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a b s t r a c t

An accurate closed-form solution is obtained to the SIR Epidemic Model through the use of Asymptotic
Approximants (Barlow et al., 2017). The solution is created by analytically continuing the divergent
power series solution such that it matches the long-time asymptotic behavior of the epidemic model.
The utility of the analytical form is demonstrated through its application to the COVID-19 pandemic.

© 2020 Elsevier B.V. All rights reserved.

There are several problems of mathematical physics in which
the only available analytic solution is a divergent and/or trun-
cated power series expansion. Over the past decade, a new ap-
proach has evolved to overcome the convergence barrier in series
solutions. An asymptotic approximant is a closed-form expression
whose expansion in one region is exact up to a specified order and
whose asymptotic equivalence in another region is enforced. The
remarkable feature of asymptotic approximants is their ability to
attain uniform accuracy not only in these two regions, but also
at all points in-between, as demonstrated thus far for problems
in thermodynamics, astrophysics, and fluid dynamics [1–7]. The
current need to model and predict viral epidemics motivates us
to extend the application of asymptotic approximants to the com-
monly used Susceptible–Infected–Recovered (SIR) model. This
model is formulated as a system of nonlinear ordinary differential
equations. Although no exact analytic solution has yet been found
for the SIR model, a convergent series solution may be formulated
via the homotopy analysis method [8]. Here, we provide an alter-
native and simple analytic approach. Interestingly, the SIR model
shares the same asymptotic features as boundary layer flow over
a moving flat plate, for which asymptotic approximants have
already been applied [4]. The analytic nature of the asymptotic
approximant derived in what follows is advantageous. Model
parameters may be extracted for available COVID-19 data via a
least squares (or equivalent) technique without the need for an
embedded numerical scheme.

The SIR epidemic model considers the time-evolution of a sus-
ceptible population, S(t), interacting with an infected population,
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I(t), where t is time. This model is expressed as [9]

dS
dt

= −rSI (1a)

dI
dt

= rSI − αI (1b)

with constraints

S = S0, I = I0 at t = 0, (1c)

where r , α, S0, I0 are non-negative constant parameters [9].
Once (1) is solved, the recovered population is extracted as:

R(t) = α

∫ t

0
I(ζ )dζ . (2)

Eq. (1a) can be thought of as a standard collision model in a 2nd-
order chemical reaction, where species S and I ‘‘collide’’ to deplete
the population of S to create the species I . In this interpretation,
r is a rate constant, which in practice may be reduced by pop-
ulation behavior such as ‘‘social distancing’’. In the case where
α=0 in (1b), the system (1) indicates that S + I = S0 + I0 for
all time. For α ̸= 0, then, the number of infected are reduced in
time in accordance with (1b), and it is seen that the parameter
α determines the rate of recovery of infected individuals. The
omission of a negative αI(t) term in (1a) is an implicit model
assumption that the recovered population is no longer susceptible
to the disease.

We now manipulate the system (1) into an equivalent first-
order equation to simplify the analysis that follows. Eqs. (1a) and
(1b) are divided to obtain

dI
dS

=
α

rS
− 1. (3)
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Subsequent integration of (3) with respect to S and application of
the constraints (1c) yields

I =
α

r
ln

(
S
S0

)
− S + S0 + I0. (4)

Eq. (4) is substituted into Eq. (1a) to obtain

dS
dt

= βS + rS2 − αS ln S (5a)

where

β = α ln S0 − r(S0 + I0). (5b)

From Eq. (1c), the constraint on S is:

S = S0 at t = 0. (5c)

System (5) is equivalent to (1) to solve for S and, once solved, the
solution for I may be obtained using (4), which may be integrated
to find R from (2).

The series solution of (5) is given by

S =

∞∑
n=0

antn, a0 = S0 (6a)

an+1 =
1

n + 1

⎡⎣βan +

n∑
j=0

aj
(
ran−j − αbn−j

)⎤⎦ , (6b)

bn>0 =
1
n

n−1∑
j=0

aj+1ãn−1−j, b0 = ln a0, (6c)

ãn>0 =
−1
a0

n∑
j=1

ajãn−j, ã0 =
1
a0

. (6d)

The result (6) is obtained by applying Cauchy’s product rule [10]
to expand S2 and S ln S in (5). The expansion of ln S is obtained
by first applying Cauchy’s product rule to the identity SS−1

= 1
and evaluating like-terms to obtain a recursive expression for the
coefficients of the expansion of S−1, given by (6d). The expansion
of S−1 is subsequently integrated term-by-term to obtain the
expansion of ln S, whose coefficients are given by (6c). Although
the series solution given by (6) is an analytic solution to (5), it
is only valid within its radius of convergence and is incapable
of capturing the long-time behavior of S. This motivates the
construction of an approximant to analytically continue the series
beyond this convergence barrier.

The long-time asymptotic behavior of the system (5) is re-
quired to develop our asymptotic approximant, and so we pro-
ceed as follows. It has been proven in prior literature [11] that S
approaches a limiting value, S∞, as t → ∞, and this corresponds
to I → 0 according to (5). The value of S∞ satisfies Eq. (4) with
I = 0 as [11]

α

r
ln

(
S∞

S0

)
− S∞ + S0 + I0 = 0. (7)

We expand S as t → ∞ as follows:

S ∼ S∞ + S1(t) where S1 → 0 as t → ∞. (8)

Eq. (8) is substituted into (5) and terms of O(S12) are neglected to
achieve the following linearized equation

dS1
dt

= κS1 (9a)

where

κ = rS∞ − α. (9b)

In writing (9b), the definition of β in (5b) has been employed.
Additionally, to obtain (9), Eq. (7) has been used which eliminates
all O(1) terms in the linearized system. The solution to (9) is

S1 = εeκt , (10)

where ε is an unknown constant that can only be determined
via connection with short-time behavior. Consistent with the
assumptions made, we find κ < 0 such that S1 → 0 as t → ∞.
Thus the long-time asymptotic behavior of S is given by

S ∼ S∞ + εeκt , t → ∞. (11)

Higher order corrections to the expansion (11) may be obtained
by the method of dominant balance [12] as a series of more
rapidly damped exponentials of the form enκt where n > 1. This
long-time asymptotic behavior of successive exponentials mimics
that of the Sakiadis boundary layer problem describing flow along
a moving plate in a stationary fluid [4]. It is natural, then, to
apply the Sakiadis approximant [4] to capture this asymptotic
behavior while retaining the t = 0 behavior given by (6a). The
Sakiadis approximant imposes the exponential form of the long-
time asymptotic behavior (11) for all time; the coefficients of
the exponentials are determined by matching their short-time
expansion to the known power series developed about t = 0 in
the form of (6a). However, here we find that a reciprocal expres-
sion that achieves the same t → ∞ behavior (11) (through its
binomial expansion) converges faster than the original Sakiadis
approximant.

The assumed SIR approximant is given by

SA,N =
S∞

1 +

N∑
n=1

Anenκt
(12a)

where the An’s are obtained by taking the reciprocal of both sides
of (12a), expanding each side about t = 0, and equating like-
terms. The coefficients of the subsequent reciprocal expansion of
the left-hand side (that of S−1) are given by (6d). After equating
like-terms of this expansion with that of the reciprocal of the
right-hand side of (12a), one arrives at the following linear system
of equations to solve for the An values as⎡⎢⎢⎢⎢⎣

10 20 30
· · · N0

11 21 31
· · · N1

12 22 32
· · · N2

...
...

...
...

...

1N−1 2N−1 3N−1
· · · NN−1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

A1
A2
A3
...

AN

⎤⎥⎥⎥⎥⎦ = f⃗ , (12b)

f⃗ = S∞

⎡⎢⎢⎢⎢⎣
0! ã0 − 1/S∞

1! ã1/κ
2! ã2/κ2

...

(N − 1)! ãN−1/κ
N−1

⎤⎥⎥⎥⎥⎦ , (12c)

where (12b) is a Vandermonde matrix whose inversion is explic-
itly known [14]. The SIR approximant (12) is thus a closed-form
expression that, by construction, matches the correct t → ∞

behavior given by (11) and whose expansion about t = 0 is exact
to N th-order. A MATLAB code for computing the An coefficients is
available from the authors [15].

Fig. 1a provides a typical comparison of the N-term series
solution (6) denoted by SS,N (dashed lines), the N-term approxi-
mant (12) denoted by SA,N (solid lines), and the numerical solu-
tion (indicated by symbols). Note that the series solution has a
finite radius of convergence as evidenced by the poor agreement
and divergence from the numerical solution at larger times, even
as additional terms are included. By contrast, the approximant
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Fig. 1. Analytical and numerical solutions to the SIR model (5) where the susceptible (S), infected (I), and recovered (R) populations are plotted versus time, all in
arbritrary units. (a) As the number of terms N is increased, the series solution, denoted SS,N (given by (6a), dashed lines), diverges and the approximant, denoted
SA,N (given by (12), solid lines), converges to the exact (numerical) solution (•’s). (b) The converged asymptotic approximant for S is used to obtain R and I (from
Eqs. (2) and (4), respectively). The model parameter values and initial conditions α = 2, r = 1/5, I0 = 25, and S0 = 75 are taken from a test case used in Khan et al.
[8] to validate the homotopy analysis method.

Fig. 2. Analytical and numerical solutions to the SIR model (5) where S, I , and R are in units of people and t is in months. All other notation and labels are the
same as in Fig. 1. The model parameter values and initial conditions α = 2.73, r = 0.0178, I0 = 7, and S0 = 254 are taken from estimates of the 1966 bubonic
plague outbreak in Eyam, England examined in Khan et al. [8].

converges as additional terms are included. For N = 15, the
approximant is visibly indistinguishable from the numerical solu-
tion (obtained by forward differencing) with a maximum relative
error on the order of the numerical time-step (here 10−2) over the
time range indicated. Increasing the number of terms beyond N =

15 does improve accuracy up to a point, but also increases the
likelihood of deficient approximants for which the denominator
can be zero for certain time values and specific values of N .
In general, the lowest number of terms that yields the desired
accuracy is chosen to avoid this behavior. The convergence of
the approximant with increasing N is a necessary condition for
a valid approximant. For the problems of mathematical physics
to which we have applied asymptotic approximants [1–7], we
have observed that convergence of approximants implies ex-
cellent agreement with numerical results. There is as-of-yet no

proof developed that guarantees this result, but this interesting
behavior has been a property of all approximants developed thus
far. In Fig. 1b, the converged (N = 15) asymptotic approximant
for S is used to obtain R and I (from Eqs. (2) and (4), respectively)
and is compared with the numerical solution for these quantities.

In Fig. 2, the approximant is applied to a case examined in
Khan et al. [8] to model the 1966 bubonic plague outbreak in
Eyam, England. In Fig. 3, the approximant is applied to COVID-
19 data for Japan [13]. An increased number of terms in the
approximant is required to achieve the same relative errors in
Figs. 1–3. For all cases examined, we observe that this trend
correlates with the breadth of the initial S plateau.

Note that the reported COVID-19 outbreak data [13] in Fig. 3
is originally provided in terms of confirmed cases and recovered
individuals per day. The difference between these two quantities
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Fig. 3. Analytical and numerical solutions to the SIR model (5) where S, I , and R are in units of people and t is in days. All other notation and labels are the same
as in Fig. 1. The model parameter values α = 0.0164 and r = 2.9236×10−5 were obtained via a least-squares fit between the asymptotic approximant and Japan
COVID-19 outbreak data [13] (◦’s), using initial conditions I0 = 2 (from the first point in the data set [13]) and S0 = 4206. Here t = 0 is January 22, 2020 (see main
text for interpretation of the COVID-19 data).

is used as an approximation to compare with the quantity I of
the SIR model. It is acknowledged that the actual COVID-19 data
is influenced by transient effects not included in the SIR model
such as the exposure lag-time; these effects are incorporated in
more sophisticated models such as SEIR [11]. The approximation
of I from COVID-19 data is not restrictive in the current con-
text, as our purpose is to show the efficacy of the closed form
approximant rather than assess the validity of the SIR model.

In Fig. 3, a least squares fit of the asymptotic approximant to
I data is used to extract SIR parameters α and r based on data
from the initial stages of the COVID-19 epidemic in Japan. To do
so, (4) is used to relate I analytically to the solution for S (here,
the approximant SA,30); note that S∞, used in the approximant,
is affected by these parameters explicitly according to (7). The
value of S0 is not provided in the data set [13], and a least-squares
algorithm is ineffective at determining an optimal value. Here,
we choose the value of S0 to be twice that of the maximum
value of I approximated from the data, as it captures a typical
curve shape for S seen in applications of the SIR model [11].
In regards to the sensitivity of fitting parameters to the choice
for S0, a 100% difference in S0 leads to roughly a 50% difference
in r and a 6% difference in α. The fit is made especially simple
owing to the analytical form of the approximant that obviates
the need to embed the numerical solution in such an algorithm.
The population of recovered individuals, R, is extracted from the
solution for I by direct integration in accordance with (2). Note
that the predicted curve for R in Fig. 3, obtained solely by fitting
data for I , is in good agreement with approximations from COVID-
19 data for the recovered population, and serves as a check on the
consistency of the data and algorithm.

It is evident from the results presented here that an asymp-
totic approximant can be used to provide accurate analytic so-
lutions to the SIR model. Future work should focus on whether
the asymptotic approximant technique can yield a closed form

solution to more sophisticated epidemic models.
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