
IMA Journal of Applied Mathematics (2020) 85, 309–340
doi:10.1093/imamat/hxaa007
Advance Access publication on 2 April 2020

On the stability of waves in classically neutral flows

Colin Huber, Meaghan Hoitt and Nathaniel S. Barlow∗
School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA

Nicole Hill, Kimberlee Keithley
Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA

and

Steven J. Weinstein
Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA

School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
∗Corresponding author: nsbsma@rit.edu

[Received on 30 July 2019; revised on 5 February 2020; accepted on 7 February 2020]

This paper reports a breakdown in linear stability theory under conditions of neutral stability that is
deduced by an examination of exponential modes of the form h ≈ ei(kx−ωt), where h is a response
to a disturbance, k is a real wavenumber and ω(k) is a wavelength-dependent complex frequency. In a
previous paper, King et al. (2016, Stability of algebraically unstable dispersive flows. Phys. Rev. Fluids,
1, 073604) demonstrates that when Im[ω(k)] = 0 for all k, it is possible for a system response to grow or
damp algebraically as h ≈ ts where s is a fractional power. The growth is deduced through an asymptotic
analysis of the Fourier integral that inherently invokes the superposition of an infinite number of modes. In
this paper, the more typical case associated with the transition from stability to instability is examined in
which Im[ω(k)] = 0 for a single mode (i.e. for one value of k) at neutral stability. Two partial differential
equation systems are examined, one that has been constructed to elucidate key features of the stability
threshold, and a second that models the well-studied problem of rectilinear Newtonian flow down an
inclined plane. In both cases, algebraic growth/decay is deduced at the neutral stability boundary, and the
propagation features of the responses are examined.
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1. Introduction

The current work is motivated by the need to characterize fluid flows involved in the manufacture
of a variety of products. All flow processes are subjected to time-varying disturbances induced from
their surroundings, while product quality typically necessitates the requirement of time invariance.
In particular, each product has a manufacturing tolerance to perturbations that requires accurate
characterization. Mathematical models that relate disturbances to system responses are commonly used
to enable guided experiments, and once validated, can be accurate enough to replace experiments.
An essential feature of disturbance modelling is whether the underlying fluid system is stable or
unstable, i.e. whether a response to disturbances grows or decays. If the fluid system is stable,
then product specifications may be met by minimizing the magnitude of process disturbances; if
the system is not, control of the process is much more complex, and in some cases, impossible.
The characterization of fluid flow stability, then, is motivated by practical need. Within stable
fluid systems, tight product tolerances often dictate that perturbations be small and lie in a linear
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310 C. HUBER ET AL.

regime—a product often becomes unsalable well within the dictates of linearity. Thus, a corresponding
linear operator may be used to model the fluid system response. The characterization of the stability
of such a linear operator, then, is of paramount importance to develop sustainable operating parameters
that meet product specifications.

If a flowing liquid system in a manufacturing process is unstable, i.e. initiated disturbances are
magnified, the flow can often easily be disrupted away from a uniform state. This could be a desired
outcome, as is the case for liquid fuel atomizers (Ibrahim, 1995; Lin, 2003; El-Sayed et al., 2015)
where instability leads to the breakup of a liquid sheet into droplets, or in the case of instability-driven
turbulence to enhance mixing processes (Paul et al., 2004). Instability is unwelcome in other situations
where layer uniformity is essential, such as in the thin films used to coat ink jet and copier papers,
printed electronics and liquid crystal display screens (Cohen & Gutoff, 1992; Kistler & Schweizer,
1997). Thus, it is important for practitioners to control the parameters that influence fluid instability
in order to produce a salable product. The most widely used stability assessment, referred to here as
classical stability theory, provides the basis for much of the hydrodynamic literature (Chandrasekhar,
1968; Huerre & Rossi, 1998; Huerre, 2000; Schmid & Henningson, 2001; Drazin & Reid, 2004).

Classical stability theory is built on the following ideas. Typically, the analysis starts with a full
nonlinear operator and boundary conditions, which are linearized about a base fluid flow (oftentimes
exact) whose stability is to be assessed. The resulting linear partial differential equation (PDE) system
may be expressed in terms of an operator, L, and flow response, h(x, t), as Lh = 0, where x and t
are respective space and time variables. Note that forcing and initial conditions are neglected when
examining the PDE system, as the general homogeneous response characterizes the classical stability of
the medium. A solution of this equation on an unbounded domain (−∞ < x < ∞) may be expressed as

h = Aei(kx−ωt), (1.1)

where k is a real wavenumber, ω is a complex frequency and A is an amplitude. It is assumed that
the fundamental responses (1.1) for each value of k, henceforth called modes, may be superimposed to
represent the flow response to any disturbance; furthermore, it is assumed that the stability of a complex
flow response may be characterized by the stability of its constituent modes. Substitution of (1.1) into
the linearized PDE system leads to a dispersion relation of the form

D(k, ω) = 0, also written ω = ω(k), (1.2)

that assures a non-trivial solution of the equation Lh = 0. In classical stability theory, the complex-
valued ω(k) = ωr(k) + iωi(k) is examined, where the function ωi(k) determines the exponential growth
in time of a mode. The maximum growth rate over the range of k ∈ (−∞, ∞), denoted as ωi,max, is
used to characterize the stability of the flow. At large times, the exponential nature of the responses (1.1)
dictate that growth rates at other wavenumbers are subdominant, and the system thus grows as

h ∼ Aeωi,maxt as t → ∞, (1.3a)

where A is a constant. Thus, once ω = ω(k) is established from (1.2), the linear (exponential) stability
is determined as follows (Chandrasekhar, 1968; Huerre & Rossi, 1998; Huerre, 2000):

ωi,max < 0: the flow is linearly stable (1.3b)

ωi,max > 0: the flow is linearly unstable (1.3c)

ωi,max = 0: the flow is neutrally stable. (1.3d)
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ON THE STABILITY OF WAVES IN CLASSICALLY NEUTRAL FLOWS 311

The classification (1.3) was used by Rayeigh (1880), and this classical stability theory has been further
developed over the last 100+ years. We note here that the focus of this work lies in the context of laminar
flows such as in coating processes. In contrast to problems in which stability conclusions are affected by
nonlinear perturbations to the base flow (Wu, 2019), such nonlinear effects are not generally relevant to
precision coating operations having tight tolerances on layer uniformity; in these applications, products
are typically unsalable even when responses lie within the linear regime, as stated above and in Weinstein
& Ruschak (2004).

The focus of this paper is the classification of neutral stability according to (1.3d), and is motivated
by King et al. (2016), henceforth referred to as KRK (the acronym for its first author). In that work,
the classical stability of a fluid flow system yields modes that are neutrally stable for all values of k,
i.e. ωi,max = 0 for all wave numbers. While the classical stability assessment (1.3d) indicates there
will be no growth or decay in a system response, KRK demonstrates both numerically and analytically
that disturbances can grow algebraically. Algebraic growth is defined as a system response that obeys
h ∼ Cts, where C is a constant and the exponent s is a positive rational number. It should be noted that
algebraic decay of disturbances (s < 0) has also been identified in previous work when exponential
modes are neutrally stable for all real k, having both integer (Case, 1960) and non-integer (Whitham,
2011; Lighthill, 2001; Barlow et al., 2010) characters. It is apparent that the classification of neutral
stability via classical means is deficient and warrants further study.

As is evident in the work of KRK and many earlier studies (De Luca & Costa, 1997; Barlow et al.,
2011) (see KRK for a comprehensive literature review), algebraic growth in linear PDE operators may
be examined via a spatio-temporal formulation involving both Fourier and Laplace transforms. When
the inverse Laplace transform is taken first, the resulting Fourier inversion integral has an integrand
with an exponential term identical to (1.1) with ω = ω(k) according to the dispersion relation (1.2).
As such, the connection between classical stability analysis and a spatio-temporal analysis is made—
the assumption being that the growth characteristics of the superposition of modes of the form (1.1)
invoked via integration mimic exactly that of the individual modes (1.1) when taken separately. In fact,
KRK shows that this is not always the case. When the exponent s in h ∼ Cts is fractional, algebraic
growth can only be deduced via a superposition of modes via integration, and is thus in fact non-modal.
An additional important feature of systems exhibiting algebraic growth is their sensitivity to the type of
perturbations to the system. KRK shows that if perturbations in initial velocity and forcing are invoked,
a system response may grow algebraically; however, if the same system is perturbed in location, the
system response can decay algebraically. The sensitivity to initial conditions makes it imperative to
consider a broad set of perturbations to a system when establishing system stability, especially so when
examining the possibility of algebraic growth. A historical review of long-time algebraic instability is
provided in King et al. (2016).

KRK focuses on a breakdown in classical stability theory for a dispersion relation (1.2) in which
all modes exhibit neutral stability, yet growth or decay is actually predicted. The more typical situation
in which neutral stability arises in the literature is where a single mode is neutrally stable, and modes
corresponding to all other real wavenumbers exhibit damping according to the form (1.1) with dispersion
relation (1.2). It is widely held in prior literature (Chandrasekhar, 1968; Schlichting, 1979; Drazin &
Reid, 2004; Schmid & Henningson, 2001) that flows exist in a state that is neither stable nor unstable
at a neutral stability boundary from classical theory. A question arises as to whether the breakdown in
classical stability theory (1.3) reported by KRK extends to the situations shown in Fig. 1 when only one
wavenumber mode is neutrally stable.

Figure 1(a) is a schematic showing a scenario where this neutral stability configuration occurs (see,
e.g. Manneville, 1998; Joulin & Vidal, 1998); here, as parameter B is varied through its critical value,
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312 C. HUBER ET AL.

Fig. 1. Classical stability curves for two illustrative problems where transition occurs due to the variation of a critical parameter:
(a) The transition from exponential growth to exponential decay for the model problem in Section 2 as the parameter B is varied.
The curves (top to bottom) correspond to B = −1, 0, and 1. (b) The effect of Reynolds number (defined in Section 3) on the
stability transition for flow down an inclined plane. The curves (top to bottom) correspond to Re = 1.1 cot θ , cot θ and 0.5 cot θ
where (for all curves) the incline angle is θ = π/4 and Weber number (defined in Section 2) is 0.1.

the flow changes from stable, to neutral, to unstable in accordance with the characterization (1.3). The
features of such a transition is considered in Section 2 of this paper. Figure 1(b) shows another type
of transition that occurs in the well-studied stability of a single layer Newtonian fluid flowing down
an inclined plane, where the critical parameter is the Reynolds number, Re, defined in Section 3. As
indicated in Fig. 1(b), unstable flows for Re > Rec have a maximum modal growth rate at finite wave
number, and as Re → Rec this maximum growth rate diminishes to zero and its associated wavenumber
simultaneous approaches k = 0. For Re ≤ Rec, the k = 0 mode is neutrally stable, and all other modes
are damped—in this case, there is not a true transition from instability to stability based on a classical
stability analysis, but rather a transition from instability to neutral stability. This latter assessment has
not been explored in prior literature, as it is widely accepted that when Re < Rec, inclined plane flow
is stable (Yih, 1963; Brevdo et al., 1999). It is possible that the k = 0 wavenumber is neglected in prior
stability work because it coincides with an interfacial perturbation that is flat, and thus may be viewed

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article-abstract/85/2/309/5814602 by guest on 08 April 2020



ON THE STABILITY OF WAVES IN CLASSICALLY NEUTRAL FLOWS 313

as degenerate. The objective of this paper is to consider the prospect of algebraic growth and decay
for the classically neutral stability configurations shown in Fig. 1(a and b) (at B = Bc and Re = Rec,
respectively).

The paper is organized as follows. Section 2 introduces a model PDE for the transition shown
in Fig. 1(a), where it is shown that algebraic growth can occur on the threshold of neutral stability.
The algebraic growth is extracted via long-time asymptotic analysis of the Fourier integral solution,
which is then compared with the Fourier series solution of the PDE. The spatio-temporal classification
of algebraic growth as being absolutely or convectively unstable is examined. In Section 3, the same
approach is used to examine the well-known incline plane flow studied by Yih (1963). Here, algebraic
decay is shown to occur on the neutral stability threshold. In Section 3.1, the governing PDE is derived
in non-dimensional form. In Section 3.2, the classical stability analysis is reviewed and key elements are
extracted regarding the neutral stability threshold. In Section 3.3, the integral solution is examined via
asymptotic analysis and the algebraic decay rate is deduced. A summary of our results and concluding
remarks are given in Section 4. Key supporting analyses are provided in Appendices A–C.

2. Model problem that exhibits algebraic growth

In this section, we focus on waves with vertical displacement h(x, t), described by the following PDE,

∂2h
∂t2

+ 2c ∂2h
∂x∂t + c2 ∂2h

∂x2 + ∂4h
∂x4 − ∂3h

∂x2∂t
− c ∂3h

∂x3 + Bc ∂h
∂x + B ∂h

∂t + B2h = f0δ(x)δ(t)

h(x, 0) = h0δ(x),
∂h
∂t (x, 0) = u0δ(x), −∞ < x < ∞, t > 0, (2.1)

where x is the horizontal coordinate, t is time, B is an instability parameter and c is a convective
parameter. In (2.1), the parameters h0, u0 and f0 are magnitudes of the initial conditions and forcing.
The use of the delta function as an efficient means to initiate disturbances is well established (King
et al., 2016). The PDE (2.1) was not physically motivated; rather, it was reverse engineered from a
dispersion relation that leads to the ‘textbook’ (Manneville, 1998) depiction of instability transition as
shown in Fig. 1(a). This led to the expression (2.1) but with c = 0. The parameter c was later added to
incorporate an element of convection without affecting the stability character of Fig. 1(a).

2.1 Classical stability analysis and comparison with Fourier series

Substituting h = Aei(kx−ωt) into the homogeneous version of (2.1) leads to the dispersion relation

ω = −2ck + (k2 + B)i ± √
3k4 − 2k2B + 3B2

−2
, (2.2)

whose imaginary part ωi is plotted vs. real k in Fig. 1 for c = 0 and B = −1 (top curve), 0 (middle)
and 1 (bottom), indicating (classical) temporal growth rates of ωi,max = 0.5, 0 and −0.5 respectively,
all occurring at k = 0. These (exponential) growth rates are validated by the Fourier series solution
of (2.1), as shown in Fig. 2(a) where the peak of the impulse response is plotted vs. time. It is clear
from the figure that the classical predictions of exponential growth (B = −1, ωi,max = 0.5) and decay
(B = 1, ωi,max = −0.5) accurately describe the long-time behaviour of the response. However, for the
classically neutral case of B = 0, an exponential growth rate of ωi,max = 0 does not, in fact, yield zero
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314 C. HUBER ET AL.

Fig. 2. (a) The evolution of the magnitude of the wave peak vs. time in the Fourier series solution of (2.1) for c = 0 and various
B values. The slopes on this semi-log plot confirm the exponential growth rates predicted by classical stability analysis. Here, the
slopes of 0.5 and -0.5 indicate growth and decay as e0.5t and e-0.5t, respectively. (b) The B = 0 case from (a) instead shown on a
log–log plot, indicating algebraic growth as t1/2.

growth, as shown by the inset in Fig. 2(a). The log–log plot of Fig. 2(b) indicates that the peak grows
as t1/2 when B = 0. We now proceed to show that the algebraic growth rate is indeed exactly 1/2 via
asymptotic analysis of the integral solution of (2.1).

2.2 Exact and asymptotic solutions

Here we focus solely on the case of classical neutral stability as shown in Fig. 2 where B = Bc = 0. In
this case, the system (2.1) becomes

∂2h

∂t2
+ 2c

∂2h

∂x∂t
+ c2 ∂2h

∂x2 + ∂4h

∂x4 − ∂3h

∂x2∂t
− c

∂3h

∂x3 = f0δ(x)δ(t),

h(x, 0) = h0δ(x),
∂h

∂t
(x, 0) = u0δ(x), −∞ < x < ∞, t > 0, (2.3)
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ON THE STABILITY OF WAVES IN CLASSICALLY NEUTRAL FLOWS 315

To solve the system (2.3), the Fourier transform and its inverse are utilized; these are given respectively
by equations (2.4) and (2.5) as follows

ĥ (k, t) =
∞∫

−∞
h(x, t)e−ikxdx, (2.4)

h (x, t) = 1

2π

∞∫
−∞

ĥ(k, t)eikxdk. (2.5)

The Fourier transform of (2.3) yields

d2ĥ

dt2
+
(

k2 + 2ick
) dĥ

dt
+
(

k4 + ick3 − c2k2
)

ĥ = f0δ(t), ĥ(0) = h0,
dĥ

dt
(0) = u0, t > 0, (2.6)

where ĥ(k, t) denotes the Fourier transform of h(x, t). Equation (2.6) is a linear constant coefficient
ordinary differential equation, whose solution is

ĥ(k, t) = e−ickt
[
F1(k)e

−r1k2t + F2(k)e
−r2k2t

]
,

F1,2(k) = ∓(u0 + f0)i√
3k2

± h0c√
3k

∓ h0

6

(
i
√

3 ∓ 3
)

, r1,2 = 1 ∓ i
√

3

2
. (2.7)

The inverse Fourier transform of (2.7) is

h(x, t) = 1

2π

∫ ∞

−∞
ĥ(k, t)eikxdk,

= 1

2π

∫ ∞

−∞

[
F1(k)e

−r1k2t + F2(k)e
−r2k2t

]
eik( x

t −c)tdk, (2.8)

where the quantity t is factored out of the exponential and the ‘velocity’ quantity x/t is introduced to
highlight that the structure of (2.8) and associated integration technique to follow depends on whether
x/t = c or x/t �= c. As shown by Barlow et al. (2017), the real wavenumber corresponding to
the maximum growth rate in classical stability is a saddle point that appears in the system response.
Here, this corresponds to k = 0, for which x/t = c. Interestingly, c is also the phase velocity of the
peak, a property that is common to that of the inclined plane problem of Section 3. Note that we can
obtain the same result given by (2.8) if we utilize the Fourier–Laplace double inversion, as done in
King et al. (2016) (and references therein). As is standard for methods such as steepest descent and
stationary phase, we construct a long-time asymptotic solution of (2.8) by examining the integrals along
fixed velocities x/t as t → ∞. Before doing this, we first split (2.8) into three integrals, sorted by order
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316 C. HUBER ET AL.

of the k singularities in the integrand:

h(x, t) = i(u0 + f0)

2
√

3π

∫ ∞

−∞
e−r2k2t − e−r1k2t

k2 eik( x
t −c)tdk

+ h0c

2
√

3π

∫ ∞

−∞
e−r1k2t − e−r2k2t

k
eik( x

t −c)tdk

+ h0

12π

∫ ∞

−∞

[(
3 − i

√
3
)

e−r1k2t +
(

3 + i
√

3
)

e−r2k2t
]

eik( x
t −c)tdk. (2.9)

As evidenced by the coefficient of the first integral in (2.9), the delta function forcing utilized yields a
response equivalent to that for a perturbation in velocity at t = 0. It is useful to decompose the imaginary
exponentials of the first and third integrals of (2.9) into sines and cosines via Euler’s relation while
leaving the second integral as is, since identities for these integrals are readily available (Gradshteyn &
Ryzhik, 2007). After simplifying the first and third integrals, (2.9) is rewritten as

h(x, t) = 2(u0 + f0)√
3π

∫ ∞

0

e− 1
2 k2t

k2 sin

(√
3

2
k2t

)
cos
[
k
(x

t
− c
)

t
]

dk

+ h0c

2
√

3π

∫ ∞

−∞
e−r1k2t − e−r2k2t

k
eik( x

t −c)tdk

+ h0

3π

∫ ∞

0
e− 1

2 k2t

[
3 cos

(√
3

2
k2t

)
+ √

3 sin

(√
3

2
k2t

)]
cos
[
k
(x

t
− c
)

t
]

dk. (2.10)

The three integrals in (2.10) may be evaluated exactly using the identities given by (A.8), (A.18) and
(A.5) provided in Appendix A to yield

h(x, t) =
(
u0 + f0

)
i
( x

t − c
)

t

4
√

3π

{
Γ

[
−1

2
,
(

1 + √
3i
) ( x

t − c
)2

t

8

]
− Γ

[
−1

2
,
(

1 − √
3i
) ( x

t − c
)2

t

8

]}

+ h0c√
3

Im

⎡
⎣erf

( x
t − c

)√
t
(√

3 − i
)

4

⎤
⎦+

h0 cos

[
( x

t −c)
2t

√
3

8

]

exp

[
( x

t −c)
2t

8

]√
3π t

, (2.11)

where Γ is the upper incomplete gamma function.
The response (2.11) drastically simplifies along the ray x/t = c. Applying the limit as x/t → c to the

aggregate first term of (2.11) leads to (u0 + f0)
√

t/(3π). The second term in (2.11) is zero for x/t = c,
and one may directly substitute x/t = c into the third term of (2.11) to obtain h0/

√
3π t; collecting these

results, (2.11) reduces to

h(x, t)| x
t =c = 1√

3π

[
(u0 + f0)t

1
2 + h0t−

1
2

]
. (2.12)
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ON THE STABILITY OF WAVES IN CLASSICALLY NEUTRAL FLOWS 317

Fig. 3. (a) Fourier series solution (shaded surface) to (2.3) compared with the exact solution (2.12) (black curve) along the line
x/t=c. h0=u0=c=1, f 0=0.

The large time behaviour of h for x/t �= c is found by expanding the first two terms of (2.11) as
t → ∞; these expansions are found in Abramowitz & Stegun (1972) as equations 6.5.32 and 7.1.23,
respectively. After replacing the first and second terms of (2.11) with their leading-order behaviour as
t → ∞ and then factoring out the decaying exponential appearing in all three terms, we obtain

h(x, t)| x
t �=c ∼ e−( x

t −c)
2t/8

√
3π t

{[
4(u0 + f0)( x

t − c
)2 − h0c( x

t − c
) + h0

]
cos

[√
3
( x

t − c
)2

t

8

]

− h0c
√

3( x
t − c

) sin

[√
3
( x

t − c
)2

t

8

]}
as t → ∞. (2.13)

To summarize equations (2.12) and (2.13), the response grows algebraically as t
1
2 for x/t = c (first

term of (2.12), assuming u0 + f0 �= 0) and decays exponentially for x/t �= c (all terms of (2.13)). The
Fourier series solution to (2.1) is shown in Fig. 3 for u0 + f0 = 1. All Fourier series solutions displayed
in this paper are constructed on a periodic domain, following the approach given in Barlow et al. (2010).
In Fig. 3 the peak is shown to be growing in accordance with the exact solution given by (2.12) along
x/t = c, as indicated by a black line in the figure.

Figure 3 gives the appearance of growth that is spreading as opposed to being confined to a single
peak moving at x/t = c. However, the growing response that we see is, in fact, mostly made of transient
(short-time) growth, which, along any given ray x/t �= c, will eventually damp as t → ∞. Points
moving near the peak of the response at velocities closer to c will take a longer time to damp, as
can be seen in Fig. 4, where the response is tracked along specific x/t rays and compared with the
exact solution (•’s) given by (2.12) for x/t = c and the long-time asymptotic solution (dashed lines)
given by (2.13).
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318 C. HUBER ET AL.

Fig. 4. Fourier series solution (solid curves) to (2.3) along specific x/t rays, compared with exact solution given by (2.12)
(top, denoted by •) along x/t = c and leading-order asymptotic solution given by (2.13) (bottom dashed curves) for x/t �= c.
h0 = u0 = c = 1, f0 = 0.

Although the growth/decay behaviour shown here in Figs. 3 and 4 is similar to the algebraic growth
behaviour of KRK (where all classical modes are neutral), there is one key difference; here, the response
along non-growing rays decays exponentially, allowing for the non-oscillatory dome-like structure
shown in Fig. 3. For the problem of KRK, such non-growing waves decay algebraically, allowing for
oscillatory effects to persist, leading to a waveform that has many ripples that spread away from the
growing peak (see Figures 1–5 in King et al., 2016). Despite these differences, it is worth pointing out
that the algebraic growth/decay character in both (2.3) and the problem of KRK arises in the evaluation
of Fourier integral solutions that contain removable singularities, such as those shown in (2.10). Such
singularities (both here and in KRK) require special attention, as it is often not possible to interpret
the integrals as principal values when the integrands are even. Appendix A provides key steps to obtain
either exact or asymptotic solutions containing algebraic growth/decay.

Note that if u0 + f0 = 0 and h0 �= 0, then the response decays algebraically for x/t = c (second
term of (2.12)) and decays exponentially for x/t �= c. Thus, an impulse can be introduced to a system,
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ON THE STABILITY OF WAVES IN CLASSICALLY NEUTRAL FLOWS 319

Fig. 5. Schematic of flow of a thin film along an inclined solid. The flow is invariant in the Z direction, oriented into and out of
the figure. The steady state interface location is denoted as H0, the perturbed interface location denoted as H and the perturbation
magnitude given as h, a fraction of H0.

either through u0, f0 or h0, and this choice will affect the algebraic stability or instability of the response.
As shown previously in Barlow et al. (2011) and King et al. (2016), algebraically growing systems are
particularly sensitive to the choice of initiating disturbance, as further evidenced by the results above.

Besides being a model problem that illustrates algebraic growth, the PDE given by (2.3) is also
useful as a model for either convective instability (if c �= 0, see Fig. 3) or absolute instability (if c = 0),
provided that growth is enabled (i.e. u0 + f0 �= 0). Convective instability is defined by a response h
that grows and convects for all time (i.e. along a ray x/t �= 0) but also decays at any fixed location for
large time (i.e. along the ray x/t = 0) (Huerre & Rossi, 1998); this is described, respectively, by (2.12)
and (2.13) for c �= 0 and u0 + f0 �= 0. Absolute instability is defined by a response h that grows at
any fixed location for large time (i.e. along the ray x/t = 0) (Huerre & Rossi, 1998); this is described,
respectively, by (2.12) and (2.13) for c = 0 and u0 + f0 �= 0. A comparison between algebraic abso-
lute/convective instability behaviour and exponential absolute/convective instability behaviour is given
in King et al. (2016).

3. Algebraically decaying waves in a thin film along an inclined solid

3.1 Governing equations valid for small interfacial slope

We consider a Newtonian liquid of constant density, ρ, and constant viscosity, μ, flowing under the
influence of gravity, g, along a solid surface inclined to horizontal with angle θ as shown in Fig. 5.
The liquid layer is exposed to air having a constant atmospheric pressure, and the air–liquid interface
has a constant surface tension, σ . Under ideal conditions, the liquid flows with a steady-state constant
thickness H0 (Fig. 5) and constant volumetric flow rate per unit width, Q0. The film is perturbed
away from uniform due to external disturbances (to be specified later) while remaining invariant in
the Z direction (out of Fig. 5), and the total film thickness deviates from H0 in accordance with the
parameterization Y = H0h(X, T), where h is a dimensionless multiplier, Y is the distance perpendicular
to the wall into the fluid domain, X is the distance down the incline and T is time. The dynamics of the
air are neglected and the external pressure remains atmospheric for all time.
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A set of approximate dynamical equations that govern this configuration may be developed as
follows (Alekseenko et al., 1994; Weinstein & Ruschak, 2004). It is assumed that the slope of the
perturbed air–liquid interface and underlying fluid trajectories are small. However, in contrast to
lubrication theory that utilizes such assumptions, inertial effects are retained since the flow may be rapid.
The simplified time-dependent Navier–Stokes equations and continuity equation are integrated across
the film thickness H, and boundary conditions at the wall (no slip, no penetration into the wall), and
interface (interfacial force balance, normal velocity of fluid same as interface) are applied. The result is
an integral equation equivalent to the simplified system of equations and boundary conditions. Following
the approach pioneered by von Kármán/Polhausen in their treatment of boundary layer theories (von
Kármán, 1921; Pohlhausen, 1921; Schlichting, 1979), a velocity profile parabolic in Y (see coordinate
system in Fig. 5) is assumed that satisfies the wall boundary conditions, a no shear condition at the
unknown interface location H(X, T), and integrates to yield the local volumetric flow per width, Q(X, T).
This approach has been used extensively in the coating literature (Weinstein & Ruschak, 2004). The
resulting system of equations may be written in dimensionless form as (Alekseenko et al., 1994):

∂Q̄

∂x
+ ∂H̄

∂t
= 0 (3.1a)

∂Q̄

∂t
+ 6

5

∂

∂x

(
Q̄2

H̄

)
= 3

Re

(
H̄ − Q̄

H̄2
− H̄

∂H̄

∂x
cot θ

)
+ 1

We
H̄

∂3H̄

∂x3 , (3.1b)

where

H̄ = H

H0
, Q̄ = Q

Q0
, x = X

H0
, t = TQ0

H0
2

, Re = ρQ0

μ
, We = ρQ0

2

σH0
. (3.1c)

Note that H0 and Q0 are not independent and are related as follows:

H0 =
(

3Q0μ

ρg sin θ

)1/3

, (3.1d)

where H0 is the exact expression for the steady-state thickness for film flow calculated from the Navier–
Stokes equations (Pritchard, 2011).

The nonlinear system (3.1) can further be simplified by restricting attention to small interfacial
perturbations, which is justified in practical applications where highly uniform films are desired
(Weinstein & Ruschak, 2004). The following forms are assumed:

H̄ ∼ 1 + h(x, t), Q̄ ∼ 1 + q(x, t), h << 1 and q << 1. (3.2)

Equation (3.2) is substituted into the system (3.1) and terms quadratic or higher in the perturbation
quantities h and q are neglected. The two linearized equations corresponding to (3.1a) and (3.1b) are
combined into a single equation to yield

∂2h

∂t2
+ 3

Re

∂h

∂t
+ 12

5

∂2h

∂x∂t
+ 1

We

∂4h

∂x4 +
(

6

5
− 3 cot θ

Re

)
∂2h

∂x2 + 9

Re

∂h

∂x
= 0. (3.3a)

This is the desired governing equation that will be examined in what follows. In accordance with the
geometry in Fig. 5, the spatial domain that will be considered is −∞ < x < ∞, and the following
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boundary conditions and initial conditions are applied:

h = h0δ(x),
∂h

∂t
= u0δ(x) at t = 0 (3.3b)

h → 0 as x → ±∞. (3.3c)

In (3.3), h0 and u0 are constants and δ(x) is the Dirac delta function. The system (3.3) is well posed
to solve for the response h(x, t). Note that, although (3.3a) is homogeneous, including an impulsive
pressure forcing of f0δ(x)δ(t) would have the same response as the initial velocity condition imposed in
(3.3b) as seen for the problem of Section 2; thus, we have not incorporated it here.

3.2 Classical stability analysis

We now proceed to examine the classical stability of equation (3.3a). To do so, boundary conditions
(3.3b) and (3.3c) are neglected, and the following disturbance form is assumed:

h = Aei(kx−ωt). (3.4)

In (3.4), k is a real wavenumber, ω = ωr + iωi is a generally complex frequency and A is a constant.
Substituting (3.4) into (3.3a) and rearranging to assure a non-trivial solution leads to the following:

ω2 + iβω − γ = 0, where (3.5a)

β =
(

3

Re
+ 12i

5
k

)
, γ = k4

We
− k2

(
6

5
− 3 cot θ

Re

)
+ 9ik

Re
. (3.5b)

As was shown by Yih (1963), the neutral stability condition may be deduced by examining the long
wavelength limit as a perturbation series about k → 0 holding c = ω/k fixed, which assures that the
speed of any disturbance given by the real part of c is finite. Equation (3.5) is first rewritten for fixed c
by inserting ω = ck, and the following expansion is inserted into the result:

c ∼ c0 + c1k + c2k2 + c3k3 + O(k4) as k → 0, c = ω/k fixed, (3.6)

where equating like powers leads to

c0 = 3 (3.7a)
c1 = i (Re − cot θ) . (3.7b)

c2 = 6

5
Re (cot θ − Re) . (3.7c)

c3 = i

[
36

25
Re2 (cot θ − Re) − 12

5
Re3 (cot θ − Re)2 − Re

3We

]
. (3.7d)

Finally, the results (3.7) can be rewritten using the definition of c in (3.6) to obtain the final form of ω

as

ω ∼3k + i(Re − cot θ)k2 + 6

5
Re (cot θ − Re) k3

+ i

[
36

25
Re2 (cot θ − Re) − 12

5
Re3 (cot θ − Re)2 − Re

3We

]
k4 + O(k5) as k → 0. (3.8)
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Fig. 6. Schematic of growth rate, ωi, vs. real wavenumber, k. In the k → 0 limit, ωi is given by equation (3.8). Curve (a):
Re > cot θ , an unstable condition. Note that the maximum growth rate occurs at a finite wavenumber. Curve (b): Smaller Re than
curve a, but still satisfying Re > cot θ . Note that the maximum growth rate is reduced and has shifted to smaller wavenumber.
Curve (c): The first condition at which there is no growth as Re is lowered is Re = cot θ . Curve (d): Re < cot θ . For curves (c)
and (d): Modes exponentially damp for all k �= 0, and k = 0 is the wavenumber of maximum (but zero) growth.

According to the form (3.4), the response grows exponentially if ωi > 0, and thus according to (3.8)
for k �= 0, there is growth when Re > cot θ . The approximate nature of equation (3.3) (constructed
from an assumed velocity field) is revealed here, for when the full linearized Navier–Stokes system
is analysed in the long wavelength limit, the exact result from Yih (1963) is that instabilities arise for
Re > 5/6 cot θ ; apart from the coefficient difference, the interpretation of instability is identical to that
of the approximate analysis. Note that, to make his stability assessment, Yih only retained terms to
order k2 in (3.8) (i.e. O(k) in (3.6)). While the additional terms in (3.8) do not alter the above stability
conclusions, they are required to enable the analysis in Section 3.3 and in supporting analysis found in
Appendix C.

The classical interpretation of exponential growth in the long wavelength limit warrants additional
discussion relevant to the current work. In particular, equation (3.8) indicates that ωi = 0 when k =
0, and thus equation (3.4) shows that this wavenumber exhibits a neutrally stable condition. Figure 6
provides a schematic of the growth rate, ωi, as a function of k, for k ≥ 0, based on solutions of the
Orr–Sommerfeld equations (see, e.g. Weinstein, 1990; Brevdo et al., 1999). As indicated in curve (a),
for Re > cot θ , waves grow exponentially over a range of k, with the maximum wave growth occurring
at finite k. For a smaller Re that satisfies Re > cot θ given by curve (b), the wavenumber associated
with maximum growth is reduced, until at the neutral condition shown by curve (c), this wavenumber
becomes coincident with k = 0; for all k �= 0, modes damp exponentially in accordance with (3.4) using
(3.5). This same structure persists for Re < cot θ . For all curves shown in Fig. 6, note that k = 0 is in
fact a wavenumber that exibits neither growth nor decay from the classical characterization.

The Orr–Sommerfeld solutions portrayed by Fig. 6 show why a stability assessment for Re > cot θ
may be made based on the k → 0 limit. Although the maximum growth in this parameter range generally
occurs at a finite value of k, the concavity of the asymptotic solution (3.8) is always positive when there
is growth; this enables positive concavity in the k → 0 limit to assure instability. For situations where
Re = cot θ or Re < cot θ , the concavity of (3.8) is zero or negative, respectively. For these cases,
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however, the k = 0 wavenumber precludes a stability conclusion (as pointed out by Yih, 1963), since
k = 0 corresponds to the wavenumber of maximum (zero) growth. We set out to make this assessment
in the analysis to follow, where we explicitly examine the system response for cases where Re ≤ cot θ
via asymptotic analysis.

3.3 Integral solution and long-time asymptotic behaviour

We now proceed to solve the system (3.3) and examine its stability features, following the process
discussed in Section 2.2. The Fourier transform (2.4) of (3.3) yields

d2ĥ

dt2
+ β

dĥ

dt
+ γ ĥ = 0. (3.9a)

It is implicit in the use of the Fourier transform that equation (3.3c) is satisfied. The associated initial
conditions (3.3b) become

ĥ = h0,
∂ ĥ

∂t
= u0 at t = 0. (3.9b)

The ordinary differential system (3.9) is solved to yield

ĥ = C1(k)e
−iω1(k)t + C2e−iω2(k)t, (3.10)

where ω1(k) and ω2(k) are the two roots of the quadratic equation (3.5) given as

ω1(k) = − i

2

(
β −

√
β2 − 4γ

)
, ω2(k) = − i

2

(
β +

√
β2 − 4γ

)
(3.11a)

and

C1(k) = ω2h0 − iu0

ω2 − ω1
, C2(k) = iu0 − ω1h0

ω2 − ω1
. (3.11b)

The final solution for h(x, t) may be obtained by utilizing the inverse Fourier transform (2.5) to obtain

h (x, t) = 1

2π

∞∫
−∞

[
C1(k)e

φ1(k)t + C2(k)e
φ2(k)t

]
dk, (3.11c)

where

φ1(k) = i
[
k

x

t
− ω1(k)

]
, φ2(k) = i

[
k

x

t
− ω2(k)

]
. (3.11d)

The result (3.11) provides the integral solution to the system (3.3), where β and γ are given in (3.5b).
The long-time asymptotic behaviour of (3.11) for Re � cot(θ) may be used to establish the stability

of the flow system governed by equation (3.3). In Appendix B, it is shown that the second term in (3.11c)
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Fig. 7. Fourier series solution (shaded surface) to (3.3) compared with (3.15b) (black curve) along the line x/t = 3. Re = cot(θ),
h0 = u0 = 1, θ = π/4 and We = 0.1.

damps faster than the first as t → ∞ for all k, and so we may recast (3.11c) as

h (x, t) ∼ 1

2π

∞∫
−∞

C1(k)e
φ1(k)tdk as t → ∞, Re � cot(θ). (3.12)

Although we cannot determine a closed-form solution for the Fourier integral in (3.12), it can be
evaluated via the method of steepest descent (Bender & Orszag, 1999), where we allow k = kr + iki to
be complex and look for a closed integration path (in the complex k-plane) that includes the real line
and passes through a saddle point of (3.11d); this enables the use of Cauchy’s theorem. An nth order
saddle ks of φ1 is defined by

dφ1

dk

∣∣∣∣
ks

= · · · = dn−1φ1

dkn−1

∣∣∣∣∣
ks

= 0,
dnφ1

dkn

∣∣∣∣
ks

�= 0, n > 1. (3.13)

Note that, depending on the direction of approach, saddle points can describe where Real[φ1] reaches
a maximum or minimum. The deformed integration path of steepest descent moves through the saddle
such that the imaginary part of φ1(k) is constant and real part of φ1(k) attains its maximum value at the
saddle. This enables an asymptotic expansion about the saddle point, which can be used to deduce the
dominant behaviour as t becomes large. The path of ascent, where a minimum of Real[φ1] is reached at
the saddle, is not useful in the long-time evaluation of Fourier integrals such as (3.12). Note that (3.12)
contains branch points when β2 = 4γ and so care must be taken such that the aforementioned path does
not enclose such points, as this would violate Cauchy’s theorem.
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Fig. 8. Fourier series solution (solid curves) to (3.3) along specific x/t rays, compared with the asymptotic solution given by
(3.15)( (dashed curves) for Re = cot(θ), h0 = u0 = 1, θ = π/4 and We = 0.1.

Substituting (3.11d) into (3.13) leads to the relations for ω(k) = ωr(k) + iωi(k)

∂ωr

dkr

∣∣∣∣
ks

= x

t
(3.14a)

∂ωi

dkr

∣∣∣∣
ks

= 0. (3.14b)

Equation (3.14) highlights that each saddle point ks is paired with an x/t ray; it provides a simultaneous
set of equations to solve for the real and imaginary parts of ks for a given x/t. We may deduce the long-
time behaviour of (3.12) along specific x/t values by expanding φ1(k) about the corresponding saddles.
Using this expansion within the method of steepest descent outlined above (see Appendix C), we arrive
at the following long-time behaviour for (3.12)

h (x, t) | x
t =3 ∼ h0 + u0Re/3

2
√

π [cot(θ) − Re]
t−

1
2 , Re < cot(θ) (3.15a)

h (x, t) | x
t =3 ∼ 1

4π
Γ

(
1

4

)[
3We

Re

] 1
4 (

h0 + u0Re/3
)

t−
1
4 , Re = cot(θ) (3.15b)

h (x, t) | x
t �=3 ∼ c1t−

1
2 ec2t cos

(
c3t + c4

)
, c2 < 0, Re � cot(θ), (3.15c)

where the real-valued parameters c1, c2, c3 and c4 are functions of x/t; a more specific form of (3.15c)
for direct use is given by (C.19) in Appendix C. Note that there is a structural change for x/t = 3
and x/t �= 3 (for all Re � cot(θ)). For any Re, x/t = 3 is the least damped ray, only exhibiting
algebraic decay, while all other rays damp exponentially at t → ∞. There is also a structural change for
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Re < cot(θ) and Re = cot(θ) along the ray x/t = 3. For Re < cot(θ), the peak of the wave packet
(at x/t = 3) decays like t−1/2. For Re = cot(θ), the peak of the wave packet decays like t−1/4. This is
a ramification of the saddle point being second-order for the former and fourth-order for the latter, as
shown in Appendix C; this change of order can also be seen in (3.8), setting Re = cot(θ). Here, we have
deduced the stability of the system (3.3) for Re � cot(θ), in a parameter space where classical stability
analysis is inconclusive.

The Fourier series solution to (3.3) is shown in Fig. 7, where the peak is seen to decay in accordance
with the asymptotic solution given by (3.15b) along x/t = 3, as indicated by a black line in the figure.
Away from the peak (for x/t �= 3) the series solution approaches the asymptotic solution given by
(3.15c), as indicated in Fig. 8.

4. Conclusions

Flow transition from stability to instability is examined in which a single mode (i.e. for one value of
wavenumber) indicates classical neutral stability. It is found that fluid flows characterized as being
neutrally stable via exponential modes in fact may exhibit either algebraic growth or decay. Two PDE
systems are examined, one that has been constructed to elucidate key features of the stability threshold,
and a second that models the well-studied problem of rectilinear Newtonian flow down an inclined
plane. In the former case, algebraic growth occurs on the neutral stability threshold. In the latter case,
algebraic decay occurs both at and below the critical Reynolds number.

A key difference between the algebraic growth problem presented here and the one in King et al.
(2016) is that here only one wavenumber touches the real axis on a classical stability plot, whereas all
wavenumbers are neutral in the prior work. A ramification of this appears to be that the non-growing
rays (away from the peak of the wavepacket) decay exponentially instead of algebraically. Whether or
not this is true for all such problems remains to be explored. In both problems, algebraic instability
arises from removable singularities in the Fourier integral solution of the governing PDE.

For the second problem reported here—that of incline plane flow—exponential growth occurs above
a critical Reynolds number. In his own work, Yih (1963) also reached the conclusion that the flow is
unstable above the critical value, but could not reach a conclusion for when the Reynolds number was
below the critical value. The discovery of algebraic stability below the critical Reynolds number carries
with it the danger that the flow will not be as stable as it would be if all values of ωi were negative and
disturbances damped exponentially. In the context of coating operations that utilize an inclined plane-
flow geometry to form liquid films; our results show that disturbances to a process, even if damped, will
damp out more slowly than expected in the physical domain. It is possible that, given larger disturbances,
even a damped response may lead to unacceptable perturbations in coated liquid films.
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Appendix A. Evaluation of integrals in equation (2.10)

A.1 Evaluation of first integral in equation (2.10)

In this section, general formulas for convergent integrals of the following form are established:

I =
∫ ∞

0

e−βk2

k2
sin(αk2) cos (bk) dk, β > 0, α > 0, b > 0. (A.1)

First, we introduce the additional variable γ in (A.1) as follows:

I =
∫ ∞

0

e−γβk2

k2 sin(γ αk2) cos (bk) dk, (A.2)

where γ = 1 in (A.2) yields (A.1). Next, (A.2) is differentiated with respect to γ to obtain

dI

dγ
= −β

∫ ∞

0
e−γβk2

sin(γ αk2) cos (bk) dk + α

∫ ∞

0
e−γβk2

cos(γ αk2) cos (bk) dk. (A.3)

In order to recover the general solution for I, we note that (A.2) indicates that the following constraint
must be satisfied:

I = 0 at γ = 0, (A.4)

since sin(γ ak2) = 0 when γ = 0. The integrals in (A.3) are provided in closed form on pages 493–494,
equations (3.922-3) and (3.922-4) of Gradshteyn & Ryzhik (2007) (for β̃ > 0, a > 0, b > 0):

∫ ∞

0
e−β̃k2

sin(ak2) cos (bk) dk = −
√√√√ π

8
(
β̃2 + a2

)exp

⎡
⎣− b2β̃

4
(
β̃2 + a2

)
⎤
⎦

×
⎧⎨
⎩
√√

β̃2 + a2 + β̃ sin

⎡
⎣ b2a

4
(
β̃2 + a2

)
⎤
⎦

−
√√

β̃2 + a2 − β̃ cos

⎡
⎣ b2a

4
(
β̃2 + a2

)
⎤
⎦
⎫⎬
⎭ (A.5a)

∫ ∞

0
e−β̃k2

cos(ak2) cos (bk) dk =
√√√√ π

8
(
β̃2 + a2

)exp

⎡
⎣− b2β̃

4
(
β̃2 + a2

)
⎤
⎦

×
⎧⎨
⎩
√√

β̃2 + a2 + β̃ cos

⎡
⎣ b2a

4
(
β̃2 + a2

)
⎤
⎦

+
√√

β̃2 + a2 − β̃ sin

⎡
⎣ b2a

4
(
β̃2 + a2

)
⎤
⎦
⎫⎬
⎭ . (A.5b)
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Applying (A.5a) and (A.5b) to (A.3), and then integrating (A.3) from γ = 0 to 1, we obtain

I =
√

π

8
(
β2 + α2

) ∫ 1

0

e−βθ/γ

√
γ

[
C+ cos (αθ/γ ) + C− sin (αθ/γ )

]
dγ

C± = α

√√
β2 + α2 ± β ∓ β

√√
β2 + α2 − β, θ = b2

4
(
β2 + α2

) . (A.6)

Upon making the substitution u = βθ/γ , (A.6) becomes

I = b
√

βπ/2

4
(
β2 + α2

) ∫ ∞

βθ

u−3/2e−u [C+ cos (uα/β) + C− sin (uα/β)
]

du, (A.7)

whose exact solution is given by equations (3.944-2) and (3.944-4) on page 498 of Gradshteyn & Ryzhik
(2007), thus providing an exact solution for (A.1):

I =
∫ ∞

0

e−βk2

k2 sin(αk2) cos (bk) dk =

b
√

π/2

8
(
β2 + α2

)
{(

C+ + iC−
)√

β + iα Γ

[
−1

2
, (β + iα)

b2

4
(
β2 + α2

)
]

+ (
C+ − iC−

)√
β − iα Γ

[
−1

2
, (β − iα)

b2

4
(
β2 + α2

)
]}

, (A.8)

where Γ is the upper incomplete gamma function. Note that (A.8) may be evaluated in the limit as
b → 0 to obtain ∫ ∞

0

e−βk2

k2 sin(αk2) dk =
√

π

2

α√√
α2 + β2 + β

, β > 0, α > 0. (A.9)

A.2 Evaluation of second integral in equation (2.10)

In this section, general formulas for convergent integrals of the following form are established:

I =
∫ ∞

−∞
e−ak2 − e−ck2

k
ebk dk, a > 0, c > 0. (A.10)

Although we follow a similar procedure as in Appendix A.1, the variable b has no restriction on its sign,
and thus may be used as a differentiation variable in lieu of introducing a new ‘dummy’ variable for this
purpose. First, (A.10) is differentiated with respect to b to obtain

dI

db
=
∫ ∞

−∞

(
e−ak2 − e−ck2

)
ebk dk. (A.11)

Equation (A.10) indicates that the following constraint must be satisfied:

I = 0 at b = 0, (A.12)
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since the integrand of (A.10) is odd and k = 0 is a removable singularity. By defining

J =
∫ ∞

−∞
e−ak2

ebk dk, (A.13)

we can solve the first piece of (A.11) and then combine with the second piece afterwards. The
exponentials in (A.13) are rewritten by completing the square, leading to

J = e
b2
4a

∫ ∞

−∞
e
−a
(

k− b
2a

)2

dk, (A.14)

and the substitution u = √
2a
(
k − b

2a

)
is made to obtain

J = e
b2
4a√
2a

∫ ∞

−∞
e− 1

2 u2
du, (A.15)

where the integral in (A.15) is exactly equal to
√

2π , as defined by the gamma function. We now have
the expression

J =
√

π

a
e

b2
4a ,

and, after repeating the above analysis for the second piece of (A.11), we obtain

dI

db
=
√

π

a

(
e

b2
4a − e

b2
4c

)
,

which may be integrated with respect to b (applying condition (A.12)) to obtain

I =
√

π

a

[∫ b

0
e

b2
4a db −

∫ b

0
e

b2
4c db

]
. (A.16)

After making the variable substitutions v = b
2i

√
a

and v = b
2i

√
c

in the first and second integrals,
respectively, (A.16) becomes

I = 2π i

[∫ b
2i

√
a

0
e−v2

dv −
∫ b

2i
√

c

0
e−v2

dv

]
. (A.17)

The integrals in (A.17) are error functions, thus providing an exact solution for (A.10):

I =
∫ ∞

−∞
e−ak2 − e−ck2

k
ebk dk = π i

[
erf

(
b

2i
√

a

)
− erf

(
b

2i
√

c

)]
, a > 0, c > 0. (A.18)

Appendix B. Justification for asymptotic equivalence in (3.12)

We now justify that the second term in (3.11c) is subdominant to the first, which leads to the asymptotic
equivalence shown in (3.12) as t → ∞. The typical approach to follow is to rewrite the integral (3.11c)
in two pieces as

h(x, t) = h1(x, t) + h2(x, t), (B.1a)
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where

h1(x, t) = 1

2π

∞∫
−∞

C1(k)e
φ1(k)tdk, h2(x, t) = 1

2π

∞∫
−∞

C2(k)e
φ2(k)tdk. (B.1b)

In (B.1a), the path of integration is taken along the real axis as written. It suffices then to show that
h2 
 h1 as t → ∞ to justify equation (3.12). Interestingly, the integral h2 cannot be evaluated via
standard techniques in the t → ∞ limit. In particular the two typical methods at our disposal—the
method of steepest descent and integration by parts—fail as follows.

When the method of steepest descent is used, the integral h2 along the real k-axis is evaluated as part
of a complex contour integral, and the topology of the complex phase function φ2(k) is configured such
that saddle points, ks, have lower Real[φ2(ks)] values than surrounding regions of the plane. Figure B9
shows a typical case that represents the situation for all x/t rays evaluated in this paper. The indicated
saddle points cannot be accessed via a contour integral that includes the real axis (or even a portion of it
denoted as the contour C in Fig. B9) in such a way that the saddle points have a maximum Real[φ2(ks)]
along the deformed contour, and the method fails.

The method of integration by parts fails precisely because the integral h2(x, t) is convergent in the
infinite domain of k. This requires its integrand go to zero as k → ±∞ (and it does, based on the
contours in Fig. B9), and as a result repeated integration by parts merely yields a zero result and no
asymptotic behaviour can be extracted.

A different approach is thus necessary to prove the assertion that h2(x, t) is subdominant. To do so,
we return to the form of the integral in (3.11c) and compare the magnitude of the terms in the integrand
directly at each value of k (recall that k is real as the path of integration lies along the real axis). We
denote the two pieces of the integrand as

I1 = C1(k)e
φ1(k)t, I2 = C2(k)e

φ2(k)t, (B.2a)

and thus using equations (3.11a), (3.11b) and (3.11d), we obtain

I2

I1
= C2(k)

C1(k)
e(φ2(k)−φ1(k))t,

C2(k)

C1(k)
=
(

iu0 − ω1h0

ω2h0 − iu0

)
, φ2(k) − φ1(k) = −

√
β2 − 4γ , (B.2b)

where all parameters are defined in equations (3.5) and (3.11). As t → ∞ the real part of the exponential
in equation (B.2b) governs the magnitude of the ratio I2/I1; a typical plot of the growth rate in the
exponential, Real[φ2(k) − φ1(k)] vs. k is given in Fig. B10.

Figure B10 indicates that as t → ∞, the magnitude of I2/I1 → 0 for finite k. However, as
the domain of k is increased towards ±∞ (not shown here), the plot asymptotes to zero, indicating
that the growth rates are comparable there. Furthermore, the magnitude of the ratio C2(k)/C1(k) in
(B.2b) approaches 1 in these limits. Thus, for all finite values of k, we can certainly establish that I2 is
subdominant to I1 as t → ∞, but this result is not proven in the limit of infinite k. This also indicates
that in (B.1b), h2 
 h1 as t → ∞ if finite bounds are taken on the indicated integrals instead of the
infinite limits indicated.

To complete the proof that h2 
 h1 as t → ∞, we rewrite the equations for h1 and h2 in (B.1b) as

h1(x, t) = 1

2π

−L∫
−∞

C1(k)e
φ1(k)tdk + 1

2π

L∫
−L

C1(k)e
φ1(k)tdk + 1

2π

∞∫
L

C1(k)e
φ1(k)tdk (B.3a)
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332 C. HUBER ET AL.

Fig. B9. Contours of constant Real[φ2(k)] vs. complex k = kr + iki at neutral stability (Re = cot θ ) for x/t = 3, θ = π/4 and
We = 0.1. There are three saddle points (◦) denoted as ks,j for j ∈ [1, 3]. Branch points (∗) and branch cuts are taken in accordance
with the principle values of the square roots in (3.11a). The directions in which Real[φ2(k)] decrease and increase are indicated
with arrows using the notation D and U, respectively. The orientation of the saddles does not enable a closed contour to be drawn
that includes the contour C (the real axis) and also has Real[φ2(ks,j)] as a maximum along the contour. Thus, all the saddle points
are spurious, i.e. none may be used via the method of steepest decent to determine the long-time asymptotic behaviour of the
second term in the integral of (3.11c). For reference, the location of the saddles and associated contour values are as follows:
ks,1 = −0.2957 − 0.2492i, Real[φ2(ks,1)] = −2.4192; ks,2 = 0.2957 − 0.2492i, Real[φ2(ks,2)] = −2.4192; ks,3 = 0.6976i,
Real[φ2(ks,3)] = −4.3440.

h2(x, t) = 1

2π

−L∫
−∞

C2(k)e
φ2(k)tdk + 1

2π

L∫
−L

C2(k)e
φ2(k)tdk + 1

2π

∞∫
L

C2(k)e
φ2(k)tdk , (B.3b)

where L > 0 is a finite number. We have already established that the finite bound integral in (B.3b)
is subdominant to the corresponding finite bound integral in (B.3a) from Fig. B10 and the preceding
arguments (in Fig. B10, L = 10 as indicated). Integration by parts may be used on the remaining
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Fig. B10. Plot of Real[φ2(k) − φ1(k)] vs. k for Re = cot(θ), θ = π/4 and We=0.1.

semi-infinite integrals in equation (B.3a) and (B.3b) to yield

1

2π

−L∫
−∞

C1(k)e
φ1(k)tdk ∼ C1(−L)

2π t dφ1(k)
dk

∣∣∣
k=−L

eφ1(−L)t,

1

2π

∞∫
L

C1(k)e
φ1(k)tdk ∼ − C1(L)

2π t dφ1(k)
dk

∣∣∣
k=L

eφ1(L)t, (B.4a)

1

2π

−L∫
−∞

C2(k)e
φ2(k)tdk ∼ C2(−L)

2π t dφ2(k)
dk

∣∣∣
k=−L

eφ2(−L)t,

1

2π

∞∫
L

C2(k)e
φ2(k)tdk ∼ − C2(L)

2π t dφ2(k)
dk

∣∣∣
k=L

eφ2(L)t as t → ∞. (B.4b)
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We thus see that

1
2π

−L∫
−∞

C2(k)e
φ2(k)tdk

1
2π

−L∫
−∞

C1(k)e
φ1(k)tdk

= O(e(φ2(−L)−φ1(−L))t),

1
2π

∞∫
L

C2(k)e
φ2(k)tdk

1
2π

∞∫
L

C1(k)e
φ1(k)tdk

= O(e(φ2(L)−φ1(L))t) as t → ∞. (B.5)

Since according to Fig. B10, which is representative for all cases examined in this paper,
Real[φ2(k) − φ1(k)] < 0 for finite k, this indicates that the ratios in (B.5) go to zero as t → ∞.
Thus, we see that all integrals in (B.3b) are subdominant to those in (B.3a) for all real k, which
establishes that h2 
 h1 as t → ∞ in (B.1). This furthermore establishes the asymptotic equivalence
indicated in equation (3.12) of the main text. This conclusion is also demonstrated by the agreement
between our numerical solutions and the t → ∞ asymptotic behaviour of equation (3.12).

Appendix C. Long-time asymptotic solution to (3.12)

The following analysis is separated into two subsections based on a structural change in the dispersion
relation for flow down an incline plane. Classical analysis tells us that, for Re � cot(θ), the wavenumber
of maximum growth is k = 0 (see Fig. 6) and that the exponential growth rate is zero. Note that, by
definition (3.14b), a maximum in ωi(kr) is a saddle point. Any such maximum is also a contributing
saddle point, in that a steepest descent path can be closed back to the real axis (see Barlow et al., 2017,
Appendix A). Applying definition (3.14a) to (3.8), we find that the corresponding ray of maximum
growth is x/t = 3. Thus, for Re � cot(θ), the peak of a wave packet travels at a velocity x/t = 3 as
it flows down the incline plane. The explicit knowledge of the (ks, x/t) pair at the peak allows us to
make simplifications outlined above. For x/t �= 3, the saddle locations and their corresponding steepest
descent paths are less straightforward to deduce. For this reason, we separate the following evaluation
of integral (3.12) into two subsections—one for the peak along x/t = 3 and one for the ‘off-peak’ rays
x/t �= 3.

C.1 Evaluation of (3.12) for x
t = 3 and Re � cot(θ)

Here, we apply the method of steepest descent to the integral (3.12) for x/t = 3, which corresponds to
the contributing saddle ks = 0. Expanding φ1(k) (given by (3.11d)) about k = 0, and making direct use
of (3.8), we obtain the following:

φ1(k) ∼ [Re − cot(θ)] k2 − 6

5
iRe [Re − cot(θ)] k3

+
{

36

25
Re2 [Re − cot(θ)] − 12

5
Re3c [Re − cot(θ)]2 − Re

3We

}
k4 + O(k5), k → 0,

(C.1)
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and thus
φ1(k) ∼ [Re − cot(θ)] k2, Re < cot(θ) (C.2a)

φ1(k) ∼ − Re

3We
k4, Re = cot(θ), (C.2b)

which indicates that ks = 0 is a second-order saddle for Re < cot(θ) and a fourth-order saddle for
Re = cot(θ), according to definition (3.13). Substituting k = 0 into C1(k) and (C.2) for φ1(k) in (3.12)
leads to

h (x, t) | x
t =3 ∼ 1

2π

(
h0 + u0 Re/3

) ∞∫
−∞

e−[cot(θ)−Re]k2t dk as t → ∞, Re < cot(θ)

h (x, t) | x
t =3 ∼ 1

2π

(
h0 + u0 Re/3

) ∞∫
−∞

e− Re
3We k4t dk as t → ∞, Re = cot(θ), (C.3)

where the integration path remains along the real line, since the argument of the exponential is purely
real and thus no rotation through the saddle is required. Since the integrands of (C.3) are even, the
integrals may be rewritten

h (x, t) | x
t =3 ∼ 1

π

(
h0 + u0 Re/3

) ∞∫
0

e−[cot(θ)−Re]k2t dk as t → ∞, Re < cot(θ) (C.4a)

h (x, t) | x
t =3 ∼ 1

π

(
h0 + u0 Re/3

) ∞∫
0

e− Re
3We k4t dk as t → ∞, Re = cot(θ). (C.4b)

Upon making the variable substitutions v = [cot(θ) − Re] k2t and v = Re
3We k4t in (C.4a) and (C.4b),

respectively, we obtain

h (x, t) | x
t =3 ∼

(
h0 + u0 Re/3

)
πp

√
[cot(θ) − Re] t

∞∫
0

e−vv
1
2 −1 dv as t → ∞, Re < cot(θ) (C.4b)

h (x, t) | x
t =3 ∼

(
h0 + u0 Re/3

)
πp
{

Re
3We t

}1/4

∞∫
0

e−vv
1
4 −1 dv as t → ∞, Re = cot(θ), (C.4b)

where the integrals above evaluate to Γ (1/2) and Γ (1/4), respectively, leading to the results given in
(3.15a) and (3.15b).

C.2 Evaluation of (3.12) for x
t �= 3 and Re � cot(θ)

Saddles associated with the off-peak rays x/t �= 3 lie in the complex k-plane, off of the real line. Thus,
we must take care to evaluate integral (3.12) along a closed path that joins the original path (the kr-axis)
with a path through the saddle, such that Real[φ(ks)] is a maximum along this path. This allows for the
integral to be replaced with an approximation near the saddle as t → ∞. A representative example is
given in Fig. C11 for x/t = 2 (parameter values given in the caption).

Note that there are three saddle points associated with x/t = 2, as indicated by •’s in Fig. C11, but
only the two lying in the lower half-plane are accessible as maxima along a closed path with the real
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Fig. C11. Contours of constant Real[φ1(k)] vs. complex k = kr + iki at neutral stability (Re = cot θ ) for x/t = 2, θ = π/4
and We = 0.1. Notation is the same as in Fig. B9. The orientation of the saddles enables a closed contour (indicated by dashed
lines) to be drawn through ks,1 and ks,2 that includes a portion of the real axis, C1, and also has Real[φ1(ks,j)] as a maximum
along the contour—thus, the method of steepest decent may be used to determine the long-time asymptotic behaviour of the
integral involving φ1(k) in (3.11c) along the contour C1. Alternatively, the orientation of saddle ks,3 makes it spurious (does not
contribute to the asymptotic behaviour) and is not accessible by connection to any real contour. The path of integration in (3.11c)
is the infinite kr-axis, i.e. consists of the contour C =CL∪C1∪CR; however, it can be shown via integration by parts that the
contributions over CL and CR are subdominant to that of C1, such that the long-time asymptotic behaviour is determined by the
integral C1—and thus the saddle points dominate the asymptotic behaviour. For reference, the location of the contributing saddles
and related quantities necessary to determine the asymptotic behaviour using (C.8), (C.9) and (C.19a) are as follows: a = 0.2957,
b = 0.2492, c = 0.8218, d = 0.6805, r = 5.9476 and q = 5.4227.

axis. The steepest descent contour
∫

SD is shown by a dashed line. Note that neither the branch points
(indicated by ∗’s) nor any other singularities are enclosed between the real axis and the steepest descent
path, and so we may apply Cauchy’s theorem to obtain

h (x, t) | x
t �=3 ∼ 1

2π

∫
−SD

C1(k)e
φ1(k)tdk as t → ∞, Re � cot(θ), (C.6)

where
∫

-SD denotes a path from left to right (opposite that shown in Fig. C11) and the long-time
asymptotic casting in (C.6) is solely due the omission of the φ2(k) term in (3.11), and not from the path
deformation. As Reynolds number, Weber number, θ and x/t vary, the location of the saddles differ from
that shown in Fig. C11. However, there is always either one or two contributing saddles where Cauchy’s
theorem may be applied such that (C.6) holds. Additionally, since all x/t �= 3 saddles are second-order,
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Fig. C12. Contours of constant Real[φ1(k)] vs. complex k = kr + iki at neutral stability (Re = cot θ ) for x/t = 4, θ = π/4
and We=0.1. Notation is the same as in Fig. B10 and discussion is the same as in Fig. C11. For reference, the location of the
contributing saddles and related quantities necessary to determine the asymptotic behaviour using (C.8), (C.9) and (C.19a) are as
follows: a = 0.4528, b = 0.1584, c = 1.4871, d = 0.5053, r = 0.7466 and q = 5.1297.

a general asymptotic solution may be formulated according to the method of steepest descent by looking
in the vicinity of the saddles, replacing C1(k) with C1(ks), φ(k) with its second-order expansion about
ks in (C.6), and rewriting the limits of integration as follows:

h (x, t) | x
t �=3 ∼ 1

2π

[
C1(ks1)e

φ1(ks1)

I1︷ ︸︸ ︷∫ ks1+ε

ks1−ε

e
1
2

d2φ1
dk2

∣∣∣∣
ks1

(k−ks1)
2t

dk

+ C1(ks2)e
φ1(ks2)

∫ ks2+ε

ks2−ε

e
1
2

d2φ1
dk2

∣∣∣∣
ks2

(k−ks2)
2t

dk︸ ︷︷ ︸
I2

]
as t → ∞, Re � cot(θ), (C.7)

where ε is a small positive constant. Note that in the above we have assumed two contributing saddles
ks1 and ks2. For cases with two saddles, such as that shown in Fig. C11, the locations of quantities in
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(C.7) in the complex k-plane are as follows:

ks1,2 = ∓a − ib, ω1(ks1,2) = ∓c − id,

d2φ1

dk2

∣∣∣∣∣
ks1,2

= −r ∓ iq,

a, b, c, d, q, r > 0. (C.8)

It is useful to write the following quantity from (C.8) in complex polar form

r + iq = ρeiΘ , ρ =
√

r2 + q2, Θ = tan−1
(q

r

)
, Θ ∈

(
0,

π

2

)
(C.9)

from which it follows from (C.8) that

d2φ1

dk2

∣∣∣∣∣
ks1,2

= −ρe±iΘ . (C.10)

We now proceed to solve for I1 (denoted in (C.7)) using the orientation of the path through the saddle
ks1 shown in Fig. C11. After substituting (C.10) into (C.8) and splitting I1 into two integrals entering
and leaving the saddle ks1, we obtain

I1 =
∫ ks1

ks1−ε

e− 1
2 ρeiΘ(k−ks1)

2tdk +
∫ ks1+ε

ks1

e− 1
2 ρeiΘ(k−ks1)

2tdk. (C.11)

The split made above is done such that the quantity (k − ks1) can be written in complex polar form in
accordance with Fig. C11 with the appropriate angle entering and leaving the saddle as follows:

(k − ks1) = UeiΨ

Ψ ∈
[π

2
, π
]

for k ∈ [ks1 − ε, ks1

]
Ψ ∈

[
−π

2
, 0
]

for k ∈ [ks1, ks1 + ε
]

. (C.12)

Upon substituting (C.12) into (C.11), we obtain

I1 = eiΨ
∫ 0

−εe−iΨ
e− 1

2 ρU2tei(Θ+2Ψ )

dU + eiΨ
∫ εe−iΨ

0
e− 1

2 ρU2tei(Θ+2Ψ )

dU. (C.13)

Note that in order for the integrals of (C.13) to represent paths of steepest descent, the argument of the
outer exponential must be real and negative, such that following condition must hold between Ψ and Θ

(Bleistein, 1984):

Θ + 2Ψ = 2nπ , (C.14)

where n = 1 for the first integral of (C.13) (entering the saddle) and n = 0 for the second integral of
(C.13) (leaving the saddle). In accordance with (C.14), we substitute Ψ = π −Θ/2 into the first integral
of (C.13) and Ψ = −Θ/2 into the second integral of (C.13) to obtain (after some simplification)

I1 = 2e−i Θ
2

∫ ε′

0
e− 1

2 ρU2tdU, (C.15)
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where ε′ = εeiΘ/2 is a real quantity (recall that U is the real-valued magnitude defined in (C.12)). Thus,
(C.15) is a real integral, translated and rotated from its skewed path through saddle ks1 in Fig. C11. We
now replace (C.15) with its semi-infinite extension

I1 ∼ 2e−i Θ
2

∫ ∞

0
e− 1

2 ρU2tdU as t → ∞, (C.16)

noting that (C.16) asymptotically approaches (C.15) as t → ∞, due the to dominant contribution at the
saddle. The improper integral in (C.16) evaluates exactly to

√
2π/(ρt)/2 (see Gradshteyn & Ryzhik,

2007, equation 3.321.3), and thus (C.16) becomes

I1 ∼ e−i Θ
2

√
2π

ρt
as t → ∞. (C.17)

If we apply the same technique as done above to I2 in (C.7) involving saddle ks2 in Fig. C11, whose
real imaginary part is the same but real part opposite sign of ks1 and steepest descent path is oriented
perpendicular to that of ks1, we obtain

I2 ∼ ei Θ
2

√
2π

ρt
as t → ∞. (C.18)

Substituting (C.17) and (C.18) into (C.7), using (C.8) to recognize that φ1(ks1,2) = [
b
( x

t

)− d
] ±

i
[
c − a

( x
t

)]
and C1(ks1) = C1(ks2), we obtain

h (x, t) | x
t �=3 ∼

√
2

ρπ t
e(b x

t −d)t Real
{

C1(ks1)e
i
[
(c−a x

t )t−Θ/2
]}

as t → ∞, a �= 0, Re � cot(θ),

(C.19a)
where the a �= 0 condition reminds us that we have assumed two contributing saddles symmetric about
the imaginary axis, as shown in Fig. C11 for saddles in the lower half-plane for x/t = 2. The result
(C.19a) may be applied to contributing saddles in the lower or upper half-plane (which is the case for
x/t = 4, see Fig. C12) if the definitions in (C.8) are modified as follows:

a = |Real(ks)| (C.19b)

b = −Imag(ks) (C.19c)

c = |Real[ω1(ks)]| (C.19d)

d = −sgn[Imag(ks)] |Imag[ω1(ks)]| (C.19e)

r =
∣∣∣∣∣Imag

(
d2ω1

dk2

)
ks

∣∣∣∣∣ (C.19f)

q = −sgn[Imag(ks)]

∣∣∣∣∣Real

(
d2ω1

dk2

)
ks

∣∣∣∣∣ . (C.19g)

For Re < cot(θ), as either Re is decreased or x
t → 3 (from above or below) the saddles move closer

together until they congeal on the imaginary axis and thus only one saddle contributes, as shown in
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Fig. C13. Contours of constant Real[φ1(k)] vs. complex k = kr + iki at neutral stability (Re = 0.05 cot θ ) for x/t = 2, θ = π/4
and We = 0.1. Notation is the same as in Fig. B9. The orientation of the saddles enables a closed contour (indicated by dashed
lines) to be drawn through ks,1 that includes a portion of the real axis, C1, and also has Real[φ1(ks,1)] as a maximum along
the contour—thus, the method of steepest decent may be used to determine the long-time asymptotic behaviour of the integral
involving φ1(k) in (3.11c) along the contour C1. Alternatively, the orientation of saddles ks,2 and ks,3 makes them spurious
and are not accessible by connection to any real contour. The path of integration in (3.11c) is the infinite kr-axis, i.e. consists
of the contour C =CL∪C1∪CR and evaluated in the same manner as discussed in Fig. C11. For reference, the location of the
contributing saddle, and related quantities necessary to determine the asymptotic behaviour using (C.8), (C.9) and (C.19h) are as
follows: a = 0, b = 1.3728, c = 0, d = 2.8420, r = 1.8563 and q = 0.

Fig. C13. Carrying out the above analysis for this case leads to

h (x, t) | x
t �=3 ∼ 1√

2ρπ t
e(b x

t −d)t Real
[
C1(ks1)e

i(ct−Θ/2)
]

as t → ∞, a = 0, Re < cot(θ), (C.19h)

where b, c and d correspond to ks,1 in Fig. C13.
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