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Abstract

We investigate a procedure for rapidly adding cali-
brated vehicle visible-near infrared (VNIR) paint signa-
tures to an existing hyperspectral simulator - The Digital
Imaging and Remote Sensing Image Generation (DIRSIG)
model - to create more diversity in simulated urban scenes.
The DIRSIG model can produce synthetic hyperspectral
imagery with user-specified geometry, atmospheric condi-
tions, and ground target spectra. To render an object pixel’s
spectral signature, DIRSIG uses a large database of re-
flectance curves for the corresponding object material and
a bidirectional reflectance model to introduce s due to ori-
entation and surface structure. However, this database con-
tains only a few spectral curves for vehicle paints and gen-
erates new paint signatures by combining these curves in-
ternally. In this paper we demonstrate a method to rapidly
generate multiple paint spectra, flying a drone carrying
a pushbroom hyperspectral camera to image a university
parking lot. We then process the images to convert them
from the digital count space to spectral reflectance with-
out the need of calibration panels in the scene, and port
the paint signatures into DIRSIG for successful integration
into the newly rendered sets of synthetic VNIR hyperspectral
scenes.

1. Introduction
The availability of large scale datasets has been an im-

portant factor in the ongoing success of deep neural net-
works - for example, the Mask R-CNN framework for im-
age instance segmentation [2, 12, 6]. Computer vision algo-
rithms often use synthetic data for training and testing deep
neural networks and then adapt them to the real data distri-
bution for application deployments [24, 3, 23, 18]. In com-
parison, research in hyperspectral imagery for these kind of
tasks is limited due to the cost of hardware and acquisition
of a wide variety of object signatures for input to synthetic
data simulators. Recently, AeroRIT established a baseline
on the task of semantic segmentation with hyperspectral im-
agery [16] by annotating all pixels in a flight line over a uni-

Figure 1: Examples of real and simulated hyperspectral data
from a parking lot (displayed as RGB). Left, an image chip
from the flight line (top) and the VNIR spectrum of digital
counts obtained from a region of interest sampled from the
yellow car (bottom). Right, a synthetic parking lot scene
with cars exhibiting several paint signatures (top) including
the radiance spectrum sampled from a yellow car (bottom).

versity campus. The authors show trained networks being
able to correctly identify vegetation, buildings and road pix-
els to a large degree while struggling with cars due to the
relatively low resolution and the atmospheric noise in the
scene. We hypothesize that synthetic imagery can help im-
prove the performance of such networks by providing bet-
ter initialization and a larger set of training samples. After
exploring the available simulators for hyperspectral scene
rendering, we find that current simulators are geared more
towards vegetation and cloud modeling, with few samples
for vehicle paints. To increase the number of available paint
samples, we fly a drone over a parking lot filled with cars
and devise a methodology to extract the digital count sig-
natures from the vehicles for modeling a new set of paint
signatures (Fig. 1).

Four well-known simulators that can render hyperspec-
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(a)

(b) (c) (d)

Figure 2: 2a shows a few vehicles captured from the hyperspectral sensor during our data collection. We obtain a rich dataset
consisting of diverse paints and their sub-variants under different illumination conditions. The wavy image edges are a feature
of the orthorectification process. 2b, 2c, 2d show the high level conversion from digital counts to radiance to reflectance for a
few pixels from the vehicle of interest pointed by the red arrow (off-white SUV). The neatly clustered set of curves indicate
the vehicle paint spectra, and the rest of the curves indicate glint. Reflectance is unitless.

tral scenes are: MCScene [17], CameoSim [14], DIRSIG
[19, 4], and CHIMES [25]. MCScene (Monte Carlo Scene)
generates the imagery by modeling a 3D cuboid world with
all the specified atmospheric parameters and then using
Direct Simulation Monte Carlo for all spectral signatures.
CameoSim (CAMoflauge Electro-Optic Simulator) repre-
sents objects in the scene as polygons and then applies ra-
diosity and reverse ray tracing to model the signatures. The
DIRSIG (Digital Imaging and Remote Sensing Image Gen-
eration) model uses physics-based radiation propagation
modules along with Metropolis Light Transport for scene
rendering. CHIMES (Cranfield Hyperspectral Image Mod-
eling and Evaluation System) is relatively new and uses an
enhanced adjacency model and automatic atmospheric pa-
rameter search to render realistic scenes with minimal user
effort. We use DIRSIG as the simulator following the ex-
tensive list of successful works [11, 5, 15, 21, 22, 10].

Kolb et al. used DIRSIG to create virtual night-time
scenes for conducting system tests over a wide range of at-
mospheric visibility and environmental conditions [11, 13].
Han et al. modeled urban and desert scenes to create a large

dataset of synthetic remote sensing images of cars and he-
licopters under a wide combination of atmospheric and en-
vironmental factors for data augmentation to train convolu-
tional neural networks [5]. Rahman et al. rendered a dataset
similar to Han et al. and used a VGG16-based siamese
network for change detection under various illuminations
[15, 20, 1]. Uzkent et al. modeled vehicle movements ob-
served by imaging platforms at different altitudes for the
purpose of detection and tracking using the Megascene en-
vironment in DIRSIG [8, 21, 22]. Kemker and Kanan used
the Trona scene from DIRSIG to boost the average accuracy
of their ResNet-50 based semantic segmentation architec-
tures [10, 7].

The current version of DIRSIG supports fewer than 10
paint signatures for vehicles. These spectra can then be
added to synthesize new paint signatures and create the en-
tire color gamut in the 3 band RGB domain. However,
simulating realistic hyperspectral imagery requires a large
database of spectral color signatures for each desired ma-
terial, such that the natural of a material’s spectra can be
measured and then rendered in simulated environments. To
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our knowledge, such a dataset for vehicle paint spectra is
not publicly available. Hence, we collect the required paint
data and augment the existing set of signatures for a wider
range of samples. We discuss our approach towards this ob-
jective in the paper. Our contributions are summarized as
follows:

• We introduce a relatively simple approach to process
data in digital counts into reflectance, without the ex-
plicit need of calibration panels.

• We gather a rich dataset of car paints that is much
larger than the current core car paint signatures in
DIRSIG, with metadata containing the car make and
model for future use.

2. Data Collection

We collect a comprehensive, high-resolution vehicle
dataset on a university parking lot to obtain hyperspectral
signatures of different vehicle paints (Fig. 2a). We start the
collection at noon, when the parking lot is near full capac-
ity with 450+ vehicles. We obtain ground truth spectra of 10
vehicles in the scene by measuring their hood with a hand-
held SVC spectrometer for verifying the spectral curves ob-
tained by our method. The main imaging platform for this
collect is inspired by the setup of Kaputa et al.- a drone
fitted with a push broom hyperspectral sensor [9]. We sum-
marize all the instruments and specifications of the sensor
and flight in Table 1.

The Nano-Hyperspec is a pushbroom scanning sensor
that collects a simultaneous line of 640 cross-track spatial
pixels and 272 spectral band pixels. Along-track pixels are
collected over time as the drone flies over the parked ve-
hicles in the scene. We collect an average of 50,000 hy-
perspectral pixels per vehicle, providing a dense number of
data points that captures the natural intra-vehicle material
reflectance . We carefully sample regions from these set of
points as described in Sec. 4.2.

The sources of light energy for this data collection are
sunlight and skylight, which in the remote sensing field are
termed downwelling irradiance. It is important to accurately
measure the downwelling irradiance because the source of
light in a scene impacts the observed color or spectra of an
object’s surface. Atmospheric effects such as clouds, shad-
ows, and haze, as well as the sun’s position in the sky, need
to be measured to calibrate raw hyperspectral data. To keep
track of changes in the atmosphere and sun during the vehi-
cle collect, we use an ASD Spectrometer pointed skyward
at a stationary position on a grounded tripod. We attach
an optically diffuse cosine corrector to the ASD spectrom-
eter so that it collects light with a 180 degree field of view,
which provides our dataset a measure of the full-sky hemi-
sphere downwelling irradiance every 2 seconds.

Imaging System

Manufacturer Headwall Photonics
Model Nano-Hyperspec
Spectral Range [nm] 400 - 1000
Spectral Bands 272
Bit Depth (bits) 12

Other sensors

Device SVC Spectrometer
Spectral Range [nm] 335 - 2510
Device ASD Spectrometer
Spectral Range [nm] 350 - 2500

Flight

Altitude [ft] 50
GSD [cm] ≈ 0.8
Exposure time [ms] 5
Frame period [ms] 7

Table 1: Specifications for data collection.

Following in the order of the light path, the downwelled
light then interacts with materials where the light either re-
flects, absorbs, or transmits. Our main interest is in measur-
ing the reflective properties of vehicle materials to then gen-
erate hyperspectral paint signatures. We utilize a factory-
calibrated handheld SVC spectrometer to measure spectral
radiance in the VIS-SWIR range with 987 spectral bands.
To convert radiance into reflectance, the SVC spectrometer
uses a Spectralon target that has a flat reflectance curve ( >
99% reflective in VIS-SWIR range) and is highly Lamber-
tian. We obtain the spectral reflectance of vehicle paints by
dividing the radiance of the vehicle paint by the Spectralon
target radiance and treat it as the ground truth reflectance
data. Reflectances measured by the SVC spectrometer are
used to verify our calculated reflectances from the Nano-
Hyperspec as shown in Sec. 4.3.

To summarize, we have the following sets of spectra
from the data collection that we use to move from Fig. 2b
to Fig 2d:

• Nano-Hyperspec: Flight line data in digital counts
domain.

• ASD: Downwelling irradiance throughout the data
collection at 0.5 Hz.

• SVC: Spectral radiance and reflectance for a selected
set of cars we use for verification of our pipeline.

3
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3. Radiometric Calculations
Collecting airborne hyperspectral imagery of vehicles

and calibrating the data to surface material reflectance is a
difficult task due to complex object geometry and radiation
propagation. For our university parking lot dataset - a sce-
nario that is starkly different than a controlled laboratory
setup - it is necessary for us to make certain assumptions
about the vehicle reflectance properties and the illumina-
tion sources. Even though vehicle paint is highly specular,
we assume vehicle paint is Lambertian so that we can ap-
proximate spectral radiance from radiant exitance leaving
the vehicle’s surface without performing an exhaustive in-
situ measure of the surface BRDF (bidirectional reflectance
distribution function), as shown in Eqn. 1.

Lλ =
Mλ

π
=
Eλρλ cos θ

π
, (1)

where L, M , E, ρ indicate radiance, radiant exitance, ir-
radiance and reflectance at wavelength λ, and θ is the angle
of incidence. We summarize the terms across all equations
in Table 2. When calculating vehicle reflectance, we select
regions of interest on the car’s body that are approximately
planar and nadir to the drone imaging platform so that mea-
sured variance in exitance due to surface angle θ is reduced.

For our dataset, we assume the primary source of illumi-
nation in the scene is from sky downwelling irradiance, and
that all other sources of illumination are negligible. In local
cases where an image pixel contains shadowed or glinted
light from the sun, this assumption is no longer true and
therefore calculated surface reflectance from these pixels
will not return an accurate spectral curve, as demonstrated
in Fig. 2d. Additionally, since some vehicle paints are
highly reflective and the vehicles are placed close to each
other in our parking lot dataset, the adjacency effect (sec-
ondary reflections from nearby objects) can act as another
significant illumination source. We have identified small re-
gions of interest (ROI) in our dataset where the adjacency
effect prominently alters our spectral data, which we discuss
in detail in Sec. 4.2.

Collecting surface material spectra remotely with a hy-
perspectral imaging system requires a method to calibrate
the sensors electronic digital counts to physically mean-
ingful units, such as radiance or reflectance. For airborne
remote sensing at high altitude, accurate radiometric cali-
bration of data to reflectance requires an accounting of all
light-matter interactions in the atmosphere between a ma-
terials surface and the airborne sensor. Since the university
parking lot data was collected with a drone flying at very
low altitude (50 feet) on a clear and sunny day, we assume
that the radiometric atmospheric effects between the sensor
and ground are negligible.

The physical process in which a photosensitive sensor
generates electrons when impinged by photons can be de-

scribed as

Se = φ · t · λ
hc

· η, (2)

where φ is radiant flux, t is time, and η is the ratio
of converted electrons to incident photons per wavelength,
also known as quantum efficiency (QE). When a sensor
is photon-noise limited, that is, the photon Poisson noise
is greater than the detectors inherent electronic noise, the
quantum efficiency is the dominant factor in determining a
sensor’s maximum achievable signal to noise ratio (SNR).
A sensor’s QE can be measured in a controlled laboratory
setting when using a monochromatic light source of known
intensity, and recording the number of electrons generated
by the sensor.

Extending beyond the sensor, the conversion of photons
to electrons of an imaging system can be defined holistically
with external quantum efficiency (EQE). EQE is the ratio
of photons incident on the first optical element to electrons
generated by the sensor. This can be a convenient method
to define performance of an imaging system with complex
static optical components such as lenses, apertures, mirrors,
and diffraction gratings because EQE accounts for any po-
tential loss in signal through the entire optical system.

A synonymous measure to QE and EQE is spectral re-
sponsivity, which is the ratio of current generated to inci-
dent radiometric power. For a camera, output pixel values
are expressed in digital counts after the analog current in
the sensor is passed through an analog-to-digital converter.
Assuming the analog-to-digital converter and the sensor are
linear, system spectral responsivity can be defined in terms
of digital counts as

Rλ =
DCi −DCdark

φ
. (3)

A benefit of measuring spectral responsivity in terms of
camera digital counts is that, like EQE, it takes into account
the affect of optical components as well as the photosensi-
tive sensor on incident power. This contextually aligns with
a system calibration process that is needed for collecting
field data where the raw output is in digital counts.

Normalizing the spectral responsivity curve by its max-
imum will provide a relative spectral responsivity for an
imaging system. Dividing raw digital count data (that is
corrected for dark current) by an accurately measured rela-
tive spectral responsivity curve will ensure that the incident
power required to raise a pixel’s value by one digital count
will be constant for all spectral bands in the imaging system.
For applications which do not require image pixel values to
be in absolute physical units, further radiometric calibration
may not be needed.

To convert a camera’s digital counts to absolute physi-
cal units such as radiance, the straightforward method is to

4
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measure the camera’s digital count response in a controlled
laboratory setting, where the light source power spectrum
and spectral bandwidth are known. In the specific case
of calibrating the Nano-Hyperspec camera to spectral ra-
diance, we used a monochrometer with a tunable diffrac-
tion grating. We placed the front of the Nano-Spec as close
to the exit aperture of the monochrometer as possible and
blocked out stray light with optical absorbing material. We
collected Nano-Hyperspec image frames with monochro-
matic light every 10nm in the VIS-NIR range (61 steps from
400-1000nm). For each wavelength tested, we also mea-
sured the monochrometer’s lamp radiant flux φref with an
optical power meter, which is used in Eqn. 4.

Since the Nano-Hyperspec has a diffraction grating to
separate incoming light into 272 spectral bands across the
image array columns, a monochromatic light source will
only illuminate a few columns with the rest of the image
array receiving almost no light. With a theoretical noiseless
system, we could determine the spectral responsivity of the
camera by recording the maximum digital count value in
the illuminated band for each monochromatic wavelength
tested, then use Eqn. 3 to calculate responsivity. How-
ever, there is noise introduced from digitized sampling, non-
uniform illumination, and spectral band widening due to
diffracted light that needs to be addressed.

Light leaves the monochrometer aperture with non-
uniform intensity, and across the illuminated band on the
image plane the intensity profile is approximately Gaus-
sian. For each monochromatic wavelength tested, we fit a
1-D Gaussian function to our data and record the amplitude
in digital counts. Normalizing the fitted functions provides
us a measured spectral responsivity Rλ,norm for our Nano-
Hyperspec sensor.

We can then use the normalized spectral responsivity
curve and the known sensor specifications to obtain irra-
diance per digital count as

E

DC
=

(
φref ·

tobs
tref

)(
x2obs · θ2IFOV · Bref

Bobs
·Rλ,norm

)−1

,

(4)
where the ref and obs subscripts denote acquisition pa-

rameters from laboratory (monochrometer) measurement
and field measurements respectively.

Assuming a Lambertian reflector, we calculate sensor
reaching spectral radiance as

Lλ = (DCi −DCdark) ·
E

DC
· 1
π
. (5)

To convert from spectral radiance to spectral reflectance,
we assume the surface is Lambertian and solely illuminated
by downwelling irradiance (measured by the ASD) as

ρλ = Lλ ·
Eλ,downwell

π
. (6)

Variable Description Units

Se Sensor Generated Electrons -
φ Radiant Flux W
Rλ Spectral Responsivity W−1

Mλ Radiant Exitance W m−2

E Irradiance W m−2

ρλ Spectral Reflectance W m−2

B Spectral Bandwidth nm
x Ground Sample Distance m

t Time s -
λ Wavelength nm
h Planck’s constant J s
c Speed of Light m s−1

η Quantum Efficiency -
θ Angle of Incidence rad
θIFOV Instantaneous FOV sr

Table 2: List of all notations used throughout the paper,
their description and default units.

To summarize, we obtain the reflectance spectra as fol-
lows:

• Calibrate the sensor using monochrometer to obtain
the spectral responsivity curve as per Eqn. 3.

• Assume vehicle is Lambertian and sample approxi-
mately planar region of interest.

• Use Eqn. 4 to convert ROI data from digital counts to
irradiance.

• Use Eqn. 5 and 6 to compensate the dark current mea-
surements and obtain reflectance spectra.

4. Data Processing and Visualization
4.1. University Parking Lot

The drone based imaging platform is susceptible to sharp
changes in the collected imagery due to wind-influenced
movement (Fig 3a). We use orthorectification based on
GPS and IMU data and correct these distortions to obtain
a much cleaner image (Fig. 3b). Since we operate the sen-
sor in a non-automatic setting (i.e. the gain and integration
time does not change with the scene variance), we apply
the pipeline described in Sec. 3 after orthorectification. Af-
ter smoothing out the resultant reflectance signal with a box
filter, we import the vehicle spectral curves into DIRSIG as
new synthetic paint signatures.
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(a)

(b)

Figure 3: We use orthorectification to remove the distor-
tions in 3a and obtain a 3b.

4.2. ROI Selection

In our data collect, when radiance due to adjacency ef-
fect is proportional to the downwelling radiance for a given
pixel, we no longer know how the corresponding pixel is
illuminated. Therefore, we cannot obtain accurate vehicle
material reflectance(s) in regions that have significant adja-
cency effects. For example, in Fig. 4, a gray vehicle has sec-
ondary light reflections from a nearby bright red car. Along
contours of the car hood that are pointed towards the red
vehicle, we observe a red tinged spectral radiance that is
significantly different than the spectral radiance of a nearby
region on the gray vehicle hood.

Vehicle paint is highly specular, and under solar illumi-
nation, the vehicle may appear to have bright glinted regions
on its surface. Glint is caused by direct reflections from an
illumination source. In our parking lot scene, we observed
that pixels containing glint are often an order of magnitude
brighter than the observed vehicle brightness, which causes
our imaging sensor to be saturated. In addition to being
brighter, the irradiance spectra from glinted regions on a
vehicle do not have the same paint signature as the vehi-
cle paint, and instead resembles the solar spectral irradiance
curve. When selecting ROI’s on the vehicles surface, it is
important to avoid glinted pixels to reduce error in calcu-
lating spectral reflectance. An example of glint effects on
measured digital counts, radiance, and reflectance is shown
in Fig. 2. Hence, in order to obtain spectral reflectance
curves of objects from our remote imaging platform, we
carefully select regions on the object that are geometrically
planar and are not influenced by secondary reflections from
nearby objects.

Figure 4: Adjacency effect from the red car onto the gray
car. We select two ROIs - the red and blue boxes, and plot
the mean spectra with respective colors.

4.3. Comparison with SVC Data

We then validate our calculated reflectance from the
airborne Nano-HyperSpec with reflectance measurements
from the SVC spectrometer of known vehicles in the park-
ing lot scene, to determine if our assumptions made in Sec.
2 provide reasonable estimates of vehicle paint reflectance
curves. Following equations laid out in Sec. 3, we show
the calculated reflectance plotted alongside the ground truth
reflectance (SVC spectrometer) in Fig. 5.

Considering the radiometric simplifications utilized to
obtain vehicle paint reflectance spectra, the results reason-
ably agree with the ground truth spectra. The discrepancies
between the two curves could be due to multiple reasons,
including 1) adjacency effect, 2) the full sky hemisphere
of downwelling irradiance is not visible to the selected ROI
due to occlusion, and 3) the vehicle paint BRDF is not Lam-
bertian and is not perfectly planar within the ROI.
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Figure 5: Calculated vehicle paint reflectance from the
Nano-HyperSpec (blue) compared with the measured SVC
paint reflectance (red). These spectra are both from the
white vehicle of interest in Fig. 2.

4.4. Hyperspectral Scene Rendering

After calibrating the car paint spectra and porting it into
DIRSIG, we use a predefined parking lot scene 1 in DIRSIG
and change the material properties to use our set of paint
signatures for the vehicles instead of the predefined set. For
preliminary testing, we select 14 vehicle reflectance spec-
tra for simulations. Fig. 7 shows a snapshot of the rendered
scene along with new set of paint signatures and their corre-
sponding real image counterparts that were used for extrac-
tion. The image rendered is significantly low in resolution
as compared to the real image from which colors are sam-
pled due to the altitude difference of the sensor.

Another benefit of creating simulated hyperspectral
scenes is that we have full knowledge of the ground truth
properties of objects placed in the scene. We then can ob-
serve how the spectral radiance reaching our sensor is influ-
enced by angle, illumination spectra, atmosphere, as well
as platform and object motion. Through many simulations
of different observation conditions, we can measure in ob-
served spectral radiance that corresponds to an object of
known reflectance properties, to aid in future hyperspec-
tral tasks - involving object detection and re-identification.
Fig. 6 shows another instance of the parking lot scene with
varied vehicle paints under three atmospheric conditions -
at noon, near sunset and under clouds. We observe stark
differences at all three timestamps - signatures under cloud
tend to have less intensity compared to the ones at noon

1http://www.dirsig.org/docs/demos/index.html

(a) (b)

(c)

(d)

Figure 6: Same parking lot scene captured under three at-
mospheric conditions - at noon (6a), near sunset (6b) and
under clouds (6c). We plot the mean spectrum of pixels
sampled from selected cars (marked in 6c) in 6d with dif-
ferent line styles: noon - solid, near sunset - dotted, cloudy
- dashed.

depending on the base paint color, and signatures during
evening are all at very less intensity irrespective of the paint.

7
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Figure 7: Center - Synthetic parking lot scene generated by DIRSIG with vehicles exhibiting paints obtained via our approach.
Surround - We also show the vehicle images used for sampling the paint instance.

5. Discussion and Future Work

We have shown a radiometrically calibrated airborne hy-
perspectral platform operating simultaneously with a spec-
trometer measuring downwelling irradiance can calculate
reflectance spectra of vehicle paints from manually selected
ROIs on the vehicle surface. We select pixels from approx-
imately planar areas on the vehicle body where we assume
the dominant source of illumination is the downwelling irra-
diance, thus avoiding pixels that are significantly corrupted
due to adjacency effect or glint or shadow.

These reflectance spectra are utilized in DIRSIG to gen-
erate simulated hyperspectral imagery, with the potential to
create dense simulated urban scenes where each vehicle has
a unique spectral signature. These simulations allow for the
construction of multiple spectral radiance curves that cor-
respond to the same object material (Fig. 6), generating
examples of how an object can look different when there is

local or radiometric changes in the scene. We believe that
our collection of paint spectra can be used with DIRSIG for
future work in multiple areas of remote sensing, including
but not limited to data augmentation for hyperspectral ob-
ject detection from multiple platforms.

References

[1] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
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