
1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3018724, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

ChartSeer: Interactive Steering Exploratory
Visual Analysis with Machine Intelligence

Jian Zhao, Mingming Fan, Mi Feng

Abstract—During exploratory visual analysis (EVA), analysts need to continually determine which subsequent activities to perform,
such as which data variables to explore or how to present data variables visually. Due to the vast combinations of data variables and
visual encodings that are possible, it is often challenging to make such decisions. Further, while performing local explorations, analysts
often fail to attend to the holistic picture that is emerging from their analysis, leading them to improperly steer their EVA. These issues
become even more impactful in the real world analysis scenarios where EVA occurs in multiple asynchronous sessions that could be
completed by one or more analysts. To address these challenges, this work proposes ChartSeer, a system that uses machine
intelligence to enable analysts to visually monitor the current state of an EVA and effectively identify future activities to perform.
ChartSeer utilizes deep learning techniques to characterize analyst-created data charts to generate visual summaries and recommend
appropriate charts for further exploration based on user interactions. A case study was first conducted to demonstrate the usage of
ChartSeer in practice, followed by a controlled study to compare ChartSeer’s performance with a baseline during EVA tasks. The
results demonstrated that ChartSeer enables analysts to adequately understand current EVA status and advance their analysis by
creating charts with increased coverage and visual encoding diversity.

Index Terms—Exploratory visual analysis, interactive steering, visualization recommendation, machine learning.

F

1 INTRODUCTION

E XPLORATORY visual analysis (EVA) is an open-ended
iterative process in which an analyst employs visual

methods, such as plotting charts, to identify interesting
questions and findings within data [8]. EVA is useful
whenever an analyst has vague hypotheses or ill-defined
tasks [32], [57]. However, EVA is often challenging to un-
dertake because an analyst needs to continuously determine
subsequent promising directions for investigation within a
large parameter space [42], [65], i.e., decide which data vari-
ables to explore and which types of charts to use. Further,
analysts usually fail to hold a holistic view of a current anal-
ysis, making it more difficult to make decisions to advance
and steer an EVA [52]. These issues are critical not only for
individual analyses but also during collaborative analysis
scenarios because EVA, in practice, is often performed in
multiple asynchronous sessions [67], [70].

Suppose that an analyst is exploring a dataset of product
purchase records, where each record contains 15 attributes,
e.g., price, volume, etc. As the analyst has some hypotheses
about pricing trends, she creates a number of two-variable
charts, e.g., a line chart comparing prices over time, to help
her identify trends and gather insights. However, after mak-
ing these charts, she soon becomes stuck and does not know
which attributes to explore even though there are thousands
of options that are possible (i.e., two-variable charts have
15×14 unique variable combinations with 5 potential chart
marks (e.g., circle), 6 potential encoding channels for vari-
ables (e.g., position, color), and numerous potential aggre-
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gation methods (e.g., binning)). Complicating things further,
she does not have any knowledge about the interrelations
between charts in this large analysis space or the variables
that have already been explored. This analyst’s problems
will become even more compounded when she hands off
her half-completed analysis to her colleagues.

Researchers have attempted to address these challenges
by proposing a variety of systems that automatically gen-
erate charts to serve as recommendations of future avenues
for analysts to explore (e.g., [42], [58], [66]). To make recom-
mendations useful, these systems often require some level of
user guidance, such as the specification of (partial) queries
or input about what attributes to explore and how to do
so. Although these recommendation systems have enabled
some users explore new pathways during their analysis, it
is still unclear how such systems can support analysts in
developing an understanding of the holistic picture being
formed during their EVA so that they can explicitly (or
implicitly) provide proper input to systems. Improper input
currently results in unwanted, noisy recommendations that
lead analysts down ineffective paths within EVA because
these analysts cannot resolve uncertainties that arise [26].

To fill this gap, this work proposes ChartSeer, a system
that helps analysts steer their EVA through the dynamic
visualization and recommendation of charts. ChartSeer em-
ploys a meta-visualization approach [47] to present the charts
that have already been created, characterizing the state
of the current analysis that has already been undertaken
in multiple asynchronous sessions by the same or differ-
ent analysts. This approach enables an analyst to easily
gain knowledge about the overall landscape of EVA, e.g.,
identifying clusters, trends, and gaps in users’ behavior
while creating charts or conducting an analysis. Further,
an analyst could utilize this knowledge to obtain effec-
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tive recommendations by interacting with the system, e.g.,
peeking into “holes” in the current analysis space so that
appropriate charts will be automatically generated within
local regions of interest. To make this possible, ChartSeer
leverages state-of-the-art deep learning models such as
grammar variational autoencoders (GVAE) [37], to obtain
a mapping between charts and vectors in a semantic space,
and uses this mapping to create chart meta-visualizations
and enable interactive recommendations. The source code
associated with this work is available at https://github.
com/jeffjianzhao/ChartSeer.

ChartSeer was developed based on design consider-
ations distilled from the literature (e.g., [65], [66], [67]).
To evaluate ChartSeer, an interview with a data scientist
was performed to derive a use case to demonstrate the
system’s usefulness in advancing EVA under asynchronous
collaborative settings. A controlled user study was also
performed to compare ChartSeer with a basic baseline. The
results demonstrated that while using ChartSeer, partici-
pants created more charts that covered more distinct data
variables and encoding channels and had more diverse
visual perspectives but focused more on the exploration of
data. Participants’ usage patterns and challenges with the
system are also discussed.

2 RELATED WORK

2.1 Visualization Similarity
Characterizing the similarity of user-authored visualizations
is essential when generating an informative summary of
EVA results, in both individual and collaborative analyses.
Visualization similarity can provide important insights such
as analysis coverage and possible directions of exploration.
For example, based on a similarity metric, dimensionality
reduction techniques such as MDS [36] and t-SNE [41] have
be applied to produce a summary of charts in 2D space [67].

One method to measure similarity is to model visual-
izations using features. Image Graphs [40], for example,
used parameters such as color, opacity, and so on within
volume renderings to denote changes. The P-Set Model [32]
extended this idea by including interactions such as zoom-
ing. Sedlmair et al. [54] proposed a concept framework by
analyzing the parameter space of visualizations in the liter-
ature. Another method to measure similarity uses computes
the operation or transition costs between visualizations.
Hullman et al. [29], for example, proposed an objective
function that minimized the transitions needed to display
a sequence of charts. GraphScape [34], which used Vega-
Lite [53], measured the changes between charts with respect
to data transformations and visual encodings.

The above methods are largely based on the features
used in characterizing visualizations or their transitions. In
practice, however, it is often difficult to select the right set
of features given the complexity and diversity of options
possible within data charts. Researchers have explored more
generic and data-driven approaches to compute similarity
using machine learning techniques that derive visualization
embeddings, i.e., vector representations in non-linear contin-
uous spaces [18]. ChartSeer was inspired by this idea and
employs deep learning techniques to map charts to semantic
vectors to measure chart similarity and generate charts.

2.2 Meta-Visualization
Meta-visualization or meta-analysis [69] visually presents
an ensemble of visualizations (e.g., charts). This approach
has been widely used to support collaborative data anal-
ysis [15], [30]. As the present work was particularly inter-
ested in summarizing and steering in EVA, inspiration was
drawn from the principle of information scent [48], which
has been used in systems that are designed for both syn-
chronous (e.g., [31], [44], [44], [56], [69]) and asynchronous
analyses (e.g., [24], [59], [61], [62], [70]). Researchers have
also investigated different visual cues that can be used to
identify seen or unseen information so as to facilitate users’
coordination and inspire future explorations. For example,
treemaps and chord diagrams have been used to present
the data dimensions that were explored in an analysis
history [51], [52]. Dynamic graphs have also been employed
to highlight the overall status of EVA by linking different
components created by users such as tags, comments, and
visualizations [69], [70]. Ordination, which is also used
within ChartSeer, has also been used to summarize user-
generated charts in a 2D space based on similarity [67].

While these systems can offer effective summarizations
of EVA findings, the user still needs to manually consume
and explore the synthesized information to identify future
directions to explore and create new charts. This imposes
cognitive and physical effort that is in addition to the effort
exerted during the EVA, which can become challenging
when an analysis space is vast. ChartSeer facilitates this task
using machine intelligence that interactively recommends
data charts to analysts for further analysis.

2.3 Visualization Recommendation
Automatically recommending appropriate charts to analysts
to improve EVA, especially when the analysis space is large,
i.e., consisting of numerous combinations in data variables
as well as visual encodings is difficult. APT [42], for exam-
ple, introduced a compositional algebra to enumerate the
space of charts and rank them using expressiveness and
effectiveness criteria. Gilson et al. [22] employed a mapping
between data domain ontologies and visual representation
ontologies to specify charts, which was later extended by
VISO [60]. SeeDB [58] recommended charts by measuring
their derivation from a query. CompassQL [64], the basis of
Voyager [65], offered flexible query specifications for search-
ing through a visualization space and recommended charts
using heuristic rules. Along this line, Draco [46] leveraged
answer set programming (ASP) to describe constraints over
visualization design.

In addition, other researchers have leveraged users’ anal-
ysis goals and tasks to determine effective recommenda-
tion visualizations. BOZ [11], for example, modeled low-
level perceptual tasks to generate corresponding charts.
SAGE [50], which extended APT [42], considered a user’s
goals in EVA. VizAssist [9] enabled users to interactively
give feedback for a visualization automation process. User
interactions have also been utilized to recommend charts.
Tableau’s “Show Me” [43] provided alternative visual en-
codings based on the selection of data attributes. Voy-
ager2 [66] blended manual and automated chart specifica-
tions by introducing wildcards and related views to Voy-
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ager [65]. Gotz et al. [23] analyzed repeated patterns in
user interaction histories to infer visual analysis tasks when
suggesting visualizations.

These approaches, however, were limited by the em-
pirical tasks, perceptual models, heuristics, or rules cho-
sen. With advances of machine learning, Data2Vis [19] at-
tempted to build an end-to-end neural network to generate
charts directly from data. DeepEye [39] combined rule-
based methods with models to classify and rank visual-
izations. VizML [27] learned design choices from a corpus
of data-visualization pairs. Compared to many of these
methods, data-driven learning-based approaches allow for
more generic solutions to avoid problems such as costly
rule creation and the combinatorial explosion of results [27].
Therefore, ChartSeer adopted this approach and employed
deep learning to convert charts to and from semantic vectors
that are used for summarization and recommendation. Dif-
fering from these fully automated methods, ChartSeer sup-
ports the interactive steering of chart recommendations by
integrating an analyst’s creativity and domain knowledge.

3 THE DESIGN OF CHARTSEER

3.1 Design Considerations
The general goal of ChartSeer is to effectively steer EVA
by combining humans and automation. The design of
ChartSeer were informed by the principles and prac-
tices from exploratory data analysis [10], [32], [57], meta-
visualization techniques [51], [67], [70], visualization recom-
mendation [64], [65], [66], and mixed-initiative systems [26].

D1: Provide a semantic overview of charts to encourage
a holistic understanding. As a basis, the system needs to
provide a summary of the user-generated charts to reveal
the current scope of the analysis [67], [70]. For example,
arranging similar charts together provides valuable insights
into the results and processes of EVA, such as trends, pat-
terns, and outlying analysis behavior [32], [67]. As browsing
multiple charts requires a higher cognitive load, the system
should offer a semantic organization of the charts to enable
an analyst to understand the summary in context [66]. How-
ever, charts are often complicated and contain many facets
that are difficult to quantify. ChartSeer addresses this by
employing deep learning to obtain a vector representation
of charts in a semantic space.

D2: Suggest future avenues for exploration using cog-
nitive and algorithmic guidance. In addition to supporting
the review for already-created charts, it is critical for a
system to inspire an analyst to discover unexplored and un-
derexplored areas for further analysis. As the analysis space
can be vast, the system needs to offer cognitive guidance
to facilitate the discovery of additional areas to explore,
e.g., through a visual summary to reveal “holes” in the
current state of the analysis [51], [67]. Moreover, the system
should utilize algorithmic support, e.g., recommendations
of the charts appropriate for specific data subsets [64], [66].
ChartSeer utilizes both approaches to inform an analyst of
possible future avenues of exploration.

D3: Allow for interactive steering to drive recom-
mendations. As EVA is dynamic, analysts’ decisions often
involve assessing their current situation [57], which can
be informed by the summary in D1. Thus, the system
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Chart Inspection

Chart 
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Chart 
Recommendation

ChartsTraining 
data

Front-endBack-endModel training

Fig. 1. ChartSeer consists of a back-end that includes a pre-trained
encoder and decoder and a front-end that has three coordinated views.

needs to support more adaptable browsing behaviors, such
as interactively driving chart recommendations [65], [66].
This human-in-the-loop approach is critical to combine an
analyst’s domain knowledge with the strength of algo-
rithms [26]. Inspired by these principles, a set of intuitive
user interactions was implemented within ChartSeer to
facilitate the dynamic steering process.

D4: Support the visual investigation, manipulation,
and creation of charts. To enable easiness and flexibility in
EVA, the system should support the viewing and editing of
user-generated charts at a lower-level, as well as system-
recommended charts [65], [66]. To advance the analysis,
the system should also to enable for the easy creation
of new charts, either based on recommendations or from
scratch [67]. ChartSeer uses Vega-Lite [53] to represent,
manipulate, and create charts and offers an easy-to-learn
user interface to access different functionality.

3.2 System Overview
ChartSeer’s development was guided by the above design
considerations and consists of two major components, (i)
a back-end analytical engine and (ii) a front-end visual
interface, both of which are based on a pre-trained machine
learning model (Figure 1).

The back-end contains a Data Storage and Analysis
module, a Chart Encoder, and a Chart Decoder. The Data
Storage and Analysis module records the generated charts
and their relevant information, while also handling basic
computation tasks such as dimensionality reduction. The
chart Encoder converts a data chart represented in Vega-
Lite [53] into a numerical vector, whereas the Chart Decoder
converts numerical vectors into Vega-Lite [53] data charts.
The Chart Encoder and the Chart Decoder were trained
using the GVAE [37] deep learning model.

The front-end is composed of three interactively-
coordinated views (Figure 5). The Inspection Panel allows
analysts to view, edit, and create a selected chart based on
Vega-Lite. The Summarization Panel presents all the charts,
including user-created and recommended charts, and the
dataset. Lastly, the Recommendation Panel shows the pre-
views of system-suggested charts.

The input charts are processed in the Data Storage and
Analysis module and then fed into the Chart Encoder to
generate their vector representations. These representations
are used to create a meta-visualization of the charts in a
2D semantic space (D1; Figure 1). From this, an analyst
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{ 
  "mark": "bar", 
  "encoding": { 
    "x": { 
      "timeUnit": "month", 
      "field": ”STR", 
      "type": "ordinal" 
    }, 
    "y": { 
      "aggregate": "mean", 
      "field": ”NUM", 
      "type": "quantitative" 
    } 
  } 
}

ROOT → mark+encoding

encoding → x+y

…

mark → bar

field → NUM

type → ordinal

x → timeUnit

y → aggregate+field+type

…

…

…

…

…

{ 
  "mark": "bar", 
  "encoding": { 
    "x": { 
      "field": ”STR", 
      "type": "ordinal" 
    }, 
    "y": { 
      "aggregate": "mean", 
      "field": ”NUM", 
      "type": "quantitative" 
    } 
  } 
}

encoding → x+y

ROOT → mark+encoding

…

mark → bar

x → field+type

encoding → x+y

type → quantitative

x → timeUnit

…e1 e2 e3 d1 d2 d3embedding

…

CNN RNN

Fig. 2. ChartSeer characterizes data charts using encoding (i.e., e1, e2, and e3) and decoding (i.e., d1, d2, d3) processes that are based on GVAE.

can gain an overview of the current analysis space, identify
promising directions, and leverage chart recommendations
from the system (D2). The charts are recommended via user
interactions with the system, that is, clicking on an area of
interest in the 2D space (D3). Based on this input and the
existing charts, the Chart Decoder will automatically gen-
erate a list of recommended charts. Moreover, all the user-
created and recommended charts can be further inspected
and tuned to create new charts (D4).

ChartSeer was iteratively refined over the duration of
its implementation and evaluation. Based on participants’
feedback and observations, the Summarization Panel was
enhanced by revising the chart glyph design and adding
background annotations. The backend chart analysis was
also modified to generate a more stable chart summarization
and the recommendation process was revised to obtain
charts that were higher quality.

4 CHART CHARACTERIZATION

Characterizing charts with an appropriate model or rep-
resentation forms the basis of informative chart summa-
rization and recommendation (D1, D2). Inspired by the
recent advances in machine learning, a data-driven encoder-
decoder approach that converts charts to and from semantic
vectors (i.e., embeddings) was employed. Based on these
vectors, chart similarity was derived using the Euclidean
distance and was used to compute relations, clusters, and
distributions of user-created charts in the large and complex
analysis space during EVA.

This approach was chosen because the embedding of
features has been shown to be effective for many tasks (e.g.,
language translation [45]). In addition, it does not typically
require an abundance of human labor to label the data or
require perceptual experiments to be conducted to derive
similarity. It is also more flexible and general than heuristic
or rule-based methods [19] because once the embedding
features are learned, they can be applied within a variety of
applications. Lastly, in addition to an encoder that converts
a chart into a vector, a decoder can be obtained and used to
generate recommendation charts (D2, D3).

4.1 Grammar Variational Autoencoder (GVAE)
At a high-level, the notion of GVAE [37] was applied to
the Vega-Lite chart representation [53]. The variational au-
toencoder (VAE) [35] aims to learn a bidirectional mapping
between data points x in the problem space and variables z
in a continuous latent space. The mapping E(x) → z is
called an encoder and the mapping D(z) → x is called
a decoder. In the present case, x is a chart and z is the
vector representation of the chart. As shown in Figure 2,

{ 
"data": {"url": "data/seattle-weather.csv"}, 
"mark": "bar", 
"encoding": { 
"x": { 
"timeUnit": "month", 
"field": "date", 
"type": "ordinal"

}, 
"y": { 
"aggregate": "mean", 
"field": "precipitation", 
"type": "quantitative"

} 
} 

}

ROOT → mark + encoding
mark → bar
encoding → x + y
x → timeUnit + field + type
y → aggregate + field + type
timeUnit → month
aggregate → mean
field → STR
field → NUM
type → ordinal
type → quantitative

Fig. 3. (Left) A data chart. (Middle) The chart’s Vega-Lite specification.
(Right) The associated CFG rules.

based on VAE, GVAE aims to learn the encoder and decoder
where x are parse trees governed by a context-free grammar
(CFG) [33]. One benefit of a CFG-based GVAE, compared to
a traditional VAE, is that it is more likely to generate valid
data samples with the decoder.

As the Vega-Lite specification of charts is hierarchical,
each chart can be viewed as a parse tree that is produced
by a set of rules within a CFG. For example, Figure 3 shows
a chart, its Vega-Lite, and the rules that generate the JSON
tree. Because the goal is to employ GVAE to obtain a chart
encoder and decoder independent of specific datasets, data
fields in Vega-Lite are substituted with common tokens,
i.e., replacing quantitative fields with NUM and categori-
cal/ordinal fields with STR, similar to the method used
in [19]. Also, specifications that are not relevant to visual
encodings, such as data and schema, are excluded.

For pre-processing, a GVAE was trained to learn the
chart encoder and decoder, by employing an architecture as
suggested in [37]. The encoding process (Figure 2) extracts
the rules forming the Vega-Lite tree (e1), represents the
rules with one-hot vectors (e2), and feeds these vectors to
a convolutional neural network (CNN) and a dense layer to
map them to a latent variable (i.e., embeddings) (e3). The
decoding process converts latent variables back to vectors
(logits) with a recurrent neural network (RNN; (d1)), derives
the rules represented by these vectors (d2), and reconstructs
a Vega-Lite tree based on these rules (d3) .

Note that an RNN encoder is often paired with an RNN
decoder [55], which is appropriate for this application as the
order of (d2) output CFG rules affects the tree construction.
However, experiments in [37] found improved performance
with a CNN encoder and an RNN decoder, which may
have been be due to “repetitive, translationally invariant
substrings” in (e1) input CFG rules.

4.2 Model Training and Evaluation
During development, an alternative method was considered
to learn the chart encoder and decoder, wherein each Vega-
Lite specification was viewed as a text string. Data2Vis [19]
employed this method to train a neural network to generate
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TABLE 1
Comparison of GVAE and LSTM autoencoder.

Model Latent Dimension Accuracy

LSTM autoencoder 20 0.3884
2 0.3731

GVAE 20 0.6525
2 0.4446

x, y, color, detail x, y, detail x, y, shape, detail x, y x, y, size, shape x, y, size
x, y, color, shape x, y, color x, y, color, size x, y, size, detail x, y, shape

a cb

Fig. 4. A visualization of the chart embedding spaces in 2D using (1)
a GVAE trained with 2-dimensional latent space, 2) an MDS projection
of distances computed by GVAE trained with a 20-dimensional latent
space, and 3) an MDS projection of feature-based distances [34], [67].

charts directly from data. Inspired by this idea, an RNN au-
toencoder based on LSTMs (long short-term memory) [25],
was implemented, which learned the bidirectional mapping
between the character sequences of Vega-Lite and the latent
vectors. Experiments to evaluate these two models were
conducted and resulted in the selection of GVAE due to its
superior performance.

Based on a dataset of 4,300 Vega-Lite specifications with
one to three data variables [19], charts with four variables
were added using an approach similar to [49]. The final
dataset contained 9,925 examples and 80% were used for
training, 10% for validation, and 10% for testing.

For GVAE, an encoder containing 3-layer CNNs with a
filter size of 4 and the kernel size of 3 was used, followed by
a dense layer with 256 neurons. The decoder contained 3-
layer RNNs based on GRUs (gated recurrent unit) [13]. Both
the encoder and decoder contained 256 hidden dimensions.
For the LSTM autoencoder, a similar architecture to that
used in [19] was employed, with a 2-layer RNN with 512
LSTM units for the encoder and decoder. Table 1 shows the
reconstruction accuracy for the two models with different
latent space dimensions. GVAE performed better and had an
improvement of over 25% when learning a 20-dimensional
latent space. Note that this is a hard task to employ machine
learning for, as data charts have many diverse aspects.
GVAE, although not perfect, can provide relatively good
results for analysts to start with. These promising results
motivated the development of the front-end user interface.

To better understand the learned embedding space of
charts, all the charts in the dataset were plotted based on
2D latent vectors produced by GVAE and color-coded using
the combination of encoding channels used in the charts
(Figure 4a). The plot demonstrated that even with a learned
2-dimensional latent space that has lower accuracy (Table 1),
GVAE embeddings formed three distinct clusters with dif-
ferent encoding channels. We further compared MDS pro-
jection results from distances computed by GVAE trained
with a 20-dimensional latent space and a classic feature-
based method [34], [67] (Figure 4bc). To make the feature-
based method dataset-independent, the same preprocessing
of Vega-Lite specifications was applied as that in GVAE.
This results in the MDS failing to generate notable chart

clusters with the feature-based distances, whereas GVAE-
based distances appeared more effective. This suggests that
GVAE-based embeddings may be able to characterize the
charts better in higher dimensional spaces.

5 THE CHARTSEER SYSTEM

5.1 Chart Summarization
Based on the embedding features generated by the Chart
Encoder, dimensionality reduction is used to project the
charts into a 2D space from a high-dimensional feature
space and then visualize them as circular glyphs (D1).

5.1.1 Projection and Layout
MDS [36] was employed for projection, but other dimen-
sionality reduction techniques (e.g., t-SNE [41]) can also be
applied, or an encoder with a latent dimension of two can
be trained directly. The embedding only captures the visual
encodings of the charts, because dataset-specific informa-
tion is removed from Vega-Lite to train a generic model.
However, the data information within the charts is also
important for an effective meta-visualization [67] because
analysts expect to see charts grouped together with similar
visual representations and data variables. Thus, a weighted
distance Dw is utilized (with a parameter α):

Dw(m,n) = α|vm − vn|+ (1− α)
(
1− fm ∩ fn

fm ∪ fn

)
, (1)

which includes the Euclidean distance of the charts’ embed-
ding vectors vm and vn, and the Jaccard distance between
the two sets of data variables fm and fn.

The above distance metric reflects a trade-off between
promoting data variation and promoting design variation,
which is controlled by α. In two extreme cases, when α = 0,
the summarization shows clusters of charts with similar
data variables, encouraging analysts to create charts with
new variables to fill in the holes; when α = 1, charts
with similar visual encodings are grouped, which indicates
empty spaces for new chart designs. ChartSeer sets the
default value to 0.5, but allows analysts to adjust α using a
slider based on their dynamic EVA goals. Figure 6 compares
the projection results with different α values.

Further, a simple 2D projection can cause problems when
a new chart is added or removed (i.e., during an analyst’s
continuous exploration of the data) because the positions
of existing charts may change abruptly due to the re-
computation of the projection. Fujivara et al.’s [21] method,
which is based on the Procrustes transformation that finds
the maximum overlap between two sets of locations, was
used to minimize layout changes.

5.1.2 Visual Representation
The Summarization View in ChartSeer shows each chart as
a circular glyph (Figure 5b). The inner circle displays the
mark type (e.g., L for a line chart) of the chart and the outer
circle is a donut chart with each colored segment indicating
a data variable in the chart. The author ID is also attached
as a badge in the top right corner. For example, as shown on
the tooltip in Figure 5f, the hovered-over Point chart was
created by u1 with three data variables: average faculty
salary (red), expenditure (green), and control (gray).
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Fig. 5. The ChartSeer user interface consists of the (a) Chart Inspection Panel, Chart Summarization Panel (which includes the (b) Summarization
View, (c) Data Table View, and (d) Chart List View), and (e) Chart Recommendation Panel. (f) A user is hovering over a chart.
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Fig. 6. Projection of charts with: (a) α = 0 (i.e., only the distance of data
variables), (b) α = 0.5 (i.e., a weighted distance of data variables and
visual encodings), (c) α = 1 (i.e., only the distance of visual encodings).

The above glyph design aims to capture two important
aspects of a chart, i.e., the visual encoding and the data
variables. During the development of ChartSeer, different
design alternatives were explored including a simple col-
ored dot showing the mark type and the author ID, a
pie chart showing the data variables, and a similar glyph
with the inner circle showing the author ID. The current
design was ultimately chosen because it enables an analyst
to quickly glance at the necessary information in the chart
and easily see the analysis patterns of the EVA landscape
without drilling down into each chart. To further support
this task, BubbleSets [14] are used to show clusters of
charts in their high-dimensional feature space, similar to
meta-visualization in prior work [67], [68]. Text annotations
denoting the associated variables were also added, using the
same color scheme of the glyph. The chart clustering is per-
formed by hierarchical agglomerative clustering [63]. The
size of the text indicates the frequency of that variable used
by the charts in the cluster. These background annotations
can be turned off based on a user’s needs (Figure 8a).

In addition, ChartSeer offers a Data Table View of vari-
able columns with the same color scheme (Figure 5c) and a
visual list of charts to allow for quick browsing (Figure 5d),
mimicking traditional interfaces such as Excel.

5.2 Chart Recommendation
From the Chart Summarization Panel, an analyst can ob-
tain an overview of the EVA “landscape” thus far and
use it to make decisions about future investigations by
observing patterns from the view (D2). To facilitate this
task, ChartSeer also supports chart recommendations using
interactive steering (D3). Specifically, an analyst can “peek”
anywhere in the Summarization View by clicking, and a
set of charts will then be recommended in context, within
an area indicated by a red spotlight circle that follows the
cursor (Figure 5b). The recommended charts are shown
with the same glyph as the existing charts, and a preview
of the charts is available on the Recommendation Panel
(Figure 5e). An analyst can also zoom into or out of the view
or continue to click on other sections to obtain different sets
of recommendations that are specified using user-interested
local neighborhoods within the vast analysis space.

5.2.1 Recommendation Process
The chart recommendation process has the following key
steps (Figure 7):

(a) Based on the user-clicked 2D position, a set of n
samples {s} is randomly selected in the projected 2D space
within a radius of r (i.e., the red circle in Figures 5 and 7).

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on November 19,2020 at 18:18:04 UTC from IEEE Xplore.  Restrictions apply. 



1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3018724, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

(b) For each sample s, the projection is reversed by
converting the 2D position sl back to a high-dimensional
vector sh that is understandable by the chart decoder. This
is solved as the following optimization problem:

argmin
sh

∑
i=1...m

(
Dl(s, pi)− |sh − phi |

)2
, (2)

Dl(s, p) =
|sl − pl| − αJ(s, p)

1− α
, J(s, p) = 1− fs ∩ fp

fs ∪ fp
. (3)

Similar to sl and sh, pl and ph denote the projected 2D point
of a chart and its corresponding high dimensional vector.
Intuitively, the objective function Eq. (2) measures the dis-
crepancy of the high- and low-dimensional distances be-
tween the sample and all otherm existing charts, where sh is
the only unknown variable. However, the low-dimensional
distance |sl − pl| in Eq. (2) cannot be used directly because
in the MDS projection to the 2D space, the Jaccard distance
of chart data variables in Eq. (1) is used. As the high-
dimensional space and the distance |sh − ph|, which the
decoder understands, contains no data variable information,
the Jaccard distance term in Eq. (1) needs to be removed as
indicated by Dl in Eq. (3).

(c) After solving Eq. (2), the high-dimensional vectors
{sh} are then fed into a trained chart decoder to map them
back to charts in Vega-Lite, however, the chart decoder only
generates Vega-Lite with the common tokens NUM and STR.

(d) For each generated Vega-Lite, kNN in the high-
dimensional space is used to extract data variables from
neighboring charts within a threshold distance d̂ and sort
them decreasingly by frequency. From the top of the sorted
list, the common tokens are replaced with the actual data
variables, i.e., a quantitative field for NUM and a categori-
cal/ordinal field for STR. If there are not enough proper
variables to fill in, new, unexplored variables from the
dataset are selected. This may represent instances when the
analyst selects an empty area with very few charts created.

(e) Finally, an extra check is performed to determine if
the generated specifications are valid Vega-Lite. The invalid
specifications are then removed and ChartSeer goes back to
(a) to get more recommendations until a predefined number
of charts, i.e., n in (a), are obtained. Next, the recommended
charts are ranked using the method in Voyager [65] based
on expressiveness and other criteria [42], and then the first
m (m < n) charts are selected. The rankings from the
traditional chart recommendation method are only utilized
to enumerate the charts within a vast design space. This
enumeration is achieved through steps (a)-(d) by involving
guidance from the user, resulting in a more efficient recom-
mendation process.

5.2.2 Implementation Notes
There are a number of parameters that were used in the
above recommendation process. Within this implementa-
tion, The number of samples n was set to 3 × m (where
m is determined by the analyst and defaulted to 5) and the
sampling radius r is set to 4% of the view size. A k of 5 was
used in the kNN search in (d) and the threshold distance
d̂ was set to 0.3 of the maximum distance between existing
charts. To solve the optimization problem in (b), BFGS [17]
was used with a parallel process that evaluated different

{ 
  "mark": "bar", 
  "encoding": { 
    "x": { 
      "field": ”STR", 
      "type": "ordinal" 
    }, 
    "y": { 
      "aggregate": "mean", 
      "field": ”NUM", 
      "type": "quantitative" 
    } 
  } 
}

{ 
  "mark": "bar", 
  "encoding": { 
    "x": { 
      "field": ”Region", 
      "type": "ordinal" 
    }, 
    "y": { 
      "aggregate": "mean", 
      "field": ”Average Cost", 
      "type": "quantitative" 
    } 
  } 
}

two-dimensional space

high-dimensional space

reverse projection

samplinga

b

mapping of 
existing charts

decodingc

kNN searching and 
filling in variablesd

neighborhood

existing chart

sampled point

Fig. 7. The chart recommendation process in ChartSeer.

starting conditions to arrive at the best set of conditions.
For ranking the recommendations in (e), the rank method
implemented in CompassQL [3] was used, after removing
duplicated charts that were automatically generated.

Alternatively, an encoder and a decoder could be trained
with GVAE to directly map charts to and from 2D vectors.
Therefore, the dimensionality reduction would be omitted,
and thus (b) and (c) would not be needed. This seems
more straightforward, but the accuracy of the encoder and
decoder was relatively low based on the results (Table 1).
Thus, it is an open question to determine which approach
would work best in practice.

5.3 Chart Inspection
ChartSeer allows an analyst to edit the charts they have
created that are recommended by the system (D4). Once
a chart is selected, the Inspection Panel displays the chart
along with its Vega-Lite (Figure 5a). To manipulate a chart,
expert users can directly edit the Vega-Lite code, whereas
novices can use the drop-down controls. Next, an analyst
can preview the edited chart and choose to update the chart
or add it as a new chart, which will not replace the original
chart. Then, the Summarization Panel will update to provide
a new overview based on the updated set of charts. This
allows analysts to advance their EVA by not only modifying
the existing charts, but also refining the recommendations.
This encourages a seamless integration of human agency
and machine intelligence.

6 CASE STUDY

To learn how ChartSeer can be used within an analyst’s
workflow, a one-hour interview session was conducted with
a data scientist (DS) who had five years of work experience
at a large company. As part of his daily job, he used ggplot2
[4], Matplotlib [5], and Vega-Lite [53] to perform EVA.

The goal of this case study was to assess the effectiveness
and usefulness of ChartSeer in asynchronous collaborative
EVA as it is frequently encountered in practice. This would
enable the research team to more efficiently evaluate novel
system features in the future. The interview started with a
brief tutorial of ChartSeer. The DS was then given the results
of some initial analysis of US College data [2] and asked to
continue the EVA. The think-aloud protocol was employed
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Fig. 8. A data scientist obtaining chart recommendations by clicking on
the center of the Summarization View.

during his exploration. We helped resolve any technical
questions about the tool. At the termination of the session,
additional feedback was collected from the DS. The initial
analysis was done by three other data scientists (referred
as U1, 2, and 3; all with more than one year of experience)
from the same company. The data scientists were asked to
perform EVA using the data by creating at least five charts.
Each data scientist also used a Jupyter Notebook. The charts
were then reviewed and recreated by the research team in
Vega-Lite, resulting in 30 charts that were used.

Understanding the prior analysis. After loading the
dataset, the DS browsed the Data Table View and noted
that there were 18 variables provided about each college
(e.g., Region, Cost, and Admission Rate) (Figure 5c).
He then utilized the Summarization View to quickly get a
big picture of the chats created by other analysts that he had
never communicated with (Figure 5b). At a glance, he said
that U1 and U2’s results seemed interleaved with each other,
whereas U3’s analysis tended to focus on other aspects, i.e.,
“U1 and U2’s charts scatter around, but U3’s charts form a more
coherent cluster on the right,”.

Next, the DS sampled a few charts to examine by hov-
ering over or clicking on them. Together, with the help of
the glyph-based representation of charts, he confirmed his
above observation about the prior analysis. He noted that
U1 seemed to be interested in the finance of institutions, ex-
ploring relations among Faculty Salary, Expenditure,
etc., as well as distributions over Region and Control.
He mentioned that U2 seemed to be more interested in
students’ finances, exploring variables such as Cost, Debit,
and Earnings. He added: “U1 and U2 seemed both interested
in money matters. Their exploration has several overlapping vari-
ables. This explains why their charts are mixed together.” The DS
commented that U3’s exploration focused on the academic
aspects, plotting variables such as Admission Rate, SAT,
ACT, etc. “U3’s analysis was quite diverging from the other two.
This is clearly reflected by the layout of the charts.”

He also noted that from the order of charts in the Chart

List View (Figure 5d), the complexity of the charts generally
increasing over time for each analyst. He suggested that
adding this information to the Summarization View would
be helpful for revealing temporal analysis trends.

Identify future opportunities. The DS then wished to
continue analyzing this dataset based on the current results.
He noticed a couple of empty areas in the Summarization
View, which displayed the current landscape of the analysis.
For example, one was at the bottom surrounded by mostly
U2’s charts,, whereas another was in the center between
U3’s results and the other results (i.e., the dashed circles in
Figure 5b). The DS appreciated the Summarization View for
revealing these “holes”, which he could leverage to guide
his future analysis.

The DS was particularly interested in the empty area
in the center: “It is interesting to connect the finance health
of institutions and students with the academic aspects.” Thus,
he clicked a few spots in that area to get on-demand chart
recommendations. The system then provided some charts
related to Highest Degree, Predominant Degree, and
Expenditure (Figure 5e). He then examined a few rec-
ommended charts, commenting that (“they provide a very
good basis for me to start.”)

Continue the analysis. The DS selected the sec-
ond recommended chart, a point plot showing the dis-
tribution of Expenditure over different Predominant
Degrees (Figure 5e). He observed that the distribution
of Expenditure becomes more spread out for higher
Predominant Degrees, with a few institutions having
very high Expenditures (i.e., over $80,000). He then
added the chart directly without modification, and Chart-
Seer then updated the Summarization View to include this
chart and present a new analysis landscape. The DS then
hid the background annotations to avoid seeing too much
information (Figure 8a). The DS appreciated this feature, i.e.,
“It reduces a lot of effort in exploring the charting options.”
However, he commented that changing the chart layout
after an update caused him difficulty because he could not
match his mental model to the current view state.

The DS continued asking for recommendations after ob-
serving the updated visual summarization of charts, as there
were still “unexplored areas in the center” (i.e., the dashed
circle in Figure 8a). He said that the recommendations
inspired him with a diverse set of charts, in both visual
representation and variable inclusion. He was particularly
interested in the fourth and fifth charts: “I never thought about
forming a matrix between Locale/Control and Region, and
mapping colors to other variables” (Figure 8b). He thus selected
the fifth one and used the Inspection Panel to augment the
chart by adding Admission Rate to the color channel.
He said that he could then continue the analysis without
tediously creating every chart from scratch, commenting:
“Besides reducing the effort, the recommendations encouraged my
data exploration and speeded it up. It also extended my analysis
vocabulary and coverage.”

7 CONTROLLED USER STUDY

A controlled study was also conducted to assess the novel
features of ChartSeer and compare it with a Baseline similar
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Fig. 9. The Baseline user interface consisted of a: (a) Chart Inspection
Panel, (b) Data Table View, and (c) Chart List View, with similar function-
alities to ChartSeer’s related panels.

to a basic EVA system (i.e., with the functionalities of brows-
ing the dataset and creating charts; Figure 9). The following
study questions were of interest: (S1) what are the effects
on the outcomes of participants’ analyses, (S2) what are
participants’ attitudes towards the new features, and (S3)
how do participants use these features?

7.1 Participants and Apparatus
Twenty-four participants (i.e., 13 females and 11 males,
aged 19–35) were recruited to participate in the study via
university social networks, including 17 graduate students,
4 undergraduate students, and 3 professional analysts. Their
backgrounds ranged from science, to commerce and engi-
neering, with an average of 3.7 (σ = 2.7) years of experience
in data analysis. Their self-reported familiarity of using off-
the-shelf tools (e.g., Excel, ggplot [4], Maplotlib [5]) to create
charts was: M = 3,Mo = 3 (i.e., 1–not familiar at all, 5–
extremely familiar). Participants completed the study using
a desktop computer with a 27-inch monitor and a mouse &
keyboard. The application window sizes of ChartSeer and
Baseline were fixed across the study.

7.2 Design, Tasks, and Procedure
A between-subjects design was used with 12 participants
in each condition (i.e., ChartSeer and Baseline). To begin,
each participant was given a short tutorial about the study
system. Participants were put in a scenario representing a
multi-session EVA, i.e., continuing an analysis started by
another individual. This allowed for a more realistic eval-
uation of the chart summarization and recommendations
in ChartSeer. Another smaller dataset based on the Cars
data [1], was prepared using the same method in that
described in the case study. Thus, participants completed
one practice session using the Cars dataset and one study
session using the Colleges dataset.

There were two phases during the study, i.e., a Summa-
rization phase and an Exploration phase. First, participants
were asked to browse the existing charts and try to under-
stand and synthesize the results. They were not allowed to
edit the charts, create new ones, or use the recommendation

(in the ChartSeer condition). A short interview was then
conducted to collect their findings and thoughts about the
system. Second, participants were instructed to continue the
EVA by further exploring the data, creating new charts, and
discovering new insights. A second interview was then con-
ducted to collect their feedback about the system. Splitting
the task into two phases allowed for relatively independent
feedback and observations about the chart summarization
and recommendation features to be obtained, as well as
ensure that participants were able to adequately pick up
the prior analysis before continuing on their own.

Participants completed the tasks with time limits. During
the practice trial, six minutes was given for Summarization
and eight minutes for Exploration. In the non-practice trial,
10 minutes was given for Summarization and 15 minutes
was given for Exploration. At the end, participants com-
pleted a questionnaire based on 7-point Likert Scales about
their experiences when using the system. All the interview
sessions were audio-recorded, and participants’ interactions
with the system were logged. The study lasted about 80
minutes and participants received $25 in compensation.

7.3 Results and Analysis
7.3.1 Effect on Task Outcomes
To understand how ChartSeer would affect the results of
participants’ analysis (S1), the number of new charts added
and the number of charts updated (or replaced) was com-
puted. These measures were used because they reflect two
different user goals. The analysis is reported with 95% con-
fidence intervals (in subscripts) using the bootstrap method,
effect sizes using Cohen’s d, and non-parametric Mann-
Whitney tests, following the statistical methods in [16].

A slight tendency to add more charts using ChartSeer
was found compared to the Baseline, whereas more charts
were found to be updated when using the Baseline compared
to ChartSeer (Figure 10a,f). This may have been because the
creation of charts requires more effort when recommenda-
tions are not provided.

The two heatmaps in Figure 10 show the frequency of
each data variable and each encoding channel used by each
participant, respectively. The usage patterns were quantified
using two metrics, i.e., coverage and uniqueness. Coverage
is a commonly accepted measure when evaluating EVA
(e.g., [51]), where the number of distinct occurrences are
counted. Higher coverage indicates that a tool encourages
user behaviors that touch on a broader scope of the measured
aspect. Uniqueness is a new metric introduced in [20], which
captures the diverse engagement of EVA, i.e., how different
a user’s exploration is compared to the explorations of
others. Higher uniqueness indicates that a tool encourages
more heterogeneous behaviors of a measured aspect.

ChartSeer was found to lead to a broader range of
data variables and visual encodings. That is, the added
charts in ChartSeer had higher coverage, i.e., with more dis-
tinct data variables (ChartSeer: µ = 7.08[6.08,8.08]; Baseline:
µ = 4.67[3,6.42]; effect size: d = 0.92[0.03,1.85]) as well as
more distinct visual channels (ChartSeer: µ = 3.83[3.17,4.25];
Baseline: µ = 2.42[1.53,3]; effect size: d = 1.24[0.42,1.98];
Figure 10b,c). This can also be observed from the heatmaps,
where there are more colored cells in ChartSeer. The reason
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Fig. 10. Analysis of participants’ outcomes (left) and questionnaire ratings (right). For each measure, group means with 95% CIs are reported, along
with the results of a Mann-Whitney test (* and ** denote p < .05 and .01, respectively).

may be that participants were inspired and encouraged
to using more expressive charts based on the recommen-
dations, which could contain more distinct variables and
channels than those in charts that they usually create.

Second, ChartSeer encouraged a more focused ex-
ploration of data variables, exhibiting a lower unique-
ness score (ChartSeer: µ = 0.77[0.7,0.86]; Baseline: µ =
0.98[0.82,1.1]; effect size: d = −1.12[−2.22,0.03]; Figure 10d).
Also, the upper heatmap demonstrated that more variables
were commonly and frequently used by participants in
ChartSeer (e.g., Admission Rate). This may have been
because participants tended to explore similar open areas
that were indicated by the visual summarization of charts
and requested recommendations in those areas. ChartSeer
would then have provided charts with data variables that
were influenced by the existing close-by charts in local
regions so participants’ explorations may have become more
uniform. In the Baseline condition, where there was no
meta-visualization, it is possible that participants were un-
aware of these open areas and thus investigated variables in
a more random manner.

Third, when using ChartSeer, participants explored the
data from more heterogeneous visual perspectives, i.e.,
adding charts with more diverse encodings (Figure 10e).
Particularly, the recommendations encouraged some partic-
ipants to use novel encoding channels, such as Color and
Shape, compared to others. As shown in the lower heatmap
in Figure 10, the combinatorial patterns of colored cells were
more diverse in ChartSeer, resulting in ChartSeer having
higher uniqueness (ChartSeer: µ = 1.18[0.37,2.14]; Baseline:
µ = 0.08[0.04,0.13]; effect size: d = 1.18[0.37,2.14]).

The usage of data variables and encoding channels
within updated charts was also evaluated, however, no
significant results were found. This indicates that partici-
pants performed similarly in both conditions. However, the
updated charts are less of an indicator of the effects of Chart-
Seer because the goal is to encourage continuing EVA with
new knowledge rather than fixating on old charts. Future
studies are needed to investigate this further, however.

7.3.2 Usage, Benefits, and Challenges
To answer S2 and S3, participants’ ratings about ChartSeer
and Baseline were compared, in addition to transcriptions
of the interviews, to understand ChartSeer’s usage and its
limitations.

Questionnaire Ratings. A Mann-Whitney evaluation of
the NASA Task Load Index (TLX) [6] results found no sig-
nificant difference between the two conditions (Figure 10),
however there appeared to be a trend towards participants
perceiving that ChartSeer demanded more physical effort.
Although the interface of ChartSeer is more complicated,
within the Likert-scale questionnaire data, participants did
not perceive a difficulty when learning or using the system
compared to the Baseline interface (Q1–7). Although not
significant, ChartSeer seemed to be easier for participants to
use to summarize and generate charts during their analysis
(Q5–6). Participants also tended to positively accept the new
visualization and features of ChartSeer that were not part of
the Baseline condition (Q8–11), although these results were
also not significant.

Feedback on Chart Summarization. The Summarization
Panel effectively facilitated participants’ EVA in three main
ways. The first was to help them understand the current
analysis landscape. They appreciated that charts having
similar variables and encodings were “close together” be-
cause this enabled them to see what had been explored
and how. Moreover, it encouraged them to “investigate other
variables and correlations not shown in the Chart List View”–
p2 Secondly, it helped them gain inspirations for further
exploration. Due to the numerous possible combinations
of variables and encodings, the Summarization View “could
indicate an area to focus on at the beginning”–p17. They men-
tioned that the existing charts served as a source of inspi-
ration to help identify sets of variables for future analysis.
Lastly, participants leveraged the relative distances between
the generated and existing charts to assess the quality of
their created charts: “I saw my charts were quite far away from
other charts, so I thought I did a good job at finding some new
directions that hadn’t been explored before”–p20.
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Feedback on Chart Recommendation. Participants ap-
preciated the chart recommendations in ChartSeer and used
them “to explore the variables that have not been shown in the
existing charts”–p2. They also said that although it might be
relatively easy to locate the variables that have not been
explored, it is often difficult “to determine a combination
of variables to put together in one chart, whereas the system
automatically generates new combinations for you”–p18.

Participants triggered the chart recommendation in three
ways. First, they requested recommendations in globally
empty areas in the Summarization View, which were often
viewed as unexplored areas, e.g., “I clicked on the empty
space, and chose one recommended chart that made sense to me”–
p19. Moreover, participants explored locally empty areas
around existing charts because they felt that starting from
a local region would better guide their exploration, e.g.,
“I always start from an area near an existing chart that I’m
interested in, because it helped me start from somewhere that
makes sense to me. If I go to an empty space out of nowhere, I
would have no idea what variables would be introduced in the
recommendation and why those charts are recommended to me.”–
p9. After generating a new chart, some participants used it
as a new “anchor point” and clicked on its surrounding area
to continue exploring this area for more recommendations.
Further, participants used chart recommendations with the
guidance from chart clusters. Charts with similar variables
and visual encodings tended to be close to each other in the
Summarization View. Such information helped determine
whether they should continue exploring the same region
to uncover the relationships of existing variables or if they
should move on to the next region to explore completely
new variables, e.g., “I envisioned the panel as a spectrum of re-
lationships between variables. I started from the purple- and gray-
ish area (i.e., Median Admission Rate and Control) and
worked progressively into its opposite side, which is the pink- and
green-ish area (i.e., Highest Degree and Expenditure). I
wanted to identify holes and close them in each area.”–p19.

However, ChartSeer sometimes recommended charts
containing three or more variables and several participants
felt that such charts were somewhat complicated, e.g.,
“Simple charts with two factors are easy to understand and
easy to see trends”–p20. Another challenge was that some
recommended charts were unexpected. This often happened
when participants clicked on a locally empty area near an
existing chart and expected to see charts containing the
same variables instead of new ones. Several participants also
mentioned that the system could not fully understand their
intent, e.g., “If the system can ask me what are the variables
that I’m mostly curious about and then suggest charts about those
variables. Then when I click on the empty region, the system only
suggests me the ones with a variable that I’m interested in.”–p20.

8 DISCUSSION

The results of the case study and user evaluation suggested
that ChartSeer has advantages and can help steer EVAs by
combining the efforts of human knowledge and machine
intelligence. The case study revealed that ChartSeer was
helpful for understanding the overall state of an analysis,
as well as providing useful information and suggestions to
advance the EVA in a large analysis space. The controlled

study suggests that ChartSeer encouraged participants to
create more charts with more coverage and visual diversity,
thereby leading them towards more effective EVA. More-
over, participants could better steer and control their EVA
by communicating with ChartSeer by pointing at certain
locations in the view and having a more focused exploration
of variables. Although it has many benefits ChartSeer does
not come without limitations.

First, several participants were puzzled about the actual
meanings of the dimensions in the Summarization View,
although they appreciated the visualization. Technically, the
two dimensions have no physical meaning as they are pro-
duced by the dimensionality reduction. Future work should
explore ways to help analysts conceptualize and manipu-
late such dimensions, perhaps employing AxiSketcher [38]
techniques or forward and backward projection [12]. Also,
participants pointed out that ChartSeer does not visualize
the temporal information of a prior analysis, which could
be useful for one to further understand the EVA process.
Various strategies from the literature could be applied to
support such temporal behavior understanding [7], [70].

Second, the controlled study revealed that participants
sometimes expected ChartSeer to generate charts that satis-
fied specific constraints (e.g., containing certain variables).
However, it is currently difficult for analysts to commu-
nicate such specific intentions, even though they could
indicate where in the space they wanted a recommendation.
Designing semantic user interactions [28] could be necessary
to allow for better steering of EVA. As there may be a
limited number of useful recommendations within a small
subspace of the analysis landscape, designing visual cues
and mechanisms for guiding analysts to think “out of the
box” would be useful to investigate in the future.

Third, there is still room to improve the recommendation
model even though ChartSeer was able to achieve much
higher reconstruction accuracy with GVAE [37] compared
to the literature. One way would be to collect more training
data, as the performance of deep learning models tends to
rely on the size of the training dataset. Another way would
be to integrate traditional rule/heuristic methods (e.g., [43],
[65]) with this learning-based approach, for example, by
filtering the automatically generated recommendations or
constraining the generation process at the beginning. Cur-
rently, ChartSeer does not provide an initial set of recom-
mendations for analysts to start with. However, a random
sample of the analysis space can be utilized to generate
some initial charts, which would be especially useful when
the space is vast. Some heuristics may need to be applied
to guide the recommendation, such as restricting variables
that have stronger correlations or leveraging some rule-
based methods. Further, the results indicated that partici-
pants explored data variables less uniquely when they were
provided with recommendations, although they exhibited
higher coverage. It would thus be interesting to tune the
recommendation process to include more diverse variables,
however, more empirical evaluation would be needed to
determine if this would produce better EVA results.

The design of the controlled study also has limitations.
All participants started at the same point to continue the
analysis. It is unknown how ChartSeer would benefit EVA
differently in a multi-session process. For example, analysts
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joining late in the process may have too many charts to
digest and little empty space to explore, giving ChartSeer
a larger advantage. Further, gaining knowledge about prior
analyses using meta-visualization is an integral part of
working with, and employing,the chart recommendations.
These two phases in the study were interleaved, how-
ever, they are iterative processes in practice. Within the
constraints of an in-lab study, only one iteration could be
investigated, however, it would be useful to run a long-term
deployment study to assess ChartSeer in more practical EVA
scenarios. The study compared two conditions, Baseline and
ChartSeer (which was equipped with both summarization
and recommendation functions). While the case study with
the data scientist and the controlled study shed some light
on these two novel features of ChartSeer with question-
naires asking participants for their experiences respectively
(Figure 10), a 2-by-2 factorial experimental design would
allow for an evaluation of these two features independently
and thus provide a systematical understanding of their
individual effects.

9 CONCLUSION

This work introduced ChartSeer, a system for steering EVA
by integrating human agency and machine automation
through the use of interactive visualizations and machine
learning. ChartSeer was developed based on design con-
siderations distilled from the literature and leverages deep
learning models to enable the meta-visualization of prior
analysis and the interactive recommendation of charts to
support multi-session asynchronous EVA. The results of
a case study and a comparative user study found that
ChartSeer led participants to use a broader range of data
variables and visual encodings, encouraged a more focused
exploration of data variables, led to more heterogeneous
visual explorations of data, and encouraged participants to
add more charts compared to a baseline.
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