging as 
the developer has to manually break the tie between solu 
tions by comparing between their specific refactorings . This 
comparison may not be straightforward because specific 
refactorings between to candidate solutions may both be of 
an interest to the developer , for example , when comparing 
between solution 1 and solution 2 , both solutions contain a 
move - method operation that agree on moving a function 
called getSaluation ( but disagree on the target class . 
[ 0096 ] Since this function belongs to the booking panel , 
the participating entities are of interest to the developer , so 
no choice can be automatically done based on the develop 
er ' s preferred entities . Moreover , both target classes ( respec 
tively LabelSpinner and LabelEdit ) , each proposed by one 
solution , belong to the same package ( gui . components ) and 
they are semantically close , so the fitness function values 
cannot be used to break the tie . In this scenario , only the 
developer would be qualified to take the decision of either 
accepting one operation over the other or maybe rejecting 
both operations . Thus , simply filtering solutions based on 
the developer ' s preferred entities may fall short in this kind 
of scenarios . Furthermore , asking the developer to exhaus 
tively break the tie between shortlisted solutions can become 
tedious . 
[ 0097 ] In this context , the interactive process differs from 
simply filtering operations based on a given preference as it 
learns from the developer ' s decision making and dynami 
cally break the tie between Pareto - equivalent solutions by 
up - grading those with the highest number of successful 
recommendations ( applied refactorings ) while penalizing 
those who contain rejected operations , To illustrate this 
process , Table 6 describes each solution ' s refactorings along 
with its rank after the execution of the first step of the 
interactive algorithm . For the purpose of simplicity , a first 
fragment of each solution is considered . The solutions are 
ranked based on Equation 3 to identify the most common 
refactorings between the non - dominated solutions . This is 
achieved by counting the number of occurrences of opera 
tion within the Pareto front solution set , this number will be 
averaged by the maximum number of occurrences found . 

11 

[ 0093 ] One of the classic challenges in multi - objective 
optimization is the choice of the most suitable solution for 
the developer . The straightforward solution for this problem 
would be to manually investigate all solutions , i . e . , execute 
all refactoring operations for each solution and allow the 
developer to compare between several refactored designs . 
This task can easily become tedious due to the large number 
of solutions in the Pareto front . 
[ 0094 ] To facilitate the selection task , decision making 
support tools can be used to automate the selection of 
solutions based on the decision maker ' s preferences . In the 
context , these preferences can be considered as the packages 
and classes that the developer is interested in when imple 
menting the requested feature . Thus , another straightforward 
heuristic would be to automatically shortlist solutions that 
only refactor entities that are of interest to developers . 
Unfortunately , this will not necessarily reduce drastically the 
number of preferred solutions especially if the system is 
small . 

TABLE 6 

Three simplified refactoring solutions recommended for JVacation v1 . 0 . 
Operation Source entity Target entity 

Solution 1 fitness scores before normalization ( 0 . 198 , 4 ) 

Move Method 
Extract Class 
Move Method 
Move Method 

ctrl . booking . BookingController : : handleLodgingViewEvent ( java . awt . event . ActionEvent ) : void 
ctrl . booking . SelectionModel : : - flightList + addFlight ( ) : void + clearFlight ( ) : void 
ctrl . booking . Booking Controller : : createBookings ( ) : void 
gui . panels . booking . b Travelers Panel : : getSalutation ( ) . java . lang . String 

Solution 1 Rank 
Solution 2 fitness scores before normalization ( 0 . 202 , 5 ) 

ctrl . booking . LodgingModel 
ctrl . booking . FlightList 
ctrl . Core Model 
gui . components . LabelSpinner 
3 . 960 

Move Method 
Move Method 
Inline Class 
Extract Class 
Move Method 

ctrl . booking . BookingController : : handleLodgingViewEvent ( java . awt . event . ActionEvent ) : void 
gui . panels . maintenance . mLodgingsPanel : : getStart ( ) . java . util . Date 
ctrl . ModelChange Event 
ctrl . booking . SelectionModel : : - travelerList + addTraveler ( ) : void + clearTraveler ( ) : void 
gui . panels . booking . b Travelers Panel : : getSalutation ( ) : java . lang . String 

Solution 2 Rank 

ctrl . booking . lodgingList 
gui . components . LabelCombo 
ctrl . CoreModel 
ctrl . booking . Traveler List 
gui . components . LabelSpinner 
4 . 064 
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TABLE 6 - continued 
Three simplified refactoring solutions recommended for JVacation v1 . 0 . 

Operation Source entity Target entity 
Solution 3 fitness scores before normalization ( 0 . 209 , 6 ) 

Move Method 
Move Method 
Extract Class 
Extract Class 
Inline Class 
Move Class 

ctrl . booking . Booking Controller : : handleLodging ViewEvent ( java . awt . event . ActionEvent ) : void 
gui . panels . maintenance . mLodgings Panel : : getStart ( ) : java . util . Date 
ctrl . booking . SelectionModel : : - flightList + addFlight ( ) : void + clearFlight ( ) : void 
ctrl . booking . SelectionModel : : - travelerList + addTraveler ( ) : void + clearTraveler ( ) : void 
ctrl . ModelChange Event 
Db . factory . DBObjectFactory 

Solution 3 Rank 

ctrl . booking . lodgingList 
gui . components . Date Edit 
ctrl . booking . FlightList 
ctrl . booking . TravelerList 
ctrl . Core Model 
db 
3 . 471 

TABLE 7 - continued 
Four different interaction examples with the developer applied 
on the refactoring solutions recommended for JVacation v1 . 0 . 

Operation 
Decision 
Changes 

Solution Set 
Initial rank 
Interation1 
Iteration 2 
Iteration3 
Operation 

[ 0098 ] In the interaction part , the recommended refactor 
ing wanted to move a function that defines the trip ' s starting 
date to a LabelCombo class . The developer thought that 
moving it to DateEdit class makes more sense instead 
because the return value of the moved function is of type 
Date and DateEdit is semantically closer to the method . So 
the refactorings were partially modified by the developer 
and the ranking score of the second solution was increased 
by 0 . 5 for Solution 2 but by 1 for Solution 3 since it has 
already a move method operation that suggests moving the 
same method to the chosen class by the developer , i . e . , the 
applied operation exists in that solution . 
[ 0099 ] In the third interaction , the recommended refactor 
ing suggests merging two classes CoreModel and Model 
ChangeEvent . The first class gathers , for a given customer , 
all his / her bookings and sums up the total price , since the 
price may be later on reduced based on the customer ' s 
premium number ( field to be added ) the developer decided 
to keep the class intact and thus the operation was rejected 
and so the score of the top Solution 2 was decreased by 1 . 
The solution with the highest rank is selected for execution 
and its related operations are shown to the user based on 
their order in the vector . Table 7 summarizes the various 
interactions between the developer and the suggested refac 
torings from the three above mentioned solutions when 
adding the new feature . 

R3 : InlineClass ( ctrl . ModelChange Event , ctrlCoreModel ) 
Rejected 

Applied Refactorings List = { R1 . R2 } 
RejectedRefactorings List = { R3 } 

Solution1 Solution2 * Solution 3 
3 . 960 4 . 064 3 . 471 
3 . 960 5 . 064 ( + 1 ) 4 . 471 ( + 1 ) 
3 . 960 5 . 564 ( + 0 . 5 ) 5 . 471 ( + 1 ) 
3 . 960 4 . 564 ( - 1 ) 5 . 471 

R4 : ExtractClass ( ctrl . booking . SelectionModel : : 
flightList + addFlight ( ) : void + clearFlight ( ) : void , 

ctrl . booking . FlightList ) 
Applied 

Applied Refactorings List = { RimR2 , R4 } , 
RejectedRefactorings List = { R3 } 

Solution1 Solution2 Solution3 * 
3 . 960 4 . 064 3 . 471 
3 . 960 5 . 064 ( + 1 ) 4 . 471 ( + 1 ) 
3 . 960 5 . 564 ( + 1 ) 5 . 471 ( + 1 ) 
3 . 960 4 . 564 ( - 1 ) 5 . 471 

4 . 960 ( + 1 ) 4 . 564 6 . 471 ( + 1 ) 

Decision 
Changes 
Solution Set 
Initial rank 
Iteration1 
Iteration2 
Iteration3 
Iteration4 

TABLE 7 
Four different interaction examples with the developer applied 
on the refactoring solutions recommended for JVacation v1 . 0 . 

Operation 

Decision 
Changes 
Solution Set 
Initial rank 
Interation1 
Operation 

R1 : MoveMethod ( ctrl . booking . Booking Controller 
: : handleLodgingViewEvent ; void , 

ctrl . booking . LodgingList ) 
Applied 

AppliedRefactorings List = { R1 } 
RejectedRefactorings List = { } 

Solution1 Solution2 * Solution3 
3 . 960 4 . 064 3 . 471 
3 . 960 5 . 064 ( + 1 ) 4 . 471 ( + 1 ) 

R2 : Move Method ( gui . panels . maintenance . 
mLodgings Panel : : getStart ( ) : java . util . Date , 

guicomponents . LabelCombo ) 
Modified to : R2 : 

MoveMethod ( gui . panels . maintenance . 
mLodgingsPanel : : getStart ( ) : java . util . Date , 

guicomponents . Date Edit ) 
AppliedRefactorings List = { R1 , R2 } , 

RejectedRefactorings List = { } 
Solution1 Solution 2 * Solution3 

3 . 960 4 . 064 3 . 471 
3 . 960 5 . 064 ( + 1 ) 4 . 471 ( + 1 ) 
3 . 960 5 . 564 ( + 0 . 5 ) 5 . 471 ( + 1 ) 

[ 0100 ] The first recommended refactoring of the top 
ranked solution ( Solution 2 ) suggests moving an event 
function from the controller class of the booking process , 
since the developer is required to investigate this class and 
since this function is not called during the booking proce 
dure , moving it out of the class will reduce the number of 
investigated functions , so the operation was applied by the 
developer and accordingly the ranking score was increased 
by 1 for both Solutions 2 and 3 since they include this 
refactoring in their solutions . 
[ 0101 ] Upon the rejection of the third suggested refactor 
ing , the ranking score of solution 3 has become higher than 
the one of solution 2 , this has triggered the fourth recom 
mended operation to be issued from solution 3 instead . All 
the refactorings that belong to the intersection between 
solution 3 and the lists of applied / rejected refactorings will 
be skipped during the recommendation process . 
[ 0102 ] For instance , the first and second operation of 
solution 3 will be skipped as they have been already applied 
by the developer , and the third operation will be suggested 
during the fourth interaction . This operation suggests the 
extraction of a class from the selection mode of the booking 
process . Since this refactoring will facilitate the distinction 
between functions related to the flight from those related to 
the passengers , the developer has approved the operation . 
The algorithm will stop recommending new refactorings 
either on the request of the developer or when the system 

Decision 

Changes 

Solution Set 
Initial rank 
Interation1 
Interation2 
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achieves acceptable quality improvement in terms of reduc 
ing the number of design defects and improving quality 
metrics . These parameters can be specified by the developer 
or the team manager . 
[ 0103 ] To evaluate the ability of the refactoring frame 
work to generate good refactoring recommendations , a set of 
experiments were conducted based on eight open source 
systems and two industrial projects . The obtained results are 
subsequently statistically analyzed with the aim of compar 
ing the proposal with a variety of existing approaches . The 
relevant data related to our experiments and a demo about 
the main features of the tool can be found in http : / / kessen 
tini . net / tse18 . The research questions and validation meth 
odology were presented followed by experimental setup . 
Then the obtained results were described and discussed . 
[ 0104 ] Three categories of research questions were 
defined to measure the correctness , relevance and benefits of 
the interactive multi - objective refactoring approach compar 
ing to the state of the art based on several practical scenarios . 
It is important to evaluate , first , the correctness of the 
recommended refactoring . Since it is not sufficient to make 
correct refactoring recommendations , the benefits of apply 
ing the recommended refactorings in terms of fixing code 
smells and improving quality attributes were evaluated . 
Programmers are not interested , in practice , to apply all the 
correct and useful recommended refactorings due to limited 
resources thus both the relevance of our recommendations 
and the ranking efficiency from programmers perspective 
based on several real - world scenarios including productivity 
and post - study questionnaires were evaluated . Various exist 
ing refactoring approaches were considered as a baseline for 
this proposed interactive refactoring technology to define an 
accurate estimation of possible improvements . 
[ 0105 ] The research questions are as follows : 
[ 0106 ] RQ1 : Correctness , Relevance and Comparison 

with State of The Art . 
[ 0107 ] RQ1 - a : Correctness . To what extent the results 
of our approach are similar to the ones proposed by 
developers compared to fully - automated refactoring 
techniques ? 

10108 ] RQ1 - b : Benefits - antipatterns correction . To 
what extent code smells can be fixed using our 
approach compared to fully - automated refactoring 
techniques ? 

[ 0109 ] RQ1 - c : Benefits - improving quality . To what 
extent can our approach improve the overall quality of 
software systems compared to fully - automated refac 
toring techniques ? 

[ 0110 ] RQ1 - d : Relevance to programmers . To what 
extent can our approach make meaningful recommen 
dations compared to fully - automated refactoring tech 
niques ? 

[ 0111 ] RQ2 : Interaction Relevance . To what extent can our 
approach efficiently rank the recommended refactorings : 

[ 0112 ] RQ3 : Impact based on Practical Scenarios . 
[ 0113 ] RQ3 - a : To what extent our approach can 
improve the productivity of programmers when fixing 
bugs compared to fully - automated refactoring tech 
niques ? 

[ 0114 ] RQ3 - b : To what extent our approach can 
improve the productivity of programmers when adding 
new features compared to fully - automated refactoring 
techniques ? 

[ 0115 ] To answer the research questions described above , 
an overview about the adopted validation methodology that 
include the following tasks are given : 

[ 0116 ] Task 1 : Generate date for baseline methods by 
using other existing state - of - the - art automated refac 
toring tools and methods offline . ( RQla - d ) 

[ 0117 ] Task - 2 : Manually refactor a system . ( RQla ) . 
[ 0118 ] Task - 3 : Use the tool ( DINAR ) to collect final set 
of recommendations ( RQ1a - d , RQ2 ) . 

[ 0119 ] Task - 4 : Rate solutions and recommendations of 
different methods and tools . ( RQ1d , RQ2 ) 

[ 0120 ] Task - 5 : Code smells detection after refactoring . 
( RQ1b ) 

[ 0121 ] Task 6 : Measure quality metrics after refactor 
ing . ( RQ1c ) 

[ 0122 ] Task 7 : Fix bugs on refactored / unrefactored sys 
tems . ( RQ3a ) 

[ 0123 ] Task 8 : Implement features on refactored / un 
refactored systems . ( RQ3b ) 

[ 0124 ] Task 9 : Post - study questionnaire . ( RQ3c ) 
[ 0125 ] For each task , different evaluation metrics ( Preci 
sion , Recall , number of fixed antipatterns , the quality gain , 
manual correctness , number of modified / rejected / accepted 
recommendations and execution time ) which are described 
in this section are defined and used . These metrics are 
calculated and compared for different refactoring techniques 
which are applied on a variety of software projects under the 
specific above scenarios . Table 8 shows the summary of the 
connections between the research questions , metrics and 
tasks detailed in this section . 

TABLE 8 

Summary of the research questions , their goals , defined metrics to answer and analyze 
them , and the associated tasks to collect data and calculate the metrics . 

RQ # RQ Goal Sub - RQ Sub - Goal Metric ( s ) Task ( s ) # 
RQ1 Relevant 

Solutions 
RQ1 - a Similarity RC , PR 1 , 2 , 3 

1 , 3 , 5 
1 , 3 , 6 
1 , 3 , 4 
3 , 4 RQ2 Efficient ranking 

RQ1 - b Fixing code smells NF 
RQ1 - C Overall quality 
RQ1 - d Meaningful recommendation MC 

NAR , NRR , NMR , 
PR @ k , MC @ k 

RQ - 3a Productivity / fixing bugs 
RQ3 - b Productivity / adding features 
RQ3 - C questionnaire 

Q3 Usefulness TP 
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[ 0126 ] In order to have a consistent comparison , the 
refactoring solutions recommended by the approach after all 
interactions with the developers ( last set of solutions ) is 
considered . Therefore , these sets of refactoring solutions are 
referred to as the approach results afterward . To create a 
baseline , the participants in the study are asked to analyze 
and apply manually several refactoring types using Eclipse 
IDE on several code fragments extracted from different 
systems where most of them correspond to code smells 
identified in previous studies as worth removing by refac 
toring . This golden set is defined based on the following two 
main criteria : 1 refactorings that fix a design flaw and did 
not change the behavior or introduce bugs , and 2 ) refactor 
ings that improve a set of quality metrics ( based on the 
QMOOD model ) and did not change the behavior or intro 
duce bugs . These refactoring solutions are referred to as 
expected refactorings afterward . 
[ 0127 ] To answer RQ1 , it is important to validate the 
proposed refactoring solutions from both quantitative and 
qualitative perspectives . For RQ1 - a , precision and recall 
scores are calculated to compare between refactorings rec 
ommended by each approach and those expected based on 
the participants opinion : 

where q ; and q ; represents the value of the QMOOD quality 
attribute i after and before refactoring , respectively . For 
RQ1 - d , the participant is asked in the study to evaluate , 
manually , whether the suggested refactorings are feasible 
and efficient at improving the software quality and achieving 
their maintainability objectives . The metric Manual Correct 
ness ( MC ) is defined to mean the number of meaningful 
refactorings divided by the total number of recommended 
refactorings . The meaningful refactorings are recognized by 
taking the majority of votes from the developers . This 
procedure is analogous to the real - world situations based on 
our the experience with industrial partners . Therefore , MC is 
given by the following equation 

# Meaningful Refactorings 
MC = + Recommended Refactorings 

Approach Solution Expected Refactoringsm factorings e [ 0 , 1 ] an RCrecall = = Expected Refactorings 

DD PRprecision = 
Approach Solution? Expected Refactorings 

Approach Solution torings e [ 0 , 1 ] 

[ 0128 ] When calculating the precision and recall , a refac 
toring is considered as a correct recommendation if all the 
controlling parameters are the same like the expected ones . 
For RQ1 - b , another quantitative evaluation is considered 
which is the percentage of fixed code smells ( NF ) by the 
refactoring solution . The detection of code smells after 
applying a refactoring solution is performed using the detec 
tion rules described by M . Kessentini et al of Design Defects 
Detection and Correction by Example “ , IEEE 19th Interna 
tional Conference on Program Comprehension ( ICPC ) ' 
( 2011 . 2011 ) . Formally , NF is defined as : 

0129 ] To avoid the computation of the MC metric being 
biased by the developer ' s feedback , the developers are asked 
to manually evaluate the correctness of the recommended 
refactorings of the approach on the systems that they did not 
refactor using the tool . Therefore , the developers did not 
evaluate the results of their own results of interactive 
refactoring but the resultant refactorings recommended on 
other systems where other developers applied the approach . 
The main motivation for the manual correctness metric is 
evaluated manually on each refactoring one - by - one to check 
their validity . Thus , the results produced by the different 
tools were evaluated were not limited to the comparison 
with the expected results . The comparison with the expected 
results to provide an automated way to evaluate the results 
and avoid the developers being biased by the results of the 
tool ( developers did not know anything about the refactor 
ings suggested by the different tools when they provided 
their recommendations ) . 
[ 0130 ] The metrics MC , RC , PR , NF and G are used to 
perform the comparisons and answer respectively RQla - d . 
Some other useful metrics were considered to answer RQ2 
that count the percentage of refactorings that were accepted 
( NAR ) or rejected ( NRR ) or applied with some modifica 
tions ( NMR ) . Formally , these metrics are defined as : 

( 7 ) NF = 
# fixed code smells 

# code smells - € [ 0 , 11 

( 10 ) # Accepted Refactorings 
NAR = LE [ 0 , 1 ] # Recommended Refactorings 

( 11 ) NRR = 
# Rejected Refactorings 

# Recommended Refactorings 10 , ce [ 0 , 1 ] 
( 12 ) # Modified Refactorings 

NMR = ' # Recommended Refactorings 

The detection of code smells is very subjective and some 
developers prefer not to fix some smells because the code is 
stable or some of them are not important to fix . To this end , 
we considered for RQ1 - c another metric , G , based on 
QMOOD that estimates the quality improvement of the 
system by comparing the quality before and after refactoring 
independently from the number of fixed design defects . The 
average of the six QMOOD attributes were used : reusability , 
flexibility , understandability , Extendability , Functionality 
and effectiveness . All of them are formalized using a set of 
quality metrics . Hence , the gain for each of the considered 
QMOOD quality attributes and the average total gain in 
quality after refactoring can be easily estimated as : 

[ 0131 ] To answer RQ2 , the relevance of the recommended 
refactorings were evaluated in the top k where k = 1 , 5 , 10 and 
15 using the following metrics PR @ k and MC @ k . The same 
equations defined for RQ1 with the only difference that the 
considered suggested refactorings are exclusively those 
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located in the top k positions of the ranked list of refactor 
ings at multiple instances after the execution of the innoviza 
tion component . 
[ 0132 ] To answer RQ3 , the aim to assess how the refac 
toring actually increases the software quality and produc 
tivity in that the effort to fixing bugs ( R3 - a ) or adding new 
features ( R3 - b ) should reduce after performing the refactor 
ings . The software developers were asked to participated in 
the study to add new features and fix a set of bugs . To avoid 
that the achieved results might be due to the different levels 
of ability of the developers groups , a counter - balanced 
design was adapted where each participant performed two 
tasks , one on the original system and one on the refactored 
system . The details of these scenarios will be described later . 
To estimate the impact of the suggested refactorings on the 
productivity of developers , the following metric TP was 
defined to measure the time required to perform the same 
activities on the system with and without refactoring : 

number of updates performed on both systems , it is critical 
to ensure that they remain of high quality so to reduce the 
time required by developers to introduce new features in the 
future . 
[ 0136 ] These 10 systems were selected for our validation 
because they range from medium to large - sized open - source 
projects , which have been actively developed over the past 
10 years , and their design has not been responsible for a 
slowdown of their developments . Table 9 provides some 
descriptive statistics about these 10 programs . 

TABLE 9 
Statistics of the studied software projects 

# Code 
smells 

# Applicable 
Refactorings System Release # classes KLOC 

61 240 
21 

170 
41 

22 
51 

80 
36 
96 

60 
0 61 ( 13 ) 

Xerces - J 
JHotDraw 
JFreeChart 
Gantt Project 
Apache Ant 
Rhino 
Log4J 
Nutch 
JDI 
MROI 

V2 . 7 . 0 
V6 . 1 
v1 . 0 . 9 
v1 . 10 . 2 
v1 . 8 . 2 
v1 . 7R1 
v1 . 2 . 1 
v1 . 1 
v5 . 8 
V6 . 4 

991 
585 
521 
245 
1191 
305 
189 
207 
638 
786 

# minutes required to perform 
task i on the system after refactoring 
minutes required to perform task i 

on the system before refactoring 

79 50 
TP ; = 0 

247 
264 

24 
94 
119 

The productivity results were compared to other approaches 
to test the hypothesis if better quality of the software may 
increase the productivity of developers . To answer RQ3 - b , a 
post - study questionnaire was used that collects the opinions 
of developers on the tool as detailed below . 
[ 0133 ] A set of well - known open - source Java projects and 
two systems from industrial partner were used . The 
approach was applied to eight open - source Java projects : 
Xerces - J , JHotDraw , JFreeChart , Gantt Project , Apache Ant , 
Rhino and Log4J and Nutch . Xerces - J is a family of soft 
ware packages for parsing XML . JFreeChart is a free tool for 
generating charts . Apache Ant is a build tool and library 
specifically conceived for Java applications . Rhino is a 
JavaScript interpreter and compiler written in Java and 
developed for the Mozilla / Firefox browser . GanttProject is a 
cross - platform tool for project scheduling . Log4J is a popu 
lar logging pack - age for Java . Nutch is an Apache project 
for web crawling . JHotDraw is a GUI framework for draw 
ing editors . 
[ 0134 ] In order to get feedback from the original devel 
opers of a system , experiments in two large industrial 
projects provided by our industrial partner were considered . 
The first project is a marketing return on investment tool , 
called MROI , used to predict the sales of cars based on the 
demand , dealers information , advertisements , etc . The tool 
can collect , analyze and synthesize a variety of data types 
and sources related to customers and dealers . It was imple 
mented over a period of more than eight years and frequently 
changed to include and remove new / redundant features . 
[ 0135 ] The second project is a Java - based software sys 
tem , JDI , which helps the company to create the best 
schedule of orders from the dealers based on thousands of 
business constraints . This system is also used by the com 
pany to improve their vehicles sales by selecting the right 
vehicle configuration to match the expectations of their 
customers . JDI is highly structured and software developers 
have developed several versions of it over the past 10 years . 
Due to the importance of the application and the high 

[ 0137 ] The study involved 14 participants from the Uni 
versity of Michigan and 8 software developers . Participants 
include 6 master students in Software Engineering , 8 Ph . D . 
students in Software Engineering and 8 software developers . 
All the participants are volunteers and familiar with Java 
development and refactoring . The experience of these par 
ticipants on Java programming ranged from 2 to 19 years . 
The participants were carefully selected to make sure that 
they already applied refactorings during their previous expe 
riences in development . 
[ 0138 ] All the graduate students have already taken at 
least one position as software engineer in industry for at least 
two years as software developer and most of them ( 11 out of 
14 students ) participated in similar experiments in the past , 
either as part of a research project or during graduate courses 
on Software Quality Assurance or Software Evolution 
offered at the University of Michigan . Furthermore , 6 out the 
14 students ( the selected master students ) are working as 
full - time or part - time developers in the software industry . 
10139 ] . Participants were first asked to fill out a pre - study 
questionnaire containing five questions . The questionnaire 
helped to collect background information such as their role 
within the company , their programming experience , and 
their familiarity with software refactoring . In addition , all 
the participants attended one lecture about software refac 
toring and passed six tests to evaluate their performance in 
evaluate and suggest refactoring solutions . 
[ 0140 ] Three groups were formed . The groups were 
formed based on the pre - study questionnaire and the test 
results to ensure that all the groups have almost the same 
average skill level . The participants were divided into 
groups according to the studied systems , the techniques to be 
tested and developers ' experience . 
[ 0141 ] Each of the first two groups ( A and B ) is composed 
of three masters students and four Ph . D . students . The third 
group is composed of eight software developers , since they 
agreed to participate only in the evaluation of their two 
software systems . It is important to note that the third group 
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TABLE 10 - continued 
Survey organization . 

Participants 
groups 

Software 
Projects Approaches Tasks 

Group B JDeodorant , 
Kessentini , 
Harman 

Apache Ant 
Rhino 
Log4J 
Nutch 
JDI 
MROI 

questionnaire 
Fixing bugs 
Adding features 

Group C Interactive 
NSGA - II , 
O ' Keeff , 
Ouni , 
JDeodorant 

formed by the developers is part of the original developers 
of the two evaluated systems . 
0142 ] To answer research questions from the perspective 
of evaluating the interactive approach performance against 
the state - of - the - art refactoring techniques , the approach was 
compared to four other existing fully - automated search 
based refactoring techniques and the multi - objective 
approach without the interaction component ( NSGA - II 
Innovization ) . Studied techniques include : Kessentini which 
is described by Kessentin et . al . in “ Design Defects Detec 
tion and Correction by Example ” IEEE 19th International 
Conference on Program Comprehension ” ( ICPC ) ( 2011 ) ; 
O ' Keeffe which is described by O ' Keefee et . al . in “ Search 
based refactoring for software maintenance ” Journal of 
Systems and Software 81 ( 4 ) : 502 - 516 . ( 2008 ) ; Ouni which 
is described by Ouni et al . in “ Multi - criteria Code Refac 
toring Using Search - Based Software Engineering : An Indus 
trial Case Study ” , ACM Transactions on Software Engineer 
ing and Methodology ( TOSEM ) , 2016 ; and Harman which 
is described by Harman et al . in “ Pareto optimal search 
based refactoring at the design level ” Proceedings of the 9th 
annual conference on Genetic and evolutionary computa 
tion . London , England , ACM : 1106 - 1113 . ( 2007 ) . 
[ 0143 ] Experiments considered another popular design 
defects detection and correction tool , JDeodorant , that does 
not use heuristic search techniques . Further information 
about the JDeodorant tool can be found in “ JDeodorant : 
identification and application of extract class refactorings " 
33 ' d international Conference on Software Engineerying 
( 2011 ) . The current version of JDeodorant is implemented as 
an Eclipse plug - in that identifies some types of design 
defects using quality metrics and then proposes a list of 
refactoring strategies to fix them . Since JDeodorant just 
recommends a few types of refactoring with respect to the 
ones considered by the tool . In this case , the comparison is 
restricted to the same refactoring types supported by JDe 
odorant such as Move Method , Extract Method and Extract 
Class . 
101441 The approach differs with the above fully - auto 
mated techniques in two factors : innovization and interac 
tive features . Therefore , it is important to evaluate the 
impact of every factor on the quality of the results . If the 
innovization makes the largest contribution , which is 
another fully automated search - based approach , the results 
cannot support the hypothesis related to the outperformance 
of interactive refactoring . Thus , the approach to NSGA - Il is 
compared with the innovization feature using the same 
mufti - objective optimization but without the use of the 
interactive feature . 
[ 0145 ] All these existing techniques are fully - automated 
and do not provide any interaction with the developers to 
update their solutions . 
[ 0146 ] Table 10 summarizes the survey organizations 
including the list of systems and algorithms evaluated by the 
groups of participants . 

[ 0147 ] Parameter setting influences significantly the per 
formance of a search algorithm on a particular problem . For 
this reason , for each algorithm and for each system , a set of 
experiments is performed using several population sizes : 50 , 
100 , 200 , 300 and 500 . The stopping criterion was set to 
100 , 000 evaluations for all algorithms in order to ensure 
fairness of comparison . The other parameters ' values were 
fixed by trial and error and are as follows : crossover prob 
ability = 0 . 8 ; mutation probability = 0 . 5 where the probability 
of gene modification is 0 . 3 ; stopping criterion = 100 , 000 
evaluations . In order to have significant results , for each 
couple ( algorithm , system ) , the trial and error method is 
used in order to obtain a good parameter configuration . Trial 
and error is a fundamental method of problem solving . It is 
characterized by repeated and varied attempts of algorithm 
configurations . 
[ 0148 ] Regarding the evaluation of fixed code smells , the 
following code smell types were focused on : Blob , Spaghetti 
Code ( SC ) , Functional Decomposition ( FD ) , Feature Envy 
( FE ) , Data Class ( DC ) , Lazy Class ( LC ) , and Shotgun 
Surgery ( SS ) . These code smell types were chosen in the 
experiments because they are the most frequent and hard to 
fix based on several studies . These design flaws are auto 
matically detected using the detection rules of previous work 
based on genetic programming . A set of metrics - based rules 
that can automatically detect the different types of code 
smells considered in our experiments have been generated 
and manually validated . . Table 6 reports the number of code 
smells for each system . Only real design flaws that were 
manually validated are considered in this validation . 
[ 0149 ] The upper and lower bounds on the chromosome 
length used in this study are set to 10 and 350 , respectively . 
Several SBSE problems including software refactoring are 
characterized by a varying chromosome length . This issue is 
similar to the problem of bloat control in genetic program 
ming where the goal is to identify the tree size limits . To 
solve this problem , several trial and error experiments were 
performed where the average performance of the algorithm 
using the hypervolume ( HV ) performance indicator while 
varying the size limits between 10 and 500 operations was 
assessed . 
[ 0150 ] Each group of participants received a question 
naire , a manuscript guide to help them to fill the question 
naire , the tools and results to evaluate and the source code 
of the studied systems as described in the following five 
scenarios : 
[ 0151 ] In the first scenario , a total of 90 classes were 
selected from all the systems that include design defects ( 9 

TABLE 10 
Survey organization . 

Participants 
groups 

Software 
Projects Approaches Tasks 

Group A Xerces - J 
JHotDraw 
JFreeChart 
Gantt Project 

Interactive 
NSGA - II , 
O ' Keeffe , 
Ouni 

Interactive 
refactoring 
Manual refactoring 
Post - study 
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classes to fix per system ) . Then every participant was asked 
to manually apply refactorings to improve the quality of the 
systems by fixing an average of two of these defects . As an 
outcome of this scenario is a set of expected refactorings 
which are able to calculate the differences between the 
recommended refactorings and the expected ones ( manually 
suggested by the developers ) . 
[ 0152 ] In the second scenario , the developers were asked 
to evaluate the suggested solutions of the algorithm . A 
cross - validation was performed between the ratings of each 
group to avoid the computation of the MC metric being 
biased by the developer ' s feedback . Thus , the developers in 
each group rated results generated by the other developers in 
the same group . 
[ 0153 ] In the third scenario , a set of 6 bugs per system 
were collected from the bug reports of the studied release for 
every project and asked the groups to fix them based on the 
refactored and non - refactored version . The tasks are com 
pletely different and they are applied to different packages / 
classes of the same version of the systems . Furthermore , the 
participants did not know if they are working on the system 
before or after refactoring . No specific order was followed 
when asking the developers to work on the tasks . Only 3 out 
of the 22 participants worked as part of the experiments on 
the systems before refactoring and then the systems after 
refactoring . A counter - balanced design was adapted where 
every developer to fix 2 bugs on the version before refac 
toring and then 2 other bugs in the version after refactoring . 
The bugs that require almost the same effort to fix in terms 
of number of changes , with an average of 15 changes were 
selected . 
[ 0154 ] In the fourth scenario , the groups were asked to add 
two simple features to every system before refactoring , and 
then two other features on the system after refactoring . All 
the features require almost the same number of changes to 
be introduced or deleted with an average of 23 code changes 
per feature . In the third and fourth scenarios , the bugs to fix 
and features to add are related to the classes that are 
refactored by the developers when using the tool . 
[ 0155 ] The participants were asked to justify their evalu 
ation of the solutions and these justifications are reviewed by 
the organizers of the study ( one faculty member , one post 
doc , one Ph . D . student and one Master ' s student ) . Partici 
pants do not know the particular experiment research ques 
tions and the used algorithms . 
[ 0156 ] In the fifth scenario , the participants were asked to 
use the tool during a period of two hours on the different 
systems and then collected their opinions based on a post 
study questionnaire . To better understand subjects ' opinions 
with regard to usefulness of the approach in a real setting , 
the post - study questionnaire was given to each participant 
after completing the refactoring tasks using the interactive 
approach and all the techniques considered in our experi 
ments . The questionnaires collected the opinions of the 
participants about their experience in using the approach 
compared to manual and fully - automated refactoring tools . 
Participants were asked to rate their agreement on a Likert 
scale from 1 ( complete disagreement ) to 5 ( complete agree 
ment ) with the following statements : 

[ 0157 ] 1 ) The interactive dynamic refactoring recom 
mendations are a desirable feature in integrated develop 
ment environments ( IDES ) . 

[ 0158 ] 2 ) The interactive manner of recommending 
refactorings by our approach is a useful and flexible 
way to refactor systems compared to fully - automated 
or manual refactorings . 

The remaining questions of the post - study questionnaire 
were about the benefits and also limitations ( possible 
improvements ) of the interactive approach . 
[ 0159 ] Since meta - heuristic algorithms are stochastic opti 
mizers , they can provide different results for the same 
problem instance from one run to another . For this reason , 
the experimental study is based on 30 independent simula 
tion runs for each problem instance . The following statistical 
tests show that all the comparisons performed between our 
approach and existing ones are statistically significant based 
on all the metrics and the systems considered in the experi 
ments . 
[ 0160 ] One - way ANOVA statistical test were used with a 
95 % confidence level ( a = 5 % ) to find out whether the sample 
results of different approaches are different significantly . 
Since one - way ANOVA is an omnibus test , a statistically 
significant result determines whether three or more group 
means differ in some undisclosed way in the population . 
One - way ANOVA is conducted for the results obtained from 
each software project to investigate and compare each 
performance metric ( dependent variable ) between various 
studied algorithems ( independent variable - groups ) The null 
hypothesis ( H ) that population means of each metric are 
equal for all methods ( ( VSoftware Projects : 
uzimetric = ur2 metric = . . . Fummetric where metric E { G , NF , 
MC , PR , RC } ) against the alternative ( H ) that they are not 
equal and at least one method population mean is different . 
[ 0161 ] There are some assumptions for one - way ANOVA 
test which are assessed before applying the test on the data . 
Outliers : There were no outliers in the data , as assessed by 
inspection of a boxplot for values greater than 1 . 5 box 
lengths from the edge of the box . Normal Distribution : Some 
of the dependent variables were not normally distributed for 
each method , as assessed by Shapiro - Wilk ' s test . However , 
the one - way ANOVA is fairly robust to deviation from 
normality . Since the sample size is more than 15 ( there are 
30 observations in each group ) and the sample sizes are 
equal for all groups ( balanced ) , non - normality is not an issue 
and does not affect Type I error . Homogeneity of variances : 
The one - way ANOVA assumes that the population variances 
of the dependent variables are equal for all groups of the 
independent variable . If the variances are unequal , this can 
affect the Type I error rate . There was homogeneity of 
variances , as assessed by Levene ' s test for equality of 
variances ( p > 0 . 05 ) . 
[ 0162 ] The results of one - way ANOVA tests for all pair of 
software projects and metrics indicates that the group means 
were statistically significantly different ( p > 0 . 05 ) and , there 
fore , one can reject the null hypothesis and accept the 
alternative hypothesis which says there is difference in 
population means between at least two groups . Table 11 
reports the obtained value of F - statistics with the between 
and within groups degree of freedoms equal to 6 and 203 , 
respectively . In one - way ANOVA , the F - statistic is the ratio 
of variation between sample means over variation within the 
samples . The larger value of F - statistics represents the group 
means are further apart from each other and are significantly 
different . Also , it shows that the observation within each 
group are close to the group mean with a low variance within 
samples . Therefore , a large F - value is required to reject the 
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null hypothesis that the group means are equal . The obtained 
F - statistics results are correspond to very small p - values . 
[ 0163 ] One - way ANOVA does not report the size of the 
difference . Therefore , one can calculatedEta squared ( ) 
which is a measure of the effect size ( strength of association ) 
and it estimates the degree of association between the 
independent factor and dependent variable for the sample . 
Eta squared is the proportion of the total variance that is 
attributed to a factor ( the “ refactoring methods ” in this 
study ) . Table 12 reports Eta squared values for each pair of 
software projects and metrics . These values shows to what 
extent different algorithms are the cause of variability of the 
metrics . For instance , it says 90 % of the total variance of 
metric G for Apache Ant software project is accounted for by 
different algorithms effect , not error or other effects . 
[ 0164 ] Tukey post hoc analysis is carried out in order to 
find out between which group ( s ) the significant difference is 
occurred . Basically , it tests all possible group comparisons . 
FIGS . 6A - 6C present the results of comparison of the 
proposed interactive method to the others . This table repre 
sents the point estimate of the difference between each pair 
of means and is computed from the sample data , Also , it 
includes the confidence interval showing the difference 
between population means and is centered on point estimate . 
If this interval does not include zero , indicates that the 
difference between the means is statistically significant . The 
95 % individual confidence level indicates that one can be 
95 % confident that each interval contains the real difference 
for that particular comparison . The results shows that all 
pairwise comparisons between our method and others for 
each pair of ( software / metric ) are statistically significant at 
the 0 . 05 level except for G and NF of JFreeChart as their 
results highlighted in the table of the results . Therefore , the 
difference between the means of these two metrics , and 
NF , for JFreeChart project is 0 . 
[ 0165 ] To this end , the Vargha - Delaney A was used to 
measure which is a non - parametric effect size measure . In 
this context , given the different performance metrics ( such 
as PR , RC , MC , etc . ) , the A statistic measures the probability 
that running an algorithm B1 ( interactive NSGA - II ) yields 
better performance than running another algorithm B2 . If the 
two algorithms are equivalent , then A = 0 . 5 . In the experi 
ments , the following results were found : a ) on small and 
medium scale software projects ( Gantt Project , Rhino , Log4J 
and Nutch ) the approach is better than all the other algo 
rithms based on all the performance metrics with an effect 
size higher than 0 . 94 ; and b ) on large scale software projects 
( JDI , MROI , Apache Ant , Xerces - J , JHotDraw and 
JFreeChart ) , the approach is better than all the other algo 
rithms with an A effect size higher than 0 . 87 . 
[ 0166 ] For the results for RQla , FIGS . 7A - 7 ) summarizes 
the findings regarding the obtained precision ( PR ) and recall 
( RC ) results on the 10 systems . A considerable number of 
proposed refactorings were found , with an average of more 
than 82 % and 86 % respectively in terms of precision and 
recall , were already applied by the software development 
team and suggested manually ( expected refactorings ) . The 
recall scores are higher than precision ones since we found 
that the refactorings suggested manually by developers are 
incomplete compared to the solutions provided by our 
approach . In addition , the slight deviation with the expected 
refactorings found is not related to incorrect operations but 
to the fact that the developers were interested mainly in 

fixing the severest code smells or improving the quality of 
the code fragments that they frequently modify . 
[ 0167 ] FIG . 7A - 7 ) also confirms the out - performance of 
the interactive refactoring approach compared to existing 
fully - automated techniques and since a statistically signifi 
cant difference between the means of metrics is confirmed , 
the better results are not obtained by chance . The precision 
and recall scores were consistent on all the ten systems 
which confirm that the results are independent from the size 
of the systems , number of refactorings and number of code 
smells . The closest results are those obtained by NSGA - II 
based on innovization ( without interaction ) and the multi 
objective refactoring approach of Ouni et al . This may 
confirm that the obtained results are more due to the inter 
action component of our approach . A detailed qualitative 
discussion will be presented later in RQid . 
[ 0168 ] For results for RQlb , the ability of the approach 
was evaluated to fix several types of code smell . FIG . 7A - 7J 
depict the percentage of fixed code smells ( NF ) . It is higher 
than 82 % on all the ten systems , which is an acceptable score 
since developers may reject or modify some refactorings 
that fix some code smells because they do not consider them 
very important ( their goal is not to fix all code smells in the 
system ) or the current version of the code becomes stable . 
Some systems , such as Rhino and Gantt , have a higher 
percentage of fixed code smells with an average of more 
than 88 % . This can be explained by the fact that these 
systems include a higher number of code smells than others . 
[ 0169 ] However , the percentage of fixed code smells ( NF ) 
is slightly lower than some fully - automated refactoring 
techniques . This is can be explained by the reason that the 
main goal of developers during the interaction process is not 
to fix the maximum number the code smells detected in the 
system ( which was the goal ) thus they rejected or modified 
some refactorings suggested by our tool . In addition , the 
approach is based on a multi - objective algorithm to find a 
trade - off between improving the quality and reducing the 
number of changes . Therefore , the slight loss in NF is 
explained by the fact that they are not considering fixing 
code smells as one of the objectives , and justified by a better 
improvement in the quality of the refactored system . 
[ 0170 ] For results for RQ1c , FIGS . 6 and 7A - 7J show that 
the refactorings recommended by the approach and applied 
by developers improved the quality metrics value ( G ) of the 
ten systems . For example , the average quality gain for the 
two industrial systems was the highest among the ten 
systems with more than 0 . 3 . The improvements in the 
quality gain confirm that the recommended refactorings 
helped to optimize different quality metrics . The function 
ality attribute has the lowest improvement on the different 
systems . This may be explained by the fact that refactoring 
is expected to preserve the behavior of existing functional 
ities . The interactive approach clearly also outperforms 
existing fully - automated techniques . One of the reasons 
could be related to the fact that the optimization of the 
quality attributes is considered as part of the fitness func 
tions unlike some of the existing techniques . 
[ 0171 ] For results for RQid , the results of the empirical 
qualitative evaluation ( MC ) in FIGS . 7A - 7J are reported . As 
reported in this figure , the majority of the refactoring solu 
tions recommended by our interactive approach were correct 
and approved by developers . On average , for all of the ten 
studied projects , 87 % of the proposed refactoring operations 
are considered as semantically feasible , improve the quality 
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and are found to be useful by the software developers of the 
experiments . The highest MC score is 93 % for the Gantt 
project and the lowest score is 86 % for JFreeChart . Thus , it 
is clear that the results are independent of the size of the 
systems and the number of recommended refactorings . Most 
of the refactorings that were not manually approved by the 
developers were found to be either violating some post 
conditions or introducing design incoherence . 
10172 ] FIGS . 7A - 7J shows that the approach provides 
significantly higher manual correctness results ( MC ) than all 
other approaches having MC scores respectively between 
60 % and 78 % , on average as MC scores on the different 
systems . 
[ 0173 ] To provide more qualitative evaluation , some of 
the feedback was considered that was received from the 
developers since they are part of the original developers of 
these systems . For example , these developers rejected a set 
of move methods because they believed that these methods 
should stay in their original class . The original class in this 
case is responsible for implementing several security con 
straints ( e . g . login information ) around database access . The 
number of security constraints is very high and they were 
implemented in several methods grouped into one class . 
Although this set of methods created a blob , the developers 
assessed that they should stay together because there is a 
logic behind implementing them in that way , and splitting 
the behavior may require a redesign of the application . 
[ 0174 ] In another case , the developers elected to extract a 
class that regroups several methods implementing a parser to 
extract dealer information . However , this refactoring was 
not recommended by our approach since the methods were 
located in a small class that did not contain any code smell 
or quality violation symptoms . Thus , the refactoring applied 
by the developers was more based on the features imple 
mented in the methods . This refactoring is hard to recom 
mend even with the considered semantics / textual similarity 
measures since few comments exist in these methods and 
furthermore their implementation structures look very dif 
ferent . These observations explain the reasons why some the 
refactorings recommended by our approach was rejected by 
the developers and also the differences with those that are 
manually recommended by the developers . 
10175 ] . In general , it was found that most of the common 
patterns in the Pareto front are not individual operations , but 
a short sequence of refactorings . Thus , it is believed that 
most of these patterns are targeting specific quality issues 
and hence the applied refactorings are not individual opera 
tions but small refactoring patterns . This observation was 
found to be valid when manually checked the interactive 
results of the tool . 
[ 0176 ] . A general interesting observation from the experi 
ments is that evolutionary search involves both diversifica 
tion and convergence , so the question is does innovization 
emphasize convergence at the cost of sacrificing diver 
gence ? One would argue against this , for the following 
reasons . In the context of this refactoring problem , it is very 
rare to observe no overlap between non - dominated solutions 
for several reasons such as the large size of refactoring 
solutions and the fact that some common quality issues 
should be fixed ( high priority ) . In fact , at least few quality 
issues ( e . g . code smells ) need to be fixed independently from 
the other objectives . Thus , it is normal to always observe 
some overlap between the refactoring solutions . Regarding 
diversification , the ranking of the refactoring solutions is 

only used after the generation of the Pareto front so this 
ranking is not part of the fitness function used in the search . 
The goal is to implicitly explore the front based on the 
feedback of the developers to identify the region of interest 
and prioritize the solutions that contain common patterns . It 
is believed that these common patterns distinguish non 
dominated solutions from dominated ones . The diversifica 
tion is not penalized because we do not consider the 
innovization heuristic as part of the fitness functions but as 
a post - processing step to prioritize solutions ( and not elimi 
nating them ) . 
( 0177 ] The results of the interactive approach ( MI ) and the 
innovization NSGA - II method ( M2 ) were compared in 
FIGS . 6 and 7A - 7jin order to contrast the impact of inter 
activity component . The best solution ( at the knee point ) 
based on the innovization feature ( without interaction ) was 
evaluated based on all studied metrics . The results confirm 
that the interactive approach outperforms NSGA - II with the 
only use of innovation ( without interaction ) in terms of G , 
NF , MC , PR , and RC . However , the results of NSGA - II with 
innovization are better than regular multi - objective refac 
toring approaches ( e . g . Ouni et al . , etc . ) thus it is clear that 
the positive results of this approach are due to the combi 
nation of the two factors : innovization and interactive fea 
tures . 
[ 0178 ] The superior performance of this interactive 
approach can be explained by several factors . First , other 
approaches used only structural indications ( quality metrics ) 
to evaluate the refactoring solutions and thus a high number 
of refactorings lead to a semantically incoherent design . The 
interactive approach reduces the number of semantic inco 
herencies when suggesting refactorings and during the inter 
action with the developers . Second , the innovization com 
ponent improved the quality of the suggested refactoring 
solutions by using an interactive approach as compared to a 
regular NSGA - II where the developers need to select one 
solution from the Pareto front that cannot be updated 
dynamically . Third , JDeodorant proposes some pre - defined 
patterns to fix some types of code smells that cannot be 
sometimes generalized . 
[ 0179 ] To summarize and answer RQ1 , the experimenta 
tion results confirm that the interactive approach helps the 
participants to refactor their systems efficiently by finding 
more relevant refactoring solutions and improve the quality 
of all the ten systems under study . In addition , the interactive 
approach provides better results , on average , than all of the 
existing fully - automated refactoring techniques . 
[ 0180 ] For results for RQ2 , the ability of the interactive 
approach to help software developers to find quickly good 
refactorings based on an efficient ranking of the proposed 
operations was also evaluated . The MC @ k and PR @ k were 
compared , where k was varied between 1 , 5 , 10 and 15 as 
described in FIG . 8 and FIG . 9 where the lowest MC @ 1 is 
93 % and the highest is 100 % on the different ten systems 
confirming that the highest - ranked refactoring was almost 
always correct and relevant for the developers . 
0181 ] The MC @ 15 presents the lowest results , which is 
to be expected since it was evaluated the manual correctness 
of the top 15 recommended refactorings at several interac 
tions and this increases the probability that it contains few 
irrelevant refactorings . However , the average MC @ 15 still 
could be considered acceptable with an average of more than 
81 % . The same observations are also valid for the PR @ k ; 
however the results are a bit lower than for MC @ k . The 
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average PR @ k results were respectively 94 % , 89 % , 84 % 
and 80 % for k = 1 , 5 , 10 and 15 . Thus , it is clear that the 
ranking function used by our interactive approach to explore 
the Pareto front is efficient . 
[ 0182 ] Considering three other metrics NAR ( percentage 
of ac - cepted refactorings ) , NMR ( percentage of modified 
refactorings ) and NRR ( percentage of rejected refactorings ) , 
the efficiency of the interactive approach is further evaluated 
to rank the refactorings . These metrics are recorded using a 
feature that implemented in our tool to record all the actions 
performed by the developers during the refactoring sessions . 
FIG . 10 shows that , on average , more than 71 % of the 
recommended refactorings were applied by the devel - opers . 
In addition , an average of 17 % of the recommended refac 
torings were modified by the developers , while 12 % of the 
suggested refactorings were rejected by the developers . 
Thus , it is clear that the recommendation tool successfully 
suggested a good set of refactorings to apply . To conclude , 
this approach efficiently ranked the recom - mended refactor 
ings and helped software developers to quickly find good 
refactorings recommendations . 
[ 0183 ] For results for RQ3a , FIG . 11 shows that the time 
is reduced by 61 % and 57 % to finalize respectively the two 
tasks of fixing bugs when programmers worked on the 
refactored program using our interactive approach . These 
results outperform the productivity improvements obtained 
when programmers worked on similar tasks of fixing bugs of 
the refactored programs by Ouni et al . and Harman et al . For 
Ouni et al . , the productivity improvements are between 41 % 
and 37 % while Harman et al . are between 33 % and 31 % . 
The results are correlated with the quality improvements of 
the evaluated programs , as discussed in the previous sec 
tions . Thus , a better quality of the software may increase the 
productivity of programmers when fixing bugs . 
10184 ) For results for RQ3b , similar results to RQ3a are 
obtained for the tasks of adding new features . FIG . 11 shows 
that the time is reduced by 51 % and 48 % to finalize 
respectively the two tasks of adding new features when 
programmers worked on the refactored program using the 
interactive approach . These results outperform the produc 
tivity improvements obtained when programmers worked on 
similar tasks of adding features of the refactored programs 
by Ouni et al . and Harman et al . For Ouni et al . , the 
productivity improvements are between 38 % and 31 % , 
while Harman et al . are between 29 % and 23 % . The results 
are correlated with the quality improvements of the evalu 
ated programs . Thus , a better quality of the software may 
increase the productivity of programmers when adding new 
features . Overall , the productivity gain when programmers 
worked on adding new features is lower than the one 
observed for fixing bugs . This could be related to the fact 
that the complexity of adding new features was higher than 
fixing bugs and the locations where refactorings are intro 
duced . 
[ 0185 ] The metric ( TP ) to measure the time to perform the 
different bugs fixing and adding new features task on the 
systems before and after refactoring included the execution 
time of the different ( interactive and fully - automated ) refac 
toring techniques to generate the new systems after refac 
toring . While the execution time of the interactive approach 
is slightly higher than fully - automated approaches with an 
average of 6 minutes comparing to Ouni et al . and Harman 
et al . on the different systems used in both scenarios , the 
overall time that developers spent to perform the new tasks 

is much lower when working on the new systems after 
refactoring based on our approach comparing to the state of 
the art . Thus , the extra manual effort required by the 
interactive approach is compensated by higher productivity 
and better accuracy of the results . It is believed that the 
slightly higher execution time by the interactive approach 
comparing to fully automated search - based refactoring 
despite the extramanual effort is explained by the fact that 
the user feedback can reduce dramatically the search space 
to converge toward better recommendations . Furthermore , 
the efficient ranking of refactorings to be inspected by 
programmers help a lot in reducing the interaction time . 
Finally , it should be highlighted that programmers spend 
considerable time evaluating long list of refactoring recom 
mendations after the execution of fully - automated 
approaches which is comparable to the manual interaction 
effort required during the execution of our interactive 
approach . 
[ 0186 ] In the following , a qualitative example is described 
to illustrate the observed time reduction when updating a 
feature on the refactored code . The scenario consists of 
modifying the existing loading and saving of CSV files 
feature in Gant . The updated feature will enable the modi 
fication of colors used in the charts to highlight specific 
project tasks to match different priorities ( e . g . red for high 
priority task , green for low priority task , etc . ) then modify 
the current CSV format to support the use of colors in the 
Gantt chart . To implement this feature , several methods have 
to be modified that append to different classes before refac 
toring . The main class related to this feature is GanttOptions 
that includes 68 methods and highly coupled with 14 classes 
which can be considered as a blob . The interactive refac 
toring tool proposed a sequence of 29 refactorings to be 
applied to this class and some related classes ( CSVOptions 
and U1Configuration ) . The sequence of refactorings 
included Extract class . Move field . Move method , Push 
Down field , PushDown method and Extract method that 
refactored the GanttOptions as illustrated in FIGS . 12 A and 
12B . 
[ 0187 ) The new version of GanttOptions contained only 
43 methods and several methods and fields were moved 
from / to CSVOptions and U1Configuration . Thus , the devel 
opers introduced less number of changes to update the 
methods related to changing the colors of the chart tasks and 
the format of the CSV files since they were cohesively 
moved to GanttOptions after refactorings rather than being 
distributed between CSVOptions and UlConfiguration . 
These refactorings not only reduced the number of changes 
but also improved the coupling and cohesion within these 
classes since other methods and fields were moved from 
CSVOptions which reduced as well the time for developers 
to identify the relevant methods and fields to modify to 
integrate the new features . 
[ 0188 ] For results for RQ3c , the post - study questionnaire 
results show the average agreement of the participants was 
4 . 8 and based on a Likert scale for the first and second 
statements , respectively . This confirms the usefulness of the 
interactive approach for the software developers considered 
in our experiments . 
[ 0189 ] Most of the participants mention that the interac 
tive approach is faster than manual refactoring since they 
spent a long time with manual refactoring to find the 
locations where refactorings should be applied . For 
example , developers spend time when they decide to extract 
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a class to find the methods to move to the newly created class 
or when they want to move a method then it takes time to 
find the best target class by manual exploration of the source 
code . Thus , the developers liked the functionality of our tool 
that helps them to modify a refactoring and finding quickly 
the right parameters based on the recommendations . 
[ 0190 ] The interactive algorithm automatically suggests a 
list of possible target classes ranked based on the history of 
changes and semantic similarity . Furthermore , refactorings 
may affect several locations in the source code , which is a 
time - consuming task to perform manually , but they can 
perform it instantly using our tool . 
[ 0191 ] The participants found the tool helpful for both 
/ loss refactoring , to maintain a good quality design and also 
for root canal refactoring to fix some quality issues such as 
code smells . The developers justify their conclusions by the 
following interesting observations about the tool : a ) the list 
of recommended refactorings helps them to choose the 
desired refactoring very quickly , and b ) the tool offers them 
the possibility to modify the source code ( to add new 
functionality ) while doing refactoring since the list of rec 
ommendations is updated dynamically . So developers can 
switch between both activities : refactoring and modifying 
the source code to modify existing functionalities , c ) the tool 
allows developers to access all the functionality of the IDE 
( e . g . , Eclipse ) , d ) the suggested refactorings by our interac 
tive tool can fix code smells ( root canal refactoring ) or 
improve some quality metrics ( floss canal refactoring ) due to 
the use of the multiobjective approach . 
[ 0192 ] Another important feature that the participants 
mention is that the interactive approach allows them to take 
the advantages of using multi - objective optimization for 
software refactoring without the need to learn anything 
about optimization and exploring explicitly the Pareto front 
to select one ideal solution . The implicit exploration of the 
Pareto front in an interactive fashion represents an important 
advantage of the tool along with the dynamic update of the 
recommended list of refactoring using innovization . In fact , 
the developers found a lot of difficulties using the multi 
objective tool of to explore the Pareto front to find a good 
refactoring solution . In addition , they did not appreciate the 
long list of refactoring suggested other solutions since they 
want to take control of modifying and rejecting some 
refactorings . In addition , the validation of this long list of 
refactorings is time - consuming . Thus , they appreciate that 
the tool suggests refactoring one by one and update the list 
based on the feedback of developers . 
[ 0193 ] The techniques described herein may be imple 
mented by one or more computer programs executed by one 
or more processors . The computer programs include pro 
cessor - executable instructions that are stored on a non 
transitory tangible computer readable medium . The com 
puter programs may also include stored data . Non - limiting 
examples of the non - transitory tangible computer readable 
medium are nonvolatile memory , magnetic storage , and 
optical storage . 
[ 0194 ] Some portions of the above description present the 
techniques described herein in terms of algorithms and 
symbolic representations of operations on information . 
These algorithmic descriptions and representations are the 
means used by those skilled in the data processing arts to 
most effectively convey the substance of their work to others 
skilled in the art . These operations , while described func 
tionally or logically , are understood to be implemented by 

computer programs . Furthermore , it has also proven conve 
nient at times to refer to these arrangements of operations as 
modules or by functional names , without loss of generality . 
[ 0195 ] Unless specifically stated otherwise as apparent 
from the above discussion , it is appreciated that throughout 
the description , discussions utilizing terms such as process 
ing ” or “ computing ” or “ calculating ” or “ determining " or 
" displaying " or the like , refer to the action and processes of 
a computer system , or similar electronic computing device , 
that manipulates and transforms data represented as physical 
( electronic ) quantities within the computer system memories 
or registers or other such information storage , transmission 
or display devices . 
[ 0196 ] Certain aspects of the described techniques include 
process steps and instructions described herein in the form 
of an algorithm . It should be noted that the described process 
steps and instructions could be embodied in software , firm 
ware or hardware , and when embodied in software , could be 
downloaded to reside on and be operated from different 
platforms used by real time network operating systems . 
[ 0197 ] The present disclosure also relates to an apparatus 
for performing the operations herein . This apparatus may be 
specially constructed for the required purposes , or it may 
comprise a general - purpose computer selectively activated 
or reconfigured by a computer program stored on a computer 
readable medium that can be accessed by the computer . Such 
a computer program may be stored in a tangible computer 
readable storage medium , such as , but is not limited to , any 
type of disk including floppy disks , optical disks , CD 
ROMs , magnetic - optical disks , read - only memories 
( ROMs ) , random access memories ( RAMs ) , EPROMs , 
EEPROMs , magnetic or optical cards , application specific 
integrated circuits ( ASICs ) , or any type of media suitable for 
storing electronic instructions , and each coupled to a com 
puter system bus . Furthermore , the computers referred to in 
the specification may include a single processor or may be 
architectures employing multiple processor designs for 
increased computing capability . 
[ 0198 ] The algorithms and operations presented herein are 
not inherently related to any particular computer or other 
apparatus . Various general - purpose systems may also be 
used with programs in accordance with the teachings herein , 
or it may prove convenient to construct more specialized 
apparatuses to perform the required method steps . The 
required structure for a variety of these systems will be 
apparent to those of skill in the art , along with equivalent 
variations . In addition , the present disclosure is not 
described with reference to any particular programming 
language . It is appreciated that a variety of programming 
languages may be used to implement the teachings of the 
present disclosure as described herein . 
[ 0199 ] The foregoing description of the embodiments has 
been provided for purposes of illustration and description . It 
is not intended to be exhaustive or to limit the disclosure . 
Individual elements or features of a particular embodiment 
are generally not limited to that particular embodiment , but , 
where applicable , are interchangeable and can be used in a 
selected embodiment , even if not specifically shown or 
described . The same may also be varied in many ways . Such 
variations are not to be regarded as a departure from the 
disclosure , and all such modifications are intended to be 
included within the scope of the disclosure . 
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What is claimed is : 
1 . A computer - implemented method for refactoring soft 

ware , comprising : 
receiving , by a computer processor , a set of candidate 

solutions for refactoring the software , where each solu 
tion in the set of candidate solutions includes one or 
more refactor operations for the software ; 

identifying , by the computer processor , a particular can 
didate solution from the set of candidate solutions , 
where the particular candidate solution includes refac 
tor operations with highest commonality amongst the 
set of candidate solutions ; 

presenting , by the computer processor , a particular refac 
toring operation from the particular candidate solution 
to a user ; 

receiving , by the computer processor , feedback regarding 
the particular refactoring operation from the user ; 

updating , by the computer processor , source code for the 
software based on the feedback from the user ; and 

generating , by the computer processor , another set of 
candidate solutions using the updated source code . 

2 . The computer - implemented method 1 further com 
prises identifying a given candidate solution by calculating 
a composite ranking score for each candidate solution in the 
set of candidate solutions , where the composite ranking 
score is calculated by computing a ranking score for each 
refactor operation in a given candidate solution based upon 
frequency of the refactor operation across the set of candi 
date solution and summing the ranking score for each 
refactor operation in the given candidate solution to yield the 
composite ranking score , such that the particular candidate 
solution is the candidate solution having highest composite 
ranking score in the set of candidate solutions . 

3 . The computer - implemented method of claim 2 wherein 
presenting a particular refactoring operation includes dis 
playing an indicator to apply the particular refactoring 
operation to the software , an indicator to modify the par 
ticular refactoring operation and an indicator to reject the 
particular refactoring operation . 

4 . The computer - implemented method of claim 3 further 
comprises , in response to receiving feedback from the user , 
recalculating a composite ranking score for each candidate 
solution in the set of candidate solutions using the feedback 
from the user . 

5 . The computer - implemented method of claim 4 further 
comprises 

a ) identifying another candidate solution from the set of 
candidate solutions , where the another candidate solu 
tion has highest composite ranking score after the step 
of recalculating a composite ranking score for each 
candidate solution in the set of candidate solutions ; 

b ) presenting a particular refactoring operation from the 
another candidate solution to a user ; 

c ) receiving feedback regarding the particular refactoring 
operation from the user ; and 

d ) recalculating a composite ranking score for each for 
each candidate solution in the set of candidate solutions 
using the feedback from the user . 

6 . The computer - implemented method of claim 5 further 
comprises repeating steps a ) - d ) until an exit condition is 
satisfied . 

7 . The computer - implemented method of claim 4 further 
comprises recalculating a composite ranking score for a 
given candidate solution by adding one to the composite 

ranking score when the given candidate solution includes the 
particular refactoring operation and the feedback indicates to 
apply the particular refactoring operation to the software , by 
adding one half to the composite ranking score when the 
given candidate solution includes the particular refactoring 
operation and the feedback indicates to modify the particular 
refactoring operation , and subtract one to the composite 
ranking score when the given candidate solution includes the 
particular refactoring operation and the feedback indicates to 
reject the particular refactoring operation . 

8 . The computer - implemented method of claim 1 further 
comprises generating another set of candidate solutions by 
applying a genetic algorithm to a set of candidate solutions 
and thereby yielding a next generation of candidate solu 
tions . 

9 . The computer - implemented method of claim 8 wherein 
applying a genetic algorithm includes evaluating each can 
didate solution in the next generation of candidate solutions 
according to two fitness functions , where one of the two 
fitness functions minimizes number of changes to the source 
code and other of the two fitness functions maximizes 
software quality . 

10 . The computer - implemented method of claim 8 further 
comprises removing one or more candidate solutions from 
the next generation of candidate solutions based on feedback 
from the user . 

11 . A computer - implemented method for refactoring soft 
ware , comprising : 

receiving , by a computer processor , a set of candidate 
solutions for refactoring the software , where each solu 
tion in the set of candidate solutions includes one or 
more refactor operations for the software ; 

selecting , by the computer processor , a particular candi 
date solution from the set of candidate solutions ; 

presenting , by the computer processor , a particular refac 
toring operation from the particular candidate solution 
to a user ; 

receiving , by the computer processor , feedback regarding 
the particular refactoring operation from the user ; 

updating , by the computer processor , source code for the 
software based on the feedback from the user ; and 

applying , by the computer processor , a genetic algorithm 
to the set of candidate solutions and using the updated 
source code , thereby yielding a next generation of 
candidate solutions . 

12 . The computer - implemented method of claim 11 
wherein presenting a particular refactoring operation 
includes displaying an indicator to apply the particular 
refactoring operation to the software , an indicator to modify 
the particular refactoring operation and an indicator to reject 
the particular refactoring operation . 
13 . The compute - implemented method of claim 12 further 

comprises receiving an indication to apply the particular 
refactoring operation from the user and updating the source 
code for the software in accordance with the particular 
refactoring operation . 

14 . The compute - implemented method of claim 12 further 
comprises receiving an indication to modify the particular 
refactoring operation from the user and updating the source 
code for the software in accordance with the particular 
refactoring operation . 

15 . The compute - implemented method of claim 12 further 
comprises receiving an indication to reject the particular 
refactoring operation from the user and removing select 
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candidate solutions from the next generation of candidate 
solutions , where the select candidate solutions include the 
particular refactoring operation . 

16 . The computer - implemented method 11 further com 
prises identifying a given candidate solution by calculating 
a composite ranking score for each candidate solution in the 
set of candidate solutions , where the composite ranking 
score is calculated by computing a ranking score for each 
refactor operation in a given candidate solution based upon 
frequency of the refactor operation across the set of candi 
date solution and summing the ranking score for each 
refactor operation in the given candidate solution to yield the 
composite ranking score , such that the particular candidate 
solution is the candidate solution having highest composite 
ranking score in the set of candidate solutions . 

17 . The computer - implemented method of claim 16 
wherein presenting a particular refactoring operation 
includes displaying an indicator to apply the particular 
refactoring operation to the software , an indicator to modify 
the particular refactoring operation and an indicator to reject 
the particular refactoring operation . 

18 . The computer - implemented method of claim 17 fur 
ther comprises , in response to receiving feedback from the 
user , recalculating a composite ranking score for each can 
didate solution in the set of candidate solutions using the 
feedback from the user . 

19 . The computer - implemented method of claim 18 fur 
ther comprises 

a ) identifying another candidate solution from the set of 
candidate solutions , where the another candidate solu 
tion has highest composite ranking score after the step 

of recalculating a composite ranking score for each 
candidate solution in the set of candidate solutions ; 

b ) presenting a particular refactoring operation from the 
another candidate solution to a user ; 

c ) receiving feedback regarding the particular refactoring 
operation from the user ; and 

d ) recalculating a composite ranking score for each for 
each candidate solution in the set of candidate solutions 
using the feedback from the user . 

20 . A computer - implemented method for refactoring soft 
ware , comprising : 

receiving , by a computer processor , a set of candidate 
solutions for refactoring the software , where each solu 
tion in the set of candidate solutions includes one or 
more refactor operations for the software ; 

selecting , by the computer processor , a particular candi 
date solution from the set of candidate solutions ; 

presenting , by the computer processor , a particular refac 
toring operation from the particular candidate solution 
to a user ; 

receiving , by the computer processor , feedback regarding 
the particular refactoring operation from the user ; 

applying , by the computer processor , a genetic algorithm 
to the set of candidate solutions , thereby yielding a next 
generation of candidate solutions ; and 

removing , by the computer processor , select candidate 
solutions from the next generation of candidate solu 
tions based on feedback from the user , where the select 
candidate solutions include the particular refactoring 
operation . 


