
MigrationMiner: An Automated Detection Tool of
Third-Party Java Library Migration at the Method Level

Hussein Alrubaye∗, Mohamed Wiem Mkaouer∗, Ali Ouni†

∗Software Engineering Department, Rochester Institute of Technology, NY, USA
†ETS Montréal, University of Quebec, Montréal, QC, Canada

{hat6622,mwmvse}@rit.edu, ali.ouni@etsmtl.ca

Abstract—In this paper we introduce, MigrationMiner,
an automated tool that detects code migrations performed
between Java third-party library. Given a list of open source
projects, the tool detects potential library migration code
changes and collects the specific code fragments in which
the developer replaces methods from the retired library with
methods from the new library. To support the migration
process, MigrationMiner collects the library documentation
that is associated with every method involved in the migra-
tion. We evaluate our tool on a benchmark of manually vali-
dated library migrations. Results show that MigrationMiner
achieves an accuracy of 100%. A demo video of Migration-
Miner is available at https://youtu.be/sAlR1HNetXc.

I. Introduction

The tremendous growth of available third-party li-
braries as being an integral part of modern software
ecosystems, engendered new maintenance and evolu-
tion challenges. Typical challenges are mainly related to
library APIs upgrade and migration as they often get
deprecated or outdated. third-party library migration [1],
[2] is the process of replacing a library with a different
one, while preserving the same program behavior. Un-
like, upgrading a library from one version to another, the
migration requires developers to explore and understand
the new library’s API, its associated documentation,
and its usage scenarios in order to find the right API
method(s) to replace every method, belonging to the
retired library’s API.

Existing studies demonstrated that library migration
is still a manual, error-prone, and time-consuming pro-
cess [3], [4], [5], [6], [7]. Developers often spend a consid-
erable time to check whether the newly adopted features
do not introduce any regression in their client code.
Indeed, recent studies have shown that developers typi-
cally spend up to 42 days to migrate between libraries [8].
Moreover, recent studies have shown that developers are
reluctant to migrate their existing libraries, which makes
their overall dependencies outdated and even vulnerable
[6]. Hence, there is an urgent need to support developers
in migrating their third-party libraries.

In this tool paper, we present, MigrationMiner1, an
open source tool that provides the developer with easy-
to-use and comprehensive way of extracting, from given

1https://github.com/hussien89aa/MigrationMiner

list of input projects, existing migrations between two
third-party libraries using program analysis based on
Abstract Syntax Tree (AST) code representation. In a
nutshell, MigrationMiner (i) detects, (ii) extracts, (iii)
filters, and (iv) collects code changes related to any
performed migration. For a given input project, Migra-
tionMiner detects any migration undergone between two
java libraries and returns the names and versions of both
retired and new libraries. Thereafter, MigrationMiner
extracts the specific code changes, from the client code,
and which belong to the migration changes (it should at
least have one removed method from the retired library,
and one added method from the new library) from all
other unrelated code changes within the commits. Next,
MigrationMiner filters code changes to only keep frag-
ments that contain migration traces i.e., a code fragment,
generated by the diff utility, which contains the removed
and added methods, respectively from the retired and
the new library. Finally, MigrationMiner collects the li-
brary API documentation that is associated with every
method in the client code. The output of MigrationMiner,
for each detected migration between two libraries, is a
set of migration traces, with their code context, and their
corresponding documentation.

To the best of our knowledge, there is no available
open source tool that can extract migration traces be-
tween two different libraries. MigrationMiner is the first
initiative to provide an open source tool and a dataset
of automatically detected migrations2. Developers can
use it to outsource from the wisdom of the crowd, and
extract migration patterns between two given libraries.
Thus, developers can use it as a by-example approach, to
facilitate their migration process. Researchers can use it
also to better understand the challenges associated with
library migration and get practical insights.

Tool, documentation and demo video. Migration-
Miner is publicly available as an open source tool1, with
a demo video3.

II. Background

This section presents definitions of the main concepts
that are used throughout the paper.

2http://migrationlab.net
3https://youtu.be/sAlR1HNetXc

414

2019 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSME.2019.00072

Figure 1: MigrationMiner workflow and Architecture.

Library Migration. A library migration occurs when a
source library is replaced by a target library. The source
library is considered retired if all of its method depen-
dencies are removed from its client code. Note that the
source library does not need to be physically removed
from the project (e.g., the pom files for Maven projects,
or local libraries repository), but it enforces that none of
its methods are used in the client implementation.

Migration Rule. A migration is denoted by a pair of
a source (retired) library and a target (replacing) library,
i.e., source → target. For example, json→ gson represents
a Migration Rule where the library json4 is migrated to
the new library gson5.

Method Mapping. A Migration Rule is a set of method
mappings between the source and the target library. The
mapping between methods is the process of *identifying
the correspondences* between a least one method from
the source library and one or multiple methods belong-
ing to the target library.

Segment. It constitutes the migration period. It is a
sequence of one or multiple code changes (e.g., commits),
containing each, one or multiple fragments.

Fragment. A block of source code that witnesses at
least one mapping. It is generated by contrasting the code
before and after the migration to only keep the removed
(resp., added) methods linked to the source (resp., target)
library.

III. MigrationMiner

In this section we detail the architecture and typical
usage scenario of MigrationMiner as sketched in Figure

4https://mvnrepository.com/artifact/org.json/json/20140107
5https://mvnrepository.com/artifact/com.google.code.gson/gson/

2.8.0

1. For each MigrationMiner component, we explain its
input/output and workflow.

A. Data Collection

Input. MigrationMiner takes as input a list of open
source GitHub projects, as shown in Figure 1. Due to
the mining nature of our tool, we allow multiple project
links to facilitate the automated search.

Workflow. The collection phase takes the list of open-
source Java projects. It starts by cloning and checking
out all commits for each project. For every commit, Mi-
grationMiner collects its properties including the commit
ID, commit date, developer name, and commit descrip-
tion. MigrationMiner keeps track of all changes in the
project library configuration file, known as Project Object
Model (pom.xml). All mined projects data is recorded in a
SQL database for faster querying later when identifying
segments and fragments. As an illustrative example,
Figure 2 shows a commit 6 where json was removed from
the project while gson was added.

Output. A list of potential library changes, and their
corresponding commits, and projects.

Figure 2: Migration from json to gson.

6https://github.com/vmi/selenese-runner-java/commit/
641ab94e7d014cdf4fd6a83554dcff57130143d3

415

B. Migration Detector

Input. List of library changes, and their corresponding
commits, and projects.

Workflow. Since developers may add and remove
multiple libraries at the same time, there is no clear cut
way to figure out the pairs of removed/added libraries.
Therefore, the Cartesian Product (CP) is performed be-
tween the set of added removed libraries, in each parsed
pom.xml files, to extract all the possible combinations
between removed/added libraries. Figure 3.A demon-
strates the CP process in the form of a graph. Every
node in the graph represents a library while the edge
represents its potential mapping to another library. The
edge is weighted by the number of times a migration
is found, while parsing all commits, across all projects.
For instance, the edge between json to gson has a weight
of 12 because this migration has been identified 12
times during the data collection process. Since the CP
generates every possible combination of rules, its result
contains a large number of false positives. Thus, a two-
step filtering process is performed:

1) In the first step, as shown in Figure 3.B, the weights
are normalized by the highest outgoing weight per
node, then the only mappings kept are those with
a normalized weight that is higher than a user-
defined filtering threshold value trel ∈ [0, 1]. The
value of trel controls the selection strictness. For
example, when the filter trel = 1, the json to gson,
easymock to Mockito, and testng to Junit, migration
are selected. MigrationMiner has trel = 1 by default,
to guarantee a strict selection of rules.

2) The second filtering step is ensured by the Fragment
Detection component, where only rules with actual
migration traces at the method level are kept, i.e.,
for a rule source → target, it is only kept if and
only if there exists at least one or many method(s)
from source that has/have been replaced with one
or many methods from target. The functionality of
this component is detained in Section III-D.

Output. Migration Rules with the highest weights.

Figure 3: Library Migration Detector.

C. Segment Detection

Input. Migration Rules with the highest weights. Be-
sides, list of library changes, and their corresponding

commits.
Workflow. The purpose of the segments detection,

i.e., migration periods, is to locate, for each Migration
Rule, its time periods in all projects. As defined in the
background section, a segment could be composed of
one or many commits involved in the migration process.
As shown in Figure 1, the segment detection phase starts
with checking whether both libraries exist in the list of
added/removed project libraries. Using static program
analysis, MigrationMiner locates the end of the segment
by scanning all commits in which all project source files
are no longer dependent on the retired library.

Note that a migration does not require the physical
removal of the library to be retired from the project, as
the retired library may still loaded in project through its
pom.xml file; however none of the library’s methods are
used in the client code. Once a segment end is located,
MigrationMiner keeps scanning previous commits in a
backward fashion, looking for the start commit which
contains the beginning of the migration, i.e., the first code
change related to the replacement of any retired library
method. After locating all segments for a given migra-
tion, it is important to keep track of source and target
libraries versions for each segment to avoid backward
incompatibility in case of an API change between two
versions of the same library.

Output. Migration Rules with the highest weights, and
their corresponding segments.

D. Fragment Detection

Input. Migration Rules with the highest weights, and
their corresponding segments.

Workflow. Fragment detection generates source code
fragments related to the library migration changes as
shown in Figure 1. It clones the project source files
that are changed in the commits belonging to the iden-
tified time segments. We apply the Git’s Unified Diff
Utility command between the changed files to generate
fragments, if any. A fragment is a continuous set of
lines that have been changed along with contextual
unchanged lines. Only fragments containing removed
(resp., added) methods from the source (resp., target)
library are considered valid. For example7, in Figure 1,
for a given Migration Rule json → gson, we identify that
one of the fragments was converting object to string.
We only keep toJSONString() as a removed method
and Gson(), toJson(Object) as an added method.
Other code changes (i.e., String jsonText) that do
not belong to the migration, will be removed. As pre-
viously explained, all rules with no found fragment(s),
will be automatically discarded.

Output. Filtered Migration Rules, and their corre-
sponding fragments.

7line 180 in RuntimeConfig.java , https://
github.com/groupon/Selenium-Grid-Extras/commit/
4d9bada8aeab5b09e7a27926fc9ecab8bb5a1b51

416

E. Documentation Collector

Input. Filtered Migration Rules, and their correspond-
ing fragments.

Flow. As shown in Figure 1, for a given fragment, the
documentation collector collects the API documentation
for both source method(s) and target method(s). Based
on its corresponding Migration Rule, it automatically
downloads the library documentation as a jar file for
all library releases involved in migrations. Our approach
relies on the libraries documentation on Maven Central
Repository8. The largest online Java library ecosystem
hosting over 3,605,525 unique libraries9, as of April
2019. The documentation collector then converts the API
documentation from a jar file to multiple HTML source
files using the doclet API10. It parses all of the HTML
files and collects the documentation related to class de-
scriptions, method descriptions, parameter descriptions,
return descriptions, package names, and class names.
Finally, the documentation collector identifies the doc-
umentation associated with every method involved in
any of the Migration Rules. For example, Figure 4 shows
Gsons’ API documentation11 for the method String
toJson(JsonElement).

Figure 4: API documentation for toJson(JsonElement)

Output. Filtered Migration Rules, their fragments, and
the documentation for each method in any fragment.

IV. Case Study

To evaluate the correctness of our detection process,
we challenge our tool using an existing dataset provided
by Teyton et al. [2]. This dataset contains 4 Migration
Rules and their corresponding method mappings, de-
tected across 16 projects, from which only 7 projects
were using Maven, and so compatible with our tool.
To challenge the ability of MigrationMiner to identify
all the Migration Rules and their related mappings, we
consider these 7 projects (that contain 3 migrations).
Then, we compare our findings with the results of
their manual detection to calculate the precision and
recall. As shown in Table I, MigrationMiner was able

8central.maven.org
9Statistics accessed on 5-5-2019 at https://search.maven.org/#stats
10https://goo.gl/S3xRwk
11https://www.javadoc.io/doc/com.google.code.gson/gson/2.2.2

to detect all the Migration Rules, and all their corre-
sponding fragments, achieving precision and recall of
100%. More interestingly, we have identified three addi-
tional Migration Rules, namely lucene− core → compass,
jm f → gstreamer− java, jersey− client → wink− client,
along with their fragments. We manually inspected and
validated all the detected fragments in the client code.
Thus, MigrationMiner achieved a precision of 100%.
Since we did not manually investigate whether there are
more unrevealed fragments, calculating the recall is not
applicable for this case study.

Table I: Accuracy of Migration Miner.
Migration Rule New? Precision Recall

commons− lang → guava No 100% 100%
commons− io → guava No 100% 100%

commons− lang3 → guava No 100% 100%
lucene− core → compass Yes 100% N/A
jm f → gstreamer− java Yes 100% N/A

jersey− client → wink− client Yes 100% N/A

V. Conclusion and Future Work

We presented MigrationMiner, an open source tool to
detect migrations between third-party Java libraries. The
evaluation of Migration Miner has shown its effective-
ness in detecting manually validated migrations. Migra-
tionMiner has been already used to detect and study
the 9 various migration, detected in 57,447 projects, and
this work has been published in the 27th IEEE/ACM
International Conference on Program Comprehension
[8]. As future work, we plan to extend MigrationMiner,
to provide an interactive tool for the recommendation of
library migration at the method level.

References

[1] Cedric Teyton, Jean-Remy Falleri, and Xavier Blanc. Mining library
migration graphs. In Working Conference on Reverse Engineering,
pages 289–298, 2012.

[2] Cédric Teyton, Jean-Rémy Falleri, and Xavier Blanc. Automatic
discovery of function mappings between similar libraries. In
Working Conference on Reverse Engineering, pages 192–201, 2013.

[3] Bradley E Cossette and Robert J Walker. Seeking the ground truth:
a retroactive study on the evolution and migration of software
libraries. In International Symposium on the Foundations of Software
Engineering, pages 55:1–55:11, 2012.

[4] Cédric Teyton, Jean-Rémy Falleri, Marc Palyart, and Xavier Blanc.
A study of library migrations in java. Journal of Software: Evolution
and Process, 26(11):1030–1052, 2014.

[5] Hussein Alrubaye and Mohamed Wiem Mkaouer. Automating the
detection of third-party java library migration at the function level.
In Proceedings of the 28th Annual International Conference on Computer
Science and Software Engineering, pages 60–71. IBM Corp., 2018.

[6] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio,
and Katsuro Inoue. Do developers update their library dependen-
cies? Empirical Software Engineering, 23(1):384–417, 2018.

[7] Hussein Alrubaye and Mohamed Wiem. Variability in library
evolution. Software Engineering for Variability Intensive Systems:
Foundations and Applications, page 295, 2019.

[8] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. On
the use of information retrieval to automate the detection of third-
party java library migration at the method level. In International
Conference on Program Comprehension (ICPC), pages 347–357, 2019.

417

