
32 IEEE JOURNAL ON MINIATURIZATION FOR AIR AND SPACE SYSTEMS, VOL. 1, NO. 1, JUNE 2020

Optimizing Requirements for a Compact
Spaceborne Adaptive Spectral Imaging System

in Subpixel Target Detection Applications
Sanghui Han , Student Member, IEEE , John Kerekes , Senior Member, IEEE ,

Shawn Higbee, and Lawrence Siegel

Abstract—We developed a process to provide design
recommendations for compact spaceborne spectral imag-
ing systems with adaptive band selection capabilities. Our
focus application was subpixel target detection, and we
analyzed a set of mission scenarios to find relationships
in detection performance between selected parameters of
interest. We used an analytic model to predict performance
and generate trade curves, then simulated a scene to ana-
lyze potential operational effects on performance for the
selected target and background combinations. Using these
models, we predicted and assessed each scenario to pro-
vide recommendations for mission feasibility and system
design. The parameters we selected for analysis were target
fill fraction, noise, number of bands, and scene complex-
ity to find critical points in the trade space and reach
a set of recommendations. We examined the operational
effects by simulating a realistic scenario and ensuring key
real-world phenomena were captured within the spectral
images. Our results produced recommendations for each
mission and provided a proof of concept for a process to
analyze designs of miniature spaceborne imaging systems.

Index Terms—Band selection, hyperspectral imagery,
imaging system design, modeling, optimization, remote
sensing, simulation, target detection.

I. INTRODUCTION

THERE are many design requirements for an Earth observ-
ing remote sensing system, and when using miniature

spaceborne systems to collect spectral images, there are several
considerations that require analysis. With panchromatic imag-
ing systems, the trade space for optimizing the image quality
resides mostly in the spatial domain. On the other hand, the
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spectral component of images often make design optimization
more complex. In this article, we analyze the utility of spec-
tral images for subpixel target detection applications focused
on compact systems with adaptive band selection capabilities.
However, this process can be modified for larger more general
systems with different thresholds for the parameters analyzed
and further examination of other components that affect util-
ity. What makes this process specific to miniature systems, and
more specifically, one that had adaptive spectral capabilities is
the hardware that motivated this work.

In this article, we present an end-to-end process for analyz-
ing the design and operations of compact spectral imaging
systems with the combined use of an analytic model and
physics-based simulation. In Section II, we frame our problem
and present our operational process, which served as our
constraint. Then, in Section III, we present the figures of
merit, detection algorithms, and modeling tools we used for
prediction and assessment processes. In Section IV, we explain
our approach to exploring the trade space for spectral image
utility. We conclude this article with our results in Section V
where we provide example design recommendations, and
suggestions for future work in Section VI.

II. MOTIVATION

The process and results we present in this article were appli-
cable to compact spaceborne spectral imaging systems with
adaptive band selection capabilities deployed for a wide-area
search of subpixel targets. The utility of the imaging system
would produce detection performance sufficient to tip and cue
other information collection capabilities to confirm or deny
the presence of an object. We present an example mission
scenario to search for vehicles in a desert and suburban loca-
tions. However, the simulation can be modified to replicate
other scenarios, such as plume detection or open ocean route
safety assessment. A single spectral image collected of these
areas, could relay several locations with the potential presence
of a target, and an overlap from other sources of intelligence
with any of these locations would tip an asset capable of char-
acterizing the target. As a part of the design process, we first
determine mission feasibility, then if a target was indeed viable
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for a miniature spectral system, we determined the optimal
design. The analysis data from the design analysis can be used
in the operational process for collection decisions.

We analyzed the mission feasibility and optimal design
parameters for a system that was less than 10 kg and 30–60 cm
on each side, with a low-Earth orbit, and therefore, the size
of the optical diameter was limited [1]. Each unit was self-
contained with its own communication, power, and navigation
system within the spacecraft, and a single unit would be a
part of a constellation of miniature satellites to meet var-
ious requirements. The system and operational context we
envisioned were a miniature system such as a CubeSat with
existing system components that could be modified to pro-
duce a small range of focal lengths and an existing sensor that
could be replaced to reduce noise, but at a cost. Parameters
that encompassed these components that could lead to deci-
sions for them were selected for analysis and the process was
refined after several iterations to produce recommendations
for use in real operations in deploying the miniature systems
for specific missions. The parameters we selected to limit the
scope of our analysis were to determine the best configuration
of the existing optics for a small range of spatial resolutions
and whether or not the cost of reducing the noise of the exist-
ing sensors was justified. This analysis was a continuation of
our study that analyzed the utility trade space in the spatial
domain for a system with fixed optical diameter that changed
the noise and the point spread function as the focal length
changed [2].

The previous methods for predicting spectral image util-
ity as well as design optimization methods were consid-
ered. Some of the past methods we examined that predicted
spectral image utility, empirically derived equations similar
to the general image-quality equation (GIQE) for panchro-
matic images [3]. They developed a regression model using
real spectral images to produce an equation [4]–[6]. Other
approaches combined spatial and spectral figures of merit [7]
or used statistical parameters of an image and the target to
predict detection performance [8].

The previous methods for optimizing the system design also
used simulation and modeling of spectral imaging systems [9]
and encompassed the entire remote sensing process [10]. Trade
studies were also conducted previously using both analytic and
simulation models for spectral imagery to configure complex
data selection parameters [11]. Other methods for studying
system designs from a mission and operation perspective exist
for satellite systems where the optimal design of small satel-
lites is outlined in detail for a list of mission objectives [12].
More recent processes that were developed that facilitated
decision making on the design of remote sensing satellites used
an approach called multidisciplinary design optimization [13]
and multiparameter joint optimization [14]. A study that
analyzed the use of modeling for the design of CubeSats con-
sidered the multiple dependencies between the design and
operation and can be considered the state of the art [15].
These methods for analyzing miniature systems can be used
for designing and deploying remote sensing satellites with spe-
cific application objectives. What we present in this article is
a process to analyze subpixel target detection using spectral

images to provide recommendations for mission feasibility,
design optimization, and operational decision making.

A recent state-of-the-art system that lends itself to “end-
to-end” analysis is the Compact High-Resolution Imaging
Spectrometer (CHRIS) of the European Space Agency Third-
Part Mission Project for On-Board Autonomy (PROBA). This
system is capable of making the trade between spectral reso-
lution and spatial resolution [16], depending on the mission.
Whether it is for land use classification [17] which requires
more bands, but lower spatial resolution or chlorophyll con-
tent analysis [18], which requires less bands but higher spatial
resolution, the system is capable of collecting images for each
purpose. We developed a process to analyze the compact spec-
tral imaging system trade space with subpixel target detection
as the focus application. The underlying assumption for the
miniature systems designed using this process was that the
data collected will be automatically processed and a part of
initiatives to use artificial intelligence in-orbit [19].

The process we propose begins with a few selected mission
scenarios, assumes that the bands can be selected as the target
changes prior to collection, and works within the constraints
of miniature systems. Our assumption was that these compact
spectral imaging systems would only be required to detect a
few or a single target as part of the constellation of satellites.
We build on the previous work that developed frameworks
to predict spectral image utility [20] and assess small satellite
performance and suitability for wide-area search missions [21].
This article is a continuation of work to analyze adaptive
band selection capabilities of the miniature systems where
we validated a band selection method using real images [22].
This study also confirmed the congruence of the results from
the modeling tools we use in this article and validated their
combined use.

III. BACKGROUND

There were many components that affected subpixel target
detection performance, but what drove utility was the target
itself and the scene it was in. Materials with low reflectance
throughout most of the spectrum were more difficult to detect
than materials with high reflectance. The detectability of an
object was also affected by the background location and its
characteristics. In this section, we describe the figures of merit
and the parameters of spectral utility that was the focus of our
analysis. The four parameters of the spectral imaging trade
space we selected that encompassed the adaptive band selec-
tion capabilities of a miniature satellite that had a few compo-
nents available for limited modification were target abundance,
number of bands, noise, and background complexity. The met-
rics we used facilitated the analysis of subpixel target detection
performance that determined feasibility recommendations and
system optimization.

A. Utility
When quantifying detection performance, there were two

metrics that were often used: true positive rate (TPR) at a
specified false-positive rate (FPR) or the area under the curve
(AUC). For this project, we used a combination of the two
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metrics that defined utility as the AUC below a specified FPR
weighting function (ψ) scaled by the perfect detection area
possible for the selected FPR based on [8]

Utilityψ =
∫ 1

i= 0 ψ · TPR(t, TA, D(t), FPR) dFPR
∫ 1

i= 0 ψ dFPR
. (1)

In this equation, t is the target reflectance and D(t) is
the detection performance for that target at the selected
target abundance or target fill fraction (TA). We used this
metric in order to standardize our prediction and assessment
results for comparison and for its ability to better character-
ize the overall performance. We wanted to measure the utility
for a range of FPRs without having to repeat our process for
multiple FPRs. Using this metric, if the utility value was low,
we could expect that performance at lower FPRs was low, and
if the utility was high, then performance was likely sustained
even for lower FPRs. We selected an FPR of 0.001 for anal-
ysis as this was what we determined to be the upper limit of
acceptable false alarms in most performance evaluations and
operations. For a 300 × 300 pixel image, FPR = 0.001 was
equated to 90 pixels per image for our analysis, within areas
that were about 2.5 km2 when the ground sampled distance
(GSD) was 5 m, and 20 km2 when the GSD was 15 m. What
was not considered for our work was the utility contributions
of the total scene size as GSD increased where a larger scene
would be capable of providing more context and allowed larger
area coverage with less data processing requirements. These
effects on utility are possibly a subject for future study.

B. Spectral Signature Comparisons
A challenging aspect of predicting spectral image utility for

subpixel target detection was that the target material, back-
ground, and their separability contributed to the detection
probability. We used a method for quantifying how similar
or different one material was from another by calculating the
spectral similarity value (SSV) [23]. The SSV combined the
Euclidean distance

de =

√√√√ 1
N

N∑

i= 1

(xi − yi)
2 (2)

and the correlation coefficient

r2 =
(

1
N−1

∑N
i= 1(xi − µx)

(
yi − µy

)

σxσy

)2

(3)

r̂2 = 1 − r2 (4)

to quantify the separability of the spectral reflectance curves
of two materials

SSV =
√

d2
e + r̂2. (5)

The mean spectrum of material reflectance X (µx) and the
standard deviation (σx) of the spectral variations were com-
pared to that of material Y , for the number of bands (N). The
more distinct X and Y were, the larger the SSV which had a
maximum value of

√
2. This combined the magnitude of the

material spectrum (de) as well as the shape of the curve (r̂2)

Fig. 1. Hyperion image of the coast of Japan shown with bands 2, 5,
and 10—B(365.76 nm), G(396.29 nm), and R(447.17 nm). Example of
a scene with high degree of complexity.

Fig. 2. Hyperion image of the coast of Japan shown with bands 2, 5,
and 10—B(365.76 nm), G(396.29 nm), and R(447.17 nm). Example of
a scene with low-complexity value.

to determine how distinct one material was from another. This
value accounted for the spectral reflectance characteristics of
materials where the difference in the magnitudes of the curves
determined whether or not they were distinct. The correla-
tion coefficient accounted for differences in the measurements
of the same material that may have different magnitudes, but
retains the same shape, and so a low r̂2 would mean two mate-
rials have similar shape in their reflectance spectra, even if the
Euclidean distance was high due to differences in measurement
conditions.

C. Scene Complexity
The complexity of a scene that affected detection

performance was contributed by the number of materials that
were present, the variance calculated from multiple measure-
ments of each material’s spectrum, and the homogeneity of the
scene. A homogeneous scene was one that was relatively uni-
form, and a heterogeneous scene was one that was composed
of different structures. Also the brightness of the background
materials affected detection performance. Fig. 1 shows a back-
ground that would decrease performance due to its complexity
and the brighter materials present. In this scene, there are
bright materials and structures that add to the complexity by
increasing material measurement variations due to shadows
or object geometry, variations due to the number of materials
present which makes this a heterogeneous scene. Fig. 2, on the
other hand, is an ideal background scene where it is composed
mostly of water which is dark with low reflectance throughout
the spectrum, with the minimal structure that introduces mate-
rial measurement variations from 3-D geometry effects such
as shadows, and makes this a homogeneous scene.

In order to quantify the degree of scene complexity in our
analysis, we used two methods. The first method was used in
our prediction and calculated as a part of the analytic model.
We combined the mean spectral signatures of the materials
that composed the background and their covariance matrices

# =
K∑

i= 1

ai

√
bT

i ·$i · bi. (6)
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Here, the number of different materials that the background
was composed of was K, and bi were the spectral signa-
tures of a single material, and $i was its covariance from
the measurement variations in each band. The spectral signa-
ture and the covariance were scaled by the fractional amount
(ai) that material was present in the background composi-
tion. The background complexity value (#) was used in our
prediction step to parameterize the background effects. The
background composition with the specific materials and their
fractions could be modified as part of the prediction model,
and so several material spectra were selected for each scene.
The material brightness was accounted for in the complexity
value in (6) so brighter materials increased the complexity to
a greater extent, and darker materials contributed less to the
complexity. What this value did not account for was the degree
of homogeneity of the scene. This metric was appropriate for
the prediction, but for the assessment, we used a method that
could account for scene heterogeneity.

We used a geometric approach to quantify scene complex-
ity in our assessment step. When a hyperspectral image was
represented geometrically, the endmembers of the HSI formed
the vertices of the space that the data occupied [24]. This
approach estimated the volume of a convex set that would be
enclosed by the endmembers present in a scene if the number
was known [25]. The volume of a scene when the number of
endmembers present was not known was calculated by finding
the parallelotope using the Gram matrix of the image between
each pixel for a range of endmembers k = 3, 4, 5, . . . , M

Gi,j = < x i, x j>. (7)

The Gram matrix was the same size as the spatial dimen-
sions of the image. The determinant of the Gram matrix
was the square of the volume of the parallelotopes for k =
3, 4, 5, . . . , M endmembers

Vk = normk

(√
det(G)

)
. (8)

The volume was calculated for each k and normalized to allow
the k-dimensional values to be comparable, and the normalized
maximum volume within the selected range determined the
scene complexity for the input image

Vscene = max
(
Vk|Mk= 3

)
. (9)

For our analysis, M was set to 15, as this estimated the max-
imum number of materials present in the entire scene. The
maximum k value was 12 for the most complex subset scene
and Vscene = 0.82, and k = 5 for the least complex subset
scenes with Vscene = 0.30. M could be selected by the user
based on the estimated maximum number of materials present
in the scene. This value could be easily changed after exami-
nation of a few k versus Vk plots. The subset scenes with larger
volumes consisted of many materials that were brighter, and
had a high degree of heterogeneity. This method accounted
for all three aspects of scene complexity where higher volume
was consistent with brighter materials. However, if a scene
was uniform even if it was composed of bright materials, it
had low volume. While darker materials occupied less volume
in general, a heterogeneous scene with high in-scene variation

had a higher volume than a uniform scene. Therefore, like the
background complexity value (#), the scene volume (Vscene)
accounted for the brightness of the material’s spectral signa-
ture, measurement variance of individual materials, and their
contribution to scene complexity. Unlike # however, it also
accounted for the degree of uniformity in a scene due to the
structures and the variations in their presence within the scene.

D. Target Detection
We selected three target detection algorithms to calculate

performance based on their wide use with HSI [24]. We
selected spectral angle mapper (SAM) as one of the algo-
rithms, because it calculated the difference in the angle
between the target and background to determine the like-
lihood of a target’s presence [26]. This method was an
example of an algorithm that used a distance metric. The
adaptive cosine estimator (ACE) was another method we used
as it was considered state of the art [27]. It also used
a distance metric, but accounted for some degree of ran-
domness within the background by incorporating the inverse
covariance of the data, which could improve the detec-
tion of subpixel targets. The third detection algorithm we
used was the spectral matched filter (SMF), which calculated
the orthogonal vector space, and subtracted the mean spec-
trum from the pixel spectra [28]. We selected this method
because of its similarity to the constrained energy minimizer
(CEM), which also used the orthogonal vector space. The
CEM was the algorithm that was implemented in the ana-
lytic model that was used to predict utility [29]. Implementing
other detection algorithms in the prediction tool was out-
side of the scope of this project, but can be explored in
future work. We compared the three algorithms to ensure
that the results of our utility analysis did not hinge on a
single detection algorithm’s calculation metric. Any target,
imaging system, scene, atmospheric compensation error, or
other manifestations of spectral imaging system characteris-
tics, could produce different results for each target detection
method. By comparing the algorithms, we could detect any
anomalies in our utility analysis that stemmed from the detec-
tion algorithm itself as opposed to the system design or
mission.

E. Simulation and Modeling Tools
We used two modeling tools to analyze the trade space for

compact spectral imaging systems. For the prediction process,
we used an analytic model that used first- and second-order
statistics. Then for the assessment process, we used a physics-
based simulation model to generate spectral images that could
replicate the operational images of a realistic scene. The com-
bined use of both tools allowed us to forego the labor-intensive
process of modifying a simulation and running hundreds of
iterations to generate trade curves for the four parameters we
analyzed. The prediction tool generated trade curves for each
parameter in a matter of minutes to find critical points in the
trade space, and the simulation tool was used to validate and
refine the results from the prediction process.
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1) FASSP: The analytic modeling tool used for the
prediction process was forecasting and analysis of spectrora-
diometric system performance (FASSP), which calculated the
subpixel target detection statistics of remotely sensed spectral
imaging systems [30]. FASSP was a model that accounted for
each component of the imaging chain to predict performance.
This model generated receiver operating characteristic (ROC)
curves and trade curves using the CEM algorithm. It calcu-
lated the final sensor reaching radiance from the composition
of target and background input spectra, and accounted for the
atmosphere, collection geometry, illumination conditions, and
noise.

The user defined the illumination and atmospheric con-
ditions that were modeled using moderate resolution trans-
mission (MODTRAN) [31], target pixel fill fractions (target
abundance), target and background spectral reflectance data,
background composition with any combination of materials
possible, and sensor characteristics. The spectral reflectance
signatures of the targets and various background materials
were combined to model complexities seen in real scenes. A
linear mixture model was used to calculate the final spectral
radiance of the material combinations, but variance associ-
ated with multiple measurements in each reflectance file could
produce results that were consistent with real images. The vari-
ance of each material spectra was calculated from hundreds
of ground measurements using a spectrometer.

We used the FASSP modeling tool to efficiently generate
trade curves and determine the critical points in the trade space
for spectral images [32]. It was a tractable method that could
account for the primary components of the imaging chain
to predict performance and narrow the simulation design. It
allowed us to analyze the four components of the compact
systems in a few runs that took a matter of minutes on a per-
sonal computer. The same process to generate trade curves
for these components would have taken hundreds of simula-
tion designs, each a painstaking process that would have been
time consuming and cumbersome.

2) DIRSIG: For the assessment process, we used a physics-
based image simulation tool to generate spectral images that
replicated the operational context of the images collected
by the miniature spaceborne systems. Digital imaging and
remote sensing image generation (DIRSIG) uses a ray-tracing
approach that accounts for the random nature of light scatter-
ing and accounts for various phenomena including adjacency
effects. Using the DIRSIG model, we designed a scene and
replicated the conditions in which the spectral images would
be collected to generate images that were used to assess sub-
pixel target detection performance [33]. This model accounted
for each imaging chain component similar to FASSP, using
MODTRAN to model the atmosphere and illumination con-
ditions, sensor characteristics with collection geometry, and
spectral information of the materials in the scene. However,
with DIRSIG, we also recreated a real location where we
placed 3-D structures and on realistic terrain using design soft-
ware and attributed each object in the scene with its own
material spectra. Therefore, with FASSP, we were able to
predict detection performance for a set of background compo-
sitions and a range of target fill fractions, but with DIRSIG,

Fig. 3. Diagram of approach to analyze spectral image utility.

we designed a heterogeneous scene with hundreds of structures
with their own spectra to generate spectral images. We recre-
ated the operational aspect of image collection by producing
a target abundance distribution that was from an object’s spa-
tial location relative to the collection geometry, sensor design,
and size. The simulation was designed to produce images
with a target and other objects in the scene that changed its
location at given time increments to generate time-correlated
images.

IV. APPROACH

We explored the utility trade space to provide recommenda-
tions for mission feasibility and optimal system design by first
predicting performance, then assessing simulated images. We
tested four target materials against two background types as
example cases. We accounted for band selection prior to col-
lection to optimize the trade between adequate performance
and reducing data processing requirements. We predicted util-
ity to test TA, number of bands, noise, and background
complexity and found critical points in the trade space. Once
we determined critical points, we designed a scene to simulate
the collection conditions in a realistic scene that encompassed
the predicted critical points in the trade space. Fig. 3 shows
a diagram of the approach with the variables analyzed in
each step.

A. Targets and Backgrounds
We selected two difficult and easy targets that were tested

with two background types. The two difficult targets were
black and green materials which had relatively low reflectance
values in the visible near-infrared (VNIR) portion of the spec-
trum (0.4–1.0 µm). The two easy targets we selected were
white and orange materials. Fig. 4 shows the mean spectral
reflectance values of the four targets along with the standard
deviations of the individual material measurements that are
shown by the gray area.

The two backgrounds we selected were composed of
multiple types of sand and grass spectra. The backgrounds
were selected not only for their prevalence in target detec-
tion but also because of their contrast to the four targets we
selected. The green and orange targets had relatively high
SSVs compared to the grass background, and so we had one
easy and one difficult target that was less spectrally distinct
to the grass background. In a similar manner, the sand back-
ground was composed of materials that were less spectrally
distinct from the white and black targets. Figs. 5 and 6 show
the four mean spectral reflectance curves used to compose the
two background types along with their standard deviations of
the measurements shown by the gray area.
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Fig. 4. Target reflectance curves used for FASSP analysis and DIRSIG
objects placed in scene. Also used to select bands. Standard deviations
calculated from measurement variations shown by the gray area.

Fig. 5. Background reflectance curves used to compose grass
background used for FASSP and DIRSIG scene. Standard deviations
calculated from measurement variations shown by the gray area.

B. Band Selection
We used a band selection method that used only the tar-

get reflectance signature to rank order the best bands [22].
While there were other state-of-the-art methods that could
achieve high performance, these methods were inappropriate
for a miniature system due to their calculation complexity.
For the operational process we envisioned and the capabili-
ties of the system we assumed, i.e., adaptive band selection,
we needed a method that was simple and did not need back-
ground information. The bands from only the target spectrum
(BOTS) method rank-ordered bands using the magnitude and
slope of the target spectral reflectance

z = a · dt
dλ

+ b · t; a + b = 1. (10)

The coefficients of the BOTS method could be modified to
allow flexibility for different situations. The combination could
be changed based on the type of target or background com-
plexity. In [22], the optimal coefficient was found to be a = 0.2
for the easy detection scenario, and a = 0.8 for the difficult

Fig. 6. Background reflectance curves used to compose sand
background used for FASSP and DIRSIG scene. Standard deviations
calculated from measurement variations shown by gray area.

Fig. 7. Normalized z values of band selection methods for the bands
between 0.4 and 1.0 µm. The highest z values are selected.

scenario. The difficulty of a detection scenario is a combi-
nation of the target and dominating background spectra and
their separability, but with the brightness of the target as the
dominating factor. We used a = 0.2 for the orange and white
targets, and a = 0.8 for the black and green targets. These
coefficients are user selected and for this study were empiri-
cally determined after analysis of the target [34]. The effects
of using different coefficients on utility for other targets and
scenarios and quantifying the difficulty level of a detection
scenario are possible subjects for future study.

Fig. 7 shows the normalized z values that were calculated
using BOTS with the coefficients based on the target types.
The bands that corresponded with the highest 30 z values for
each target were used for the trade space analysis. The number
of bands beyond 30 was not analyzed due to the limitations
posed by the computation requirements to calculate the detec-
tion probability of more bands. We assumed for the automated
image exploitation architecture of the miniature satellite imag-
ing systems, any mission that required greater than 30 bands
would not be feasible.
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TABLE I
INITIAL COMPOSITION OF THE SAND BACKGROUND

TABLE II
INITIAL COMPOSITION OF THE GRASS BACKGROUND

C. Utility Prediction: FASSP
We initialized components of the trade space for noise

and # to generate the trade curve for TA. The relative cal-
ibration error was set to 5%, which resulted in a maximum
signal-to-noise ratio (SNR) of 20 but varied for each band.
This introduced random error (not systematic) and the SNR
that resulted was consistent with the initial expected miniature
system detector performance. Initial background complexity
values were determined by using the four shown in Tables I
and II to compose the background. The initial # values for
the sand background were # = 0.17 and # = 0.075 for
the grass background. TA was analyzed initially for the range
of 0.01–0.99 in 0.15 increments. The lowest TA where the
Utilityψ reached perfect detection was determined as the crit-
ical point for each scenario and we narrowed the analysis to
0.01 increments at these points.

The sensor model we used as part of the prediction was
for the hyperspectral digital imagery collection experiment
(HYDICE) sensor which collects 210 bands in the range of
0.35–2.5 µm [35]. We used bands 4–97 of this sensor to gener-
ate the trade curves for TA. Any reference in this article to use
all the bands refers to this subset of the HYDICE sensor. While
the miniature system was tunable over time and so the spectral
bandwidth and center wavelength could be changed as needed,
we used the fixed bands of the HYDICE in our analysis to keep
our problem tractable as this was a well-characterized sensor.
The adaptability of the miniature system was modeled by the
bands selected for analysis using BOTS. However, implement-
ing a tunable spectral sensor and analyzing its effects on utility
are worthy future endeavors.

Once we found the critical points in the trade curves for
TA, we used these points as the input values to analyze the
number of bands. We generated trade curves for 2, 5, 10, 15,
20, 25, and 30 bands, and determined the effects of reduc-
ing the number of bands. The lowest number of bands with
Utilityψ > 0.9 was determined to be the critical point. If a
critical point was found, it was used as input for the noise anal-
ysis. For scenarios with Utilityψ < 0.9 even when using 30
bands, we analyzed noise with both 30 bands and all the bands
as input. We tested the noise effects by setting the calibration
errors to result in maximum SNRs of 5, 10, 20, 30, 40, and 50

TABLE III
PARAMETERS SELECTED FOR THE OPTICAL SYSTEM SIMULATION

that varied from band to band from atmospheric effects. This
range of SNR values encompassed the initial compact system
detector performance and was used to determine whether or
not improving system noise performance justified the cost of
doing so. However, this did not analyze each fixed and ran-
dom component of noise which we leave as a potential future
study.

The final dimension in the trade space we analyzed was
#. We calculated the # values by changing the composi-
tion of the four curves that were used for each background
type. Increasing the percentage of spectral reflectance curves
that had higher variation or higher reflectance to compose the
background increased #. Therefore, we traversed through the
spectral image utility trade space by analyzing the four param-
eters of interest and finding the critical points. This produced
results that could be used to determine mission feasibility and
provide system design recommendations.

D. Assessment: DIRSIG
Using our simulation tool, we generated spectral imagery

of scenes that could test the utility predictions. The GSDs we
determined that encompassed the critical points were 5, 10,
and 15 m and we placed vehicles of varying sizes in our
scene that could produce the TA critical points for all the
scenarios. Table III shows the imaging system parameters we
simulated. These were congruent to the simulation validation
study where we developed the techniques to ensure we repli-
cated the real-world parameters that affected image quality
metrics in the spatial domain [2]. We extended the simulation
techniques used in our reference into the spectral domain by
generating slices of single band images each with their own
narrow response function to simulate the detectors. We gener-
ated images consistent with ones that would be collected by an
adaptive spectral imaging system, but with wavelength centers
that were similar to the HYDICE sensor.

We used an existing scene of Trona, CA, USA, that was
routinely used for studies involving spectral images. Fig. 8
shows an image of this scene generated as a desert/industrial
area where the background was attributed with spectra shown
in Fig. 6. Fig. 9 shows an image of the same location, but gen-
erated as a suburban area where the background was attributed
with the spectra shown in Fig. 5. This figure also shows how
the entire scene was divided into subsets that produced nine
different Vscene values. A subset scene that was more homo-
geneous such as subset nine, had lower Vscene values than the
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Fig. 8. High spatial resolution image of Trona, CA, USA, rendered as a
desert scene.

Fig. 9. High spatial resolution image of Trona, CA, USA, rendered as
suburban scene divided into nine subset scenes.

subsets with various structures and was heterogeneous such as
subset seven.

Four types of vehicles were placed within the road network
using the simulation of urban mobility (SUMO) [36], [37]
where the location of the vehicles changed at time increments
similar to real vehicles moving in traffic. When simulat-
ing multiple captures at a given rate, the location of the
vehicles in each image was different from one image to
another [38], [39]. This allowed a single simulation run to
generate multiple images with changing target locations that

Fig. 10. Panels and array of vehicles used in scene attributed with each
target material type.

were time correlated. This automated the workflow to gen-
erate 27 000 unique images using a few simulation designs,
which ensured there was a sufficiently large sample set to draw
statistically significant conclusions in the assessment process.

Fig. 10 shows four calibration panels attributed with the
target materials, and an array of the vehicle types that were
placed within the scene. The panels attributed with the black
and white materials were used for atmospheric compensation
using the empirical line method [40]. The 18-wheeler was
selected as a vehicle that was large enough to generate full tar-
get pixels. The dump truck was large enough to produce up to
0.85 TA, and the SUV and sedan were vehicles that could pro-
duce up to 0.45 TA. Since we were not “tracking” the targets,
they did not always produce their maximum possible TA. The
target was often spatially divided between several pixels and so
there were TA variations in each scene. However, the different
vehicle types generated their own median TAs which produced
a distribution of TA values due to target size, relative spatial
location to the pixel pitch, and GSD. In this way, we repli-
cated an operational component of subpixel target detection
that was not fully captured by the analytic prediction model.

Fig. 11 shows a high spatial resolution demonstration of
a subset scene with the vehicles placed using SUMO as
described earlier. With the semirandom placement of vehicles,
there was potential for no targets of a certain type to be present
in an image, or more than one of the target type to be present.
We placed nine white and orange vehicles, and 15 green and
black vehicles in the large scene. This produced statistically
expected values of one white and orange vehicle in the subset
scene, and 1.7 green and black vehicles. The movement files
to place the vehicles were selected at random for each simu-
lation set, which also introduced variations in the number of
targets present. The extra use of green and black vehicles was
to increase the TAmean distribution by increasing the probabil-
ity of higher pixel fill fractions from the good placement of a
vehicle close to the center of a pixel since the detectable TA
saturation points for these materials were higher.

In total, we generated sets of spectral images of the two
scene types with the grass and sand backgrounds, that were
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Fig. 11. High spatial resolution subset scene to demonstrate the
placement of vehicles.

separated into nine subsets, where the vehicles and movement
file combinations of these sets were selected using different
random generator seeds. Each set simulated time captures of
the randomly selected vehicle and movement file combinations
for 20 s, at a rate of 1 image captured per second. A single
run, therefore generated 20 images of the vehicles moving
across a scene (or standing still) at various speeds. The image
generation process was automated to run each simulation in
parallel using high-performance computing resources.

E. Postprocessing and Utility Assessment
Once the images were generated, we needed to select bands,

add noise, and apply a point spread function. We wanted
to ensure that the synthetic images whose initial output was
noiseless with perfect edge response functions, had real image
characteristics. While fully replicating all real-world phenom-
ena that affected utility was beyond the scope of this project,
we wanted at the very least, to account for the major com-
ponents of the imaging chain. The first step in preparing the
data for assessment was to select the bands, not only because
this was a critical component of the envisioned operational
process but as a dimension reduction step to decrease compu-
tation requirements. The generated images were divided into
six groups (GSD and background), and each group was divided
into nine sets (subset scenes) for analysis. The same bands and
the critical number of bands found in the prediction process
were also used for the assessment process.

To each of the images, we added shot noise and parameter-
ized the SNR. We combined both fixed and statistical noise
as a single value, and multiplied the simulated images with
a random value [g(p, q, r)] that had a Gaussian distribution,
zero mean, and unit standard deviation. Then, we scaled this

value by the desired SNR to calculate the noise

n(p, q, r) = g(p, q, r) · f (p, q, r)sim/SNR. (11)

In this equation, f (p, q, r)sim is the pixel value of the simulated
image at the spatial location of p and q for the band r. This
noise value was then added to the simulated image to produce
the image that would on average have the desired SNR value

f (p, q, r)noisy = f (p, q, r)sim + n(p, q, r). (12)

The separation of the noise contributions from different
sources such as dark noise, and their effects on utility is a
potential area of study for the future. However, in order to
match the predicted noise analysis, we focused on shot noise.

Once the bands were selected and the noise was added, we
convolved the image with a point spread function [41], [42].
We applied a blurring kernel to the noisy image using a dis-
crete Fourier transform that replicated the effects of an Airy
disc from a circular aperture whose size was related to the
pixel. The Airy disc radius was set to 0.5 · λ/λc for the
15-m GSD images, 1.0 · λ/λc for the 10-m GSD images, and
1.5 · λ/λc for the 5-m GSD images. Here, λ is the center
wavelength of each band, and λc is the selected wavelength
representing the overall sensor spectral band range, which in
order to coincide with our panchromatic study was set to
0.5 µm [2]. This essentially replicated the optical resolution
limits seen from increasing the focal length while the aperture
diameter remained constant [43] where the 5-m GSD images
had and Airy disc radius that was 0.5 times the pixel size, and
the 15-m GSD images 1.5 times the pixel size.

We assessed the final utility using the postprocessed images
by calculating the ROC curves. For the subset scenes of each
background type and GSD, Vscene and TAmean were calculated.
A histogram was generated for each target in each set to eval-
uate the TA distributions of the target present pixels and find
TAmean. By calculating Vscene, Utilityψ , and TAmean values, we
were able to find points of comparison for the assessment to
the prediction, thus forming our trade space analysis process.

V. RESULTS

From the prediction and assessment of utility we obtained
from the eight target and background combinations, we were
able to find novel relationships between trade space param-
eters. We used these findings to form mission feasibility
and design recommendations for miniature spectral imaging
systems. In this section, we present the SSVs that were calcu-
lated from the target and backgrounds as part of the prediction
process. Then, we present the predicted utility trade curves
that informed the recommendations. Finally, we present the
assessment results and compare them to the utility predictions.

A. Spectral Similarity Values
The average curves of the targets and background types

were used to calculate the SSVs shown in Table IV. Since
the magnitude of the reflectance was used to calculate the
SSV, their relationship to the background was relative. The
green and black targets had lower SSVs overall because their
reflectance magnitude was lower while the orange and white
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TABLE IV
SPECTRAL SIMILARITY VALUES

Fig. 12. Target abundance versus Utilityψ for grass background. All the
bands were used to generate these results.

target had higher SSVs. However, the green target relative to
the black target had a lower SSV for the grass background
than the sand background and vice versa for the black target,
with similar relative relationships for the white and orange
targets.

B. Prediction
The primary purpose of using an analytic model was to

parameterize components that affected the trade space for sub-
pixel target detection. We were able to generate trade curves
for the four components efficiently without having to design
hundreds of simulations. We analyzed the different dimensions
within the spectral image utility trade space as separate slices
and traversed through the space via the critical points.

1) Target Abundance: The eight detection scenarios were
analyzed for the entire possible range of TA values. The crit-
ical point was the lowest TA value with Utilityψ > 0.98.
We did not find a critical point for the black target in the
sand background and Utilityψ < 0.4 even for full target pix-
els. Figs. 12 and 13 show the trade curves for the targets
in the two background types. The brighter targets had criti-
cal points at relatively low TA values. The grass background
was an easier background for subpixel target detection and
a critical point was found for all the targets including the
black target. Table V shows the critical points determined
for the scenarios. These values were used to analyze Utilityψ
versus the number of bands (L). The TA was fixed at the
critical points to generate trade curves for the number of
bands.

2) Number of Bands: We produced the trade curve for
Utilityψ versus L using the top 30 bands selected using BOTS.
The critical point for this parameter was set as the minimum
L with Utilityψ > 0.9. Figs. 14 and 15 show the results of this

Fig. 13. Target abundance versus Utilityψ for sand background. All the
bands were used to generate these results.

TABLE V
CRITICAL POINTS FOR TARGET ABUNDANCE

Fig. 14. Number of bands versus Utilityψ for grass background. The TA
values in Table V were used to generate these curves.

analysis. For the easy targets, there was a clear point where L
reach the critical point. The two difficult targets required more
than 30 bands to produce Utilityψ > 0.9, and in Section V-B1,
we saw that for the black target, even using all the bands did
not produce this result.

Table VI shows the input values we used for the noise analy-
sis. We set the maximum number of bands as L = 30 and used
this and all the bands as input for the black and green targets.
For the white and orange targets, we used the critical points
found in this analysis. The low SSV between the target and
background is a possible explanation for the seemingly incon-
sistent phenomena for the black and green target results. The
green target in grass background resulted in Utilityψ > 0.98
when using all the bands, however, when reduced to 30 bands
or less, the Utilityψ stagnated at 0.2. The black target on the
other hand, Utilityψ continued to increase as the number of
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Fig. 15. Number of bands versus Utilityψ for sand background. The TA
values in Table V were used to generate these curves.

TABLE VI
NUMBER OF BANDS USED FOR ANALYSIS INPUT

Fig. 16. Noise versus Utilityψ for grass.

bands did. Similar phenomena are seen for the green and black
targets against the sand background but reversed.

3) Signal-to-Noise Ratio: We calculated Utilityψ for maxi-
mum SNR values of 5, 10, 20, 30, 40, and 50. Two separate
studies were done for the green and black targets using 30
bands and all the bands. In general, while there was not a
clear critical point for any of the scenarios, the trade curves
reached a turning point at SNR ≥ 20 for all the scenarios.
Therefore, this was the noise level that was added to the sim-
ulated images. Fig. 16 shows the trade curves for noise for the
grass background. The sand background results were congru-
ent to the grass background results for the evaluated range of
SNR values. This analysis answered the question of whether or
not the cost of improving the SNR was justified, and showed
that it was not.

4) Background Complexity: The background surrounding a
target greatly affects its detectability, and we parameterized the

Fig. 17. Background complexity versus Utilityψ for grass.

background complexity by varying its composition within the
model. Fig. 17 shows the predicted utility for a range of # val-
ues for the grass background. There is a clear trend where the
utility decreases as the # value increases. The darker targets
are affected more than the brighter targets. The sand back-
ground results were congruent to the grass background results
for #, although the range of possible # values found was
wider given the differences in reflectance between the mate-
rials and higher measurement variations used to compose this
background.

C. Assessment
With the simulated images, we replicated the operational

conditions for collection to validate the predictions. We
designed a realistic scene to generate images that encompassed
the critical points. In the assessment process, we combined
the effects of target abundance and scene complexity to assess
Utilityψ . Images were generated at 5, 10, and 15 m GSDs. This
produced TA distributions that were produced by the com-
bined effects of the target size, the relative spatial position of
the target to the pixel, and GSD. We introduced a detectabil-
ity value that used the relationship between the TAmean and
Vscene of the sets. We produced a detectability versus Utilityψ
curve for each GSD and background type to draw conclusions
about the relationships between the imaging system parameters
and the mission. These results combined with the predictions
were used to form the mission feasibility and system design
recommendations.

Fig. 18 shows a TA histogram of the positive pixels in set 5
of the desert scene that was rendered at 15-m GSD. The largest
bins in the histogram are pixels below 0.01 TA. Fig. 19 shows
the ROC curves generated from this set. The data were divided
into 15-folds where a portion of the target present pixels and
background pixels were randomly selected per fold. The detec-
tion statistics were calculated for each fold, and the colored
lines are their ROC curves. The bold blue line in Fig. 19 is
the mean ROC curve generated from the folds, and the gray
area is the standard deviation.
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Fig. 18. Histogram of target fill fractions for the orange vehicles placed
in the desert scene, set 5, rendered at 15-m GSD.

Fig. 19. ROC curve for orange vehicles in the desert scene, set 5,
rendered at 15-m GSD. The gray area shows the standard deviation of
ROC curves.

Each set rendered at the three different GSDs were first
examined by their TA histograms, ROC curves, Vscene,
and Utilityψ . The complexity decreased and became similar
between subset scenes as the GSD increased. The sets that
had both open grass and residential buildings, such as set three
and set seven, which when examined empirically had higher
scene complexity, also had higher scene volumes. We use these
values in our assessment of the imaging system design to cal-
culate a detectability value (ξ ). We calculated ξ by calculating
the ratio between the TAmean and Vscene for each set

ξ = TAmean

Vscene
. (13)

A low TAmean and high Vscene indicated a difficult detection
scenario and so had low detectability. In our prediction, we
determined that an imaging system whose mission was to find
vehicles with the four material spectra should have optics that
were capable of producing the TA critical points of each sce-
nario. Thus, the three GSDs along with the vehicle sizes were
selected to produce these TA values. We combined Vscene and

TABLE VII
SCENE VOLUMES FOR DESERT BACKGROUND SIMULATION SETS

TABLE VIII
SCENE VOLUMES FOR SUBURB BACKGROUND SIMULATION SETS

Fig. 20. Utilityψ for each ξ value, calculated for the suburban scene,
rendered at 5-m GSD.

TAmean to introduce a metric that could be used to determine
mission feasibility and system design recommendations.

For each background and GSD, we calculated ξ , sorted
these values, then plotted the Utilityψ calculated for the
sets. Tables VII and VIII show the scene volumes that were
calculated for each scene set.

Figs. 20 and 21 show the ξ versus Utilityψ curves of the 5-
and 15-m GSD desert scenes. The curves show that the orange,
green, and white targets had increasing Utilityψ as ξ increased,
while the black target, had Utilityψ < 0.1 independent of ξ .

D. Example Requirement Recommendation Flow
Diagram

In this section, we present an example set of recommen-
dations formed using this process for two potential missions.
The trade curves were used to drive the final system parame-
ter recommendations and the mission feasibility determination.
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Fig. 21. Utilityψ for each ξ value, calculated for the suburban scene,
rendered at 15-m GSD.

Fig. 22. Example use of process leading to imaging system parameter
recommendation for a green target with using the scene volume met-
ric. Required Utilityψ for this mission is 0.1, leading to recommended
parameters that result in ξ > 0.3.

Fig. 22 shows a flow diagram for a challenging mission with
low Utilityψ requirement but determined as feasible. This mis-
sion was feasible because other assets were readily available
to confirm or deny the presence of a target. We used the pre-
dicted TA saturation point, and the estimated Vscene for the
location. The example location we used was Fort Knox, KY,
USA, which resembled the subset scenes 2 and 8 of the subur-
ban scene. For the green target in a location consisting mostly
of vegetation, Utilityψ > 0.1 if ξ > 0.3. We compared the
results shown in Figs. 20 and 21 and found that the 5-m GSD
had better results for the green target. Therefore, the focal
length and sensor height that produce this GSD were the rec-
ommended system parameters. From Fig. 14, Utilityψ > 0.1
with 15 bands, and so this was the recommended L. We deter-
mined that this mission was feasible if the operation only
required Utilityψ < 0.3 as this was the maximum Utilityψ
only achievable if ξ > 0.7.

Fig. 23 shows another example of a target detection mission
that used the # instead of Vscene. The curves for the orange
target in Figs. 20 and 21 show better performance for the
scene rendered at 15-m GSD. This background however was
an open ocean scene that did not have any inherent structures
that contributed to the complexity. It is why # was an appro-
priate metric since the scene was homogeneous, and because
of this the expected ξ value was greater than 0.9. For the
location and type of target, this mission was appropriate for a
wider range of operational conditions and feasible even if the
required Utilityψ was higher. A possible situation would be
if the constellation of miniature satellites was the only asset

Fig. 23. Example use of process leading to imaging system parameter
recommendation for orange target using background complexity metric.

TABLE IX
LIST OF ACRONYMS

available for target detection with limited ability for confirma-
tion of target presence. A higher Utilityψ would be required,
implying a need for smaller FPR in this situation.

VI. CONCLUSION AND FUTURE WORK

In designing a compact spaceborne imaging system with the
mission scenario as the input, we analyzed target abundance
and scene complexity to provide system design recommenda-
tions for GSD, SNR, and the number of bands. In this article,
we presented novel system metrics together with a process that
used them to find the relationships within the spectral utility
trade space for miniature spaceborne systems. We coupled the
mission scenario and operational requirements to the design
components of spectral imaging systems. Improving spatial
resolution increased the distribution mean of the TA which
could improve the utility, but it also increased scene complex-
ity which decreased utility. The trade decisions for determining
system parameters were based on the target, background, and
operational requirements.

Some other areas of study for the future are the use of
this process for other mission scenarios and targets. We can
explore the trade between GSD and the number of bands,
and the effects of changing the coefficients used to select the
bands in the future. We can also consider the effects of larger
scenes and context for utility as the total scene size increases
even as the spatial resolution decreases. In this article, we
presented a process that used existing modeling tools in a
novel manner to comprehensively analyze the spectral utility
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trade space for both the design and operation processes. The
relationships between each component were complex, but we
found key trends in the relationship between the system param-
eters to form mission feasibility and design recommendations.
Characterization of these relationships with further analysis is
another direction for future work.
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