
A

Differentially-Private Multidimensional Data Publishing

Khalil Al-Hussaeni, Concordia University
Benjamin C. M. Fung, McGill University
Farkhund Iqbal, Zayed University
Junqiang Liu, Zhejiang Gongshang University
Patrick C. K. Hung, University of Ontario Institute of Technology

Various organizations collect data about individuals for various reasons, such as service improvement. In
order to mine the collected data for useful information, data publishing has become a common practice
among those organizations and data analysts, research institutes, or simply the general public. The quality
of published data significantly affects the accuracy of the data analysis, and thus affects decision making
at the corporate level. In this study, we explore the research area of privacy-preserving data publishing,
i.e., publishing high-quality data without compromising the privacy of the individuals whose data are being
published. Syntactic privacy models, such as k-anonymity, impose syntactic privacy requirements and make
certain assumptions about an adversary’s background knowledge. To address this shortcoming, we adopt
differential privacy, a rigorous privacy model that is independent of any adversary’s knowledge and insen-
sitive to the underlying data. The published data should preserve individuals’ privacy, yet remain useful for
analysis. To maintain data utility, we propose DiffMulti, a workload-aware and differentially-private algo-
rithm that employs multidimensional generalization. We devise an efficient implementation to the proposed
algorithm and use a real-life data set for experimental analysis. We evaluate the performance of our method
in terms of data utility, efficiency, and scalability. When compared to closely-related existing methods, Diff-
Multi significantly improved data utility; in some cases, by orders of magnitude.

Key Words: Data sharing, privacy protection, differential privacy, multidimensional generalization

1. INTRODUCTION
Data gathering has been witnessing an exponential growth thanks to modern advance-
ment in information technology. The possession of collected data gives power to the
data holder by enhancing data analysis and aiding in decision making. Examples in-
clude government agencies collecting census data for demographic analysis to provide
better social services; transport authorities collecting trajectories for traffic analysis to
enhance the city’s transportation network; hospitals collecting patients’ symptoms for
better future diagnosis; and online service providers collecting online surfing habits
for building and enhancing recommendation systems.

There are cases where the data holder may not always have the expertise to perform
the required data analysis [Hafner 2006], or the collected data must be published as
mandated by law [Carlisle et al. 2007]. Consequently, data publishing has become a
common practice for the mutual benefit of the data holder and the data recipient. It is
of no less importance that the privacy of individuals whose data are being published
should be safe-guarded. To bridge the gap between these two seemingly conflicting re-
quirements, several privacy models have been proposed in the literature. We categorize
these models into two types: syntactic and semantic models.

In the context of syntactic privacy, the output data set has to comply with a syn-
tactic privacy requirement. A prime example is k-anonymity and its various exten-
sions [Samarati 2001; Sweeney 2002; Machanavajjhala et al. 2006; Li et al. 2007] by

Authors’ addresses: K. Al-Hussaeni, CIISE, Concordia University, Montreal, Canada, H3G 1M8; B. C. M.
Fung, School of Information Studies, McGill University, Montreal, Canada, H3A 1X1; F. Iqbal, College
of Technological Innovation, Zayed University, U.A.E.; J. Liu, School of Information and Electronic Engi-
neering, Zhejiang Gongshang University, Hangzhou, China, 310018; P. C. K. Hung, Faculty of Business
and Information Technology, University of Ontario Institute of Technology, Oshawa, Ontario, Canada, L1H
7K4; emails: k alhus@ciise.concordia.ca, ben.fung@mcgill.ca, farkhund.iqbal@zu.ac.ae, jjliu@alumni.sfu.ca,
patrick.hung@uoit.ca.

Sky
Text Box
This is the preprint version. See Springer for the final official version.

A:2 K. Al-Hussaeni et al.

Collected Raw

Data

Data RecipientData HolderRecord Owners Our Proposed Method: DiffMulti

Anonymized

Data

Multidimensional

Generalization

Noisy

Counts

Differentially-Private Environment

Fig. 1. Data publishing under the non-interactive setting

which every record in the output data set has to be hidden within a group of k records.
Syntactic privacy, though effective, only reduces the possibility of privacy attacks by
making certain assumptions about an attacker’s background knowledge about the in-
dividuals in the published data. Moreover, syntactic privacy is inherently prone to cer-
tain attacks, such as minimality attack [Wong et al. 2007], composition attack [Ganta
et al. 2008], and deFinetti attack [Kifer 2009]. Therefore, we adopt differential pri-
vacy [Dwork 2008; 2011], a semantic privacy model that provides resistance against
syntactic-based privacy attacks.

Differential privacy is a probabilistic privacy model that provides provable privacy
guarantees and works independently of any attacker’s background knowledge. Intu-
itively, differential privacy ensures that the output of any analysis performed on the
published data does not overly depend on any single participant. Individual’s privacy
is protected in a sense that her participation (or withdrawal) would not significantly
change the output of the analysis. This indirectly removes the privacy concerns of both
the participants and the data holders.

Differential privacy introduces the concept of privacy budget ε. A higher budget re-
sults in a more accurate (less noisy) differentially-private output. The literature has
defined two settings wherein ε can be utilized: interactive and non-interactive. In the
interactive setting [Dwork et al. 2006; Friedman and Schuster 2010], the raw data is
kept in the data holder’s possession and a data miner/requester issues a set of queries
to which the data holder provides differentially-private answers. Each query would
consume a portion of ε. Once the entire budget has been consumed, the data holder can
no longer receive more queries and the database has to shut down completely. Whereas
in the non-interactive setting [Barak et al. 2007; Xiao et al. 2011b; Hay et al. 2010],
the data holder utilizes the entire privacy budget to anonymize the whole raw data set
into an ε-differentially-private version, which is then published without restriction or
limitation on data usage. In many real-life data sharing scenarios, publishing the data
is far more convenient due to the flexibility it gives to the data recipient in terms of
analysis power. In this paper, we focus on the non-interactive setting.

Fig. 1 illustrates an overview of privacy-preserving data publishing scenario un-
der the non-interactive setting. In general, a data holder collects data from individual
record owners and wants to release the collected data to a data recipient for data anal-
ysis without compromising the privacy of the record owners. The research problem
studied in this paper is how to convert the raw data into a differentially-private ver-
sion, via multidimensional generalization and noise addition, while maintaining data
utility in the published data.

1.1. Motivation
Methods based on the non-interactive setting mainly rely on publishing a noisy version
of the contingency table of the raw data set [Barak et al. 2007; Ding et al. 2011; Xiao
et al. 2011b; Cormode et al. 2012; Qardaji et al. 2013b]. In other words, a true count of

Differentially-Private Multidimensional Data Publishing A:3

Table I. Raw data table

Continent YoB Class
North America 1947 Y

Australia 1953 Y
North America 1955 N

Europe 1957 N
Asia 1959 N

North America 1968 Y

every possible combination of the data set’s domain values on every attribute is first
generated, and then a noise is added to every such count to satisfy differential privacy.
Finally, all noisy counts are published. Although the published data is differentially-
private, we reason that this approach yields extremely distorted data. If the data set
is high dimensional, then the true counts diminish to very small amounts, making the
added noise very large in comparison. In this paper, we do not adopt this approach, as
it yields highly distorted data that are far from being useful for any further analysis.
We further validate this observation when we evaluate our method in Section 5.

To enhance the utility of the published data, we generalize the raw data by replacing
raw domain values with less specific yet semantically consistent values, as dictated
by a pre-defined generalization hierarchy. Fig. 2 shows the generalization hierarchy
of the attributes of Table I in the form of taxonomy trees. The literature has defined
two types of generalization: single-dimensional and multidimensional. In this paper,
we enforce multidimensional generalization, backed up by the study in [LeFevre et al.
2006] that suggests that the multidimensional type of generalization significantly im-
proves the utility of the anonymized data over the single-dimensional type. We note
that the previous work in [LeFevre et al. 2006] achieves multidimensional generaliza-
tion by applying the k-anonymity privacy model, whereas we adopt differential privacy
as our privacy model. We reason that it is possible to achieve high-quality generalized
data using differential privacy. The following is an illustrating example.

EXAMPLE 1.1. The Population Data BC (PopData)1 is a not-for-profit organization
that collects health-related data from a variety of sources with the hope of harness-
ing such data for the advancement of human well-being. PopData does not possess the
means to conduct research on the collected data; therefore, it offers data sharing among
researchers upon request. Even though patient-specific identifiers, such as Name and
Address, are removed from the published data, data sharing is a lengthy process heavily
based on trusting the requester (i.e., data recipient). In an attempt to increase the ben-
efits of the collected data, we propose an alternative data-sharing solution that is not
based on trust, thus allowing a wider range of data recipients. Our proposed solution
produces high-quality anonymized data and guarantees patients’ privacy.

Let Table I represent a group of patients’ raw data. The Class attribute, having Y and
N as the only domain values, indicates whether a patient has a chronic disease. Fig. 2
shows the domain hierarchy of attributes Continent and Y oB (Year of Birth). Fig. 3
(a) to (c) depict a spatial representation of Table I and its two generalized versions,
respectively. Fig. 3 (c) is the result of applying our anonymization method.

Every rectangle in Fig. 3 (b) and (c) represents a generalization region in the domain
space, and every solid circle represents a record from Table I. Without loss of gener-
ality, let the added noise to every region due to differential privacy be equal to 1 or
0. The added noise represents a synthetic record, and is indicated by an empty circle.
Under single-dimensional generalization, all the raw values on the Continent attribute
have been generalized to the topmost general value Any Continent. On the other hand,

1https://www.popdata.bc.ca/

A:4 K. Al-Hussaeni et al.

YoB

[1930-1999)

[1960-1999)[1930-1960)

Africa Eurasia

New_World Old_World

Americas Australia

Continent

Any_Continent

[1950-1960)[1930-1950)

South_AmericaNorth_America Europe Asia

Fig. 2. Taxonomy trees

 '47 '53 '55 '57 '59 '68

North_America

Australia

Europe

Asia

(a) Raw data

['30-'50) ['50-'60) ['60-'99)

A
n

y
_

C
o

n
ti

n
e

n
t

(b) Single-dimensional

['30-'50) ['50-'60) ['60-'99)

N
e

w
_

W
o

rl
d

O
ld

_
W

o
rl

d

(c) Multidimensional

Fig. 3. Spatial representations of Table I and its diff-priv generalizations

the multidimensional approach generalizes some raw values to Any Continent while
other raw values have been replaced with more specific hierarchical values, namely,
New World and Old World. Thus, the multidimensional approach inflicts less data
distortion due to generalization than the single-dimensional approach.

In this paper, we investigate a differentially-private multidimensional solution for
data release.

1.2. Contributions
To our knowledge, this is the first work to propose a concrete differentially-private al-
gorithm that employs multidimensional generalization for relational data release in
the non-interactive setting. Previous related endeavors have been proposed for pub-
lishing high-quality anonymized data [LeFevre et al. 2006; Mohammed et al. 2011;
Qardaji and Li 2012; Zhang et al. 2014]. Single-dimensional generalization has been
used in [Mohammed et al. 2011] to publish differentially-private data. However, we
reason that a multidimensional approach greatly increases data utility, as suggested
by [LeFevre et al. 2006]. Even though the proposed work in [LeFevre et al. 2006] is
a multidimensional partitioning approach, the guiding privacy model is k-anonymity,
which is susceptible to syntactic-based privacy attacks [Wong et al. 2007; Ganta et al.
2008; Kifer 2009]. We argue that stronger privacy guarantees, i.e., through differen-
tial privacy, can be achieved without compromising data utility. Previous work [Qar-
daji and Li 2012] proposed a partition-based general framework capable of publish-
ing differentially-private data; however, it does not scale for large data sets [Qardaji
et al. 2014]. Other techniques [Zhang et al. 2014] utilize Bayesian networks to release
differentially-private data that approximate the distribution of the high-dimensional
input data. In this paper, we evaluate the performance of our proposed algorithm
in terms of data utility, efficiency, and scalability. Experimental results of running
comparisons between our method and the aforementioned techniques range from our

Differentially-Private Multidimensional Data Publishing A:5

method producing comparable results at worst to performing by an order of magnitude
better at best.

We summarize our contributions as follows:

— We utilize a top-down specialization approach that provides efficient multidimen-
sional partitioning of regions in the domain space of the data set. Given a region to be
further partitioned, this approach provides direct access to the records in that region
without having to scan the entire data set. This property adds a scalable aspect to our
method when anonymizing large data sets.

— We argue that data records are unlikely to be evenly distributed across the do-
main space of the data set. Hence, our proposed method gives more attention to dense
regions in order to yield less abstract data for more accurate analysis of the output
differentially-private data.

— Our proposed method performs multidimensional specialization in a
differentially-private way on both categorical and numerical attributes. Depend-
ing on the target workload, a carefully-selected categorical value is split in accordance
with a pre-defined taxonomy tree, whereas a proper numerical split point is dynami-
cally determined for every multidimensional region throughout runtime. This releases
the data holder from the burden of performing extensive preprocessing of the data set.

— We carry out extensive experiments and compare with closely-related methods
in the literature. Results suggest that our proposed multidimensional algorithm is
capable of significantly improving data utility without compromising the rigorous re-
quirement of differential privacy.

The rest of the paper is organized as follows. Section 2 is a literature review of the
subject. Differential privacy and generalization are discussed and formally defined in
Section 3. Section 4 details our proposed algorithm. Section 5 presents an experimental
evaluation. Lastly, Section 6 concludes the paper.

2. RELATED WORK
We categorize the related works and explain the difference between each category and
our work.

Researchers have dedicated a great amount of work to propose and improve syntac-
tic privacy models. In this context, the output data set must adhere to a given syn-
tactic privacy condition in order to restrict the feasibility of attacks on records and
sensitive values. A prime example of syntactic privacy is k-anonymity [Samarati 2001;
Sweeney 2002] and its various extensions such as t-closeness [Li et al. 2007] and `-
diversity [Machanavajjhala et al. 2006].

Several privacy-preserving algorithms have been proposed for classification analy-
sis [Weiss and Kulikowski 1991]. Iyengar [2002] was the first to address this issue by
devising a genetic algorithm, which proved to be costly. In his work, classification ac-
curacy on training data was measured using his proposed classification metric, which
was later used by Bayardo and Agrawal [2005]. Fung et al. [2007] proposed Top-Down
Specialization (TDS), a heuristic approach by which a relatively accurate classifier can
be built based on the anonymized data. LeFevre et al. [2006; 2008] proposed Mon-
drian, which considers the anonymity problem for classification. Mondrian employs
multidimensional generalization to achieve better data utility and, hence, improves
classification accuracy. All the aforementioned works use a k-anonymity-based privacy
model achieved by means of single-dimensional generalization. On the other hand,
Mondrian achieves anonymity by transforming the data in a multidimensional man-
ner. In Section 5, we will experimentally compare our differentially-private multidi-
mensional algorithm, called DiffMulti, with Mondrian.

A:6 K. Al-Hussaeni et al.

Several methods have been proposed for publishing a private contingency ta-
ble [Barak et al. 2007; Ding et al. 2011; Xiao et al. 2011b; Cormode et al. 2012; Qardaji
et al. 2013b]. Barak et al. [2007] used linear programming to post-process a differen-
tially private output in order to publish a set of consistently integral marginals of a
contingency table. Though it guarantees differential privacy, Barak et al.’s work does
not improve accuracy in the output data. A similar problem has also been studied by
Ding et al. [2011] and Qardaji et al. [2013b]. Xiao et al. [2011b] succeeded in improv-
ing the accuracy of a differentially-private contingency table by proposing Privelet, a
method based on wavelet transformation on the data attributes. On the same note,
Cormode et al. [2012] proposed to optimize the computation required when publishing
a contingency table of a sparse data set, in a differentially-private way. They achieved
that by utilizing compact summaries computed directly from the input data set, as op-
posed to computing a noisy contingency table first, which is costly for sparse data sets.
However, the utility of their private summaries is similar to that of a generated con-
tingency table. We argue that releasing a private contingency table can be damaging
to the accuracy of the analysis as the added noise grows larger for sparse data sets. To
account for this shortcoming, our method releases a generalized version of the input
data set; thus, increasing the record counts by allowing more records to be semanti-
cally grouped together. We will experimentally elaborate on this point in Section 5.

Qardaji et al. [2014] proposed PriView to enhance releasing marginal contingency ta-
bles for high-dimensional binary data sets for the general purpose of answering count
queries. PriView utilizes covering design to carefully select certain low-dimensional
views (sets of attributes), and then reconstructs k-way marginals from such views.
Even though PriView can be extended to handle categorical data sets, as suggested by
the authors, it fails to process data sets with numerical attributes. The work in [Qar-
daji et al. 2013a] studies how to effectively partition 2-dimensional GPS-like data
points, and proposes an adaptive-grid method that significantly improves data par-
titioning over state-of-the-arts. Our proposed method shares the same partitioning
intuition with the adaptive-grid method in [Qardaji et al. 2013a]: we need to impose
fine-grained partitioning on dense regions and coarse-grained partitioning on sparse
regions. In an attempt to estimate the joint distribution of high-dimensional numeri-
cal data, Li et al. [2014] leveraged copula functions and proposed DPCopula. Copula
functions require attributes to have large domains, and fail otherwise. Therefore, DP-
Copula treats categorical attributes with large domains (e.g., more than 10 domain
values [Li et al. 2014]) as continuous. Unlike the above techniques, we propose Diff-
Multi that is capable of handling both categorical and numerical attributes with no
restriction on the domain size of any attribute. Moreover, DiffMulti incorporates differ-
ent partitioning strategies that improve data utility, depending on the target workload
of the published data.

Our work can be related to those which focus on releasing private his-
tograms [Chawla et al. 2005; Hay et al. 2010; Li et al. 2010; Xiao et al. 2014]. A his-
togram is a set of disjoint regions containing data points over the domain of a data set.
Several works have been proposed to release private histograms. Chawla et al. [2005]
presented a theoretical work by which they proposed a recursive approach for releasing
private histograms in the multidimensional space. However, their privacy constraint
is based on a syntactic privacy model. Hay et al. [2010] proposed a method for releas-
ing more accurate private histograms under differential privacy; however, their work
is limited to single-dimensional histograms as in [Blum et al. 2008; Xu et al. 2013].
Although [Hay et al. 2010] and [Xiao et al. 2011b] provide noise optimization for range
queries, Li et al. [2010] enhanced their work by achieving optimal noise variance for
a variety of workload queries. Xiao et al. [2014] proposed a method by which multidi-
mensional partitioning was used to release differentially-private histograms.

Differentially-Private Multidimensional Data Publishing A:7

A closely related method to our work is DPCube [Xiao et al. 2014], which publishes
private histograms for random workloads. Even though DPCube publishes histograms,
it is possible to synthesize a noisy contingency table of the underlying data set D by is-
suing a set of queries spanning all combinations of domain values. We point out three
major differences between our proposed method DiffMulti and DPCube. First, while
it is possible to synthesize a noisy contingency table using DPCube, if the input data
set D is sparse or high-dimensional with a large domain, then performing operations
on the noisy contingency table results in poor data utility. This is because sparse data
points tend to be scattered over the domain space resulting in extremely small counts
in most subdomains. Thus, raw counts will be outweighed by the added noise, render-
ing a query answer useless. This notion will be empirically demonstrated in Section 5.
Second, DPCube handles nominal or discretized attributes, whereas DiffMulti is capa-
ble of handling both nominal and numerical attributes. Third, DPCube, along with all
the techniques in [Hay et al. 2010; Xiao et al. 2011b; Li et al. 2010; Xiao et al. 2011a],
is based on the interactive model that requires the queries to be provided in advance.
In the case of multiple users querying D, ε will be distributed among those users [Xiao
et al. 2014]. If a user is assigned a small fraction of ε, more noise will be added to
the true query answer. Once all ε is consumed by the queries, the data holder has
to shut down the database entirely. In contrast, our non-interactive method releases
differentially-private data, giving the data recipient much more flexibility in perform-
ing various analysis with no limitation on data access. We experimentally compare
DiffMulti to DPCube in Section 5.

To account for the inherent challenge of releasing sparse or high-dimensional data in
a differentially private way, Zhang et al. [2014] proposed a method called PrivBayes.
In PrivBayes, a Bayesian network is utilized to construct a set of low-dimensional
subcubes that approximate the joint distribution in order to release a synthetic data
set which in turn approximates the distribution of the high-dimensional input data
set. We will compare with PrivBayes in terms of classification accuracy in Section 5.

In a closely related research area, the problem of differentially-private release of
relational data has been studied in [Mohammed et al. 2011; Qardaji and Li 2012].
The general idea in both works is to partition the input data set into smaller groups
of “similar” records, then release a noisy count of the records in each resultant parti-
tion/region. Mohammed et al. [2011] proposed an algorithm called DiffGen, a top-down
specialization approach that aims at producing a generalized version of the input data
in a differentially-private setting. DiffGen uses a single-dimensional partitioning strat-
egy that greedily chooses a split attribute that maximizes the utility of the output
data set, without violating differential privacy. When an attribute is chosen, a split is
performed in accordance with the hierarchy of the domain values dictated by an in-
put taxonomy tree. Our work leverages multidimensional partitioning to improve data
utility while adhering to the rigorous requirement of differential privacy. Mohammed
et al. improved classification accuracy when they experimentally compared with DiffP-
C4.5 [Friedman and Schuster 2010], an interactive approach for classification analysis.
In Section 5, we will compare the performance of our proposed method with DiffGen in
terms of runtime, classification accuracy, and other utility metrics.

In [Qardaji and Li 2012], the authors also assumed a non-interactive setting and
proposed a general framework for releasing relational data under differential privacy.
They proposed a meta-algorithm, called RPS, that takes into consideration the distri-
bution of the data points (records) in the multidimensional space R of the data set.
The meta-algorithm recursively performs binary partitioning over R to achieve nearly
balanced regions. A median point is computed in a differentially-private way from the
domain of the chosen attribute to produce two non-overlapping regions. Noisy counts
of data points in each resultant region are then returned to compose the overall san-

A:8 K. Al-Hussaeni et al.

itized data set. RPS has two weaknesses. First, for the case of relational data, RPS
randomly chooses a split attribute [Qardaji and Li 2012]. On the other hand, we pro-
pose a greedy algorithm that performs a series of iterations. In a single iteration, our
method carefully chooses a split value from a set containing at most d values, where d
is the total number of attributes. Moreover, the chosen attribute is picked with the goal
of minimizing information loss. As a result, carefully choosing a split value is advanta-
geous (in terms of data utility) over the random splitting strategy of RPS, which has a
probability of 1/domain size in finding the best split value. Our experimental evalua-
tion in Section 5 further validates this claim. Second, even though RPS is theoretically
capable of choosing a split point that spans across multiple dimensions (attributes), it
does not scale for data sets with a large number of dimensions because it inefficiently
considers all combinations of values across all dimensions [Qardaji et al. 2014]. More
specifically, in every iteration, RPS chooses one split point from Ω(A1) × . . . × Ω(Ad)
possible combinations, while our method significantly decreases the number of com-
putations by selecting a split point from a maximum of d points in the d-dimensional
space, where d is the number of attributes and Ω(Ai) is the domain of attribute Ai
in a given region. In summary, RPS is a general framework that can be instantiated
differently based on the desired implementation, whereas our proposed algorithm is
a specific approach designed for workload-aware, differentially-private, multidimen-
sional relational data release. In Section 5, we report the utility measure resulting
from both RPS and our method.

3. BACKGROUND
3.1. Differential Privacy
Differential privacy [Dwork 2006] is a rigorous privacy model that works indepen-
dently of any adversary’s background knowledge about a target victim. This privacy
model guarantees that a differentially-private data set D̂ can be obtained from two
input data sets that differ in size by one record. Let D and D′ be two neighboring input
data sets such that both data sets differ by at most one record, denoted by |D4D′| ≤ 1.
A differentially-private mechanism will yield an output data set D̂ with the same prob-
ability from both D and D′. An adversary will not be able to acquire extra knowledge
about a target victim because the output data set could have been obtained from a
neighboring data set that does not contain the victim’s record. In other words, the
analysis of D̂ is insensitive to the addition/removal of a single record in the input data
set.

DEFINITION 3.1 (ε-differential privacy). A randomized algorithm Ag gives ε-
differential privacy if for any neighboring data sets D and D′ differing by at most one
record, and for any possible output data set D̂,

Pr[Ag(D) = D̂] ≤ exp(ε)× Pr[Ag(D′) = D̂], (1)

where the probability is taken over the randomness of the Ag.

The parameter ε is an input parameter that is specified by the data holder. ε is
usually of a small value, typically 0 < ε ≤ 1 [Dwork 2006; Friedman and Schuster
2010; Dwork 2011]. ε specifies the degree of desired privacy in the output data set, and
thus is called the privacy budget. This implies that higher values of ε will incur higher
privacy costs, resulting in lower privacy protection and higher data utility. Vice versa,
lower values of ε result in higher privacy at the expense of lower data utility in the
output data set. In Section 5, we report how different values of ε affect classification
accuracy. For more theoretical analysis, we refer the reader to [Dwork and Roth 2014].

Differentially-Private Multidimensional Data Publishing A:9

To satisfy ε-differential privacy, an algorithm must be insensitive to the underlying
data. To offset the effect of neighboring data sets, i.e., the existence or absence of a
single record, two methods were proposed in the literature: the Laplace mechanism
and the exponential mechanism. Both mechanisms rely on the privacy parameter ε and
the sensitivity of a function that maps the input data set to real values. The sensitivity
of a function is the maximum amount inflicted on the output due to adding or removing
a single record in the input data set.

DEFINITION 3.2 (Sensitivity). For any function f : D → Rd, the sensitivity of f is

∆f = max
D,D′

||f(D)− f(D′)||1 (2)

for all D,D′ differing at most by one record.

Suppose function f answers count queries over a data set D. Given any neighboring
data set D′, any answer from f would differ by at most 1; therefore, the sensitivity of
f is 1.

Laplace Mechanism. To satisfy ε-differential privacy when the output is a real value,
a function f should return a noisy answer that would mask the effect of a neighboring
data set. In this context, Dwork et al. [2006] proposed the Laplace mechanism, which
first computes the true output of a function and then adds a noise drawn from the
Laplace distribution. The noise is calibrated based on the privacy parameter ε and the
sensitivity of the function ∆f . Formally, the Laplace mechanism takes as inputs a data
set D, the privacy parameter ε, and a function f , and outputs ˆf(D) = f(D) + Lap(λ),
where Lap(λ) is a noise drawn from the Laplace distribution with probability density
function Pr(x|λ) = 1

2λexp(−|x|/λ) of variance 2λ2 and mean 0.

THEOREM 3.1. [Dwork et al. 2006] Given any function f : D → Rd over an ar-
bitrary domain of data set D with d attributes, an algorithm Ag that adds indepen-
dently generated noise with distribution Lap(∆f/ε) to each of the d outputs satisfies
ε-differential privacy.

As an example, a function f that answers count queries would have a sensitiv-
ity ∆f = 1. According to Theorem 3.1, ˆf(D) = f(D)+Lap(1/ε) is ε-differentially private.

Exponential Mechanism. In certain cases, it does not make sense to add noise to
the output of a function when the output is not real. Let u : (D × T) → R be a utility
function that assigns a real-valued score to every output t ∈ T . The purpose is to
select an output with the highest score, as higher scores imply better utility. McSherry
and Talwar [2007] proposed the exponential mechanism that takes a data set D, the
privacy parameter ε, an output range T , and a utility function u, and selects an output
t ∈ T that is close to the optimum output with respect to u. The exponential mechanism
maintains a probability distribution over the range of outputs T . The likelihood of
selection grows exponentially for higher scores.

THEOREM 3.2. [McSherry and Talwar 2007] Given any utility function u : (D ×
T) → R with sensitivity ∆u = max∀t,D,D′ |u(D, t) − u(D′, t)|, an algorithm Ag that
chooses an output t with probability proportional to exp(εu(D,t)

2∆u) satisfies ε-differential
privacy.

Composition. Differential privacy enjoys two composition properties. The first prop-
erty is called sequential composition and it applies to the case where a sequence of
computations is performed on a single data set. In this scenario, if every computation

A:10 K. Al-Hussaeni et al.

guarantees differential privacy, then the entire sequence gives the accumulated pri-
vacy guarantee. The second property is called parallel composition and it applies to
situations where a sequence of computations is performed on disjoint data sets. In this
scenario, the sequence gives differential privacy with the worst privacy guarantee, i.e.,
the highest privacy budget, among all computations.

LEMMA 3.1 (Sequential composition [MCSHERRY 2009]). Let each computation
Agi provide εi-differential privacy. A sequence of Agi(D) over the data set D provides
(
∑
i εi)-differential privacy.

LEMMA 3.2 (Parallel composition [MCSHERRY 2009]). Let each computation Agi
provide ε-differential privacy. A sequence of Agi(Di) over a set of disjoint data sets Di

provides ε-differential privacy.

3.2. Generalization
Generalization is the act of replacing raw values in the input data set D with more
general and less semantically specific values. Such general values are specified by a
pre-defined generalization hierarchy, e.g., the taxonomy trees shown in Fig. 2. Let D,
an input data table, be defined over a set of attributes A = {A1, . . . , Ad}, where Ω(Ai)
represents the domain of attribute Ai. Single-dimensional generalization is defined by
a function φi : v → p for each attribute Ai ∈ A, where p is a value in the generalization
hierarchy. As a result, if a value v is chosen for generalization, all instances of v in D
will be generalized as well.

To preserve more information, we employ multidimensional generalization. In this
setting, a vector of values is considered for generalization instead of considering a sin-
gle value at a time. The idea is to divide the d-dimensional domain space of D into
non-overlapping generalization regions. Every region Ri contains a set of generalized
records from D, where every raw record is uniquely mapped to its corresponding re-
gion. By that intuition, a region can be considered an equivalence group because every
region contains a disjoint subset of generalized records from D.

DEFINITION 3.3 (Multidimensional generalization). Given a raw data set D de-
fined over a set of attributes A = {A1, . . . , Ad}, and some user-defined taxonomy trees,
multidimensional generalization is defined by a single global function φ : Ω(A1)× . . .×
Ω(Ad) → {R1, R2, . . . , Rm} that maps an entire record in D to its corresponding gener-
alization region Ri, where the d-dimensional domain space of D is divided into disjoint
generalization regions R1, R2, . . . , Rm.

According to the above definition, generalizing a raw value v in a given record entails
considering the entire vector of raw values in that record. In other words, given a group
of records that share a raw value v on attribute Ai, the combination of raw values on
every other attribute Aj , where i 6= j, in a given record will determine the value p to
which v will be generalized.

EXAMPLE 3.1. Consider Table I and its anonymized version under multidimen-
sional generalization, as spatially represented in Fig. 3 (c). North America in
records {North America, 1947} and {North America, 1968} has been generalized to
Any Continent, whereas North America in record {North America, 1955} has been
generalized to New World.

Given any region Ri, each dimension represents a generalized value p of the under-
lying subdomain. We propose an algorithm that is capable of handling both categorical
and numerical attributes. For categorical attributes, p is drawn from the generalization
hierarchy as specified by the taxonomy trees. For numerical attributes, on the other
hand, the algorithm will adaptively select a binary split point by which a division on

Differentially-Private Multidimensional Data Publishing A:11

the continuous domain will result in two disjoint intervals. The process of generating
generalization regions is called partitioning. A good partitioning strategy is essential
for improving data utility in the output data set.

For an algorithm to satisfy ε-differential privacy, all operations must be insensitive
to the underlying data. In other words, given two neighboring data sets D and D′,
where |D4D′| ≤ 1, the algorithm must bound the probability of obtaining the same
output data set in accordance with Definition 3.1. At the same time, the algorithm
must find a proper generalization function φ : Ω(A1)× . . .×Ω(Ad)→ Dd depending on
the expected workload of the published data. Fixing φ will make the algorithm satisfy
the ε-differential privacy requirement; however, the output data will not be tailored
to the expected analysis2. As a result, the data utility will drop significantly, render-
ing any analysis on the output data useless. In Section 4, we present our algorithm
for performing effective partitioning to maximize data utility without violating the
ε-differential privacy requirement.

3.3. Problem Statement
We informally describe our problem as follows: A data holder is in possession of a data
set D that contains a multiset of records, where each record belongs to a unique indi-
vidual. All person-specific information, such as Y oB and SSN , have been removed. D
is defined over a set of attributes A = {A1, . . . , Ad} that can also be found in a non-
sanitized, publicly available data set containing a group of records that belong to the
same individuals whose records are in D. In addition, D contains a Class attribute
Acls that is used for classification analysis. We assume that Ai is either categorical
or numerical, and Acls is categorical. Finally, we assume that for each categorical at-
tribute Ai ∈ A, a taxonomy tree is provided that defines the hierarchy of values in
Ω(Ai). We do not require a taxonomy tree for numerical attributes as it requires an
extensive preprocessing of D to determine appropriate splitting values. Rather, our
proposed algorithm performs this task adaptively upon runtime.

A data holder wishes to publish an ε-differentially-private version of D for either
general data analysis or specific analytical tasks, such as classification analysis or
cluster analysis.

DEFINITION 3.4 (ε-differentially-private multidimensional generalization). Given
a raw data set D, a set of taxonomy trees, and a privacy budget ε, we wish to produce
an ε-differentially-private version D̂ of D by means of multidimensional generalization
in order to improve data utility for more accurate analysis of D̂.

In the next section, we propose a heuristic based on a greedy recursive splitting of
domain space.

4. ANONYMIZATION ALGORITHM
We present DiffMulti, a differentially-private algorithm that employs
multidimensional generalization for relational data release. Our proposed algo-
rithm operates in two phases, as illustrated in Fig. 1. We provide an overview, then
proceed to discuss the major operations in each phase. Namely, Sections 4.2 and
4.3 detail Phase 1, and Section 4.4 details Phase 2. Our algorithm is outlined in
Section 4.5, followed by a discussion.

2Unless performed randomly, having a fixed generalization function φ is a non-trivial task. The domain
space of φ is as large as the cardinality of the input data set. Moreover, the codomain of φ is a set of d-
dimensional regions, each bounded by either an interval or a value from the generalization hierarchy. Our
proposed algorithm effectively partitions the regions to maintain data utility.

A:12 K. Al-Hussaeni et al.

All_Continents & [1930-1999)
3Y

3N

All_Continents & [1960-1999)
1Y

0N
All_Continents & [1930-1960)

2Y

3N

All_Continents & [1930-1950)
1Y

0N
All_Continents & [1950-1960)

1Y

3N

Old_World & [1950-1960)
0Y

2N
New_World & [1950-1960)

1Y

1N

+0
+1

+1
+0

+0
+0

+1
+1

Phase 2

Fig. 4. Raw data records structured as tree of partitions

4.1. Overview
We propose an anonymization algorithm that operates in two phases. In Phase 1,
all the records of the input data set D are generalized over the set of attributes
A = {A1, . . . , Ad} in a differentially private manner. When a group of records is gen-
eralized to the same set of values, they form a unique equivalence group. Then, Phase
1 recursively specializes every equivalence group. In Phase 2, our algorithm publishes
noisy record counts pertaining to the final equivalence groups, where records are least
generalized. A straightforward way to implement this method is by scanning the entire
raw records to determine a split attribute, then scanning the entire records again to
specialize and split them into equivalence groups. We note that in order to specialize
the records of an equivalence group, it is sufficient to scan those records apart from
the rest of the data set records. Performing specialization by applying the straight-
forward solution gives rise to the scalability issue, wherein scanning the entire data
records becomes exhaustive for very large data sets. We utilize an efficient tree data
structure that provides data access on the granular level, as illustrated in Fig. 4. A
node in this tree is referred to as a partition. For every value in the Class attribute
Acls, a partition Pi maintains a generalized record and a pertinent count that refers to
the number of raw records generalized to the same attribute values and that share the
same Class value. Record scanning is, thus, confined to the size of a single partition,
|Pi| =

∑|Ω(Acls)|
x=1 countx.

DiffMulti, detailed in Algorithm 1, performs a sequence of specializations on the
data records, as follows: first, the algorithm creates a root partition, Pi, that contains
all raw records generalized to the topmost values in the domain hierarchy on every at-
tribute in A. At this point, publishing a Laplacian-noisy version of |Pi| guarantees
ε-differential privacy; however, the data records are at a high level of abstraction,
and analysis on such general data is far from accurate. We reduce data generality
by specializing Pi. The maximum number of specializations is a user-input parame-
ter to our algorithm, h. When a specialization takes place, denoted by v → child(v),
a general value v gets replaced by its less general child values child(v) from the do-
main hierarchy. In our tree data structure, every specialization creates new disjoint
child partitions, each holding a set of records that generalize to the same values. A
child partition Pcj ∈ {Pc1 , . . . , Pcγ} represents a distinct region R in the domain space
of D. Unlike single-dimensional partitioning, which performs specializations globally
among all data records, our method employs multidimensional partitioning by which
only a certain set of records are affected by v → child(v). In other words, a single-

Differentially-Private Multidimensional Data Publishing A:13

dimensional partitioning strategy splits across all regions in the domain space of D,
while our method performs a split v → child(v) only within one region. This step is
advantageous for data utility because at the end of Phase 1, less generalization is im-
posed on the raw records.

EXAMPLE 4.1. We continue from Example 1.1. The root partition in Fig. 4 contains
all the data records in Table I generalized to the topmost values, i.e., Any Continent
and [1930 − 1999), in addition to the true counts of records having the same value on
the Class attribute. Given the root partition, the set of candidate values for specializa-
tion is {Any Continent, [1930 − 1999)}. A specialization is performed on the value that
results in the least amount of information loss. For simplicity, let us assume that the
specialization [1930 − 1999) → {[1930 − 1960), [1960 − 1999)} retains more data utility
than All Continents → {New World,Old World}. Consequently, the root partition is
specialized on the Y oB attribute, where a child partition is created for every child value
of [1930 − 1999). DiffMulti iteratively specializes every new partition in the tree until
a leaf partition is reached, where records are published according to noisy versions of
their true counts. Leaf partitions are colored in grey for ease of presentation.

4.2. Choosing a Candidate
As mentioned in Section 4.1, a specialization v → child(v) replaces v with its child
values from the domain hierarchy associated with an attribute A, where v ∈ Ω(A). Our
algorithm greedily chooses a value v from a set of candidate values in a given partition
Pi, where each value belongs to a distinct attribute. The set of candidates includes
only the values in the generalized record that represents the partition. Hence, a single
specialization requires choosing a value from a maximum of d candidates, where d is
the number of attributes in the raw data set D. Selecting a value for specializing a
partition is based on a real-valued score computed by a greedy utility function, which
varies depending on the target workload. For example, the root partition in Fig. 4
contains the candidate set {Any Continent, [1930−1999)}, where [1930−1999) has been
chosen for specialization.

Depending on the purpose of the data release, the chosen candidate should have
either the highest or the lowest score. Scores give the sense of how much utility (or
loss) the data set has maintained (or suffered) due to specializing a candidate. For
example if the released data is intended for classification analysis, then Max would
be the utility function, and the “best” candidate for specialization is the one with the
highest score. If the data holder is to design their own utility function, we suggest
the following guideline. The key principle to designing a good utility function is to
design a function that is biased towards choosing a candidate value that results in
evenly distributing data records among child partitions - to avoid the case where some
partitions end up with a very small number of records. This is because partitions with
a small number of records have distorted noisy counts, where the added Laplace noise
becomes more dominant upon data publishing (Phase 2), resulting in inaccurate data
analysis. We would like to note that in the case of incorporating a bad utility function
(i.e., one that is not biased towards evenly distributing records), our proposed method
accommodates such behavior by employing a fair distribution strategy, as explained
later in this section.

Given a partition for specialization, DiffMulti computes the scores of the candidates
in the partition. Then, DiffMulti makes use of the exponential mechanism, presented
in Theorem 3.2, to select a candidate. The exponential mechanism exponentially fa-
vors higher scores while maintaining privacy. Scores are inverted for the exponential
mechanism in the cases where lower scores are more favorable. Herein, we present
three utility functions; the discernibility metric and the Normalized Certainty Penalty

A:14 K. Al-Hussaeni et al.

are two general-purpose metrics for when the target workload of the released data is
unknown, and the third utility metric is Max for a specific data analysis task, namely,
classification analysis.

The first utility function is the discernibility metric (DM), which is a general-purpose
quality metric that measures the amount of data loss the raw data set has suffered
due to anonymization [Bayardo and Agrawal 2005]. Every record r in the anonymized
data set is assigned a penalty value equal to the size of the group of records that
are indistinguishable from r. More specific to our method, a generalized record in a
partition Pi is given a numeric penalty equal to |Pi|. Given a candidate v, DM(D, v) is
computed as follows:

DM(D, v) =
∑

Pc∈child(Pv)

(|Pc|2), (3)

where Pv is v’s partition, and child(Pv) is the set of Pv ’s child partitions. Lower values
of DM(D, v) imply that specializing on v inflicts less anonymization distortion compared
to other candidates. The discernibility penalty of the entire output data set D̂ can be
computed as follows:

DM(D̂) =
∑
∀PiinD̂

(|Pi|2). (4)

The sensitivity ∆DM(D, v) = 2|D|+1, where |D| denotes the number of records in D. For
simplicity, let us consider finding ∆DM = maxD,D′ ||DM(D) − DM(D′)||1, where D and D′

are two data sets differing by 1 record. Assume that the output data set contains one
partition. The square operation has a greater impact on a data set D′ s.t. |D′| = |D|+ 1
(as opposed to |D| − 1). Thus, ∆DM = |D′|2 − |D|2 = 2|D| + 1. The same reasoning can
be applied to find ∆DM(D, v).

The second utility function is the Normalized Certainty Penalty (NCP), described
in [Xu et al. 2006], which measures information loss due to generalization. Thus, lower
values imply better data utility. Given a generalization hierarchy represented as a tax-
onomy tree, let e denote a node in the taxonomy tree and let L denote the set of leaf
nodes, where a leaf node represents a raw value. If a raw value l is generalized to node
el in the taxonomy tree, then the NCP value of l is computed as follows:

NCP(l) =

{
0, el is leaf
|el|/|L|, otherwise, (5)

where |el| is the number of leaf nodes of the subtree of the taxonomy tree rooted at el.
For a numerical attribute Anum, |el| would be the range of the generalization interval
and |L| is the domain range of Anum. Hence, 0 ≤ NCP(i) ≤ 1. Given a candidate v,
NCP(D, v) is computed as follows:

NCP(D, v) =
∑

c∈child(v)

(suppc · NCP(D, c)), (6)

where suppc is the number of records that include a raw value generalized to c in the
taxonomy tree. To find the sensitivity of NCP(D, v) in Equation 6, let NCP(D, c) = 1. suppc
can change at most by 1. Therefore, ∆NCP(D, v) = 1. Lastly, the NCP of a generalized
data set D̂ can be measured as follows:

NCP(D̂) =

∑
∀i∈D̂(suppi · NCP(i))∑

∀i∈D̂(suppi)
. (7)

Finally, our third utility function is Max, and it is used to publish an anonymized
data set for classification analysis. Given a candidate v, Max(D, v) computes the score
of v by summing the highest class frequencies of v’s child values. In other words, if v’s
partition were to be specialized, the score of v would be equal to the result of adding

Differentially-Private Multidimensional Data Publishing A:15

the largest count in every child partition. Max(D, v) helps to build a better classifier
by going for the favor of choosing partitions with purest class frequencies. Intuitively,
higher scores are more desirable.

Max(D, v) =
∑

c∈child(v)

(max
cls

(|Dcls
c |)). (8)

The absence or addition of 1 record in D would change Max(D, v) by at most 1. There-
fore, the sensitivity of Max(D, v) is 1.

Choosing a value with the best score (i.e., highest or lowest, depending on the utility
function) does not satisfy differential privacy because the process is data dependent.
Therefore, given a utility function u and a set of candidates Candi from partition Pi,
our algorithm utilizes the exponential mechanism to choose a candidate vi ∈ Candi.
This step is outlined in Line 11 of Algorithm 1.

THEOREM 4.1. Choosing a candidate value for specialization satisfies ε′-
differential privacy.

PROOF 4.1. Let Candi be the set of candidate values from which a single value is to
be chosen for specialization. Our algorithm selects a value vi ∈ Candi with the following
probability:

exp(ε′

2∆uu(D, vi))∑
v∈Candi exp(ε′

2∆uu(D, v))
, (9)

where u(D, vi) is a score computed from a utility function, and ∆u is the sensitivity
of the utility function u. According to Theorem 3.2, selecting a value with probability
proportional to exp(ε

′u(D,t)
2∆u) satisfies ε′-differential privacy.

Allocating the Number of Specializations. One of the input parameters of Algo-
rithm 1 is a positive integer that represents the maximum number of specializations,
h ∈ N. Specializing a single partition, i.e., distributing the records of the specialized
partition among its newly created child partitions, decreases h by 1. The algorithm
starts with one partition that includes the entire data records generalized to the top-
most level, followed by a series of specializations on each of the child partitions. This
process gives rise to the following question: What is the maximum number of special-
izations that can be performed on each child partition? Differently put, how can the
unused portion of h be distributed among the child partitions? For ease of presenta-
tion, let Pi.h′ ∈ N refer to the maximum number of specializations that can be per-
formed starting at partition Pi, where 0 ≤ h′ < h. A straightforward solution would be
to evenly distribute the remaining of h among the child partitions, as demonstrated by
the following example.

EXAMPLE 4.2. Let h = 21. Suppose partition P1 is specialized and two child par-
titions, P2 and P3, are created. Initially, Pi.h′ = h = 21. P1 → {P2, P3} consumes 1
specialization from h. As a result, P2.h

′ = P3.h
′ = (21− 1)/2 = 10. Therefore, every child

partition gets to be iteratively specialized 10 times at most.

The above method is simple and does not violate differential privacy because the
sensitivity of evenly distributing h′ − 1 among child partitions is 0. Having said that,
recall that every partition represents a region in the multidimensional space of the
input data setD. It is unlikely that the data points (raw records) are evenly distributed
throughout the domain space. Indeed, some regions are denser than others.

EXAMPLE 4.3. In Example 4.2, we showed that if the remainder of h was evenly
distributed among the child partitions, then P2.h

′ = P3.h
′ = 10. Assume that |P1| = 10,

A:16 K. Al-Hussaeni et al.

|P2| = 8, and |P3| = 2, where |Pi| is the number of records in Pi. This means that a set
of 2 records and a set of 8 records will be specialized equally.

Even distribution of the number of specializations does not take into consideration
dense regions in the domain space. Shifting specializations towards dense regions has
a positive impact on data utility because more records get specialized, hence producing
less abstract data. We make a contribution in this work by imposing a fair distribution
of the number of specializations rather than an even one. Let Pi → {Pc1 , Pc2 , . . . , Pcγ},
the number of specializations assigned to a child partition Pci is proportional to its
size. Let Pci .h′ ∈ N,

Pci .h
′ =

{
0, |Pci | = 0

b |Pci ||Pi| · (Pi.h
′ − 1)c, otherwise. (10)

EXAMPLE 4.4. Applying the fair distribution strategy to Example 4.2, we get P2.h
′ =

(8/10) · (21 − 1) = 16 and P3.h
′ = (2/10) · (21 − 1) = 4. Hence, the 8 records in P2 will

be specialized 4 times more than the 2 records in P3, allowing to retain more data
utility. Moreover, under even distribution, the dense region, represented by partition P2,
is specialized 10 times (Example 4.2); whereas under fair distribution, the dense region
suffers less data loss because it is specialized 16 times.

Equation 10 does not respect the indeterministic nature of differential privacy. This
is because, given a partition, Px, Equation 10 calculates the exact record count in |Px|,
which may change for a neighboring input data set D′. Therefore, we use the Laplace
mechanism to return noisy record counts, instead. This step is outlined in Line 13 of
Algorithm 1.

THEOREM 4.2. Fair distribution of the number of specializations satisfies ε′-
differential privacy.

PROOF 4.2. Given 1 as the sensitivity of a count query, a privacy budget ε′, and a
true record count |Px|, a differentially-private version of Equation 10 calculates |Px| +
Lap(1/ε′), for |Px| 6= 0. According to Theorem 3.1, adding independently generated noise
from the Laplace distribution Lap(1/ε′) to a true query count satisfies ε′-differential
privacy.

If the calculated value of Pci .h′ contains a fraction, then the value is rounded down
to the nearest non-negative integer. If the summation of all fractions among the child
partitions is ≥ 1, then this remainder can be randomly distributed among the child
partitions to avoid losing portions of h. Note that this post-processing step conforms
with differential privacy because this step is a public rule and is not dependent on the
input data set [Kifer and Lin 2010].

4.3. Determining a Numerical Split Point
Given a partition and its set of candidates, where each candidate has a real-valued
score, a specialization is performed on the value chosen by the exponential mechanism.
We refer to this value as the split value. A specialization v → child(v) replaces the split
value v with its child values. We perform a specialization as follows: in a partition Pi,
once a value v ∈ Pi is chosen for specialization, our algorithm creates a child partition
Pcj for every child value cj ∈ child(v). Then, it distributes the records in Pi among
the child partitions where each record goes to its pertinent child partition. A score is
computed for the new values in every child partition. Finally, the parent partition Pi
is deleted as it contains no further useful information to the specialization process. We

Differentially-Private Multidimensional Data Publishing A:17

note that the raw values of the records are maintained throughout runtime in order to
properly split the records among child partitions.

To satisfy differential privacy, any operation should be independent of the underly-
ing data. We project this rule on finding the split value for both categorical and numer-
ical attributes. We note that a categorical split value is a generalized value drawn from
a pre-defined generalization hierarchy (taxonomy tree), and a numerical split value is
an interval over the continuous domain. If the exponential mechanism chooses a cate-
gorical split value, then adding or removing a record from the input data set will not
affect how a split value is determined. As a result, having a taxonomy tree induces
sensitivity = 0 on determining a categorical split value. On the other hand, if the ex-
ponential mechanism chooses a numerical split value, then a numerical split point
has to be found from the chosen interval. Due to the inconvenience of defining a tax-
onomy tree for numerical attributes, our proposed algorithm adaptively determines a
numerical split point that divides an interval over the attribute domain into two dis-
joint and successive subintervals. A simple solution to finding a split point can be to
pick a random point from the raw records and split the records into two child parti-
tion accordingly. This solution suffers from two shortcomings. First, the chosen point
may not exist in a neighboring data set that differs by 1 record. Hence, choosing a
point directly from the raw data records violates differential privacy. Second, this so-
lution does not pay attention to the utility of the partitioned data. In the following, we
present a method for carefully choosing a numerical split point that maximizes data
utility without violating differential privacy.

We compute a score for every value vi in the domain of the numerical attribute
Ω(Anum), then use the exponential mechanism to choose a value vi ∈ Ω(Anum) with
the following probability:

exp(ε′

2∆uu(D, vi))∫
v∈Ω(Anum)

exp(ε′

2∆uu(D, v)) dv
, (11)

where u(D, vi) is a score computed from a utility function u with sensitivity ∆u.
Computing a score for every value in the domain can be exhaustive. We observe that

intervals of consecutive values along the attribute domain can have the same score.
More formally,

OBSERVATION 4.1. Given a utility function u and a numerical attribute Anum with
domain range Ω(Anum) = {I1, I2, . . . , Ik}, where In is an interval of consecutive values.
Then, ∀In ∈ {I1, I2, . . . , Ik}, we have u(D, vi) = u(D, vj) ∀vi, vj ∈ Ω(In).

Following this observation, we partition the domain range into successive intervals
{I1, I2, . . . , Ik} such that every two successive intervals are separated by a numerical
value from the input data. We generated a score for every interval and use the expo-
nential mechanism to choose an interval with the following probability:

exp(ε′

2∆uu(D, vi))× |Ω(In)|∑k
j=1(exp(ε′

2∆uu(D, vj))× |Ω(Im)|)
, (12)

where vi ∈ Ω(In), vj ∈ Ω(Im), and |Ω(In)| and |Ω(Im)| are the sizes of the intervals
In and Im, respectively. Once the exponential mechanism returns an interval, we ran-
domly sample a value from the returned interval, since all its values have the same
score. The randomly chosen value represents the numerical split point. The step of
determining a numerical split point is outlined in Line 9 of Algorithm 1.

THEOREM 4.3. Choosing a numerical split point satisfies ε′-differential privacy.

A:18 K. Al-Hussaeni et al.

PROOF (SKETCH) 4.3. Choosing a numerical split point involves two steps: (1)
choosing an interval In from a set of intervals {I1, I2, . . . , Ik}; and (2) sampling a value
from In. Proving that the first step satisfies ε′-differential privacy can be straightfor-
wardly deduced from Proof 4.1 and is, therefore, omitted from this proof. The second
step randomly samples a value from In. This step is data independent; therefore, it
satisfies differential privacy by definition [Dwork 2006].

EXAMPLE 4.5. Let us reexamine Fig. 4. The numerical split value [1930 − 1999)
is chosen for specialization at the root node. Therefore, we partition the domain of at-
tribute Y oB into the set {[1930− 1947), [1947− 1953), [1953− 1955), [1955− 1957), [1957−
1959), [1959− 1968), [1968− 1999)}. After that, a score is generated for each interval. Let
us assume that interval [1959 − 1968) has the highest score among all the other candi-
date intervals in the set. Finally, a split point is randomly picked from [1959 − 1968),
which is 1960 in this example, that divides [1930−1999) into two intervals: [1930−1960)
and [1960− 1999).

As we mentioned in Section 4.2, the NCP of an interval In is computed from the ratio
|In|

|Ω(Anum)| . This results in every value in the interval having a slightly different score
than the other. To avoid finding a score for every single value, we choose the midpoint
to represent the score and split point of an interval.

4.4. Publishing Record Counts
In Section 4.1, we mentioned that DiffMulti is comprised of two phases: iteratively
specializing records, followed by publishing generalized records. Phase 1 ends when
no further specializations can be performed. Phase 2 publishes record counts in every
leaf partition that resulted from Phase 1. However, as discussed earlier in Section 4.2,
publishing true counts violates differential privacy because counts change depending
on the underlying data set. Again, we use the Laplace mechanism to publish a noisy
version of the true count. Fig. 4 shows the added Laplacian noise in a dashed ellipse
in every leaf partition.

Recall from Section 4.1 that a partition holds |Ω(Acls)| groups of generalized records,
we wish to release noisy group counts that satisfy ε

2 -differential privacy. Therefore,
in Line 21, Algorithm 1 publishes C + Lap(2/ε) for every Pli ∈ PL, where C is the
true group count in a leaf partition and PL denotes the set of leaf partitions. Noisy
record counts are rounded down to the nearest non-negative integer, a step that does
not violate differential privacy [Kifer and Lin 2010].

THEOREM 4.4. Publishing record counts satisfies ε
2 -differential privacy.

The proof is similar to Proof 4.2; therefore, it is omitted from the discussion. Next,
we will examine the properties of differential privacy to prove that DiffMulti is
differentially private.

Privacy Budget Allocation. To satisfy differential privacy, it is imperative for any
operation to be insensitive to the underlying data set. In Sections 4.2- 4.4, we in-
vestigated the main operations of DiffMulti and showed that each operation on its
own is differentially-private. To prove that DiffMulti is differentially-private as a
whole, we will examine sequential composition (Lemma 3.1) and parallel composition
(Lemma 3.2) in order to carefully allocate a privacy budget 0 < ε′ ≤ ε to each operation,
where ε is an input parameter.

The algorithm exhibits two behaviors in which parallel composition can be wit-
nessed. In Phase 1, specializing a partition Pi → {Pc1 , . . . , Pcγ} results in child par-
titions containing disjoint sets of records. Hence, allocating a privacy budget = εx to

Differentially-Private Multidimensional Data Publishing A:19

each child partition Pcj ∈ {Pc1 , . . . , Pcγ} will result in a total budget consumption = εx
among {Pc1 , . . . , Pcγ}. In Phase 2, a leaf partition contains |Ω(Acls)| groups of disjoint
records. Again, assigning εx to each group in the partition to publish noisy counts will
consume a total of εx.

Sequential composition manifests along a root-to-leaf path in the tree of parti-
tions because the same set of records is being iteratively processed starting from the
topmost-general root partition until a leaf partition is reached. Moreover, the set of
root-to-leaf paths falls under parallel composition, as we explained above. Therefore,
the privacy budget consumption is added along the longest root-to-leaf path.

Let us start by examining the amount of privacy budget needed to process a single
partition. Lines 9, 11, and 13 of Algorithm 1 outline three ε′-differentially-private op-
erations. Therefore, a single partition requires 3 × ε′ to complete a specialization in a
differentially-private way. Line 9 is a special case for the topmost-general root parti-
tion because we need to find a split point for all numerical attributes, whereas any
subsequent child partition contains at most one numerical value for which we need to
find a split point. Hence, Line 9 computes a split point |Anum| times in the root parti-
tion, where |Anum| is the number of numerical attributes. Given ε as the entire privacy
budget for Algorithm 1, we dedicate ε

2 to specializing partitions along a root-to-leaf
path (Phase 1) and ε

2 for publishing record counts (Phase 2). The Laplacian noise in
Phase 2 is, therefore, Lap(2/ε). The budget for each of the three differentially-private
operations in Phase 1 ε′ = ε

2(|Anum|+3|g|) , where |g| is the length of the longest path.
In conclusion, based on the above privacy analysis and Theorems 4.1- 4.4, DiffMulti

is ε-differentially private.

4.5. Proposed Algorithm
Algorithm 1 outlines the key steps of our proposed method, DiffMulti. Lines 1-20 de-
scribe Phase 1 and Line 21 describes Phase 2. The algorithm accepts three input pa-
rameters: a raw data set D, a privacy budget ε, and the maximum number of special-
izations h. The output is an ε-differentially-private data set D̂.

In Phase 1, DiffMulti performs a sequence of specializations on partitions. A special-
ization is performed only if it is valid. A partition that does not incur a valid special-
ization is considered a leaf partition, which is used in Phase 2 to publish noisy record
counts.

DEFINITION 4.1 (A valid specialization). Given a partition Pi, we say that Pi in-
curs a valid specialization iff all the following hold true: the number of specializations
h′ assigned to Pi, Pi.h′ > 0; ∃v ∈ Pi s.t. |child(v)| 6= 0; and the number of specializations
from the root partition to Pi ≤ |g|.

Line 1 generalizes all raw values in D to one root partition, Pi, that contains the
topmost values. Let PT be a list that holds partitions as a LIFO stack. At any given
iteration, PT stores the partitions to be specialized at a later point during execution
time. Line 2 initializes the list of temporary partitions PT with Pi. Line 3 initializes
the set of leaf partitions PL, which stores the partitions holding the data records to be
published. Line 4 sets the length of the longest root-to-leaf path to the total number
of levels of all the taxonomy trees that belong to all attributes A in D except the
Class attribute. We further elaborate on this point in Section 4.6. Line 5 is executed
once to initialize ε′, as per the discussion in Section 4.4. This ε′ will be used for all
the differentially-private operations in the algorithm. Lines 6-20 recursively perform
specializations on the partitions in PT . Line 7 provides the next partition to be
specialized, Pi, and Line 8 checks its validity. If Pi does not yield a valid specialization,
it is removed from PT and added to PL in Lines 17 and 18. Otherwise, Line 9 chooses,

A:20 K. Al-Hussaeni et al.

Algorithm 1 DiffMulti
Input: Raw data set D, privacy budget ε, and number of specializations h
Output: Diff-private & multidim-generalized data set D̂

1: Pi ← Initialize every value in D to the topmost value;
2: PT ← Pi;
3: PL← ∅;
4: |g| =

∑|A| |taxonomy tree heighti|;
5: ε′ ← ε

2(|Anum|+3|g|) ;
6: while PT != ∅ do
7: Pi ← PT .pop();
8: if Pi incurs a valid specialization then
9: Determine a split point for every new valid vnum ∈ Pi with probability ∝

exp(ε′

2∆uu(D, vnum));
10: Compute the score for every valid v ∈ Pi;
11: Select v ∈ Pi with probability ∝ exp(ε′

2∆uu(D, v));
12: Specialize Pi → {Pc1 , . . . , Pcγ};
13: Use Equation 10 to determine, with Lap(1/ε′), the number of specializations h′

assigned to every Pcj ∈ {Pc1 , . . . , Pcγ};
14: PT ← PT − Pi;
15: PT .push(Pcj) for every Pcj ∈ {Pc1 , . . . , Pcγ};
16: else
17: PT ← PT − Pi;
18: PL← PL ∪ Pi;
19: end if
20: end while
21: return each group in Pli ∈ PL with count (C + Lap(2/ε))

in a differentially-private way, a split point for every new numerical value vnum ∈ Pi.
This step creates two child values for vnum with non-overlapping intervals. Line 10
computes a score for every valid value v ∈ Pi. A utility function is chosen beforehand
depending on the target workload. Line 11 uses the exponential mechanism to select
a value v. Line 12 specializes v → child(v) and creates a partition Pc for every child
value c ∈ child(v). After that, Line 13 assigns a noisy number of specializations h′ to
each child partition Pc in proportion to the number of records in Pc, where 0 ≤ h′ < h.
Line 14 removes the parent partition Pi from PT , whereas Line 15 pushes the set of
child partitions {Pc1 , . . . , Pcγ} onto the beginning of PT . The recursion (Lines 6-20)
stops when the list of temporary partitions PT becomes empty, i.e., no further valid
specialization can be performed on any partition ∈ PT . The algorithm terminates
when Line 21 synthesizes the ε-differentially-private data set D̂ by returning a
Laplacian-noisy version of the counts in all the partitions in PL.

Top-Down Specialization. Algorithm 1 uses a tree data structure (Fig. 4) reminis-
cent of the one proposed in [Fung et al. 2007]. A significant difference between both
relies on the fact that our structure is not indexed. Rather, our technique works on the
node level due to the multidimensional aspect of our algorithm, where every node in
the tree represents a partition containing a unique set of records. Such structuring of
data records to generate a differentially-private and multidimensionally-generalized
version of a raw data set provides the following advantages: First, the exponential

Differentially-Private Multidimensional Data Publishing A:21

mechanism chooses from the set of candidates that exists in the same partition. This
avoids having to link other candidates by scanning other partitions. Second, in any
iteration, all records being specialized exist within the same partition, which provides
direct access to those records. This provides efficiency by avoiding scanning the entire
data set when computing scores or splitting records from parent to child partitions.
Third, the tree structure allows Algorithm 1 to organize child partitions in a LIFO
stack so that the tree grows in a depth-first order. This provides space efficiency
by performing a sequence of specializations on records that exist within the same
memory block, i.e., moving from parent to child, as opposed to moving from parent to
sibling. Fourth, Algorithm 1 does not need to complete a full run to finish anonymizing
the data, rather, at the end of any iteration the data is anonymous and a noisy version
is ready to be published.

Complexity Analysis. We find the complexity of DiffMulti in terms of the number
of records in the input data set, |D|. Given a numerical attribute Anum, a split point
is found by first sorting the partition records on Anum, and then scanning them once
to compute a score for every numerical value on Anum that appears in the partition
records. Sorting partition records on a single numerical attribute costs O(|Pi| log |Pi|),
where |Pi| is the number of records in Pi. If Pi is the root partition, then |Pi| = |D|;
otherwise, |Pi| is usually much smaller than |D|. Thus, Line 9 of Algorithm 1 costs
O(|Anum|×|D| log |D|) for the root partition and O(|Pi| log |Pi|) otherwise, where |Anum|
is the number of numerical attributes.

In Line 10, a score is computed for every candidate in the current partition. Data
records in the root partition are scanned once for every attribute to determine the
score. For all other partitions, no record scanning is necessary because all the required
pieces of information have been obtained in an earlier iteration (Line 12); thus, this
operation can be done in a constant time. Therefore, given a set of attributes A, and
assuming that all candidates in Pi are valid, Line 10 costs O(|A| × |Pi|) for the root
partition and O(1) otherwise.

The complexity of the exponential mechanism is proportional to the number of se-
lections from which the mechanism will choose. The exponential mechanism appears
twice in the algorithm. First, in Line 9 the purpose is to select a split point from a
given numerical attribute. This process requires partitioning the numerical attribute
into successive intervals {I1, I2, . . . , Ik} then choosing one interval from the set (as
demonstrated in Example 4.5). Therefore, the cost of the exponential mechanism in
Line 9 is O(k). Second, in Line 11 the purpose is to select a candidate from a set of
candidates, which has a maximum size equal to the number of attributes in D. Hence,
the cost of Line 11 is O(|A|). |D| is usually much larger than the number of intervals
and the number of attributes. We, therefore, choose to neglect the complexity of the
exponential mechanism.

In Line 12, the current partition is specialized on the selected value v from Line
11. The records in Pi are distributed among its child partitions, a step that requires
scanning those records to determine the child partition to which every record belongs.
Thanks to the tree structure, partition Pi gives direct access to pertinent records in D.
To boost the efficiency of our implementation, along with record scanning, we collect
pieces of information that will be used in computing the scores in the child partitions
in subsequent iterations (Line 10). Specifically, for each c ∈ child(v) we collect |Dc|,
|Dcls

c |, |Dz|, and |Dcls
z |, where cls is a value on the Class attribute and z ∈ child(c).

Thus, specializing a partition costs O(|Pi|). The rest of the lines in Algorithm 1 are
done in a constant time.

From the analysis above, the most expensive operation in the algorithm is sorting
partition records (Line 9). Given that the algorithm performs at most h specializations,

A:22 K. Al-Hussaeni et al.

and given a fixed number of attributes, the total cost of the algorithm is O(h × |Pi| ×
log|Pi|). In order to express the time complexity in terms of the number of records in
the input data set, |D|, we assume the worst case by which partitions are specialized
according to a binary tree structure where every leaf partition contains 1 record. Every
level collectively processes |D| records and the tree can have at most log|D| level. As a
result, DiffMulti has a worst-case runtime of O(|D| · log |D| · log |D|).

4.6. Discussion
Generalization Hierarchies. Unlike existing methods [Chen et al. 2011] that as-
sume a context-free hierarchy (one that does not preserve the underlying semantics
of the data), we assume that a hierarchy for a categorical attribute in the context of
relational data publishing is pre-defined by the data holder and is specific to the hi-
erarchy’s corresponding attribute. Yet, we can provide some general guideline. If the
data holder has the flexibility to define multiple hierarchies, defining a flat hierarchy
should be avoided because a hierarchy with a large number of child nodes results in a
small number of records in the child partitions (Fig. 4). Consequently, increasing the
effect of the added noise upon records publishing. Whereas a better hierarchy contains
less child nodes and more depth. Not only does such design allow for more general-
ization options, but it also produces less noisy record counts because partitions at the
higher level of the generalization tree have larger record counts, minimizing the effect
of the added Laplace noise.

Numerical Hierarchies. Our approach dynamically generates hierarchies for nu-
merical attribute, as opposed to performing a preprocessing step to discretize numer-
ical domains, for the following reasons. Unlike categorical attributes, data holders of-
ten do not have a good sense on how to discretize numerical attributes. It is more user-
friendly if the algorithm can automatically discretize the attributes on-the-fly. Suppose
the data holder wants to pre-define a hierarchy for a numerical attribute. There are
two possible ways. The first way is to define the hierarchy independently of the raw
data. This may result in poor utility, e.g., lower classification accuracy, because the
discretization process does not consider the distribution of the classes. Our proposed
approach, on the other hand, takes data utility into consideration in the anonymiza-
tion and discretization processes. The second way is to pre-define a hierarchy from the
raw data. In this case, the process must be differentially-private. Our proposed method
incorporates the discretization into the specialization process. That is, a numerical at-
tribute is discretized only after being compared with the rest of the attributes in the
input data set. Otherwise, discretization will waste privacy budget by making unnec-
essary specializations. For the above reasons, dynamic discretization is more elegant
and user-friendly than having a separate preprocessing step.

Longest Path. In Section 4.4, we discussed privacy budget allocation and how to
compute ε′ given that partitions are structured as a tree. In such tree, the length of
a root-to-leaf path refers to the number of specializations along that path. Thanks to
the parallel composition property, we only need to consider the length of the longest
root-to-leaf path, |g|, when computing ε′ because g performs the longest sequence of
differentially-private operations. For example, the length of the longest root-to-leaf
path in Fig. 4 is 3.

Knowing |g| in advance is a challenging task because: (1) the depth of the tree of
partitions is indeterministic due to multidimensional generalization; and (2) ε′ needs
to be computed in advance so that DiffMulti can perform the differentially-private op-
erations in Phase 1 (Lines 9, 11, and 13). Herein, we provide theoretical and practical
estimation of |g|.

Every partition specialization in the tree decreases the number of specializations h
by 1. We consider the following two cases of tree growth. If the tree fans out, i.e., the

Differentially-Private Multidimensional Data Publishing A:23

Table II. Adult data set

of records 45,222
of numerical attributes 6
of categorical attributes 8

of Class attributes 1 (salary: “≤ 50K” or “> 50K”)
Total # of attributes 15

Table III. Notations

Notation Description
ε Privacy budget
h Number of specializations

BA Baseline Accuracy
LA Lower Bound Accuracy

C4.5, SVM, ID3 Classifiers
k in k-anonymity Anonymity threshold

k in k-means Number of clusters

upper levels contain a large number of partitions, then h will be mainly consumed hor-
izontally. With little h left, the tree will not grow deeper. However, if the tree branches
with small number of child partitions, then more h will be available to allow for the
tree to grow deeper. Our interest lies in the case where the tree grows as deep as pos-
sible; therefore, we consider a perfect binary tree of partitions where all leaf partitions
are at the same level and every leaf partition contains 1 record from D. With |D| leaf
partitions, the hight of the tree would be log2|D|. Hence, the length of the longest path
is |g| = log2|D|. We note that this is a theoretical estimate built on the assumption
that all data records conform to the perfect binary distribution of partitions. It is safe
to say that real-life data sets are unlikely to follow such tree structure as some child
partitions are likely to be empty causing the tree to grow deeper than log2|D| levels. An
alternative, and more practical, solution is to consider the number of specializations
required to transform a record from its topmost general version to its raw version. This
is achieved by summing the heights of all the taxonomy trees for a given data set. The
result is an integer that represents the length of longest possible root-to-leaf path. For
all the experiments in the following section, we use the latter approach to estimate |g|.

5. EXPERIMENTAL EVALUATION
We evaluate the performance of our proposed method, DiffMulti, with respect to the
utility of the output data, efficiency in terms of runtime, and scalability for handling
large data sets. The goal is to measure the impact of multidimensional generalization
achieved by means of differential privacy. We compare our proposed algorithm with 4
closely related ones: (1) DiffGen [Mohammed et al. 2011], a differentially-private algo-
rithm that performs single-dimensional (global) generalization; (2) Mondrian [LeFevre
et al. 2006; 2008], an algorithm that enforces multidimensional generalization to pub-
lish k-anonymous data; (3) DPCube [Xiao et al. 2014], a differentially-private method
for releasing private histograms in the interactive setting; and (4) PrivBayes [Zhang
et al. 2014], a differentially-private algorithm that utilizes Bayesian networks to re-
lease high-dimensional data that approximate the distribution of the input data. Fur-
thermore, we report the data utility of our method and that of RPS [Qardaji and Li
2012], a general framework for releasing relational data under differential privacy.

For all our evaluations, we use the widely employed and publicly available Adult
data set [Frank and Asuncion 2010]. Tables II and III include a summary description
of Adult and some of the notions used throughout this section, respectively.

Both DiffMulti and DiffGen are top-down specializations approaches; therefore, they
share the notion of the number of specializations, h. When comparing DiffMulti with

A:24 K. Al-Hussaeni et al.

DiffGen, we vary the number of specializations h in both methods and report the re-
sults. Even though h is an input parameter for both methods, the value of h ranges
differently, as explained below.
h is an integer whose maximum value is tied to the taxonomy trees. DiffGen employs

single-dimensional generalization, and thus h can be at most equal to the total of the
number of non-leaf nodes in all the taxonomy trees. Whereas DiffMulti employs mul-
tidimensional generalization, resulting in h being massively greater than DiffGen’s h.
More specifically, the maximum number of specializations for DiffMulti is computed
as follows:

h = 1 + Inter1

+ Leaves1 + (Leaves1 × Inter2)

+ (Leaves1 × Leaves2) + (Leaves1 × Leaves2 × Inter3)

+ . . .

+ (Leaves1 × Leaves2 × . . .× Leavesm−1)

+ (Leaves1 × Leaves2 × . . .× Leavesm−1 × Interm). (13)

Or,

h = 1 + Inter1 +

m−1∑
i=1

[(

i∏
j=1

Leavesj)(1 + Interi+1)], (14)

where Interi is the number of intermediate nodes in taxonomy tree i, Leavesi is the
number of leaf nodes in taxonomy tree i, and m is the total number of taxonomy trees.
Considering only the taxonomy trees of the categorical attributes of the Adult data
set, h has a limit of nearly 50 for DiffGen, while for DiffMulti h is in millions. Those
numbers assume that every combination of raw values exists in the raw data sets,
which is not the case empirically.

There exists no sense of direct comparison between the number of specializations
of DiffMulti and that of DiffGen. Therefore, when comparing the performance of both
methods, we reasonably vary the value of h for both methods in an attempt to maintain
relatively consistent results. In some other cases, the range might vary differently in
order to display a certain behavior in the performance of a method.

The settings and configurations of the experiments are as follows: we implemented
our method in C++. All experiments run on a PC with an Intel Core i5 CPU, 2.4GHz,
and 8GB of RAM. Unless otherwise mentioned, we run each experiment 20 times and
report the average of the obtained results in the graphs herein. Moreover, recall from
Section 4.4 that ε′ = ε

2(|Anum|+3|g|) , where g is the longest root-to-leaf path. Section 4.6
presented an estimation of |g| by summing the heights of all the taxonomy trees. Adult
has 8 distinct taxonomy trees pertaining to 8 categorical attributes. Summing the
heights of these taxonomy trees yields 21. For the remaining 6 numerical attributes,
no such hierarchy exists and so we assume the height of each attribute’s taxonomy
tree is 7 on average. Hence, the total sum is 63, and thus we set |g| = 63 for all our
experiments. Specialization stops when a root-to-leaf path reaches length = |g| as the
dedicated privacy budget would have been consumed entirely. If the longest root-to-leaf
path stopped before reaching |g|, the unused portion of the privacy budget is added to
the privacy budget dedicated to the leaf partitions in order to preserve the entire bud-
get ε. It is worth noting that choosing a height for a numerical taxonomy tree is a
loose assumption, and reasonably varying this number has no significant impact on
DiffMulti.

Differentially-Private Multidimensional Data Publishing A:25

25k 9 50k 12 75k 15 100k 18 125k 21

D
is

ce
rn

ib
il

it
y

 P
e

n
a

lt
y

DiffMulti DiffGen

Number of Specializations

109

108

107

106

105

104

103

102

10

Fig. 5. Comparing DiffMulti and DiffGen in terms of discernibility penalty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1k 3 25k 6 50k 9 75k 12 100k 15

N
C

P
 V

a
lu

e

Number of Specializations

DiffMulti DiffGen

Fig. 6. Comparing DiffMulti and DiffGen in terms of NCP

5.1. Data Utility
We test our method using two general-purpose metrics, i.e., discernibility [Bayardo
and Agrawal 2005] and NCP [Xu et al. 2006], and two specific target workloads, i.e.,
classification and clustering.

General-Purpose Metrics. Fig. 5 and 6 depict the utility of the output data set
where discernibility [Bayardo and Agrawal 2005] and NCP [Xu et al. 2006] are the
utility functions, respectively. Recall from Section 4.2 that both functions are general-
purpose metrics that measure the amount of distortion in the output data set in com-
parison with its raw version. We compare our method DiffMulti with DiffGen in order
to showcase the impact of multidimensional generalization over single-dimensional. In
both figures, we vary the number of specializations of both methods and measure the
distortion; higher reported values indicate higher distortion. Fig. 5 suggests that Diff-
Multi is able to significantly reduce the discernibility penalty by at least one order of
magnitude than DiffGen. Fig. 6 reports the NCP values, where 0 ≤ NCP ≤ 1 and NCP = 1
means that the output data set is generalized to the topmost value in the taxonomy
tree of every attribute. Again, DiffMulti manages to maintain significantly less gen-
eralized output data thanks to its multidimensional approach. Both figures suggest
that DiffMulti is robust with respect to the number of specializations as the incurred
distortion does not change significantly.

A:26 K. Al-Hussaeni et al.

74

76

78

80

82

84

86

300 600 900 1200 1500

C
la

ss
if

ic
a

ti
o

n
 A

cc
u

ra
cy

 (
%

)

 !"!#$% !"!#$&' !"!#$' !"!%

Number of Specializations

()!"!*'$+,

-)!"!.'$',

Fig. 7. DiffMulti: the impact of ε on classification accuracy

Classification Analysis. The objective of classification analysis is to build a clas-
sification model that accurately predicts the Class attribute in Adult; particularly,
if an individual has income “> 50K”. To achieve this goal, first we use the training
records to create generalization regions in the multidimensional space. Then, we gen-
eralize the training and testing records to those regions. Training records are used
to build a classification model, which in turn is used to predict the Class attribute in
the testing records. For this set of experiments, we used three widely deployed classi-
fiers: C4.5 [Quinlan 1993], ID3 [Hall et al. 2009], and SVM [Joachims 1999]. C4.5 and
ID3 are trained with 2/3 of Adult records and tested with the remaining 1/3 records,
whereas SVM is trained with 4/5 of the records and tested with the remaining 1/5. For
all classifiers, we set Max to be the utility function.

Before applying any anonymization method on Adult, we first classify Adult as a
raw data set to measure the Baseline Accuracy (BA), which is the best achieved ac-
curacy. We aspire to obtain results close to the BA when classifying the output data
of an anonymization method, which typically results in lower accuracies than the BA.
Moreover, we measure the Lower Bound Accuracy (LA), which considers solely the
Class attribute when training and testing the classifier. LA gives the sense of having a
worst-case accuracy that should be surpassed by the output of a proposed anonymiza-
tion method. Fig. 7, 8, 9, and 10 measure classification accuracy in percentage, where
higher values imply better accuracy.

Fig. 7 depicts the impact of differential privacy on classification accuracy using C4.5
classifier. We test DiffMulti by varying the privacy budget 0.1 ≤ ε ≤ 1 and the number
of specializations 300 ≤ h ≤ 1500. The privacy budget should not be set large, i.e., typ-
ically ≤ 1 [Dwork 2006; Friedman and Schuster 2010; Dwork 2011]. Higher privacy
budgets result in more accurate classification because the differentially-private oper-
ations of the algorithm, i.e., data partitioning and publishing record counts, incur less
noisy outputs.

Fig. 8 compares DiffMulti with both DiffGen and Mondrian in terms of classification
accuracy using C4.5 classifier. We set ε = 1 in both DiffMulti and DiffGen and vary
the number of specializations 1k ≤ h ≤ 10k and 2 ≤ h ≤ 20, respectively. Mondrian is
not a differentially-private method; rather, it publishes k-anonymous data via multi-
dimensional generalization. Since both DiffMulti and Mondrian are multidimensional
approaches, we compare both methods by setting k = 60 for Mondrian. Hence, the
latter is represented by a single line in Fig. 8. We observe that DiffMulti is dominant
in achieving higher accuracy, especially at lower numbers of specializations. However,
for higher values of h, Mondrian achieves up to 2% better accuracy than DiffMulti. We

Differentially-Private Multidimensional Data Publishing A:27

74

76

78

80

82

84

86

1000 2000 3000 4000 5000 6000 8000 9000 10000

2 4 6 8 10 12 16 18 20

C
la

ss
if

ic
a

ti
o

n
 A

cc
u

ra
cy

 (
%

)

DiffMulti DiffGen Mondrian (k=60)

Number of Specializations

BA = 85.3%

LA = 75.5%

Fig. 8. Comparing DiffMulti, DiffGen, and Mondrian in terms of classification accuracy

note the following. First, DiffMulti possesses the flexibility to achieve better accuracies
than DiffGen and Mondrian, given a certain range of h. Second, the 2% improvement
in accuracy when applying k-anonymity-based Mondrian comes at the cost of releasing
anonymous data that is vulnerable to attacker’s background knowledge [Wong et al.
2007; Ganta et al. 2008; Kifer 2009]. On the other hand, any attack on the data re-
leased by our proposed differentially-private method is independent of any attacker’s
background knowledge or computational power, thanks to the strong privacy guaran-
tees offered by differential privacy.

The authors of DiffGen conducted a similar experiment in [Mohammed et al. 2011]
to compare the classification accuracy of their non-interactive DiffGen with the inter-
active DiffP-C4.5 [Friedman and Schuster 2010], an algorithm that maintains differ-
ential privacy when building a classifier. Although DiffP-C4.5 achieved promising re-
sults, DiffGen obtained improved accuracy at ε = 1. However, the latter was constantly
surpassed by DiffMulti for h ≤ 10k. For h > 10k, however, the accuracy achieved by
DiffMulti starts to decay. Taking all the reported results together, Fig. 8 suggests that
DiffMulti is flexible to achieve comparable or better classification accuracy than exist-
ing methods for a certain range of h.

Fig. 7 and 8 show that as the number of specializations increases, the classifica-
tion accuracy of DiffMulti decreases. This is due to the following two reasons. First, a
higher number of specializations results in longer root-to-leaf paths. Consequently, the
computed ε′ assigned to a single differentially-private operation becomes very small
compared to that of DiffGen, resulting in poor partitioning decisions that contribute to
building an inaccurate classifier. Second, a higher number of specializations yields a
larger number of leaf partitions. Consequently, each partition contains fewer records.
As the number of records decreases, the effect of the added Laplace noise in Phase 2 of
Algorithm 1 increases. With a relatively large noise, true record counts undergo severe
distortion, which in turn adversely affects building a proper decision tree. This find-
ing confirms that for high-dimensional data, publishing noisy counts of every possible
combination of domain values greatly degrades the quality of analysis.

Fig. 9 compares DiffMulti with DPCube in terms of classification accuracy by using
ID3 classifier. We follow the same experimental settings as in [Xiao et al. 2014]: we
use 30,162 records for training and 15,060 for testing, and we select from Adult the
attributes workclass, martial-status, race, and sex. We can see that DiffMulti achieves
slightly better classification accuracy than DPCube. While both methods achieve com-
parable accuracy, DiffMulti improves over DPCube by (1) being able to handle numer-
ical attributes, and (2) being a non-interactive method that releases anonymous data

A:28 K. Al-Hussaeni et al.

75

75.5

76

76.5

77

77.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
la

ss
if

ic
a

ti
o

n
 A

cc
u

ra
cy

 (
%

)

DiffMulti DPCube

Privacy Budget

BA = 76.9%

Fig. 9. Comparing DiffMulti and DPCube in terms of classification accuracy

70

75

80

85

0.1 0.25 0.5 0.75 1

C
la

ss
if

ic
a

ti
o

n
 A

cc
u

ra
cy

 (
%

)

DiffMulti PrivBayes

Privacy Budget

BA = 83.6%

Fig. 10. Comparing DiffMulti and PrivBayes in terms of classification accuracy

with no restriction on data access or the number of users querying the published data.
We also observe that in some cases DiffMulti is able to perform better than the BA.
This is because DiffMulti transforms raw data by means of generalization, which tends
to reduce noise for the classifier.

Fig. 10 depicts the performance of DiffMulti and PrivBayes using SVM classifier. We
set the number of specializations for DiffMulti h = 10k and used the default parame-
ters for PrivBayes. We ran both methods over 5 different privacy budgets 0.1 ≤ ε ≤ 1
and reported the resulting accuracy of each run. DiffMulti constantly performs more
accurate predictions than PrivBayes even at low privacy budgets (noisy output data).
We note that, unlike PrivBayes which outputs raw data values, our solution performs a
series of carefully selected generalizations which contribute to improving classification
accuracy, as suggested by Fig. 8.

We carry out an additional experiment in which we compare DiffMulti with the RPS
framework [Qardaji and Li 2012] in terms of classification accuracy. The accuracy of
RPS was taken from the authors’ paper. The same settings of RPS experiments were
applied when conducting our experiment: Adult data set of 30,162 records and 11 at-
tributes (See [Qardaji and Li 2012]), and 5-fold cross validation for measuring the clas-
sification accuracy. We fixed ε = 1 for both methods and obtained the following results:
the accuracy of the raw data BA = 82.96%. For RPS, 79% was the highest achieved

Differentially-Private Multidimensional Data Publishing A:29

accuracy, whereas DiffMulti achieved 81.54% when the number of specializations was
set to 1k (explanation is in the above paragraph).

Cluster Analysis. The objective of this experiment is two-fold:

(1) We would like to measure the similarity between the clustering solutions resulting
from clustering the raw data and the anonymous data. This will give a sense of
how much “similarity” is preserved between anonymous records.

(2) We would like to evaluate the benefit of performing workload-aware partitioning,
as opposed to general-purpose partitioning.

To achieve the first objective, we implement an intuitive evaluation method, called
Match Point, that was proposed by Fung et al. [Fung et al. 2009]. We first create a
|D|-by-|D| matrix, Matrix(D), that represents the clustering solution resulting from
clustering the raw Adult, where |D| is the number of records in Adult. Every row and
column in the matrix represent a unique record, in the same order. A cell in Matrix(D)
contains the value 1 if the ith record and the jth record belong to the same cluster; 0
otherwise. Similarly, we create a |D̂|-by-|D̂| matrix, Matrix(D̂), that represents the
clustering solution resulting from clustering the anonymous Adult. Match Point is de-
fined as the percentage of matched values between Matrix(D) and Matrix(D̂). That
is, if cells Cellij in Matrix(D) and its corresponding cell in Matrix(D̂) have the same
value, then we increase the match score by 1; 0 otherwise. Match Point is defined as
follows:

MatchPoint(Matrix(D),Matrix(D̂) =

∑
1≤i,j≤|D| Cellij

|D|2
. (15)

Match Point is defined over the range of [0, 1], where Match Point = 1 indicates a
perfect match between the raw cluster and the anonymous cluster. Note that we com-
pare the clustering solution of the raw records with the clustering solution of the true
anonymous records because this will give us a more accurate insight of how effective
DiffMulti is in preserving the “similarity” between data records, with no impact on the
utility of the overall released data.

To achieve the second objective, we choose Max as a utility function in order to
allow DiffMulti to perform workload-aware partitioning of the data. Additionally, we
choose discernibility as a general-purpose utility function that minimizes distortion in
general. We call the former set of experiments ClusterMP and the latter DistortMP.

In order to perform cluster analysis on raw Adult, we remove the Class attribute
(salary) from the data set, cluster the data set, identify the cluster ID of every record
in the resulting clustering solution, and add cluster ID as a Class attribute to the entire
data set. After that, we use DiffMulti to anonymize Adult, which has raw cluster ID as
the Class attribute. Finally, we remove the Class attribute from the anonymous data
set, cluster the true anonymous records, and add the anonymous cluster ID as a Class
attribute to the anonymous data set. For more on the process of cluster analysis, we
refer the reader to [Fung et al. 2009].

Fig. 11 depicts the Match Point results for ClusterMP and DistortMP. We use the
bisecting k-means clustering method [Kaufman and Rousseeuw 2009] provided by the
CLUTO Clustering Toolkit [Karypis 2006]. We set the privacy budget ε = 1, the num-
ber of clusters k = 2, and vary the number of specialization 1k ≤ h ≤ 7k. From Fig. 11,
we can make two observations. First, DiffMulti is able to preserve the proximity be-
tween data points in the high-dimensional space and, therefore, significantly improve
cluster quality under the workload-aware partitioning strategy (ClusterMP) over the
general-purpose partitioning strategy (DistortMP) - the experiments in ClusterMP
constantly achieve Match Point ≥ 90%. Second, as the number of specializations in-

A:30 K. Al-Hussaeni et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 3000 5000 7000

M
a

tc
h

 P
o

in
t

Number of Specializations

ClusterMP DistortMP

Fig. 11. Testing DiffMulti for clustering

0

5

10

15

20

25

30

35

10k 2 20k 4 30k 6 40k 8 50k 10 60k 12 70k 14 80k 16 90k 18 100k 20

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of Specializations

DiffMulti DiffGen

Fig. 12. Comparing DiffMulti and DiffGen in terms of runtime

creases, the similarity between the clustering solutions before and after anonymization
begins to decrease. This is because DiffMulti performs a sequence of noisy specializa-
tions in order to satisfy differential privacy. As a result, less general data points are
more affected by the noisy choice of a value to be specialized.

5.2. Efficiency and Scalability
Efficiency. In this experiment, the objective is to measure the runtime of our method
and compare the results to those achieved by DiffGen. Fig. 12 depicts the runtime in
seconds where the utility function is Max, ε = 1, and the number of specializations
is 10k ≤ h ≤ 100k for DiffMulti and 2 ≤ h ≤ 20 DiffGen. The runtime of DiffMulti
when performing 100k specializations is nearly 30s. Results suggest that our method,
though it runs a few seconds longer than DiffGen, is insensitive to the number of
specializations as the increase in runtime is insignificant. For a clear visualization, we
did not include Mondrian in Fig. 12 because its runtime varied from a few minutes to
nearly an hour for 20 ≤ k ≤ 100. For the experiments in Fig. 10, our method took 10s to
complete compared to a few minutes for PrivBayes, which was running on its default
parameters. Particularly, the parameter that specifies the degree of Bayesian network

Differentially-Private Multidimensional Data Publishing A:31

0

20

40

60

80

100

120

140

200 400 600 800 1000

R
u

n
ti

m
e

 (
se

co
n

d
s)

Reading Anonymizing Writing Total

of Records (in thousands)

Fig. 13. Scalability of DiffMulti

k was set to 3. As k increases, the runtime of PrivBayes substantially increases; e.g.,
setting k = 5 causes PrivBayes to run for a few hours [Zhang et al. 2014].

Scalability. The purpose of this experiment is to examine the ability of our method
to handle large data sets in terms of runtime. We generated 5 variations of the raw
Adult data set, as follows: for every record in Adult, we generate r − 1 other records
that contain some values drawn randomly from their pertinent attribute domain. The
result is 5 data sets ranging in size from 200,000 to 1 million records. We run Diff-
Multi once on each data set, where the utility function is Max and ε = 1. Fig. 13 depicts
the runtime in seconds for reading the records, anonymizing the entire data set, and
writing the differentially-private multidimensionally-generalized records. Anonymiz-
ing an Adult-variant data set with 1 million records finishes in less than 120s. Fig. 13
suggests that the runtime of DiffMulti increases reasonably as the number of records
increases.

Overall. The privacy budget has a direct impact on the utility of the output data,
and runtime is incremental with respect to the number of specializations and the num-
ber of input records.

6. CONCLUSION
In this chapter, we propose a differentially-private and multidimensional generaliza-
tion algorithm, called DiffMulti. Publishing anonymized data in a non-interactive set-
ting provides flexibility of usage to data recipients, as opposed to providing anonymized
answers tailored to specific queries. We adopt differential privacy as our privacy model
due to its independence of any attacker’s background knowledge and insensitivity to
the underlying data. Parallel to preserving privacy, the utility of the anonymized data
is equally essential. Therefore, we effectively generalize the raw data into multidimen-
sional regions to minimize information loss. Experimental evaluation on a real-life
data set suggests that our proposed method is able to reduce information loss by at
least one order of magnitude when compared with single-dimensional generalization,
and improves data utility when compared with state-of-the-art private data release
methods.

A:32 K. Al-Hussaeni et al.

ACKNOWLEDGMENTS

The research is supported in part by the Discovery Grants (356065-2013) from the Natural Sciences and En-
gineering Research Council of Canada (NSERC), Canada Research Chairs Program (950-230623), Research
Incentive Funds (R15046 and R15048) from Zayed University, and Research Grants (61272306) from the
National Natural Science Foundation of China (NSFC). The work was partially completed while Benjamin
C. M. Fung was visiting the Department of Computer Science at Hong Kong Baptist University.

REFERENCES
B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. 2007. Privacy, Accuracy, and Consis-

tency Too: A Holistic Solution to Contingency Table Release. In Proceedings of the 26th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS ’07). 273–282.

R. J. Bayardo and R. Agrawal. 2005. Data Privacy Through Optimal k-Anonymization. In Proceedings of the
21st International Conference on Data Engineering (ICDE ’05). 217–228.

A. Blum, K. Ligett, and A. Roth. 2008. A Learning Theory Approach to Non-interactive Database Privacy.
In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing (STOC ’08). 609–618.

D. M. Carlisle, M. L. Rodrian, and C. L. Diamond. 2007. California Inpatient Data Reporting Manual, Med-
ical Information Reporting for California, 5th Edition. Technical Report. Office of Statewide Health
Planning and Development.

S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. 2005. Toward Privacy in Public Databases. In
Proceedings of the Second International Conference on Theory of Cryptography (TCC ’05). 363–385.

R. Chen, N. Mohammed, B. C. M. Fung, B. C. Desai, and L. Xiong. 2011. Publishing Set-Valued Data via
Differential Privacy. The Proceedings of the VLDB Endowment 4, 11 (2011), 1087–1098.

G. Cormode, C. Procopiuc, D. Srivastava, and T. T. L. Tran. 2012. Differentially Private Summaries for
Sparse Data. In Proceedings of the 15th International Conference on Database Theory (ICDT ’12). 299–
311.

B. Ding, M. Winslett, J. Han, and Z. Li. 2011. Differentially Private Data Cubes: Optimizing Noise Sources
and Consistency. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’11). 217–228.

C. Dwork. 2006. Differential Privacy. In Proceedings of the 33rd International Conference on Automata,
Languages and Programming - Volume Part II (ICALP ’06). 1–12.

C. Dwork. 2008. Differential Privacy: A Survey of Results. In Proceedings of the 5th International Conference
on Theory and Applications of Models of Computation (TAMC ’08). 1–19.

C. Dwork. 2011. A Firm Foundation for Private Data Analysis. Commun. ACM 54, 1 (2011), 86–95.
C. Dwork, F. McSherry, K. Nissim, and A. Smith. 2006. Calibrating Noise to Sensitivity in Private Data

Analysis. In Proceedings of the Third Conference on Theory of Cryptography (TCC ’06). 265–284.
C. Dwork and A. Roth. 2014. The Algorithmic Foundations of Differential Privacy. Foundations and Trends

in Theoretical Computer Science 9, 3–4 (2014), 211–407.
A. Frank and A. Asuncion. 2010. UCI Machine Learning Repository. (2010). http://archive.ics.uci.edu/ml
A. Friedman and A. Schuster. 2010. Data Mining with Differential Privacy. In Proceedings of the 16th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’10). 493–502.
B. C. M. Fung, K. Wang, L. Wang, and P. C. K. Hung. 2009. Privacy-preserving Data Publishing for Cluster

Analysis. Data & Knowledge Engineering 68, 6 (2009), 552–575.
B. C. M. Fung, K. Wang, and P. S. Yu. 2007. Anonymizing Classification Data for Privacy Preservation. IEEE

Transactions on Knowledge and Data Engineering 19, 5 (2007), 711–725.
S. R. Ganta, S. Kasiviswanathan, and A. Smith. 2008. Composition Attacks and Auxiliary Information in

Data Privacy. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD ’08). 265–273.

Katie Hafner. 2006. And if You Liked the Movie, a Netflix Contest May Reward You Handsomely. New York
Times (October 6, 2006).

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. 2009. The WEKA Data Mining
Software: An Update. ACM SIGKDD Explorations Newsletter 11, 1 (2009), 10–18.

M. Hay, V. Rastogi, G. Miklau, and D. Suciu. 2010. Boosting the Accuracy of Differentially Private His-
tograms Through Consistency. Proceedings of the VLDB Endowment 3, 1-2 (2010), 1021–1032.

V. S. Iyengar. 2002. Transforming Data to Satisfy Privacy Constraints. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’02). 279–288.

Differentially-Private Multidimensional Data Publishing A:33

T. Joachims. 1999. Making Large-Scale SVM Learning Practical. In Advances in Kernel Methods - Support
Vector Learning, B. Schölkopf, C. Burges, and A. Smola (Eds.). MIT Press, Cambridge, MA, Chapter 11,
169–184.

G. Karypis. October 2006. CLUTO - Software for Clustering High-Dimensional Datasets. (October 2006).
http://glaros.dtc.umn.edu/gkhome/views/cluto.

L. Kaufman and P. J. Rousseeuw. 2009. Finding Groups in Data: An Introduction to Cluster Analysis. Vol.
344. John Wiley & Sons.

D. Kifer. 2009. Attacks on Privacy and de Finetti’s Theorem. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’09). 127–138.

D. Kifer and B.-R. Lin. 2010. Towards an Axiomatization of Statistical Privacy and Utility. In Proceedings of
the 29th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS ’10).
147–158.

K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. 2006. Mondrian Multidimensional K-Anonymity. In Pro-
ceedings of the 22nd International Conference on Data Engineering (ICDE ’06).

K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. 2008. Workload-Aware Anonymization Techniques for
Large-Scale Datasets. ACM Transactions on Database Systems 33, 3 (2008), 17:1–17:47.

C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. 2010. Optimizing Linear Counting Queries Under
Differential Privacy. In Proceedings of the 29th ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems (PODS ’10). 123–134.

H. Li, L. Xiong, and X. Jiang. 2014. Differentially private synthesization of multi-dimensional data using
copula functions. In Proceedings of the 17th International Conference on Extending Database Technology
(EDBT ’14), Vol. 2014. 475–486.

N. Li, T. Li, and S. Venkatasubramanian. 2007. t-Closeness: Privacy Beyond k-Anonymity and `-Diversity.
In Proceedings of the 23rd International Conference on Data Engineering (ICDE ’07). 106–115.

A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. 2006. `-diversity: Privacy Beyond
k-anonymity. In Proceedings of the 22nd IEEE International Conference on Data Engineering (ICDE ’6).
24–24.

F. McSherry. 2009. Privacy Integrated Queries. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’09). 19–30.

F. McSherry and K. Talwar. 2007. Mechanism Design Via Differential Privacy. In Proceedings of the 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’07). 94–103.

N. Mohammed, R. Chen, B. C. M. Fung, and P. S. Yu. 2011. Differentially Private Data Release for Data
Mining. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD ’11). 493–501.

W. Qardaji and N. Li. 2012. Recursive Partitioning and Summarization: A Practical Framework for Differ-
entially Private Data Publishing. In Proceedings of the 7th ACM Symposium on Information, Computer
and Communications Security (ASIACCS ’12). 38–39.

W. Qardaji, W. Yang, and N. Li. 2013a. Differentially private grids for geospatial data. In Proceedings of the
29th IEEE International Conference on Data Engineering (ICDE ’13). 757–768.

W. Qardaji, W. Yang, and N. Li. 2013b. Understanding Hierarchical Methods for Differentially Private His-
tograms. Proceedings of the VLDB Endowment 6, 14 (2013), 1954–1965.

W. Qardaji, W. Yang, and N. Li. 2014. PriView: Practical Differentially Private Release of Marginal Contin-
gency Tables. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’14). 1435–1446.

J. R. Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann.
P. Samarati. 2001. Protecting Respondents’ Identities in Microdata Release. IEEE Transactions on Knowl-

edge and Data Engineering 13, 6 (2001), 1010–1027.
L. Sweeney. 2002. K-anonymity: A Model for Protecting Privacy. International Journal of Uncertainty, Fuzzi-

ness and Knowledge-Based Systems 10, 5 (2002), 557–570.
S. M. Weiss and C. A. Kulikowski. 1991. Computer Systems That Learn: Classification and Prediction Meth-

ods from Statistics, Neural Nets, Machine Learning, and Expert Systems. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. 2007. Minimality Attack In Privacy Preserving Data
Publishing. In Proceedings of the 33rd international conference on Very large data bases (VLDB ’07).
543–554.

X. Xiao, G. Bender, M. Hay, and J. Gehrke. 2011a. iReduct: Differential Privacy with Reduced Relative
Errors. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’11). 229–240.

A:34 K. Al-Hussaeni et al.

X. Xiao, G. Wang, and J. Gehrke. 2011b. Differential Privacy Via Wavelet Transforms. IEEE Transactions
on Knowledge and Data Engineering 23, 8 (2011), 1200–1214.

Y. Xiao, L. Xiong, L. Fan, S. Goryczka, and H. Li. 2014. DPCube: Differentially Private Histogram Release
through Multidimensional Partitioning. Transactions on Data Privacy 7, 3 (2014), 195–222.

J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W. C. Fu. 2006. Utility-Based Anonymization Using Local
Recoding. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD ’06). 785–790.

J. Xu, Z. Zhang, X. Xiao, Y. Yang, G. Yu, and M. Winslett. 2013. Differentially Private Histogram Publication.
The VLDB Journal 22, 6 (2013), 797–822.

J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao. 2014. PrivBayes: Private Data Release via
Bayesian Networks. In Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’14). 1423–1434.

