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ABSTRACT 
Eye-based interactions for people with motor impairments have 
often used clunky or specialized equipment (e.g., eye-trackers with 
non-mobile computers) and primarily focused on gaze and blinks. 
However, two eyelids can open and close for diferent duration 
in diferent orders to form various eyelid gestures. We take a frst 
step to design, detect, and evaluate a set of eyelid gestures for 
people with motor impairments on mobile devices. We present an 
algorithm to detect nine eyelid gestures on smartphones in real-
time and evaluate it with twelve able-bodied people and four people 
with severe motor impairments in two studies. The results of the 
study with people with motor-impairments show that the algorithm 
can detect the gestures with .76 and .69 overall accuracy in user-
dependent and user-independent evaluations. Moreover, we design 
and evaluate a gesture mapping scheme allowing for navigating 
mobile applications only using eyelid gestures. Finally, we present 
recommendations for designing and using eyelid gestures for people 
with motor impairments. 

CCS CONCEPTS 
• Human-centered computing → Interaction techniques; Ac-
cessibility technologies. 

KEYWORDS 
eyelid gestures, people with motor impairments, mobile interaction 
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1 INTRODUCTION 
Fifteen percent of people in the US have difculties with their phys-
ical functioning, among whom almost half fnd it very difcult or 
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impossible to walk unassisted for a quarter-mile [11]. Although spe-
cialized devices, such as eye-trackers [21, 29, 31, 33], brain-computer 
interfaces [3], and mechanical devices (e.g., joysticks [35, 39, 40], 
trackballs [38], mouse pieces [9, 34]), have been investigated to as-
sist people with motor impairments, such devices are often clunky, 
intrusive, expensive, and limited in accuracy and functions (e.g., 
text entry). In contrast, smartphones become ubiquitous, powerful, 
and can be benefcial to people with motor impairments [24]. 

Rich sensors on smartphones have enabled new opportunities 
to assist people with motor impairments. For example, motion 
sensors and touch screens have been used to recognize physical 
activities [2] and diagnose and quantify motor ability [1, 5, 14, 
28]; microphones allow for using speech to enter texts [32] and 
issue commands [10, 27]. Although another sensor—camera—has 
been explored to assist people with motor impairments to enter 
text [6, 26, 41], issue gesture commands [13, 17, 29], and navigate 
a wheelchair [4, 8, 33, 42] , such research has primarily focused 
on utilizing gaze (e.g., eyeball movements) [13, 17, 26, 29, 33, 41, 
43] and blinks [12, 16, 22, 43] for interactions. However, human’s 
two eyelids can be in open and close states for short and long 
periods in concurrent and sequential orders to form a rich set of 
eyelid gestures, which could extend and enrich existing eye-based 
interactions. In this work, we make an initial exploration into the 
design space of eyelid gestures on mobile devices for people with 
motor impairments. 

We frst introduce a taxonomy to describe and construct poten-
tial eyelid gestures based on four primitive eyelid states. Although 
some eyelid gestures, such as winks, were proposed for hands-free 
interaction [15], our work explores a richer set of eyelid gestures 
and is the frst to present an algorithm to recognize them on a smart-
phone in real-time. Moreover, we evaluated the performance of the 
algorithm in two user studies with people without and with mo-
tor impairments. In the frst study, twelve able-bodied participants 
performed the nine eyelid gestures in two indoor environments 
and diferent postures. The overall accuracy of user-dependent 
and user-independent models was .76 and .68 respectively, which 
shows that the algorithm was robust to diferences in environments 
and postures. We then conducted the second study in which four 
participants with severe motor impairments performed the same 
set of gestures. The overall accuracy of user-dependent and user-
independent models was .76 and .69 respectively. Furthermore, we 
designed a mapping scheme to allow users to navigate mobile appli-
cations only using eyelid gestures. We asked the participants with 
severe motor impairments to complete a set of navigation tasks only 
using eyelid gestures. Results show that they perceived the eyelid 
gestures were easy to learn and the mapping was intuitive. They 
further reported how the eyelid gestures and the mapping scheme 

https://doi.org/10.1145/3373625.3416987
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Figure 1: The descriptions and abbreviations of the nine eyelid gestures that our algorithm detects in real-time. Each leter 
in a gesture abbr. depicts the gesture’s key eyelid states between the common start and end states (i.e., “both eyelids open”). 
The dash line indicates holding the eyelid(s) in the state it follows. For example, ‘B-R-’ represents the gesture that starts from 
“both eyelids open”, transitions to “Both eyelids close”, sustains in the state for some time (-), transitions to “only the Right 
eyelid close”, sustains in the state for some time (-), and ends at “both eyelids open”. Similarly, the “double blink” gesture ‘BOB’ 
includes “Both eyelids close”, “Both eyelids Open”, and “Both eyelids close” between the common start and end states. 

can be further improved. Finally, we present design recommenda-
tions for using eyelid gestures for people with motor impairments 
and discuss the limitations and future research directions. 

2   EYELID   GESTURE   DESIGN   AND   
RECOGNITION   

Design. Eyelid states refer to the states in which two eyelids can be 
and have four possible values: both eyelids open, both eyelids close, 
only the right eyelid close, and only the left eyelid close. Technically, 
an eyelid can also be in a half-closed state (e.g., squinting). However, 
sustaining eyelids in a half-close state can cause them to twitch 
or cramp [15]. Moreover, our investigation found that it is still 
challenging to robustly recognize half-close states with current 
technology. Thus, as an initial exploration into this design space, 
we focus on the four states when constructing eyelid gestures. 
Because the “both eyelids open” state is the most common state 
when humans are awake, we use it as the gesture delimiter to label 
the start and end of an eyelid gesture. 

In addition to the four eyelid states, humans can control the 
duration of an eyelid state [15]. As it can hard to memorize the exact 
duration of a state, we discretize duration into two levels—short and 
long. Short duration refers to the time it takes to intentionally close 
an eyelid (e.g., longer than a spontaneous blink (50 - 145 ms) [36]) 
and open it immediately afterward. Long duration is closing an 
eyelid, sustaining it for some time, and then opening it. As users 
may have diferent preferences for holding the eyelids in a state, it 
is ideal to allow them to decide on their preferred holding duration 
as long as they keep it consistent. For simplicity, in this work, users 
are instructed to count a fxed number of numbers (e.g., three) by 
heart while holding eyelids in a state. 

By controlling the eyelid states and their duration, we could 
construct an infnite number of eyelid gestures with one or more 
eyelid states between the gesture delimiter. As an initial step toward 
exploring this vast design space, we focused on recognizing nine 
relatively simple eyelid gestures, which consist of only one or two 

eyelid states between the gesture delimiter. Fig. 1 shows these nine 
eyelid gestures and their abbreviations. 

Recognition Algorithm. Our algorithm is implemented on 
Samsung S7 running Android OS 8.0. It frst obtains images from 
the front-camera (30 frames per second) with 640 x 480 resolution 
and leverages Google Mobile Vision API to generate a stream of 
probability pairs of each eye being open (PL , PR ) [20]. The details 
of how the API estimates probability can be found in [20]. Fig. 2 
shows some examples of the probabilities of two eyes being open 
in the nine eyelid gestures performed by a user. Notice that when 
the user closes the right or left eye, the probability of this eye being 
open is not necessarily the same, and the probability of the other 
eye being open might also drop at the same time. It suggests that 
the probability estimation of the API [20] is noisy, and there are 
variations in the probability estimations even when the same user 
performs the same gesture. 

To cope with the variations in probability estimations, our algo-
rithm incorporates an eyelid-state Support Vector Machine (SVM) 
classifer to classify an input pair (PL , PR ) into two states: open (O) 
if both eyes are open and close (C) if any eye is closed. Because the 
“both eyes open” (O) state is used as the gesture delimiter, the algo-
rithm then segments the stream of probability pairs between the 
delimiter. The algorithm then computes the duration of an segment 
and flters it out if its duration is too short because extremely short 
segments are likely caused by spontaneous blinks (50 - 145 ms [36]) 
or noises in probability estimations. We tested diferent thresholds 
for duration from 150 to 300 ms and adopted 220 ms for its best 
performance. Next, the duration of the segment is fed into another 
SVM classifer, which further distinguishes if it is a short-duration 
or long-duration gesture (Fig. 1). The algorithm then re-samples 
the sequence of probability pairs (PL , PR ) in the segment to ensure 
all segments contain the same number of probability pairs (50 and 
100 samples for short and long gestures respectively). Next, the 
re-sampled same-length vector is fed into the corresponding short-
duration SVM classifer or a long-duration SVM classifer. Finally, the 
short-duration classifer detects whether the segment is R, L, B or 
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Figure 2: The probabilities of two eyes being open when a user performs each of the nine eyelid gestures. The blue (solid) and 
cyan (dashed) lines represent the probabilities of the left and right eye being open respectively. 

BOB; and the long-duration classifer detects whether the segment 
is R-, L-, B-, B-R-, or B-L-. All SVM classifers are implemented us-
ing scikit-learn library with the Radial Basis Function kernel and 
default parameters [25]. Our code is available here1. 

3   STUDY   WITH   PEOPLE   WITHOUT   MOTOR   
IMPAIRMENTS   

We conducted the frst study to understand how well our algorithm 
recognizes eyelid-gestures on a mobile device for people without 
motor-impairments before testing with people with motor impair-
ments. 

3.1   Participants   
We recruited 12 able-bodied participants aged between 23 and 35 
(M = 26, SD = 4, fve males and seven females) to participate in 
the study. Their eye colors include brown (11) and amber (1). Seven 
wore glasses, one wore contact lenses, and four did not wear glasses 
or contact lenses. No one worn false eyelashes. The study lasted 
half an hour, and participants were compensated with $15. 

3.2   Procedure   
We used a Samsung S7 Android phone as the testing device to 
run the eyelid gesture recognition evaluation app (Fig. 3) in real-
time. To increase evaluation validity, we collected training and 
testing data in two diferent ofces. We frst collected training data 
by asking participants to keep their eyelids in each of the four 
eyelid states and then perform each of the nine eyelid gestures fve 
times following the instructions in the app while sitting at a desk 
and holding the phone in their preferred hand in one ofce. We 
then collected testing data by asking them to perform each eyelid 
gesture another fve times while standing in another ofce room 
and holding the phone in their preferred hand. The diferences in 
physical environments and postures increased variations between 
training and testing data. Similarly, the variations in ways how they 
held the phone in their preferred hands also introduced variations 
between training and testing data. 

To collect data samples for each eyelid state, the evaluation app 
frst presented a target eyelid state on the top side of the screen 
(Fig. 3a, b) in a random order. Participants were asked to frst prepare 
their eyes in the state and then press the green ‘START’ button to 
start data collection at a speed of 30 frames per second. The app 
beeped after collecting 200 frames, and the button turned to yellow 
to indicate that the data collection for this eyelid state was done. 

1https://github.com/mingming-fan/EyelidGesturesDetection 

The app presented another eyelid state and repeated the procedure 
until data samples for all four eyelid states were collected. These 
data were used to perform 10-cross cross-validation of the eyelid 
state classifer on the phone in real-time. The training process took 
on average 558 milliseconds. 

To collect the training data for each of the nine eyelid gestures, 
the evaluation app presented a target gesture on the top side of 
the screen (Fig. 3c, d). Participants were asked to press the green 
‘START’ button and then perform the target gesture. Upon fnishing, 
participants pressed the ‘STOP’ button. The app recorded and stored 
the stream of eyelid states during this period. The app presented 
each eyelid gesture fve times randomly. Thus, the app collected 
fve samples per gesture for each participant, which was used to 
train the eyelid gesture classifer on the phone in real-time. The 
training process took on average 102 milliseconds. 

To collect testing data, participants performed each eyelid ges-
ture fve more times while standing in another ofce room using 
the same app and aforementioned procedure. 

3.3   Results   
To evaluate the eyelid state classifer, we performed 10-fold cross 
validations; to evaluate the eyelid gesture classifer, we performed 
user-dependent and user-independent evaluations. 

3.3.1 Eyelid State Evaluation. We performed a 10-fold cross-validation 
on each participant’s data and averaged the performance across all 
participants. The overall accuracy was .92 (SD = .09). The accuracy 
for each eyelid state was as follows: both eyelids open (.98), right 
eyelid close (.89), left eyelid close (.85), and both eyelids close (.96). 
Because both eyes open was the gesture delimiter to separate eye-
lid gestures, we further trained a classifer to recognize only two 
eyelid states by grouping the last three states (with an eyelid close) 
together. The average accuracy was 0.98 (SD = .02). 

3.3.2 User-dependent Eyelid Gesture Evaluation. For each partici-
pant, we trained a user-dependent classifer with fve samples for 
each gesture and tested it with another fve samples. We then aver-
aged the performance of the classifer for each gesture across all 
participants. The average accuracy of all gestures was .76 (SD = .19) 
and the average accuracy for each gesture was as follows: L (.93), R 
(.78), B-R- (.78), B-L- (.78), B (.77), L- (.77), B- (.75), R- (.73), and BOB 
(.57). This result suggests that user-dependent gesture classifers 
were able to detect eyelid gestures when users were in diferent 
indoor environments and postures. We further computed the con-
fusion matrix to show how gestures were misclassifed in Fig. 4a. 
In addition, the average time it took for participants to complete 

https://B-L-(.78
https://B-R-(.78
https://1https://github.com/mingming-fan/EyelidGesturesDetection
https://B-L-(.78
https://B-R-(.78
https://1https://github.com/mingming-fan/EyelidGesturesDetection
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Figure 3: (a)-(d) present the data collection UIs for eyelid states (a, b) and for eyelid gestures (c, d). ○1 shows the name of eyelid 
states or eyelid gestures, ○2 shows the face detection result, and ○3 are control buttons, such as "start", "cancel", and "redo". 
During eyelid gesture evaluation, detected eyelid state is shown in ○4 . 

Figure 4: Study One: The confusion matrix of user-
dependent (a) and user-independent (b) evaluations respec-
tively (columns: ground truth; rows: predictions; N/A means 
not recognized). 

each gesture was as follows: R (745 ms), L (648 ms), B (668 ms), R-
(2258 ms), L- (2010 ms), B- (2432 ms), B-L- (4169 ms), B-R- (4369 ms), 
BOB (2198 ms). It shows that more complex gestures took longer to 
complete overall. 

3.3.3 User-independent Eyelid Gesture Evaluation. To assess how 
well a pre-trained user-independent eyelid gesture classifer would 
work for a new user whose data the classifer is not trained on, 
we adopted a leave-one-participant-out scheme by keeping one 
participant’s data for testing and the rest participants’ data for 
training. The average accuracy of all gestures is .68 (SD = .17), and 
the average accuracy for each gesture was as follows: L (.88), R (.78), 
B-L- (.77), B (.75), L- (.7), B-R- (.63), R- (.6), B- (.57), and BOB (.47). 
We also computed the confusion matrix to show how gestures were 

misclassifed in Fig. 4b. This result suggests that a pre-trained user-
independent eyelid gesture classifer could be used "out-of-box" 
with reasonable accuracy for a user, but the performance could be 
improved if the classifer is trained with the user’s data samples 
(i.e., user-dependent classifer). 

4   STUDY   WITH   PEOPLE   WITH   SEVERE   
MOTOR   IMPAIRMENTS   

4.1   Participants   
Although people with motor impairments are relatively small pop-
ulation [7, 37], we were able to recruit four people with severe 
motor impairments (PMI) for the study with the help of a local 
organization of people with disabilities. Table 1 shows participants’ 
demographic information. One participant wore contact lens, and 
the rest did not wear glasses or contact lens. The study lasted 
roughly an hour, and each participant was compensated with $15. 

4.2   Procedure   
The studies were conducted in participants’ homes. Fig 5 shows the 
study setup. We asked participants to sit in their daily wheelchair 
or a chair. We positioned an Android phone (Huawei P20) on the 
top of a tripod and placed the tripod on their wheelchair tables 
or desks so that the phone was roughly 30-50 cm away from their 
faces and its front camera was roughly at their eye level. 

We slightly modifed the evaluation app (Fig. 3) to accommo-
date the participants’ motor impairments. Instead of asking them 
to press ‘START’ and ‘STOP’ buttons, the app used a 10-second 
countdown timer to automatically trigger the start and end of each 
task. In cases where participants needed a pause, they simply asked 
the moderator to pause the task for them. The participants followed 
the instructions of the evaluation app to keep their eyelids in in-
structed eyelid states so that 200 frames were collected for each 

https://B-R-(.63
https://B-L-(.77
https://B-R-(.63
https://B-L-(.77
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Figure 5: P1, P2, and P3 sat in their daily wheelchairs. P4 did 
not use a wheelchair and sat in a chair in front of a desk. The 
evaluation smartphone was mounted on the top of a tripod, 
which was placed on the wheelchair trays or the desk with 
its front camera roughly at their eye levels. 

eyelid state. These data were used to evaluate the eyelid state clas-
sifer in a 10-fold cross-validation. Next, the participants followed 
the instructions of the evaluation app to perform each gesture fve 
times, which were used as training data for user-dependent evalua-
tion. After a break, the participants followed the same procedure to 
perform each gesture fve times again, which were used as testing 
data for the user-dependent evaluation. 

4.3   Results   
4.3.1 Eyelid State Evaluation. We performed a 10-fold cross-validation 
on each participant’s data and averaged the performance across 
all participants. The overall accuracy was .85 (SD = .15), and the 
accuracy for each eyelid state was as follows: both eyelids open 
(.99), right eyelid close (.65), left eyelid close (.79), and both eyelids 
close (.99). We noticed that individual diferences exist. For example, 
P2 had trouble controlling her right eyelid and consequently had 
much lower accuracy for closing the right eyelid: both eyelids open 
(.997), right eyelids close (.02), left eyelids close (.57), and both eyelids 
close (1.00). When the last three eyelid states (with at least one 
eyelid close) were grouped into one close state, the accuracy of the 
two-state classifer was more robust: .997 (SD = .004). 

4.3.2 User-dependent Eyelid Gesture Evaluation. We performed the 
same user-dependent evaluation as Section 3.3.2, and the overall 
accuracy of all gestures was .76 (SD = .15). The accuracy for each 
gesture was as follows: B-R- (1.00), B- (.95), B (.95), L- (.85), L (.80), R 
(.75), R- (.60), B-L- (.55), and BOB (.35). We computed the confusion 
matrix (Fig. 6a) to show how gestures were misclassifed. Similarly, 

Figure 6: Study Two: The confusion matrix of user-
dependent (a) and user-independent (b) evaluations respec-
tively (columns: ground truth; rows: predictions; N/A means 
not recognized). 

we also computed the average time to complete each gesture: R 
(699 ms), L (889 ms), B (850 ms), R- (3592 ms), L- (3151 ms), B- (3722 
ms), B-L- (6915 ms), B-R- (6443 ms), BOB (3002 ms). 

4.3.3 User-independent Eyelid Gesture Evaluation. We performed 
the same user-independent evaluation as Section 3.3.3, and the 
overall accuracy was .69 (SD = .20). The accuracy of each gesture 
was as follows: B- (.95), B-R- (.90), B (.85), L (.75), L- (.65), R- (.55), 
B-L- (.55), BOB (.55), and R (.50). We also computed the confusion 
matrix (Fig. 6b) to show where the misclassifcations happened. 

4.4   Interacting   with   Mobile   Apps   with   Eyelid   
Gestures   

Navigating between and within mobile apps is a common task that 
is typically accomplished by a series of touch actions on the screen. 
App navigation happens at three levels: between apps, between 
tabs/screens in an app, and between containers in a tab/screen of an 
app. Tab is a common way of organizing content in an app. Screen is 
another way of organizing content, usually in the launcher. Within 
a tab, content is further organized by containers, often visually 
presented as cards. 

To allow people with motor impairments to accomplish the three 
types of navigation using eyelid gestures only, we iteratively de-
signed a mapping scheme between the gestures and the types of 
navigation (Fig. 7) by following two design guidelines: 1) naviga-
tion directions should be mapped consistently with the eyelid being 

Table 1: The demographic information of the people with motor impairments. 

ID Gender Age Motor Impairments Hand Function Note 
P1 F 29 cervical spinal cord injury (C5) having difculty holding and grasping; using a ring holder 

stand for her phone 
car accident in 2012; using a 
wheelchair 

P2 F 32 cervical spinal cord injury (C6) having difculty extending and strengthening fngers; using 
an index fnger’s knuckle to touch her phone 

acute myelitis in 2003; using a 
wheelchair 

P3 M 53 cervical spinal cord injury (C5) having no control over individual fngers; moving forearms 
to move hands and using a ring fngertip to touch his phone 

car accident in 2004; using a 
wheelchair 

P4 M 63 two forearms amputation using his prosthetic arms to hold and interact with his 
phone 

electric shock during high-voltage 
work in 1989 

https://B-L-(.55
https://B-R-(.90
https://B-L-(.55
https://B-R-(1.00
https://B-L-(.55
https://B-R-(.90
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Figure 7: The mapping scheme for navigating apps (B-R-, B-
L-), tabs/screens (R-, L-), and containers (R, L). 

closed (e.g., closing the right/left eyelid navigates forward/backward 
to the next opened app); and 2) the complexity of the eyelid gestures 
for the lowest-level to the highest-level navigation should increase. 
Because navigating between apps has the most signifcant over-
head [18], we assign the eyelid gestures with two eyelid states (e.g., 
B-R-, B-L-) to this level of navigation. In addition to navigation, 
BOB is used for selecting an item. 

4.4.1 Evaluation. We designed app navigation tasks to measure 
how well participants would be able to learn the mappings and 
use the eyelid gestures to accomplish various navigation tasks. The 
evaluation app simulated three mobile apps (APP1, APP2, APP3), 
which were color-coded (Fig. 8). Each app contains three tabs (TAB1, 
TAB2, TAB3). Each tab contains four containers numbered from 
1 to 4. The outline of the container in focus is highlighted in red. 
The focus of attention was on the frst container in TAB1 of APP1 
when the evaluation started. Each participant was given a practice 
session which contained fve navigation tasks, and the target item 
for each navigation was randomly generated. The app spoke out a 
target location using Android’s text-to-speech API and also showed 
it on the bottom left of the UI. Each participant was asked to use 
eyelid gestures to navigate the focus of attention to the target item. 
Once the target location was reached, the next navigation task was 
delivered in the same manner. The practice session took on average 
less than 5 minutes to complete. Afterwards, the evaluation app gen-
erated another fve randomized navigation tasks for participants 
to work on. Upon completion, participants were asked whether 
each gesture was a good match for completing the corresponding 
task (i.e., “would that gesture be a good way to complete the naviga-
tion?” ), and whether each gesture was easy to perform (i.e. “rate 
the difculty of carrying out the gesture’s physical action” ) using 
7-point Likert-scale questions, which were used to elicit feedback 
on gesture commands (e.g., [23, 30]). 

4.4.2 Subjective feedback. The average ratings of the physical dif-
fculty of carrying out the eyelid gestures were as follows (the higher 
the value, the easier the gesture): BOB (7),B- (7), R (6.8), L (6.5), L-
(5.5), R- (5.5), B-R- (5.5) and B-L- (5.5). Three out of the four PMI 
participants felt eyelid gestures were easy to learn and they were 
getting better after a brief practice. “It was hard for me to perform 
some gestures because I had barely trained for these gestures other 
than blinking. For example, I had difculty closing both eyelids frst 
and then opening the left eyelid alone. I think the reason was that I had 
better control over the right eyelid than the left, and I had not practiced 
this gesture before. However, I did fnd it became more natural after I 
practiced for a couple of times.-P3” 

Figure 8: (a)-(d) are the app navigation UIs. ○1 shows the con-
tainers, ○2 shows the tabs, ○3 shows the current app name, 
and ○4 shows the target item of current trial. Three types of 
navigation are illustrated: between containers in a tab (a, b), 
between tabs within an app (a, c), and between apps (a, d). 

The rest PMI participant felt that the gestures requiring to open 
one eyelid at frst and then both (i.e., B-L- and B-R-) are fatiguing. 
Instead, they proposed new eyelid gestures in the opposite direction, 
such closing one eye frst and then closing the other one (e.g., L-B-, 
R-B-). 

For those long eyelid gestures, our method required users to 
sustain their eyelids in a state (i.e., open or close) for a period (i.e., 
counting three numbers by heart). P1 expressed that she would 
like to be able to customize the duration, such as shortening it: 
“I noticed that a long holding time did help the system distinguish 
my ‘long’ gestures from ‘short’ ones well. But I was a bit frustrated 
about the long holding time because I felt somehow it wasted time. 
The system could allow me to defne the duration for ‘short’, ‘long’, 
or perhaps even ‘long-long’. For example, it could ask me to perform 
these gestures and then learns my preferred duration for short and 
long gestures.” 

The average ratings of the mappings between eyelid gestures and 
the levels of navigation were as follows (the higher the value, the 
better the mapping): R (6.08), L (6.08), R- (5.83), L- (5.83), B- (5.67), B-
R- (5.33) and B-L- (5.33). All four PMI participants felt the mappings 
were natural. In particular, participants appreciated that more com-
plex eyelid gestures were assigned to less-frequent but high-cost 
commands (e.g., switching apps) while simpler eyelid gestures were 
assigned to relatively more-frequent but low-cost commands (e.g., 
switching between containers or tabs within an app). “As a person 
with a cervical spine injury, it is common for me to commit false 
inputs. Making apps-switching harder can prevent me from switching 
to other apps by accident. Since I use in-app functionalities more often 
than switching between apps, I prefer having simple eyelid gestures 
associate with frequent in-app inputs, such as scrolling up to view 
new updates in a social media app.-P1” 

In addition, P4 felt that it would be even better to allow a user 
to defne their own mappings in cases where the user is unable to 
open or close both eyelids at the same level of ease. Furthermore, 
P2 and P4 wished to have an even harder-to-perform gesture as 
the "trigger" to activate the recognition. “I have difculty holding 
my phone stable and might have falsely triggered the recognition 
more often than others. I may need more time to place the phone 

https://B-L-(5.33
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at a comfortable position before using it. During this time, I may 
accidentally trigger false commands to the phone. Therefore, a harder-
to-perform gesture, perhaps triple winking, might be a good one for 
me to trigger the recognition.-P4 (with prosthetic arms)” 

We further asked participants about the usage scenarios of the 
eyelid gestures. Participants felt that eyelid gestures are handy when 
it is inconvenient to use their hands or fngers. “Eyelid gestures are 
useful when I lie down on my stomach and rest. I have better control 
over my eyelids than my fngers. In fact, I can barely control my fngers. 
Similarly, I would like to use it when I cook or take a bathroom. Also, 
because it is extremely difcult for me to press buttons on a TV remote, 
I’d love to use the eyelid gestures to switch TV channels.-P2” 

Overall, we found that participants would like to apply eye-
lid gestures on various types of electronic devices (e.g., TVs, PCs, 
smartphones, tablets) in daily activities. Moreover, we found that 
participants preferred the eyelid gesture system to allow them to 
1) customize the eyelid gesture holding time and the mappings 
between gestures and the triggered commands; 2) use a hard-to-
perform gesture to activate the recognition to reduce false positives; 
and 3) interact with computing devices in scenarios when fngers 
or hands are inconvenient or unavailable to use. 

5   DISCUSSION   
Our user studies with people without and with motor impairments 
have shown that our algorithm was able to recognize their eyelid 
gestures on mobile devices in real-time with reasonable accuracy. 
This result is encouraging because they only had less than fve 
minutes to practice the gestures. Thus, we believe our algorithm 
opens up a new opportunity for people with motor impairments to 
interact with mobile devices using eyelid gestures. 

We present fve recommendations for designing and using eyelid 
gestures for people with motor impairments: 1) because not all 
users could open and close two eyelids with the same level of ease, 
it is important to estimate how well a user can control each eyelid 
and then only use the gestures the user can comfortably perform; 
2) because a pre-defned duration for holding an eyelid in a state 
may not work the best for everyone, it is desirable to allow for 
customizing the duration. Indeed, participants suggested that the 
system could learn their preferred duration from their gestures; 3) 
use the eyelid gestures with two or more eye-states (e.g., B-R-, B-L-) 
to trigger rare or high error-cost actions because users perceive 
such gestures more demanding and less likely to be falsely triggered; 
4) allow users to defne a “trigger” gesture to activate the gesture 
detection to avoid false recognition; 5) allow users to defne their 
own gestures to enrich their interaction vocabulary. 

6   LIMITATIONS   AND   FUTURE   WORK   
Although our studies included participants of diferent ages and 
motor abilities, the number of participants was still relatively small. 
Further, because our studies were relatively short, participants did 
not complain about fatigue. However, future work should conduct 
larger scale studies with more participants who have a more diverse 
set of motor-impairments for longer periods to better understand 
practices and challenges associated with using eyelid gestures. 

We explored a subset of possible eyelid gestures with one or two 
eyelid states between the gesture delimiter (i.e., both eyelids open). 

ASSETS ’20, October 26–28, 2020, Virtual Event, Greece 

There are other gestures with two or more eyelid states, such as 
“winking three times consecutively.” Although such gestures seem to 
be more complex, they might be more expressive and thus easier 
to remember. Future work should explore the trade-ofs between 
the complexity and expressiveness of eyelid gestures. 

We divided the duration of an eyelid state into two levels: short 
and long. However, more levels are possible. Indeed, a participant in 
Study 2 suggested “long-long” duration. Future work should study 
the levels of duration that users could reasonably distinguish to 
uncover more eyelid gestures. 

We focused on two eyelid states (i.e., open and close) when 
constructing eyelid gestures. As is described in Section 2, our eyes 
could also be in half-closed states (e.g., squinting). Future work 
should explore a more diverse set of eyelid gestures including open, 
close, and half-closed states. 

We used “both eyelids open” as the gesture delimiter as it is 
the default state when we are awake. However, other delimiters 
might enable new eyelid gestures, such as “blinking the right/left 
eye twice (while closing the other eye).” Thus, future work should 
explore other reasonable delimiters. 

Our study showed that people with motor impairments preferred 
customizing eyelid gestures to use in diferent contexts and to avoid 
false activation of recognition. Thus, it is valuable to understand 
what eyelid gestures people with motor impairments would want 
to create and use, such as via a co-design workshop with them. 

Lastly, people with motor impairments have already used gaze 
for text entry [43], drawing on computer screens [13], and navi-
gating their wheelchairs [4, 8, 19, 33, 42]. Thus, future work could 
explore ways to combine eyelid gestures with gaze to enrich their 
interaction bandwidth. 

7   CONCLUSION   
We have presented a taxonomy to describe and construct eyelid 
gestures and an algorithm to detect nine eyelid gestures on smart-
phones in real-time. We have demonstrated that the algorithm could 
recognize nine eyelid gestures for both able-bodied users in difer-
ent indoor environments and postures (i.e., sitting and standing) 
and for people with motor impairments with only fve training sam-
ples per gesture. Moreover, we have designed a gesture mapping 
scheme for people with motor impairments to navigate apps only 
using eyelid gestures. Our study also shows that they were able to 
learn and use the mapping scheme with only a few minutes practice. 
Based on participants’ feedback and our observations, we proposed 
fve recommendations for designing and using eyelid gestures. Our 
work took the frst step to explore the potential of a subset of possi-
ble eyelid gestures for people with motor impairments. Future work 
includes conducting larger scale studies with more people with a 
diverse set of motor ability in diferent environments, exploring 
a richer set of eyelid gestures by allowing for customization and 
using diferent gesture delimiters, and combining eyelid gestures 
with other input modalities, such as gaze. 
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