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Abstract—Creating salient musical generative models in the
neural network community has proven a notoriously difficult
task. Music requires the coherent modeling of structure at many
different timescales, giving rise to complex hierarchical-temporal
structure and self-similarity. Representing music as a discrete
sequence of tokens (notes), as in Natural Language modeling,
we invoke a Bayesian Framework to factorize the problem into
three components which can transcribe, compose, and synthesize
audio waveforms of lengths up to ∼100sec, based on work
done by the Magenta project [1]. Toward a coherent neural
model with applications to Style Transfer, we train a suite of
models on a series of curated, genre-specific datasets, some
of which an order of magnitude larger than the MAESTRO
dataset. We evaluate models quantitatively and qualitatively using
information theory, a single-blind survey of model comparisons,
visualization techniques, and a novel similarity measure.

Index Terms—Automatic Music Transcription; Relative Self-
Attention; Transformer; Music Generation; Style Transfer

I. INTRODUCTION

Music generation has gained increasing attention with the

onset of deep learning and the third generation of machine

learning in conjunction with the increase in compute power

over the preceding decades. Various attempts have been made

to produce music using machine learning techniques. Notable

efforts have typically taken either a sequential approach,

primarily utilizing RNNs and LSTMs as in BachBot [2],

non-Hierarchical Convolutional models like Counterpoint By

Convolution [3], and Hierarchical Encoder-Decoder models

such as MusicVAE [4] which samples from an encoded

distribution for generation. For highly restrictive environments,

many sequence modeling approaches produce impressive re-

sults that are difficult to distinguish from human-generated

content, however with the cost of generality.

Many of these approaches have several drawbacks. Recur-

rent models typically fail to impose a hierarchical ordering

with long-term dependencies and thus are unable to generate

coherent sequences longer than a few seconds. Non-recurrent

models do not capture relative or absolute positions along

the time dimension and thus require explicit encoding of

positional information to utilize sequential ordering of inputs

[5]. Convolutional models implicitly capture relative positions

within the kernel, however have been shown to still benefit

from positional encodings [6]. Encoder-Decoder models often

will have ’holes’ in the latent space, such that decoding a

random sample may result in nothing realistic to the human

listener. The majority of methods simplify the input data

representation, reducing the complexity of the input and thus

the representational power of the model.

To overcome these limitations, a Wave to MIDI transcription

framework was proposed by Hawthorne et al. (2018) [7] in

which raw audio waveforms are transcribed and converted to

MIDI, encoded and passed to a Transformer [8] model with a

Relative Attention [5] mechanism for generation, whose output

is then passed to a Conditional WaveNet model to decode the

intermediate generated representation and output a waveform

audio signal. The Music Transformer injects hierarchical struc-

ture and introduces self-reference to the generative process,

such that longer coherent sequences can be generated in a

semi-supervised setting [9].

Contributions of this paper

The main contribution of this paper lie mainly in the domain

of style transfer and the application of evaluation tools from

cognitive computing. The objective has three components; the

first is to aggregate curated and customized datasets into two

main categories: Genres and Composers.

These data are taken from a private collection totaling

over 2,200 hours of polyphonic piano music. Several datasets

were created in each category so as to compare results of

model-generated examples via quantitative and qualitative

measurements, including a single-blind sample study of both

lay listeners and musicians. Thus, the second goal is the

application of a set of evaluation metrics to further understand-

ing of relationships between compositional styles and human

perceptible differences in the context of hierarchical-temporal

structure.

Style Transfer dataset examples:

1) Single Composer: Bach, Beethoven, Brahms, Chopin,

Debussy, Keith Jarrett, Liszt, Brad Mehldau, Scriabin,

Art Tatum

2) Single Genre: Classical only, Jazz only

3) Mixed Genre: Classical and Jazz combined

We intend to make these datasets publicly available in

TFRecord format for reproducibility and to widen the scope

of information available to researchers in the near future. Until
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then, please contact the primary author for inquiries regarding

obtaining data for research or personal use.

II. RELATED WORK

A motivational insight by Engel et al. (2017) [10] is to

explicitly factorize the generation of music into notes and other

musical qualities, allowing for modularization of the task.

P (audio) = P (audio|note)P (note). (1)

Model Overview

This Bayesian factorization (1) of the probability distribu-

tion of audio waveforms can be further specified to create three

modular task models, noted by Huang et al. (2018),

P (audio) = Enotes[P (audio|notes)]. (2)

The task of each model is described in detail in [7]. They

are as follows:

1) Encoder, P (notes|audio): Transcription, takes raw au-

dio in WAV format as input and outputs a MIDI tran-

scription of the raw audio signal, modeled for piano

(Hawthorne et al, 2017).

2) Prior, P (notes) Generative, uses a relative self-attention

mechanism to take as input a transcribed MIDI dataset

converted to a Performance Encoding [11] and produces

generated MIDI as output when the learned distribution

is sampled from [9].

3) Decoder, P (audio|notes) Synthesis model, converts

generated MIDI samples from the transformer to a

reconstructed raw audio format (WAV) [12].

Piano-e-Competition and MAESTRO

A recent development is the release of the MAESTRO

(MIDI and Audio Edited for Synchronous TRacks and Or-

ganization) dataset [7] which contains piano performances

captured from several years of the International Piano-e-

Competition, with approximately 3ms accuracy fine align-

ment [13] between note labels and audio waveforms. The

MAESTRO dataset is over an order or magnitude larger

than previously available datasets. These properties make the

dataset desirable, most notably homogeneity; all performances

are solo piano, mostly one genre (classical), and all played by

expert humans [14].

Automatic Music Transcription

Automatic Music Transcription (AMT) has the goal of

creating a symbolic representation of music from raw audio.

Commonly, MIDI is a desirable representation as it is simple,

compact, easily interpretable, and standardized. The goal of

many AMT tasks is to generate transcriptions of audio which

contains all perceptually relevant performance information

without prior knowledge, such as recording environment or

instrument characterization.

Advancing state of the art in polyphonic piano music

transcription, Roberts et al. (2017) [15] use a deep convo-

lutional and recurrent neural network which is trained to

jointly predict onsets and frames. Their model predicts pitch

onset events which subsequently condition framewise pitch

predictions, building on previous models designed for tractably

modeling the distribution of images as a product of conditional

distributions such as Pixel RNN [16] using a two-dimensional

LSTM architecture proposed by Theis and Bethge (2015)

[17], and PixelCNN++ [18]. Further building on PixelRNN,

the authors add a discretized logistic mixture likelihood for

modeling the distribution of sub-pixel values with improved

memory complexity while simultaneously avoiding gradient

saturation via the 256-way categorical softmax function in

PixelRNN. The Onsets model also predicts velocities of nor-

malized audio which translates to the speed of attack of a note.

Enabled by the precise velocity timings recorded in the Piano-e

Competition dataset, the addition of velocity prediction results

in more accurate transcriptions of piano music.

We use the Onsets model as the first step in the Bayesian

framework as an encoder to convert raw audio into an inter-

mediate representation (MIDI) that is then consumed by the

Music Transformer decoder model for prediction.

Attention Model

Modeling long-term dependencies has been a key challenge

in many sequence transduction tasks [19]. The most important

factor to consider is the length of paths forward and backward

signals have to traverse in a given network. The shorter the

signal paths between dependencies that must traverse through

the network, the easier it is to learn.

((a)) Scaled dot product attention ((b)) Multi-head attention

Fig. 1. Attention mechanism

The Transformer is an autoregressive encoder-decoder

model that utilizes self-attention mechanisms and sinusoidal

position information to encode distance, achieving state of

the art in machine translation tasks. The model consists of

stacked encoder-decoder layers, each with separate sub-layers.

A self-attention layer in the encoder sub-layer is followed by

a positional feed-forward layer, whereas in the decoder sub-

layer there is an additional masking operation so as to not

allow previous output from incorporating information about

future output positions during training. Each of the layers

contain batch normalization [20]. For more implementation

details, see [8] [9]. Attention can be described as mapping
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a set of query and key-value pair vectors, whose output is

computed as a weighted sum of the values. The weighting

of each output is calculated by a compatibility function on

the query with its corresponding key. Scaled Dot-Product
Attention (Fig 1a) consists of queries and keys of dimension

dk, and values of dimension dv . The dot products of the

queries are computed with all keys, each scaled by
√
dk, and

then applying the softmax function to obtain the weights on the

values. This weighting function is separated into h attention

heads, allowing each head to focus on a particular subset of

the input data. In addition to learning different tasks, each

head may learn meaningful semantic information [8]. The

attention function computes queries simultaneously, packaged

into query matrix Q, key matrix K, and value matrix V . The

attention output for a given head Zh is given by

Zh = softmax

(
(QhKh)�√

Dh

)
V h. (3)

where h refers to a single attention head, such that each

head works on a distinct subset of the entire input xi ∈ R
dn

of n elements.

Each head computes a new sequence zi ∈ R
dn ,

zi =

n∑
j=1

αij(xjW
V ) (4)

αij =
exp eij∑n
k=1 exp eik

(5)

eij =
(xiW

Q)(xjW
K)�√

dz
(6)

where WQ,WK ,WK ∈ R
dx×dz are parameter matrices.

Without recurrent or convolutional connections, the model

cannot explicitly utilize the order of the sequence or relative

positional information for training and must be inserted. Posi-

tional encodings are mapped using sine and cosine functions

of different frequencies to model the relative distance between

adjacent positions of the input sequence:

PEpos,2i = sin
( pos

100002i/dmodel

)
(7)

PEpos,2i+1 = cos
( pos

100002i/dmodel

)
(8)

where pos is position and i is the dimension, where each di-

mension of the positional encoding corresponds to a sinusoid.

This is reasonable, since for any fixed offest k, PEpos+k can

be represented as a linear function of PEpos

Self-attention layers connect all positions with a constant

number of sequentially executed operations, whereas recurrent

layers require linear, O(n). A convolutional layer with kernel

size k < n does not connect all pairs of input and output

positions, but would require a stack of O(nk ) layers of contigu-

ous kernels, or O(logk(n)) dilated convolutional layers [8].

Attention also greatly improves the interperatibility of models,

since each attention head learns different tasks and exhibit

syntactic and semantic structural elements upon inspection of

learned parameter distributions.

Relative Positional Self-Attention

Shaw et al. (2017) [5] extend the Transformer model to

efficiently incorporate representations of the relative positions

between sequential elements of the input to consider arbitrary

relationships between any two elements. An edge in the graph

connecting input elements xi and xj is represented by vectors

aKij , a
V
ij ∈ R

da . By modeling the input as a labeled, directed

and fully-connected graph whose representations are shared

across attention heads, edge information contained in aKij , a
V
ij

can be propagated to sub-layer outputs a weighted sum of

linearly transformed input tokens zi,

zi =

n∑
j=1

αij(xjW
V + aVij) (9)

The compatibility function from [8] is extended to consider

edges, modifying (6) to obtain

eij =
xiW

Q(xjW
K + aKij )

�
√
dz

(10)

For a more efficient implementation, Shaw et al. split

the numerator from (10) into two terms and perform tensor

reshaping,

eij =
xiW

Q(xjW
K)� + xiW

Q(aKij )
�

√
dz

(11)

Dropping the h index for clarity, for each head we have

Relative Attention = softmax

(
QK� +Q(AK)�√

Dh

)
V (12)

where matrix A contains all entries of aKij from (11), and

softmax(z) =
ez∑n
i=1 e

z
i

(13)

Huang et al. (2018) [9] implement a skewing procedure that

improves the intermediate memory requirement from O(L2D)
to O(LD) while maintaining relative position embeddings and

doing away with sinusoidal-based position functions.

Audio Synthesis

Breakthroughs in modeling complex distributions of images

[18] and text [21] using fully probabilistic and autoregressive

generative models have been adapted to the domain of audio

signals by modeling the joint probabilities over signals as

products of conditional distributions, leading to state-of-the-

art generation and synthesis [12].

WaveNets use stacked dilated causal convolutions, enabling

very large receptive fields with few layers (Fig 2) and Gated
Activation Units (Fig 3) [18] with residual and skip connec-

tions to model the conditional probability distribution of audio

given all previous samples as
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Fig. 2. WaveNet dilated causal convolutions

Fig. 3. WaveNet residual connections with gated activation units

p(x|h) =
�∏
t=1

p(xt|x1, ..., xt−1, h). (14)

Dilated causal convolution stacks allow WaveNet’s receptive

fields to grow exponentially with depth. WaveNets can produce

audio with specified characteristics such as speaker identity by

conditioning on different input variables, allowing incredible

flexibility in reproducing desired acoustic and spectral parame-

ters achieving state-of-the-art results in TTS (Text-To-Speech).

III. DATA REPRESENTATION

Encoding polyphonic music as a single serialized stream

of discrete tokens allows a language-modeling approach to

learning from data. In order to get these data into a workable

format for modeling symbolic music, MIDI is often used as

an intermediary representation for compactness and flexibility.

MIDI

The standard format MIDI (Musical Instrument Digital

Interface) is represented as a set of tokens from the following

vocabulary of size 413 to account for all possible values:

1) 128 NOTE-ON events: Beginning of a note (onset)

within specified MIDI pitch-range.

2) 128 NOTE-OFF events: End of a given note.

3) 125 TIME-SHIFT events: moves the time-step forward

in increments of 8ms up to 1 second.

4) 32 VELOCITY events: Alters the velocity (speed of

attack) applied to all subsequent notes until the next

velocity event.

MIDI files are often visualized as a piano roll, in which the

y-axis represents the space of all possible notes within a given

range and the x-axis represents time. To utilize MIDI as input

to the generative model, we apply several transformations on

the transcribed waveform data such that the end result is a

binary encoded one-hot vector representation of the content

of the MIDI files [11]. The stages are as follows:

1) Convert MIDI to Note Sequence Protocol

2) Data Augmentation (Stretching and Transposition)

3) Convert augmented data to Performance Encoding

Note Sequence Protocol

Note sequence protocol is an extensible language and

platform agnostic method developed by Google Brain for

serializing structured data, similar to XML [22]. Refer to

Huang et al. (2018) and the Google Protocol Buffer github

for specific implementation details [9].

Performance Encoding

We use the performance encoding [11] which serializes

MIDI sequences that were converted to performance indices

in Figure 8 into one-hot vectors M ∈ R
dn×dm where dn is the

number of events in a given sequence and dm = 413, for one

of the 413 potential MIDI events that can occur in a quantized

unit of time.

Data Augmentation

As proposed by Oore et al. (2018) [11], we apply a

two specialized data augmentation functions to increase the

training set size using symmetrical transformations on the data,

with small modifications.

1) Transposition: Each example is transposed ±4 semi-

tones, the distance of a major third, yielding 8 new

examples.

2) Stretching: Each example is time-dilated uniformly by
±2.5%and±5%, yielding 4 new examples.

IV. TRAINING

We use a similar regime for each model as in [9], training

each model between 1000000 and 1250000 steps on a single

GTX 1070i with default Transformer hyperparameters [8], a

learn rate of 0.1, dropout at 0.1, local attention block size of

512, and target sequence lengths of 1024, 2048, and 4096.

Decoding works similarly, as we sample from the model

and can control the decode sequence length of output to be

generated and then convert to MIDI for inspection.

V. EVALUATION

Quantitative

We utilize concepts from information theory and statistical

learning theory to quantitatively evaluate our models, namely

Information Rate (IR), Negative Log Likelihood (NLL), and

Negative Log Perplexity (NLP).

As entropy can also be thought of as a measure of the

predictability of an event in a given context, evaluating

Information Content over the time-dimension in generated

sequences may constitute a sufficient metric for evaluating

musical structure [23]. This motivates our use of Information

Rate an extension of Shannon’s work as well as Perplexity
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as a means of characterizing the complexity of a stochastic

sequence.

Negative Log Perplexity: Perplexity is the exponentiation

of the entropy, where we use entropy as a measure of the

expected number of bits required to encode the outcome of

the random variable.

In order to adapt the perplexity metric to our model, we use

the following formulation on N test data points:

2−
∑N

i=1
1
N log2 q(xi)

Negative Log Likelihood: By definition, minimizing KL-

divergence is equivalent to maximizing the likelihood of our

learned parameters and thus minimizing the distance between

the two distributions,

θ̂MLE = argmax
θ

n∑
i=1

logf(xi|θ) (15)

We report this common metric for evaluating machine

learning models and other in Appendix IV.

Information Rate: Toward defining a salient metric for

self-similarity, a critical property of music to examine is

the balance between repetition and variation. This ratio can

be expressed as a measure taken from Information Theory

[24] called Information Rate (19). It can be considered the

mutual information (18) between the present and the past

observations, calculated as the average difference between the

marginal entropy (16) and the conditional entropy (17) of

sequences X and Y [25].

Entropy is defined as the expectation of the information

content of the random variable

H(X) = E[I(X)] = −
∑
x

p(x) log2[p(x)] (16)

We approximate Conditional Entropy using a first-order

Markov chain with asymptotic distribution μ and transition

matrix P , and reduce to a stationary stochastic process [26]

H(X|Y ) = −
∑
ij

μiPij log2Pij (17)

Mutual Information is then defined as the difference be-

tween the marginal entropy (15) and conditional entropy (16)

I(X;Y ) = H(X)−H(X|Y ) (18)

Thus, for a given sequence x = {x0, x1, x2, ..., xn}, the

Information Rate of sequence x is defined

IR(x) =
1

n

n∑
i=1

H(x0:i)−H(x0:i|x0:i−1) (19)

where H(x) is the entropy of x, and is estimated based

on statistics of the sequence up to event xi using a unigram

language modeling approach. We compute the distribution of

symbols in sequence x as the frequency of occurrence over

sequence length.

Fig. 4. Information Rate comparison of models with composers. Any
annotated with ’-m’ are generated from models.

Intuitively, larger values of IR occur when repetition and

variation are in balance, and smaller values of IR occur

when sequences are either random or very repetitive [23]. For

example, a high IR corresponds to when specific events occur

rarely, but are highly likely given their parents. This often

occurs in sequences with higher-level repetitive structure.

Fig 4 contains box plots of Information Rates calculated

with a subsample of k randomly selected generated pieces

taken from different models for comparison with composed

music; namely all 32 Beethoven piano sonatas as performed

by Daniel Barenboim, Brad Mehldau’s 10 Years Solo album of

live performances, and Art Tatum’s Solo Masterpieces com-

piled by Pablo records. Standard deviations are represented by

whiskers, means by orange lines inside each box, and outliers

by circles. Appendix VI contains a full box plot of information

rates across all models.

Qualitative

We also provide intuitive, qualitative measures of model

performance on the task of generating realistic musical perfor-

mances with the intent of capturing self-referential structure.

We restrict the length of any two samples, either generated or

composed, to a maximum of (30 sec) for consistency and the

time commitment of survey respondents. The survey contains

10 pairs of examples of generated audio from our models and

are asked to rate their respective musicality and estimated style

of a given composer.

We evaluate our models utilizing the Kruskal-Wallis H

test and Wilcoxon signed-rank tests for matched pairs with

significance value α = 0.01. After presenting participants

with two examples taken from a subset of the model space,

we asked which of the two were more musical on a Likert

scale from 1 to 5. We conducted a post-hoc analysis on

the comparisons and using Bonferroni correction [27].

400 ratings were collected with each model involved in 80

pairwise comparisons. Figure 5 shows the number of instances
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Fig. 5. Listening Test results, displaying number of times a model won in a
pairwise comparison with error bars showing estimated standard deviation of
means.

a model was chosen as being more musical. Samples from

different models can be listened to at the following link:

https://www.cs.rit.edu/∼jps9013/

Participant Segmentation: We asked participants to self-

identify as either musical laypersons, amateur musicians, or

industry professionals into these categories to infer differences

between the populations. Industry professionals performed

best on the task of correctly identifying model-composer style,

while laypersons scored the least on average. This observation

aligned with our expectations that trained musicians would be

more familiar with composer style, perform well on identifica-

tion of style, and seems to suggest model capacity to re-create

a particular composer’s style is self-consistent. If the models

did not accurately represent composer style, we should expect

no differences between the groups with random results.

Survey Results: A Kruskal-Wallis H-test of the ratings

showed at least one statistically significant difference between

the models: χ2(4) = 21.52, p < 0.00025. A post-hoc analysis

using the Wilcoxon signed-rank test showed a statistically

significant difference between the Chopin and Beethoven mod-

els, as well as the Beethoven and Keith Jarrett models, with

p < 0.00025. Based on the ratings and these results, we found

that the Beethoven model is the most aesthetically appealing

across all participants. However, within the segments profes-

sional musicians overwhelmingly favor the Chopin and Jarrett

models. These are counter-intuitive results, as the Beethoven

model has the lowest Information Rate score, whereas the

Jarrett model has the highest among generative models, with

the Chopin model is in the middle of the pack.

VI. GRAPHICAL RESULTS

In addition to the quantitative and qualitative evaluations

above, we provide intuitive visual representations of musical

examples as a way of informal comparison. We show results

from two visualization techniques for audio: Keyscapes [28],

characterizing tonality, and Self-Similarity Matrices [29].

Keyscapes

Tonality is the property of music that music is perceived

to be in a specific key center, which is to say that there

is a hierarchical ordering of pitch class patterns. Perception

of tonality is determined by the frequency of occurrence of

pitches in the musical piece [30].

We utilize the humdrum keyscape tool by David Huron

[28] to parse the tonality of a given MIDI file using the

Krumhansl-Schmuckler key-finding algorithm [31]. The re-

sults are converted to a PNG image file from the humdrum

native data format. The peak of the pyramid shows the key

estimation for the entire piece, and moving down toward the

base is a recursive set of decreasing window sizes which

give an estimation of the key estimates within that context

window. Intuitively, the more self-reference that exists in a

piece corresponds to a highly structured keyscape, with tonal

centers that recur often in fractal patterns and are visibly-

discernible to the human eye.

((a)) Newton Colormap for keyscapes
organized by pitch-classes

((b)) Toy example demonstrating
tonal clustering within a keyscape

Fig. 6. Keyscape features

Fig 6 contains a legend to understand tonal clustering in Fig

7, which shows keyscapes of generated pieces from different

generative models.

Self-similarity Matrix

A musical piece’s structural organization communicates a

sense of coherence over its duration in which thematic mate-

rial, motivic patterns, phrases, and whole sections are repeated

throughout. Self-similarity matrices encode this property well

and make visually inferring patterns corresponding to musical

structure a straightforward geometric problem. The entries

(i, j) of matrix S express the (dis)similarity between music at

positions i and j. This structural coherence is what arguably

makes listening to music for humans aesthetically pleasing and

interesting [29].

To visualize the structural organization of a musical piece,

we construct a self-similarity matrix S along the time di-

mension by computing the Short Time Fourier Transform of

a 1D input waveform X with 50% overlapping Hamming

Fig. 7. Keyscapes of generated examples from different models:

Top Left: Beethoven
Top Right: Chopin

Bottom Left: Brad Mehldau
Bottom Right: Art Tatum
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windows of N sample lengths, around 10ms. We then derive

the magnitude spectrogram V by taking the absolute value of

each element and normalizing its columns using the Euclidean

norm. Subsequently, we compute the cosine similarity between

each feature vector in V (moment in time parameterized by

the Hamming window) to obtain S.

Justification for cosine similarity comes from Natural Lan-

guage Processing techniques such as Word2Vec [32], where

the degree of difference between orientations of two word

vectors A and B corresponds to the angle θ. Thus, cos(θ)
will be zero when the vectors are orthonormal and linearly

independent, indicating no or little similarity. Similarly ori-

ented vectors may have similar meaning, such as in the

characterization of semantic relatedness of sentences in a given

corpora.

Cosine similarity of two vectors is defined as follows:

Sim(A,B) = cos(θ) =
A ·B

||A|| ||B|| (20)

Thus to obtain S from two spectrograms V a and V b:

S = Sim(V a, V b) =

∑n
i=1 V

a
i V

b
i√∑n

i=1 V
a
i

2

√∑n
i=1 V

b
i
2

(21)

where n = no. of frequency channels, in this case. Matrix

S will contain a measure of the relatedness between pieces

V a and V b, symmetric about the diagonal. Appendices II and

III contain generated and ground truth similarity matrices.

To compare generated examples, we compute the mean self-
similarity score MSS by taking the mean of cosine similarity

matrix S as a measure of structural self-similarity,

MSS(S) = Mean(S)

=
1

N2

N∑
i=1

N∑
j=1

S(i, j)

where N is the number of windowed sections (rows of S).

We then sample k generated examples from each model and

average the individual MSS within each model subsample,

obtaining a measure of the proclivity to output structured

content for the ith model on its set of sampled similarity

matrices Di,

Mscore(Di) =
1

K

K∑
k=1

MSS(Sk) (22)

Appendix V contains a table of self-similarity matrix

Mscores.

VII. CONCLUSION

According to subjective evaluations from participants, the

models produce very pleasing music with good balance be-

tween varying and repetitive structure. The generated examples

contain significant self-reference up to ∼100 seconds, where

most samples wander off toward randomness. They often lack

’complete’ musical phrasing and precise harmonic progres-

sions in predictable intervals.

We found that sampling with decode lengths up to twice

that which models were originally trained on seem to produce

better results, on average. Shorter decode lengths below 2048

typically produced hurried and over-saturated examples with

many notes in a short period of time, whereas longer decode

lengths tended to produce slower, more laborious development

of melodic material. This is suggestive of a kind of time

invariance with respect to information content of a given

sample, such that the relative entropy contained remains

roughly constant with variable decode length. This agrees with

the presuppositions of Huang et al. (2018) [9] in that the

Transformer architecture may produce coherent examples for

sequence lengths much longer than what models were initially

trained with.

VIII. FUTURE WORK

This paper aims to provide the groundwork for further

study of differences in human perception based on varying

segmentation criteria on the boundary between the fields of

machine learning and artificial intelligence, sonification, and

cognitive computing.

Further experimentation with data from different genres is

needed. Large unlabeled music corpora can now be explored

with varying degrees of specification with the transcription

framework. Ensuring homogeneity of new datasets is essential.

A logical extension would be the exploration of further isolated

genres, such as so-called pop, rock & roll, country, 20th cen-

tury (also known as serial) music, etc. and their subcategories.

It is also desirable to design a future study which models

time period and cultural relativity, as the classical music

models described in this paper on spans a time period of

over 200 years, from 1703 to 1910. The jazz data sets span

a period from approximately 1908 to 2012, over which an

incredible amount of innovation and cultural change has taken

place which impact the perceptions of lay and trained listeners

alike. Thus, fine-grained studies of the relationships between

classes, socioeconomic backgrounds, and cultural heritages of

listeners is needed.

Additionally, an age-related study that segments population

based on age and musical preference is desirable.
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APPENDIX

I. KEYSCAPES

Beethoven Chopin Mixed

Bach Classical Art Tatum

Maestro Liszt Brad Mehldau

All of the examples above are generated by different models. We include one ”failure” example for illustration at top right,

sampled from the mixed genre model. Note it is largely uniform, with most of the area colored lime-green, indicating that

the piece is in one key a majority of its duration. The associated similarity matrix is shown below for the same example in

the top right of the table below.
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II. SELF-SIMILARITY MATRICES OF MODEL GENERATED MUSIC

The table below contains examples of self-similarity matrices of samples taken from models shown above in the keyscape

table (Appendix I), in the same configuration for ease of comparison.
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III. SELF-SIMILARITY MATRICES OF HUMAN COMPOSED MUSIC

Self-Similarity Matrices of human composed pieces:

Top left: Brad Mehldau’s John Boy
Top right: Brahms Symphony no. 2 Allegro non troppo

Bottom left: Dawn of Midi’s IO
Bottom right: Chick Corea’s Matrix

IV. QUANTITATIVE RESULTS

Model NLL NLP IR

Bach 1.91 -1.91 112.03

Brahms 1.76 -1.75 161.44

Beethoven 1.79 -1.792 105.62

Keith Jarrett 1.65 -1.66 131.38

Brad Mehldau 1.26 -1.26 155.01

Chopin 2.17 -2.17 128.01

Debussy 1.99 -1.98 125.74

Liszt 1.79 -1.78 155.01

Maestro 1.82 -1.81 135.39

Scriabin 2.19 -2.21 157.59

Tatum 2.82 -2.73 106.7

Classical 1.75 -1.74 151.38

Jazz-full 1.95 -1.95 169.12

Mixed 1.75 -1.75 126.06
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V. MEAN SELF-SIMILARITY SCORES

Model Mean Self-Similarity Score

Bach 0.6852

Beethoven 0.6979

Brahms 0.6349

Chopin 0.6564

Debussy 0.7227

Keith Jarrett 0.6397

Brad Mehldau 0.5379

Liszt 0.7016

Maestro 0.7376

Scriabin 0.7237

Tatum 0.7101

Classical 0.7495

Jazz 0.6934

Mixed 0.7295

VI. INFORMATION RATES
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