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Abstract—Refactoring is a critical task in software mainte-
nance and is usually performed to enforce best design practices,
or to cope with design defects. Previous studies heavily rely on
defining a set of keywords to identify refactoring commits from
a list of general commits extracted from a small set of software
systems. All approaches thus far consider all commits without
checking whether refactorings had actually happened or not.
In this paper, we aim at exploring how developers document
their refactoring activities during the software life cycle. We call
such activity Self-Affirmed Refactoring, which is an indication of
the developer-related refactoring events in the commit messages.
Our approach relies on text mining refactoring-related change
messages and identifying refactoring patterns by only considering
refactoring commits. We found that (1) developers use a variety of
patterns to purposefully target refactoring-related activities; (2)
developers tend to explicitly mention the improvement of specific
quality attributes and code smells; and (3) commit messages with
self-affirmed refactoring patterns tend to have more significant
refactoring activity than those without.

Index Terms—Self-Affirmed Refactoring, Software Quality,
Mining Software Repositories.

I. INTRODUCTION

Refactoring is the art of improving the quality of software

design without altering its behavior. With the rise of agile

methodologies that encourage developers to interleave refac-

toring within their other development activities, and with the

incorporation of refactoring operations in modern Integrated

Development Environments (IDEs), there is a lot of grow-

ing research to better understand how developers practically

refactor their codebases [13]–[15]. Thus, several studies focus

on detecting refactoring operations, performed by developers,

by mining their commit changes and extracting the refactoring

history [10], [19], [21]. These refactoring detectors rely mainly

on analyzing code changes to identify refactorings strategies,

previously performed by developers in various development

contexts.

In order to learn from these refactoring strategies, it is

essential to also understand the developer’s rationale and intent

behind applying them, i.e., the context in which the refactoring

operations were executed. Existing studies on understanding

developers perception of refactorings mainly rely on develop-

ers surveys and formal interviews [7], [11]. As the existing

refactoring detectors offer an abundant source of commits

containing refactoring operations, this paper aims at exploring

how developers document their refactoring activities during

the software life-cycle.

Inspired by various studies in analyzing the developer’s

internal documentations to extract their perception of their

own code, e.g., self-admitted technical debt [5], [16], we text-

mine the developer’s messages in refactoring-related commits

to detect any potentially relevant information regarding the

applied refactorings. Indeed, commit messages represent an

atomic documentation of a code change, written by the change

author, and thus represents a reliable and rich source of

information to describe their intention behind the performed

changes. Therefore, we conduct this empirical study to identify

how developers describe their refactoring activities. Then we

extract the rationale behind the applied refactorings, e.g.,
fixing code smells or improving specific quality attributes.

To perform this analysis, we formulate the following research

questions:

RQ1. What patterns do developers use to describe their
refactoring activities? Since there is no consensus on how

to formally document the act of refactoring code, we mine

in this research questions, patterns, using which developers

have described their refactoring activities. We explore 322,479

commit messages, belonging to a large variety of projects. The

outcome of this research question enumerates the most popular

text patterns used in the analyzed commit messages.

RQ2. What are the quality issues that drive developers to
refactor? Various studies have explored the bad programming

practices that trigger refactoring and the potential quality

attributes that are optimized when restructuring the code.

In this research question, we investigate whether developers

explicitly mention the purpose of their refactoring activity, e.g.,
improving structural metrics of fixing code smells.

RQ3. What are the top-10 patterns developers use to
describe quality issues in their commits? In this research

questions, we link between patterns extracted from the first

research question and the quality issues found in the second

question. We explore how developers express combining them

to express their refactoring activity.

RQ4. Do Commits containing the label “Refactor” indicate
more refactoring activity than those without the label? we

revisit the hypothesis raised by Murphy-Hill et al. [13] about

whether developers use a specific pattern, i.e., “refactor”
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when describing their refactoring activities. We quantify the

messages with the label “refactor” and without to compare

between them.

The remainder of this paper is organized as follows. Section

II discusses the rationale of our study. Section III reviews the

relevant studies to refactoring detection and documentation.

Section IV outlines our experimental methodology in collect-

ing the necessary refactoring data for the experiments that are

discussed afterward in Section V. Section VI gathers potential

limitations to the validity of our empirical analysis before

concluding and describing our work directions in Section VII.

II. SELF-AFFIRMED REFACTORING

Commit messages represent the human translation, in nat-

ural language, of the code-level changes. Therefore, with the

raise of version control systems and mining software reposi-

tories, several studies have been analyzing commit messages

for various purposes including change classification [8], [9],

change bug-proneness [26], and developers rationale behind

their coding decisions [2].

In this context, we aim to extract how developers express

their nonfunctional activities, namely improving software de-

sign, renaming semantically ambiguous identifiers, removing

code redundancies etc. Multiple studies have been detecting

the performed refactoring operations, e.g., rename class, move

method etc. within committed changes to better understand

how developers cope with bad design decisions, also known

as design antipatterns, and to extract their removal strategy

through the selection of the appropriate set of refactoring

operations [25]. As the accuracy of refactoring detectors has

reached a relatively high rate, the mined commits represent a

rich space to understand how developers describe, in natural

language, their refactoring activities. Yet, such information

retrieval can be challenging since there are no common

standards on how developers should be formally documenting

their refactorings, besides inheriting all the challenges related

to natural language processing [24].

However, using the developer inline documentation has

added another dimension to better understanding software

quality, as mining developers comments, for instance, has

unveiled how developers knowingly commit code that is either

incomplete, temporary, error-prone. These situations have been

coined as Self-Admitted Technical Debt (SATD) [16], as they

are extracted from text-mining developers messages, which

represents a reliable source, instead of measuring technical

debt only by the deviations from ideal code, i.e., code smells.

Inspired by the study of Potdar and Shihab [16], we analyze

commits which are known to contain refactoring operations

and we extract how developers describe, in plain unformal text,

their refactoring activities. However, we were skeptical about

using the term self-admitted refactoring, as self-admission is

defined as confessing a specific charge or accusation, which

makes it appropriate for technical debt, but not for what

may reduce it i.e., refactoring. Therefore, we label developers

documented refactorings as Self-Affirmed Refactoring (SAR),

since self-affirmation is defined as the assertion of self-

existence [22], which is, in the context of refactoring, refers to

developers recognition of the value of refactoring activities as

means to improve their code and more specifically cope with

technical debt, if we refer to its original definition [4].

Similarly to the early studies in SATD, we perform our

study on several various open source projects, to capture a

wider variety of potential expressions and to have a better

quantification of the amount of SAR, along with identifying

the rationale behind refactoring, if mentioned. This study

represents our initial exploration of the existence of SAR, and

we plan on extending it to investigate whether SAR is an

indicator of lesser technical debt in the code. The next section

discusses the related work and then details the methodology

of our empirical study and how we collected the data used in

our experiments.

III. RELATED WORK

A number of studies have focused recently on the iden-

tification and detection of refactoring activities during the

software life-cycle. One of the common approaches to identify

refactoring activities is to analyze the commit messages in

versioned repositories. Stroggylos & Spinellis [23] opted for

searching words stemming from the verb “refactor” such

as “refactoring” or “refactored” to identify refactoring-related

commits. Ratzinger et al. [17], [18] also used a similar

keyword-based approach to detect refactoring activity between

a pair of program versions to identify whether a transformation

contains refactoring. The authors identified refactorings based

on a set of keywords detected in commit messages, and

focusing, in particular, on the following 13 terms in their

search approach: refactor, restruct, clean, not used, unused,
reformat, import, remove, replace, split, reorg, rename, and
move.

Later, Murphy-Hill et al. [14] replicated Ratzinger’s ex-

periment in two open source systems using Ratzinger’s 13

keywords. They conclude that commit messages in version

histories are unreliable indicators of refactoring activities.

This is due to the fact that developers do not consistently

report/document refactoring activities in the commit messages.

In another study, Soares et al. [21] compared and evaluated

three approaches, namely, manual analysis, commit message

(Ratzinger et al.’s approach [17], [18]), and dynamic anal-

ysis (SafeRefactor approach [20]) to analyze refactorings in

open source repositories, in terms of behavioral preservation.

The authors found, in their experiment, that manual analysis

achieves the best results in this comparative study and is

considered as the most reliable approach in detecting behavior-

preserving transformations.

In another study, Kim et al. [11] surveyed 328 professional

software engineers at Microsoft to investigate when and how

they do refactoring. They first identified refactoring branches

and then asked developers about the keywords that are usually

used to mark refactoring events in change commit messages.

When surveyed, the developers mentioned several keywords

to mark refactoring activities. Kim et al. matched the top ten
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Table I: Refactoring Identification in Related Work.

Study Year Purpose Approach Source of Info. Ref. Patterns

Stroggylos & Spinellis [23] 2007 Identify refactoring commits Mining commit logs General commits 1 keyword
Ratzinger, Ratzinger et al. [18] [17] 2007 & 2008 Identify refactoring commits Mining commit logs General commits 13 keywords
Murphy-Hill et al. [14] 2012 Identify refactoring commits Ratzinger’s approach General commits 13 keywords
Soares et al. [21] 2013 Analyze refactoring activity Ratzinger’s approach General commits 13 keywords

Manual analysis
Dynamic analysis

Kim et al. [11] 2014 Identify refactoring commits Identifying refactoring branches Refactoring branch Top 10 keywords
Mining commit logs

Zhang et al. [27] 2018 Identify refactoring commits Mining commit logs General commits 22 keywords
This work Identify refactoring patterns Detecting refactorings Refactoring commits 87 keywords & phrases

Extracting commit messages

refactoring-related keywords identified from the survey (refac-
tor, clean-up, rewrite, restructure, redesign, move, extract, im-
prove, split, reorganize, rename) against the commit messages

to identify refactoring commits from version histories. Using

this approach, they found 94.29% of commits do not have

any of the keywords, and only 5.76% of commits included

refactoring-related keywords.

More recently, Zhang et al. [27] performed a preliminary in-

vestigation of Self-Admitted Refactoring (SAR) in three open

source systems. They first extracted 22 keywords from a list

of refactoring operations defined in the Fowler’s book [6] as a

basis for SAR identification. After identifying candidate SARs,

they used Ref-Finder [10] to validate whether refactorings

have been applied. In their work, they used code smells to

assess the impact of SAR on the structural quality of the

source code. Their main findings are the following (1) SAR

tend to enhance the software quality although there is a small

percentage of SAR that have introduced code smells, and (2)

the most frequent code smells that are introduced or reduced

depend highly on the nature of the studied projects. They

concluded that SAR is a signal that helps finding refactoring

events, but it does not guarantee the application of refactorings.

We summarize these state-of-the-art approaches in Table I.

As seen in the table, except for [11], all of the above-

mentioned studies heavily rely on defining a set of keywords

to identify refactoring commits from a list of general commits

extracted from a small set of software systems.

Our work is different from these papers since we include

a large set of projects and consider only commits identified

by Refactoring Miner [25] to contain at least one refactoring

operation. Moreover, our work does not only rely on a single

keyword to identify refactoring activities, instead we identify

reported keywords and phrases, which we call patterns, to

capture better developers’ refactoring taxonomy. The restricted

set of commits has significantly narrowed our search space

and constrain us to extract expressions that are most likely to

describe refactoring activities, which increases our confidence

as we identify them. Unlike our study, prior works merely

identified refactoring commits by considering all commits

without applying any form of verification. A keyword-based

identification of refactoring commits, using predefined key-

words, may thus miss certain keywords, as developers may

use various expression to annotate how they refactor.

IV. EMPIRICAL SETUP

To answer our research questions, we conducted a two-

phased approach. The initial phase consists of selecting a

large number open-source Java projects and detecting refac-

torings that occur throughout the development history, i.e.,
code changes, of each considered project. The second phase

consists of analyzing the commit messages as a mean of

identifying self-affirmed refactoring patterns. An overview of

the experiment methodology is depicted in Figure 1.

Start
Open Source

Java projects
Clone repositories

Detect refactorings

Refactoring commits log

Extract commit

messages

Identify refactoring

patterns

Refactoring

patterns
Stop

Figure 1: Approach Overview.

A. Data Collection & Refactoring Detection

To perform our experimental study, we utilize an existing

benchmark of GitHub repositories by Allamanis [3]. To extract

the entire refactoring history in each project, we use the

Refactoring Miner tool, developed by Tsantalis et al. [25].

Refactoring Miner is designed to analyze code changes in

git repositories to detect applied refactoring. Our choice to

use Refactoring Miner is justified by the fact that it achieved

accurate results in detecting refactorings compared to the state-

of-the-art available tools, with a precision of 98% and recall

of 87% [19], [25]. Refactoring Miner seems suitable for a

study that requires a high degree of automation since it can be

used through its external API. In this phase, Refactoring Miner

detected 1,208,970 refactoring operations in 3,795 projects. An

overview of the studied benchmark is provided in Table II.

B. Self-Affirmed Refactoring Analysis

After extracting all refactoring commit messages detected

by Refactoring Miner, our next step consists of analyzing each

of the commit messages. As for pattern identification, we were
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inspired by the manual analysis of Potdar and Shihab [16]

when analyzing comments containing self-admitted technical

debt. Similarly, since commit messages are written in natural

language and we need to understand how developers express

refactoring, we manually analyzed commit messages by read-

ing through each message to identify self-affirmed refactor-

ings. We then extracted these commit comments to specific

patterns (i.e., a keyword or phrase). To avoid redundancy of

any kind of patterns, we only considered one phrase if we

found different forms of patterns that have the same meaning.

For example, if we find patterns such as “Simplifying the

code”, “Code simplification”, and “simplify code”, we add

only one of these similar phrases in the list of patterns. This

enables us to have a list of the most insightful and unique

patterns. It also helps in making more concise patterns that

are usable for readers. The manual analysis process took

approximately 7 days in total, and was performed by the

authors of the paper. In total, we read through 58,131 commit

messages and ended up with a set of 87 recurring patterns

identified across 3,795 projects.

Table II: Studied Benchmark Statistics.

Item Count

Studied projects 3,795
Refactoring commits 322,479
Refactoring operations 1,208,970

Analyzed Projects - Refactored Code Elements
Code Element # of Refactorings

Class 329,378
Method 718,335
Attribute 97,516
Package 18,334
Interface 8,096

V. RESULTS & DISCUSSION

In this section, we report and discuss our findings for

analyzing the identified refactoring-related patterns to answer

our four research questions RQ1-4.

A. RQ1. What patterns do developers use to describe their
refactoring activities?

To identify self-affirmed refactoring patterns, we manually

inspect a subset of change messages, i.e., commits, and cat-

egorize these change messages into lexically or semantically

similar patterns. These patterns are represented in the form

of a keyword or phrase that frequently occur in the com-

ments of all refactoring-related commits. The extraction of

our approach has been carried through few iterations. We start

our first iteration by searching for the term “refactor*” (we

use * to capture extensions like refactors, refactoring etc.).

The choice of “refactor”, besides being used by all related

studies, is intuitively the first term to identify ideal commit

messages. In this iteration, we obtained 33,301 refactoring

commit messages. Then, we started a manual inspection of

each commit message that are associated with the term “refac-
tor” to the set of patterns that are also used to describe the

Table III: List of Self-Affirmed Refacoring (SAR) Patterns.

Patterns

(1) Refactor* (30) Removed poor coding practice (59) Change design

(2) Mov* (31) Improve naming consistency (60) Modularize the code

(3) Split* (32) Removing unused classes (61) Code cosmetics

(4) Fix* (33) Pull some code up (62) Moved more code out of

(5) Introduc* (34) Use better name (63) Remove dependency

(6) Decompos* (35) Replace it with (64) Enhanced code beauty

(7) Reorganiz* (36) Make maintenance easier (65) Simplify internal design

(8) Extract* (37) Code cleanup (66) Change package structure

(9) Merg* (38) Minor Simplification (67) Use a safer method

(10) Renam* (39) Reorganize project structures (68) Code improvements

(11) Chang* (40) Code maintenance for refactoring (69) Minor enhancement

(12) Restructur* (41) Remove redundant code (70) Get rid of unused code

(13) Reformat* (42) Moved and gave clearer names to (71) Fixing naming convention

(14) Extend* (43) Refactor bad designed code (72) Fix module structure

(15) Remov* (44) Getting code out of (73) Code optimization

(16) Replac* (45) Deleting a lot of old stuff (74) Fix a design flaw

(17) Rewrit* (46) Code revision (75) Nonfunctional code cleanup

(18) Simplify* (47) Fix technical debt (76) Improve code quality

(19) Creat* (48) Fix quality issue (77) Fix code smell

(20) Improv* (49) Antipattern bad for performances (78) Use less code

(21) Add* (50) Major/Minor structural changes (79) Avoid future confusion

(22) Modify* (51) Clean up unnecessary code (80) More easily extended

(23) Enhanc* (52) Code reformatting & reordering (81) Polishing code

(24) Rework* (53) Nicer code / formatted / structure (82) Move unused file away

(25) Inlin* (54) Simplify code redundancies (83) Many cosmetic changes

(26) Redesign* (55) Added more checks for quality factors (84) Inlined unnecessary classes

(27) Cleanup (56) Naming improvements (85) Code cleansing

(28) Reduc* (57) Renamed for consistency (86) Fix quality flaws

(29) Encapsulat* (58) Refactoring towards nicer name analysis (87) Simplify the code

refactoring activity. As developers may not always use the term

“refactor” explicitly to document/describe their refactoring

activities in their commit messages. Thus, to alleviate this

issue, we reiterate again, using the extracted patterns in the

first iteration, while excluding the term “refactor”, to identify

additional self-affirmed refactoring patterns. We kept iterating

by extracting new patterns while excluding the previously

identified ones until we are no longer able to find any relevant

patterns. Our in-depth inspection resulted into a list of 87 self-

affirmed refactoring patterns identified across the considered

projects, as illustrated in Table III.

Upon a closer inspection of these refactoring patterns, we

have made several observations: we noticed that developers

document refactoring activities at different levels of granular-

ity, e.g., package, class, and method level. Furthermore, we ob-

serve that developers occasionally state the motivation behind

refactoring, and in some of these patterns that are not restricted

only to fixing code smells, as in the original definition of

refactoring in the Fowler’s book [6].For instance, developers

tend often to improve certain non-functional attributes such as

the readability and testability of the source code. These obser-

vations are aligned with state-of-the-art studies by Kim et al.

[11] and Silva et al. [19]. We also observe that developers tend

to report the executed refactoring operations using keywords

such as “move”, “rename” or “extract” as shown in Table

III.

Furthermore, we found that our identified patterns include

all of the keywords identified by Kim et al. [11] and mostly

matched keywords introduced by Ratzinger [18] (cf. Table III).
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Table IV: Quality Issues (Quality Attribute(s) & Code

Smell(s)) Extracted from SAR Commits.

Internal QA (%) External QA (%) Code Smell (%)

Inheritance (31.04%) Functionality (34.03%) Duplicate Code (43.52%)
Abstraction (30.63%) Performance (31.37%) Dead Code (24.84%)
Complexity (14.30%) Compatibility (13.61%) Data Class (22.93%)
Composition (12.53%) Readability (3.60%) Long Method (3.82%)
Coupling (3.81%) Stability (2.64%) Switch Statement (3.18%)
Encapsulation (3.61%) Usability (1.60%) Lazy Class (0.42%)
Design Size (2.11%) Flexibility (1.58%) Too Many Parameters (0.42%)
Polymorphism (1.50%) Extensibility (1.54%) Primitive Obsession (0.21%)
Cohesion (0.48%) Efficiency (1.51%) Feature Envy (0.21%)

Accuracy (1.05%) Blob Class (0.21%)
Accessibility (1.04%) Blob Operation (0.21%)
Robustness (0.78%)
Testability (0.75%)
Correctness (0.65%)
Scalability (0.62%)
Configurability (0.56%)
Simplicity (0.55%)
Reusability (0.45%)
Reliability (0.43%)
Modularity (0.37%)
Maintainability (0.26%)
Traceability (0.26%)
Interoperability (0.24%)
Fault-tolerance (0.16%)
Repeatability (0.07%)
Understandability (0.06%)
Effectiveness (0.06%)
Productivity (0.06%)
Modifiability (0.03%)
Reproducibility (0.03%)
Adaptability (0.03%)
Manageability (0.01%)

Summary. Developers tend to use a variety of textual

patterns to document their refactoring activities, such

as ’refactor’, ’move’, ’extract’, ’reorganize’, and ’fix’.

These patterns could provide either (1) a generic de-

scription/motivation of the refactoring activity such as

’optimize the code design’, ’improving code readabil-
ity’, and ’fix long method’, or (2) a specific refactoring

operation name following Fowler’s names such as ’ex-
tract method’, ’extract class’, and ’extract interface’.

B. RQ2: What are the quality issues that drive developers to
refactor?

After identifying the different SAR patterns, we identify and

categorize the patterns used to describe the motivation behind

the refactoring operations into three main categories: (1)

internal quality attributes, (2) external quality attributes, and

(3) code smells. We perform five sequential steps to answer

this research question. We start by collecting software issues

i.e., quality attributes and code smells reported in the literature

[1], [6], [12]. Then, we search for common categories among

the reported quality attributes and code smells. The following

step involves identifying categories clustering quality attributes

under the identified categories. This process resulted in three

different categories, namely, internal quality attribute, external

quality attribute, and code smell. For each of the collected

quality attributes and code smells, we search in our database

for any potential refactoring commit that contains any of the

collected quality attributes and code smells. To further enrich

our results, we randomly select a subset of commit messages

that do not contain any of the identified quality issues and we

inspect whether these messages contain any quality attribute

or code smell that is not present in three categories.

Table IV reports each of these categories ranked based on

their frequency. From these results, we notice that developers

frequently mention the main internal quality attributes such as

abstraction, inheritance, and cohesion, etc. and a wide range

of external quality attributes such as compatibility, readabil-
ity, extensibility, and functionality. Developers occasionally

mention fixing code smells but rarely state the name of the

code smell under correction. Instead, developers tend to use

specific phrases to indicate this activity as shown in table

III. For example, we found the following patterns to indicate

code smell fixings “fix quality flaws”, “fix quality issue”, or

“antipatterns bad for performance”.

Internal quality attributes-focused SAR indicate that there

is an improvement in the structural design of the code,

which could be performed in code commits related to fixing

abstraction or inheritance issues, increasing the cohesion or

reducing the coupling/complexity of the source code. As

examples of the internal quality attribute SARs, we refer to the

commit descriptions in two of the analyzed SAR commits as

follows : (1) Small refactoring to reduce cyclomatic complexity
of CheckStyleTask.execute(), from the project Checkstyle1,

and (2) Reduce coupling between packages, from the project

Visualwas2. Thus, we observe that developers do mention their

strategy to cope with the flaw, e.g., reduce the complexity of

a method.

On the other hand, SAR commits that focus on external

quality attributes indicate the enhancement of non-functional

attributes such as readability, understandability, and testa-
bility. As examples of such patterns, let us consider the

three following commit comments : (1) Refactoring mostly
for readability (and small performance improvement), from

the Gatk3, (2) renamed EditorPage to ContextEditorPage for
better understandability, from the project Openengsb4, and (3)

Refactor plugin management for better maintainability, from

the project Sonar5. In these examples, developers explicitly

state what non-functional quality attributes are in needed of

improvement.

Finally, for code smell-focused SARs, we observe that

developers do perform refactorings to their code to eliminate

certain code smells (e.g., long method, feature envy, etc.) that

are known to deteriorate the quality of the source code. This

type of SAR is illustrated in the following change messages

: (1) [CLEANUP] - Split overly long method into smaller
chunks, from the project Pentaho-reporting6, (2) refactoring
of Abstract*DataSet to delete duplicate code from Cassandra-

1https://github.com/isopov/checkstyle
2https://github.com/veithen/visualwas
3https://github.com/broadgsa/gatk
4https://github.com/openengsb/openengsb-framework
5https://github.com/SonarSource/sonar
6https://github.com/pentaho/pentaho-reporting
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Table V: Top-10 Patterns across Quality Issues.

Rank Internal QA (%) External QA (%) Code Smell (%)

1 Fix (34.66%) Improve (33.36%) Remove (39.71%)
2 Refactor (17.05%) Fix (20.27%) Refactor (23.28%)
3 Reduce (15.68%) Refactor (15.72%) Fix (10.05%)
4 Remove (14.32%) Add (7.54%) Move (6.62%)
5 Improve (7.50%) Better (6.56%) Rename (4.66%)
6 Modify (3.98 %) Optimize (4.88%) Reduce (4.17%)
7 Cleanup (2.50%) Enhance (4.82%) Cleanup (3.92%)
8 Simplify (1.93%) Cleanup (3.34%) Replace (3.19%)
9 Enhance (1.70%) Introduce (2.16%) Avoid (2.45%)
10 Restructure (0.68%) Simplify (1.36%) Extract (1.96%)

unit7, and (3) Moved data classes to a more suitable package,

from Cdk8. A Closer inspection of these commit messages

shows that developers intentionally apply refactoring to re-

move antipatterns that violate design principles and good

programming practices.

Figure 2: Top-10 Popular Patterns.

Summary. Our findings indicate that developers fre-

quently state their intention behind the application of

refactorings. They address quality issues that can be

related to : (1) internal quality attributes, (2) external

quality attributes, or (3) code smells. Furthermore,

developers occasionally mention their refactoring strat-

egy or operation performed with regard of addressing

the quality issue.

C. RQ3: What are the top-10 patterns developers use to
describe quality issues in their commits?

Based on the three categories defined in RQ2, we investigate

what are the top common keywords, i.e., patterns, that develop-

ers use when expressing SAR commits. Table V shows the top

10 keywords used to identify SARs across the studied projects,

that are ranked according to their number of occurrences.

Based on the obtained mining results, we found that the top

ranked keywords for internal quality attribute SARs include

7https://github.com/jsevellec/cassandra-unit
8https://github.com/egonw/cdk

“fix”, “refactor”, “reduce”, and “remove”, which show the

improvement of the structural design/code such as cohesion

and coupling. For external quality attribute SARs, the top

ranked keywords include “improve”, “fix”, “refactor”.

This indicate the enhancement of non-functional attributes

such as testability and readability. Finally, for the code smells

category, the word “remove” was ranked first, which indicates

the elimination of certain anti-pattern instances. We notice

that refactoring operation-related keywords (e.g., move and

extract) are mostly used in code smell-focused category. This

is due to the fact that the elimination process of some of

the design defects requires certain level of movement and

extraction of the associated code elements. We also observe

that it is possible for a single keyword to serve different

purposes of SARs, but with different ranking in some cases.

For instance, the keyword “improve” is ranked first for non-

functional quality attributes, whereas it is ranked fifth for

internal quality attributes, as shown in Table V.

Summary. Our findings indicate that while there are no

patterns that are restricted to a specific quality issue,

developers occasionally do link the refactoring of a

quality issue with a specific operation e.g., associating

the correction of a feature envy by the operation move
method.

D. RQ4: Do Commits containing the label Refactor indicate
more refactoring activity than those without the label?

Murphy-Hill et al. [13] proposed several hypotheses related

to four methods that gather refactoring data and outlined

experiments for testing those hypotheses. One of these meth-

ods concerns mining the commit log. Murphy-Hill et al.

hypothesize that commits labeled with the keyword “refactor”
do not indicate more refactoring instances than unlabeled

commits. In an empirical context, we test this hypothesis in

two rounds. In the first round, we used the keyword “refactor”,

exactly as dictated by the authors. Thereafter, we quantified

the proportion of commits including the searched label across

all the considered projects in our benchmark. In the second

round, we re-tested the hypothesis using the 87 SAR patterns

listed in Table IV, i.e., we counted the percentage of commits

containing any of our SAR labels. The result of the two rounds

resides in a strict set of commits containing the label refactor,

which is included in a larger set containing all patterns, and

finally a remaining set of commits which does not contain

any patterns. For each of the sets, we count the number of

refactoring operations identified in the commits. Then we

break down the set per operation type.

In order to compare the quantity of refactorings identified

for each set, i.e., labeled and unlabeled commits with the

keyword refactor, along with labeled and unlabeled commits

with SAR patterns. We used the Wilcoxon test, as suggested

by Murphy-Hill et al. [13] for the purpose of testing the hy-

pothesis. We then applied the non-parametric Wilcoxon rank-
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Figure 3: Distribution of Refactoring Operations for Commits Labeled and Unlabeled SAR (at left) and Commits Labeled and

Unlabeled refactor (at right).

sum test to estimate the significance of differences between

the numbers of the sets.

Figure 3 shows the distribution of refactorings in labeled

and unlabeled commits with SAR patterns (group 1 at left)

and labeled and unlabeled commits with the keyword refactor

(group 2 at right). The first observation we can draw is

that “Rename Package” is the most labeled refactoring with

a score of 74.53% and 17.59% for group 1 and group 2

respectively. Another interesting observation is that “Move
Attribute” turns out to be the most unlabeled refactoring

with a score of 51.15% for group 1, whereas “Move Source
Folder” tends to be the most unlabeled refactoring for group

2. For both tests, we notice that developers tend to label more

refactorings applied to code elements with higher granularity

level, i.e., at the package level. Conversely, refactorings that

are implemented at method level and at attribute level tend to

have the lowest percentage with commits labeled “refactor”.

That sheds light on the variety of ways to express refactorings,

which depend on the levels of granularity.

By comparing the different commits that are labeled and

unlabeled with SAR patterns, we observe a significant number

of labeled refactoring commits for each refactoring operation

supported by the tool Refactoring Miner (p-value = 0.0005).

This implies that there is a strong trend of developers in

using these phrases in refactoring commits. The results for

commits labeled and unlabeled “refactor” with a p-value =

0.0005 engender an opposite observation, which corroborate

the expected outcome of Murphy-Hill et al.’s hypothesis. Thus,

the use of “refactor” is not a great indication of refactoring

activities. The difference between the two tests indicates the

usefulness of the list of SAR patterns that we identified.

Summary. In consistency with the previous findings of

Murphy-Hill [13], our findings confirm that developers

do not exclusively rely on the pattern “refactor” to

describe refactoring activities. However, we found that

developers do document their refactoring activities in

commit messages with a variety of patterns that we

identified in this study.

VI. THREATS TO VALIDITY

Internal Validity. Our analysis is mainly threatened by the

accuracy of the Refactoring Miner tool because the tool may

miss the detection of some refactorings. However, previous

studies [19], [25] report that Refactoring Miner has high

precision and recall scores compared to other state-of-the-art

refactoring detection tools, which gives us confidence in using

the tool. Another potential threat to validity relates to our

findings regarding counting the reported quality attributes and

code smells. Due to the large number of commit messages,

we have not performed a manual validation to remove false

positive commit messages. Thus, this may have an impact

on our findings. Moreover, our manual analysis is a time
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consuming and an error prone task, which we tried to mitigate

by focusing mainly on commits known to contain refactorings.

Also, since our keywords largely overlap with keywords used

in previous studies, this raised our confidence about the found

set but does not guarantee that we did not miss any pattern.

External Validity. The first threat is that the analysis was

limited to only open source Java projects. However, we were

still able to analyze 3,795 projects that are well-commented,

and varied in size, contributors, number of commits and

refactorings. Another threat concerns the generalization of the

identified recurring patterns in the refactoring commits. Our

choice of patterns may have an impact on our findings and may

not generalize to other projects since the identified refactoring

patterns may be different for another set of projects (e.g.,

outside the Java developers community).

VII. CONCLUSION

Software developers may explicitly report refactoring ac-

tivities in the commit messages of versioned repositories. We

call such activity Self-Affirmed Refactoring (SAR), which is an

indication of the developer-reported refactoring events in the

change messages. In this work, we performed an exploratory

study to identify SAR patterns, study possible SAR types,

and determine how much SAR exists. Our findings show that

developers use a variety of patterns to purposefully target

refactoring events, developers tend to explicitly mention the

improvement of certain quality attributes and code smells, and

refactoring commit messages with SAR patterns tend to have

more significant refactoring activity than those without. Our

findings shed light on the existence of SAR. As future work,

we plan to investigate which developers are responsible for

SAR. Since SAR is considered a good practice, we would

like to examine whether developers with higher experience

are responsible for the introduction of SAR. Further, for

commit messages that contain internal quality attributes (e.g.,
cohesion and coupling), we plan to empirically assess the

quality improvement as reported by developers in their commit

messages.
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