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a b s t r a c t

An analytic solution is obtained to the SEIR Epidemic Model. The solution is created by constructing
a single second-order nonlinear differential equation in ln S and analytically continuing its divergent
power series solution such that it matches the correct long-time exponential damping of the epidemic
model. This is achieved through an asymptotic approximant (Barlow et al., 2017) in the form of a
modified symmetric Padé approximant that incorporates this damping. The utility of the analytical
form is demonstrated through its application to the COVID-19 pandemic.

© 2020 Published by Elsevier B.V.

Asymptotic approximants have been successful at providing
analytical solutions to many problems in mathematical physics
[1–8]. Like the well-known Padé approximant [9,10], they are
constructed to match a primary series expansion in a given region
up to any specified order. Unlike Padé approximants, however,
the form of an asymptotic approximant is not limited to a ratio of
polynomials, and its structure is chosen to enforce the asymptotic
equivalence in a region away from the primary series expansion.
By increasing the number of terms in an asymptotic approximant,
it converges to the exact solution in these two regions – as well
as at all points in between. Convergence is certainly a neces-
sary condition for a valid approximant; although there is yet no
proof, convergent approximants match the numerical solutions of
systems examined thus far [1–8].

The COVID-19 outbreak motivates the application of asymp-
totic approximants to epidemiology models. The method has
seen recent success in providing a closed-form solution to the
Susceptible–Infected–Recovered (SIR) model [8]. Here, we ex-
tend the method to the commonly used Susceptible–Exposed–
Infected–Recovered (SEIR) model. This model is formulated as
a system of nonlinear ordinary differential equations, for which
no exact analytic solution has yet been found. The analytic na-
ture of the asymptotic approximant derived in what follows is
advantageous, in that the accuracy and computational expense
are not affected by the duration of the epidemic prediction; the
form is built such that it is accurate in t ∈ [0, ∞) and can

∗ Corresponding author.
E-mail address: nsbsma@rit.edu (N.S. Barlow).

be evaluated at any specific time without the need for numer-
ical marching. Depending on the duration, it may be beneficial
to replace a numerical solution with the approximant within a
fitting algorithm that extracts SEIR parameters. En route to the
approximant, we also present an alternative formulation of the
SEIR model as a single 2nd-order nonlinear differential equation
in ln S. This form enables an efficient series solution about t = 0,
asymptotic expansion as t → ∞, and may itself prove attractive
for future analysis.

The SEIR epidemic model considers the time-evolution of a
susceptible population, S(t), interacting with an exposed popu-
lation, E(t), and infected population, I(t), where t is time. This
model is expressed as [11]
dS
dt

= −βSI (1a)

dE
dt

= βSI − αE (1b)

dI
dt

= αE − γ I, (1c)

with a removed population (recovered + deaths), R(t), evolved
by
dR
dt

= γ I (1d)

and constraints

S = S0, E = E0, I = I0, R = R0 at t = 0. (1e)

In (1), β , α, γ , S0, E0, I0, and R0 are non-negative constant param-
eters [11]. Along with initial conditions from (1e), the solution for
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S, E, and I may be first obtained from (1a) through (1c) and the
solution for R subsequently extracted using (1d).

We now manipulate the system (1) into an equivalent 2nd-
order equation in ln S to simplify the analysis that follows. Equa-
tions (1a) and (1b) are added to obtain
dS
dt

+
dE
dt

= −αE. (2)

Solving (1c) for E and substituting into (2) then leads to

d2I
dt2

+ (γ + α)
dI
dt

+ α
dS
dt

+ αγ I = 0. (3)

Eq. (1a) is rewritten as

I = −
1
β

d ln S
dt

(4)

and substituted into (3) to arrive at the 3rd-order equation

d3 ln S
dt3

+ (γ + α)
d2 ln S
dt2

− αβ
dS
dt

+ αγ
d ln S
dt

= 0. (5)

Eq. (5) may be integrated to yield

d2 ln S
dt2

+ (γ + α)
d ln S
dt

− αβS + αγ ln S = C, (6)

where the integration constant

C = αγ ln(S0) − αβ (E0 + I0 + S0) (7a)

is obtained by evaluating the left-hand side of (6) at t = 0
using (1c), (1e). and (4). The form of Eq. (6) suggests that the
variable substitution f = ln S be made, and the result is

d2f
dt2

+ (γ + α)
df
dt

− αβef + αγ f = C (7b)

where, from (1e) and (4),

f = ln S0,
df
dt

= −βI0 at t = 0. (7c)

Once (7) is solved for f , S is extracted as:

S = ef . (8a)

The solution for I follows directly from (4) and (8a) as

I = −
1
β

df
dt

. (8b)

After substituting (8b) into (1d), integrating, and applying the
constraint (7c), R is expressed as:

R = R0 −
γ

β
(f − ln S0) . (8c)

Lastly, the conservation of S + E + I + R provides a solution for E
as

E = E0 + I0 + S0 + R0 − I − S − R, (8d)

as seen by adding equations (1a) through (1d), integrating in t ,
and applying (1e).

The series solution of (7) is given by

f =

∞∑
n=0

antn, a0 = ln S0, a1 = −βI0 (9a)

a2 = [C − (α + γ ) a1 + αβS0 − αγ a0] /2 (9b)

an+2 =
αβãn − (γ + α)(n + 1)an+1 − αγ an

(n + 2)(n + 1)
, n > 0 (9c)

ãn>0 =
1

n + 1

n∑
j=0

(n − j + 1)an−j+1ãj, ã0 = S0. (9d)

The result (9) is obtained by the standard procedure of insert-
ing (9a) into (7) and finding a recursion for the coefficients by
equating like-terms. It is thus necessary to obtain the expansion
of the nonlinear term ef ≡ S in (7). To do so, we solve for the
coefficients of S =

∑
ãntn by applying Cauchy’s product rule to

the chain-rule result f ′S = S ′ and evaluating like-terms; this leads
to the recursive expression given by (9d). Although the series
solution given by (9) is an analytic solution to (7), it is only valid
within its radius of convergence and is incapable of capturing
the long-time behavior of the system. This motivates the use of
an approximant to analytically continue the series beyond this
radius.

The long-time asymptotic behavior of the system (7) is re-
quired to develop our asymptotic approximant, and so we pro-
ceed as follows. It has been proven in prior literature [12] that S
approaches a limiting value, S∞, as t → ∞, and this corresponds
to I → 0 in the same limit. Thus, f approaches a limiting value,
f∞ ≡ ln S∞, as t → ∞. The value of f∞ satisfies the following
equation [12]

ef∞ −
γ

β
(f∞ − ln S0) − E0 − I0 − S0 = 0 (10a)

in the interval

f∞ ∈ (−∞, ln γ /β). (10b)

We expand f as t → ∞ as follows:

f ∼ f∞ + g(t) where g → 0 as t → ∞. (11)

Eq. (11) is substituted into (7b) (with (7a)), eg is replaced with
its power series expansion, and terms of O(g2) are neglected to
achieve the following linearized equation

d2g
dt2

+ (γ + α)
dg
dt

+
(
αγ − αβef∞

)
g = 0. (12)

The general solution to (12) is

g = ϵ1eλ1t + ϵ2eλ2t (13a)

λ1,2 =
1
2

[
−α − γ ±

√
(γ − α)2 + 4αβef∞

]
(13b)

where ϵ1 and ϵ2 are unknown constants and λ2 < λ1 < 0 since
ef∞ < γ/β from (10b). Thus the long-time asymptotic behavior
of f is given by

f ∼ f∞ + ϵ1eλ1t , t → ∞. (14)

Higher order corrections to the expansion (14) may be ob-
tained by the method of dominant balance [10] as a series of more
rapidly damped exponentials. However, the pattern by which the
corrections are asymptotically ordered is not as straightforward
as that of the SIR model, provided in Barlow and Weinstein [8]. In
that work, an asymptotic approximant is constructed as a series
of exponentials that exactly mimics the long-time expansion. In
the SEIR model, complications in the higher-order asymptotic be-
havior arise from the competition between the two exponentials
in (13a). Here, we enforce the leading-order t → ∞ behavior
given by (14) and make a more traditional choice for matching
with the t = 0 expansion (9). We create an approximant with
an embedded rational function with equal-order numerator and
denominator (i.e., a symmetric Padé approximant [10]), such that
it approaches the unknown constant ϵ1 in (14) as t → ∞, while
converging to the intermediate behavior at shorter times. The
assumed SEIR approximant is given by

fA,N = f∞ + eλ1t

N/2∑
n=0

Antn

1 +

N/2∑
n=1

Bntn
,N even (15)
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Fig. 1. Analytical and numerical solutions to the SEIR model (1), where the susceptible (S), exposed (E), infected (I), and recovered (R) populations are represented
as a fraction of the total population and t is in units of days. (a) Solution shown in terms of f ≡ ln S. As the number of terms N is increased, the series solution,
denoted by fS,N (given by (9), dashed curves), diverges and the approximant, denoted by fA,N (given by (15), solid curves), converges to the exact (numerical) solution
(•’s). Corresponding relative errors are provided in Fig. 5a. (b) The converged asymptotic approximant for f is used to obtain S, E, I , and R from (8) shown by solid
curves and compared with the numerical solution (closed symbols). The model parameters values and initial conditions α = 0.466089, β = 0.2, γ = 0.1, S0 = 0.88,
E0 = 0.07, I0 = 0.05, and R0 = 0 are taken from estimates of Ebola virus propagation examined in Rachah and Torres [13].

Fig. 2. Analytical and numerical solutions to the SEIR model (1), where S, E, I , R are in units of people and t is in days. All other notation and labels are the same
as in Fig. 1, except R now also includes deaths. Corresponding relative errors are provided in Fig. 5b. SEIR model parameters values and unknown initial conditions
are obtained via a least-squares fit to the Yunan, China COVID-19 outbreak data [14] (open symbols). Best fit parameters are α=0.395031, β=0.00333, γ =0.0553093,
S0=142, and E0=0. The initial conditions I0 = 44 and R0=0 are taken directly from the data set [14] at a chosen t = 0 (here January 28, 2020).

where the An and Bn coefficients are obtained such that the
Taylor expansion of (15) about t = 0 is exactly (9). Note that,
although a rational function is being used in (15), it is not a
Padé approximant itself. Padé approximants are only capable
of capturing tn behavior in the long-time limit, where n is an
integer. The pre-factor eλ1t is required to make (15) an asymptotic
approximant for the SEIR model. However, we may still make use
of fast Padé coefficient solvers [15,16] by recasting (15) as a Padé
approximant for the series that results from the Cauchy product
between the expansions of e−λ1t and f − f∞, expressed as

N∑
n=0

⎡⎣ n∑
j=0

(−λ1)
j

j!
ãn−j

⎤⎦ tn =

N/2∑
n=0

Antn

1 +

N/2∑
n=1

Bntn
, (16)

where ã0 = a0 − f∞ and ãn>0 = an>0. A MATLAB code to compute
the An and Bn coefficients of (15) (for given α, γ , β , S0, E0, I0) is
available from the authors [17].

The SEIR approximant (15) is thus an analytic expression that,
by construction, matches the correct t → ∞ behavior given
by (14) and whose expansion about t = 0 is exact to Nth-order.
A comparison between the approximant solution (15) and the
numerical solution to (1) is provided in Figs. 1–4 with the relative
error for all four cases provided in Fig. 5. The indicated error in
Fig. 5 is calculated by comparing S(t) to its accurate numerical
solution (assumed to be exact); curves showing the same order
of accuracy are obtained when the other dependent variables of
the model are examined.

Fig. 1a provides a typical comparison of the N-term series
solution (9) denoted by fS,N (dashed lines), the N-term approxi-
mant (15) denoted by fA,N (solid lines), and the numerical solution
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Fig. 3. Analytical and numerical solutions to the SEIR model (1), where S, E, I , R are in units of people and t is in days. All other notation and labels are the same
as in Fig. 1, except R now also includes deaths. Corresponding relative errors are provided in Fig. 5c. SEIR model parameters values and unknown initial conditions
are obtained via a least-squares fit to the Sweden COVID-19 outbreak data [14] (open symbols). Best fit parameters are α=0.041281, β=1.513332×10−6 , γ =0.004407,
S0=50306, and E0=10015. The initial conditions I0 = 1743 and R0=20 are taken directly from the data set [14] at a chosen t = 0 (here March 21, 2020).

Fig. 4. Analytical and numerical solutions to the SEIR model (1), where S, E, I , R are in units of people and t is in days. All other notation and labels are the same
as in Fig. 1, except R now also includes deaths. Corresponding relative errors are provided in Fig. 5c. SEIR model parameters values and unknown initial conditions
are obtained via a least-squares fit to the Japan COVID-19 outbreak data [14] (open symbols). Best fit parameters are α=0.2332207, β=2.040015×10−5 , γ =0.034334,
S0=15442, and E0=0. The initial conditions I0 = 1649 and R0=529 are taken directly from the data set [14] at a chosen t = 0 (here April 1, 2020).

(•’s). Note that the series solution has a finite radius of con-
vergence as evidenced by the poor agreement and divergence
from the numerical solution at larger times, even as additional
terms are included. By contrast, the approximant converges as
additional terms are included. For N = 18, the approximant is
visibly indistinguishable from the numerical solution on the scale
of Fig. 1a. Fig. 5a provides the relative error of the approximant
for the data shown in Fig. 1. Increasing the number of terms
beyond N = 18 does improve accuracy up to a point, but a
minimum error barrier is eventually reached of O(10−6) at N =

26; note that, to make this assessment, we take the maximum
relative error with respect to time for each N (the maxima in
Fig. 5a). For larger values of N , the maximum error increases, and
the approximant begins to diverge, i.e. there is an optimal value
of N at which to truncate the approximant. Asymptotic approxi-
mants can exhibit an optimal truncation [6,7] as is often observed
with asymptotic expansions in general [10]. We emphasize here
that a numerical solution is not needed to assess convergence

of approximants to within their optimal truncation; convergence
in the Cauchy sense (i.e., the distance between approximants
decreases with increasing N) may be examined. In addition to
this issue, deficient approximants are possible with increasing
N due to zeros that can arise in the denominator of (15). Such
approximants are ignored in assessing convergence. To avoid this
behavior, the lowest number of terms that yields the desired
accuracy should be chosen. The convergence of the approximant
with increasing N (up until its optimal truncation) is a neces-
sary condition for a valid approximant. In Fig. 1b, the converged
(N = 18) asymptotic approximant for f is used to obtain analytic
solutions for S, E, I , and R from (8), which are compared with
the numerical solution for these quantities. The approximant for
N = 18 agrees with numerics within the visible scale of the plot,
with errors quantified by Fig. 5a.

Fig. 1 results described above correspond to a case exam-
ined in Rachah and Torres [13] to model an Ebola outbreak. In
Figs. 2, 3, and 4, the approximant is applied to COVID-19 data [14]
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Fig. 5. Relative error of the approximant (15) for increasing N as a function of t (in days). The exact solution is taken to be the numerical solution of (1), computed
using the 4th-order Runge–Kutta scheme with a time-step of 10−4 . The subfigures (a)-(d) correspond to the cases presented in Figs. 1–4, respectively. For all figures,
N is taken up until optimal truncation is achieved, indicated by a dashed curve. The cusps in the figures have no physical meaning and simply indicate where the
sign of (SA,N − Sexact) changes.

for Yunan (China), Sweden, and Japan, respectively. Figs. 5b-d
provide the relative error for these cases; the largest indicated
value of N in each figure (corresponding to dashed curves) is the
optimal truncation as discussed above for Fig. 5a. Note that we
extensively surveyed the available COVID-19 data [14], and the
results in Figs. 2–5 are representative of the fits and variability in
the number of terms needed for convergence of the approximant
up to its optimal truncation.

Note that the reported COVID-19 outbreak data [14] is pro-
vided in terms of confirmed cases, recovered individuals, and
deaths per day. We use recovered + deaths as an approximation
to the removed population R and use confirmed − recovered
− deaths as an approximation to I in the SEIR model. It is
acknowledged that the actual COVID-19 data is influenced by
effects not included in the SEIR model, and this can affect the
ability of the model to closely fit actual COVID-19 data. The data
approximations made here are to enable comparisons with model
predictions. The ability of the approximant to match numerical
results is unaffected by such approximations. Disagreement be-
tween the model and epidemic data after fitting is attributed to
the applicability of the SEIR model and not the approximant.

In Figs. 2–4, a least squares fit to I and R data is used to extract
SEIR parameters α, β , γ and initial conditions S0 and E0. To do

so, the initial values of I0 and R0 are taken directly from the
COVID-19 data set [14]. Additionally, the time t = 0 is chosen
such that disease has progressed to a point where initial trends
are observed, so that curve shapes are consistent with those
reasonably predicted by the SEIR model. Adjustments such as this
have been well described in fits done in previous work [18,19].
The initial guesses for the iterative least-squares fit are taken
from data fits for earlier times than examined here [18,19].

Our results demonstrate that an asymptotic approximant can
be used to provide accurate analytic solutions to the SEIR model.
Future work should examine the ability of the asymptotic ap-
proximant technique to yield closed-form solutions for even more
sophisticated epidemic models, as well as their endemic counter-
parts [12].
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