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Abstract: We present theoretical and experimental investigations of higher order correlations
of mechanical motion in the recently demonstrated optical tweezer phonon laser, consisting of a
silica nanosphere trapped in vacuum by a tightly focused optical beam [R. M. Pettit et al., Nature
Photonics 13, 402 (2019)]. The nanoparticle phonon number probability distribution is modeled
with the master equation formalism in order to study its evolution across the lasing threshold. Up
to fourth-order equal-time correlation functions are then derived from the probability distribution.
Subsequently, the master equation is transformed into a nonlinear quantum Langevin equation
for the trapped particle’s position. This equation yields the non-equal-time correlations, also
up to fourth order. Finally, we present experimental measurements of the phononic correlation
functions, which are in good agreement with our theoretical predictions. We also compare the
experimental data to existing analytical Ginzburg-Landau theory where we find only a partial
match.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Based on their extreme isolation from the environment, simplicity, and ready manipulability,
optically levitated nanoparticle systems are promising platforms for investigating the fundamental
principles of quantum mechanics [1–4], statistical physics [5–9], nonlinear science [10–13] and
precision measurement [14–16]. In addition to the usual center-of-mass mechanical motion,
degrees of freedom such as spin [17–19] and charge [20,21] can be accommodated by the levitated
nanoparticles. Further, rotational and librational modes have also been investigated, with rotation
rates reaching the GHz regime [22–26].

Recently, we have proposed and demonstrated a phonon laser based on a nanosphere levitated
in an optical tweezer by applying linear and nonlinear feedback on a center-of-mass mode of
oscillation [27]. In the context of optomechanics, phonon lasers have been previously studied
in a wide range of different systems as mechanical analogs to optical lasers [28–33]. The
uses of the phonon laser demonstrated earlier by us are expected to be practical (generating
nonclassical mechanical states starting with coherent phonons) as well as conceptual (exploring
analogies to the optical laser). Following the latter direction, we recall that in the optical case,
correlation functions of order higher than two [34] form the basis for correlation interferometry
[35], nonclassical state characterization [36], determining higher order coherence properties [37]
and photon-photon interactions [38]. In this article, we consider the higher order correlation
functions of the phonon number distribution to deepen the optics-mechanics analogy, to quantify
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the achievable degree of coherence and the relevant timescales of our phonon laser, and to further
test the agreement between theoretical predictions and experiment.
Specifically, we calculate and measure the center-of-mass phonon number probability dis-

tribution for an optically trapped silica nanosphere under the influence of both linear feedback
amplification and nonlinear feedback cooling. The phonon number probability distribution is
modeled and measured in the steady state as the phonon laser transitions across the threshold. The
higher order correlation functions of the phonon number operator are then considered up to fourth
order to quantify the degree of coherence throughout the transition. Finally, by transforming
the master equation model into a quantum Langevin equation, the non-equal-time higher order
correlations are obtained up to fourth order and compared with experimental data as well. Good
agreement is found between experiment and theory.

2. Phonon laser

2.1. Experiment

Realization of our phonon laser is based on the free-space optical levitation of a silica nanoparticle
dipole-trapped in vacuum as shown in Fig. 1 (see [27] for details of the experimental apparatus).
Light scattering from the trapped particle provides a position measurement that is processed
electronically to generate feedback signals that control the particle’s dynamics. These signals
provide nonlinear parametric cooling and linear amplification of center-of-mass phonons, giving
rise to the realization of the phonon laser. The former hinders the particle’s motion by increasing
the trap stiffness whenever the particle moves away from the trap center and reducing it when
the particle falls back toward the trap. This is equivalent to the modulation of the trap power by
supplying feedback signals ∝ ri(t)Ûri(t) in all three positional degrees of freedom ri, i = (x, y, z).
For harmonic motion, ri(t) ∝ sin(Ωit), where Ωi is the frequency of oscillation, this yields a
power modulation at twice the particle’s natural oscillation frequency with an appropriate phase
shift.
Our feedback cooling electronics are composed of a series of homebuilt analog circuits that

take the measured position signals at different directions and generate the required phase-shifted
and frequency-doubled signals. These signals are combined in a summing amplifier circuit and
fed back to an electro-optic modulator that controls the trap power. The magnitude of this signal
is adjusted using a feedback gain controller on the same circuit. The linear feedback amplification
of the particle’s oscillation is addressed by modulating the trap power about its mean value
by a signal ∝ −Ûri(t) that acts at the frequency of particle oscillation Ωi. This signal is derived
from a phase-locked loop (PLL) on a digital lock-in amplifier (Zurich Instruments HF2LI). The
PLL tracks the phase and frequency of the particle’s motion along a desired axis of the trap,
and from the PLL a signal of the same frequency is generated with a fixed phase relationship
to the measured particle motion. The phase of the generated signal is set to induce heating of
the particle’s motion, and the final output amplitude can be set to the desired value. Deriving
the amplification signal from a PLL produces a free-running oscillator that is not locked to any
fixed external phase reference. The amplification signal only addresses a single spatial degree of
freedom of the particle’s motion (x-axis here).

2.2. Theory

The phonon laser can be modeled by the master equation [27]

Ûρ = − i[Ω0b†b, ρ] −
(At + Dp

2

)
D[Qx]ρ −

Dx

2
D[Px]ρ − i

γg

2
[Qx, {Px, ρ}]

− iγc[Q3
x , {Px, ρ}] − ΓcD[Q3

x]ρ + i
γa
2
[Qx, {Px, ρ}] − ΓaD[Qx]ρ,

(1)
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Fig. 1. The schematic of the optical tweezer phonon laser [27]. The schematic includes an
electro-optic modulator (EOM), polarizing beam splitters (PBS1 and PBS2), high numerical
aperture focusing lenses (L1 and L2), a detector (D), two switches (S1 and S2) and a beam
dump (BD). A nanoparticle is optically trapped by the single-beam optical tweezer, and its
position measured using a probe beam. The particle is addressed with nonlinear feedback
cooling (γc) and linear feedback amplification (γa); associated with this measurement and
feedback are also backactions (Γc and Γa) in this system. For the feedback cooling and
heating, BP, 2Ω0, ∆Φ, Gh(c) and PLL denote the electronic bandpass filter, frequency doubler,
phase shifter, electronic gain for heating (cooling), and phase-locked loop, respectively [27].

where ρ is the density matrix operator which describes the center-of-mass motion of the
nanoparticle along the x -axis, Ω0 is the natural oscillation frequency of the nanoparticle in
the optical harmonic trap, b(b†) is the annihilation (creation) operator of phonon number, and
Qx = b† + b and Px = i(b† − b) are the dimensionless position and momentum operators,
respectively, along the x axis. The quantities At, Dx, and Dp are the rates associated with photon
scattering from the trap beam, and position and momentum diffusion, respectively, such that

At =
7ε2cV2ω5It
120πmΩ0c6

, Dx =
γg

6N0
, Dp = 2γgN0, (2)

whereN0 = kBT/~Ω0 is the initial thermal phonon number at temperature T , kB beingBoltzmann’s
constant, m and V are the nanoparticle mass and volume, respectively, εc is the dielectric
permittivity of the nanoparticle, c is the speed of light, and ω0 and It are the optical frequency
and intensity, respectively. The parameters γg, γa, γc, Γa and Γc denote the rates of gas damping,
linear feedback amplification, nonlinear feedback cooling and their respective backaction rates.
The experiments are conducted in a regime where feedback backaction is negligible and we
therefore do not provide the detailed expressions for Γa and Γc. Also,

γa = MaΩ0, and γc =
McΩ0
〈N〉

, (3)

where Ma(Mc) is the modulation depth of the amplifying (cooling) feedback signal and 〈N〉
is the mean phonon occupation number. The gas damping is determined by residual air
pressure [27]. The Lindblad superoperator D[O] for the operator O acts on ρ according to
D[O]ρ = O†Oρ + ρO†O − 2OρO†.
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By utilizing the rotating frame transformation, the dynamical equation for the probability that
the nanoparticle center of mass is excited to n phonons, P(n) = 〈n|ρ|n〉, can be derived from the
master equation Eq. (1) as [27]

ÛP(n) = (Dt + γa − γg)
(
nP(n − 1) − (n + 1)P(n)

)
+ 6γc((n + 1)2P(n) − n2P(n − 1))

+ (Dt + γg − γa)
(
(n + 1)P(n + 1) − nP(n)

)
+ 6γc

(
(n + 1)2P(n + 1) − n2P(n)

)
,

(4)

where Dt = At +Dp. The various terms in Eq. (4) correspond to one- and two-phonon transitions
between the oscillator’s levels with n− 1, n and n+ 1 phonons, respectively; the contributions due
to stimulated emission and spontaneous emission, the steady-state solution and time-dependent
phonon number distribution P(n) have been provided in [27].
However, for our present purpose, the modulation-evolution (i.e. the evolution of P(n) with

Ma) of the steady state phonon number distribution is also important. In Fig. 2, the numerical
calculation, from Eq. (4), of the evolution of the phonon number probability distribution P(n)
as a function of Ma is shown. Far below threshold, the phonon number distribution satisfies
a Maxwell-Boltzmann (M-B) distribution; far above the threshold, the distribution is close to
Poissonian. These results expand on those presented previously in [27].

Fig. 2. The evolution of the steady state phonon number probability distribution P(n) from
below to above threshold as the modulation depthMa of the linear feedback amplification
is increased. The points correspond to experimental data and the curves to numerical
results. Different colors indicate phonon probability distributions for varying modulation
depth. The system parameters are particle radius R = 69.1 nm, Ω0 = 2π × 128.5 kHz, and
γc/(2π) = 4.4 × 10−4Hz; the background pressure is 6 × 10−5 mbar and T = 300K.

3. Higher order correlations in phonon laser

We now consider the correlation functions of the optical tweezer phonon laser. Correlation
functions in the optical case have been found to be useful for the measurement of quantum
coherence, imaging, and other applications [39,40]. The second-, third-, and fourth-order
correlation functions can be expressed in terms of the creation (b†) and annihilation (b) operators
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as follows [41],

g(2)(t, τ) =
〈b̂†(t)b̂†(t + τ)b̂(t + τ)b̂(t)〉

〈b†(t)b(t)〉2

g(3)(t, τ1, τ2) =
〈b̂†(t)b̂†(t + τ1)b̂†(t + τ2)b̂(t + τ2)b̂(t + τ1)b̂(t)〉

〈b†(t)b(t)〉3

g(4)(t, τ1, τ2, τ3) =
〈b̂†(t)b̂†(t + τ1)b̂†(t + τ2)b̂†(t + τ3)b̂(t + τ3)b̂(t + τ2)b̂(t + τ1)b̂(t)〉

〈b†(t)b(t)〉4
,

(5)

where 〈〉 indicates an ensemble average and τ, τ1, τ2 and τ3 represent time delays. From the
definition of higher order correlations, when the time delay τ = 0, we can obtain equal-time
correlations as follows [42]

g(n)(t, 0) =
〈b̂†n(t)b̂n(t)〉
〈b†(t)b(t)〉n

. (6)

Thus, g(n)(t, 0) is the equal-time nth order correlation at time t; for notational convenience we
express it below as g(n)0 (t). For describing experimental and theoretical applications more clearly,
the definitions of higher order correlations have been clarified in Appendix A.

3.1. Equal-time higher order correlation functions in the steady state

Solving Eqs. (4) and (6) numerically, we obtained the equal-time higher order correlation
functions in steady state as well as in transience. The variation of the steady state phonon
correlations as a function of the feedback amplification modulation Ma is shown in Fig. 3(a).
The corresponding experimental results obtained from Eq. (14) with all time delays equal zero
are shown in the same figure with Ma = δPa/P0, where P0 is the power of the trapping beam
and δPa is the power modulation induced by the feedback amplification. Phonon occupation
numbers used in these calculations were recorded by monitoring oscillator dynamics in a time
window of 20ms and the length of the error bars represents ±1 standard deviation of 100 such
measurements. When the modulation is small, g(n)0 (∞) → n!, as expected for a thermal state,
and for large modulation g(n)0 (∞) → 1, as expected for a coherent state [35]. The theoretical
predictions are in good agreement with the experimental data.
In contrast, Fig. 3(b) shows the transient evolution of the system after switching on the

amplification modulation Ma = 5 × 10−3, which takes the laser far above threshold. In this case
the equal-time higher order correlations can be recorded in real time. Experimentally, these
variations were constructed using the transient mean phonon population calculated from 500
iterations of the switching experiment in which the gain was switched on at time t = 0. After
each period of amplification, the gain was switched off and the particle was allowed to cool
under the influence of the feedback cooling to re-initialize its thermal state. When t < 0, the
phonon number of the particle satisfies the thermal state distribution. After switching on the
feedback amplification, the probability distribution of phonon number approaches a coherent
state distribution gradually. Thus, when the laser is far below threshold, the higher order
correlations will start at n!, but tend to unity at long times. Figures 3(c) and (d) show the
corresponding Fano factor F = (〈N2〉 − 〈N〉2)/〈N〉, and Figs. 3(e) and (f) the Signal-to-Noise
Ratio SNR = 〈N〉/(〈N2〉 − 〈N〉2)1/2. As can be seen, the theoretical predictions agree well with
experimental data.
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Fig. 3. Equal-time higher order correlations in the steady state (a) and transient state (b). Red
(red solid), black (black dashed) and blue (blue dot-dashed) points (lines) are experimental
(numerical) results for g(4)0 , g(3)0 and g(2)0 in steady state (a). Red (red solid), black (black) and
blue (blue) points (lines) are experimental (numerical) results for g(4)0 , g(3)0 and g(2)0 in the
transient state (b), respectively. In (b)Ma = 5× 10−3. Here R = 69 nm,Ω0 = 2π × 136 kHz,
the residual air pressure is 6 × 10−5 mbar, and γc/2π = 5 × 10−4Hz. (c) and (d) show the
corresponding Fano factor F = (〈N2〉 − 〈N〉2)/〈N〉, and (e) and (f) the Signal-to-Noise Ratio,
SNR = 〈N〉/(〈N2〉 − 〈N〉2)1/2.
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3.2. Non-equal-time higher order correlation functions

For obtaining non-equal-time higher order correlations, we transform the master equation of Eq.
(1) into a quantum Langevin equation [43,44],

mÜq = − mΩ2
0q − 2m

(
γg − γa +

24γcmΩ0
~

q2
)
Ûq

+
√
2KBTmγgξT +

√
(Dt + 2Γa)~Ω0mξFa + 12q2

√
Γ2cm3Ω3

0
~γc

ξFc,

(7)

where q =
√
~/(2mΩ0)Qx is the position of the particle, ξT is the Brownian noise from the

environment, and ξFa and ξFc are the noises from the feedback amplification and cooling
respectively, with zero means and correlations, i.e. 〈ξi(t)ξj(t′)〉 = δi,jδ(t − t′), i, j = T , Fa and Fc.
We extract the non-equal-time higher order correlations numerically by solving Eq. (7) for q and
using that to find N, as indicated in Appendix A.
We first present results with the feedback cooling and heating turned off. In this case, the

phonon statistics satisfy the M-B distribution. The quantities g(2)(τ), g(3)(τ = (τ21 + τ
2
2 )

1/2) and
g(4)(τ = (τ21 + τ

2
2 + τ

2
3 )

1/2) [45] are obtained by numerically simulating Eq. (7), and as can be
seen from Fig. 4, compare well with experiment. When the time delay τ equals zero, the nth
order correlation equals n!, which corresponds to the case of equal-time higher order correlation.

Fig. 4. The theoretical and experimental results for g(n)(τ), where τ = (
∑n
i=1 τ

2
i )

1/2. The red
line (circle), blue dashed (pink square), and yellow dot-dashed line (triangle) are numerical
(experimental) g(n)(τ), for n = 4, 3, 2, respectively. The results for the third order correlation
are taken from a slice along the line τ1 = −τ2, while the fourth order correlation is from
a slice along the line τ1 = −τ3 and τ2 = 2τ3. The inset shows g(2)(τ) in detail and the
theoretical fit used for finding the coherence time (τc) of the thermal state below threshold:
the black dotted line is the theoretical expression from Eq. (8), which yields τc = 40µs.
Here R = 77.3 nm and the residual air pressure is 12 mbar. The feedback amplification and
cooling are turned off.

From the Eq. (7) and Fig. 4, we can see that the noise spectrum is Lorentzian in profile. The
corresponding second order correlation is given by [41],

g(2)(τ) = 1 + e−2τ/τc (8)

where τc is the coherence time of the thermal state below threshold. From the experimental and
numerical results, we find τc = 40µs. Considering the third order correlation in more detail in
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the (τ1, τ2) plane, the experimental and numerical results are shown in Fig. 5. Mathematically
the ridges in the plots can be understood from the symmetries of g(3)(t, τ1, τ2) in Eq. (5): they
lie on the lines τ1 = 0, τ2 = 0, and τ1 = τ2. Physically, the center of the plot corresponds to
three-phonon bunching, while the ridges correspond to two-phonon bunching. In the figure, we
see quite good agreement between theory and experiment.

Fig. 5. The results for g(3)(τ1, τ2) given by numerical (left) and experimental (right)
methods. The diagonal dashed lines correspond to the τ1 = −τ2 case shown in Fig. 4. Other
parameters are the same as in Fig. 4.

Now we consider the case for g(2) when feedback cooling and amplification are turned on.
In this case the laser is in a coherent state to a good approximation and g(2)(τ) ∼ 1 and the
second-order correlation does not yield the coherence time. However, it can be found by inverting
the linewidth, which yields the coherence time τc ∼ 1s above threshold [27].
Moving on to the higher-order correlations, g(3)(τ1, τ2) is shown below, near and above

threshold in Fig. 6. In Fig. 6, the figures in the upper row are experimental results, and the figures
in the lower row are theoretical calculations. When the feedback amplification is turned off, the
phonon number distribution satisfies the M-B distribution. When the time delays equal zero,
g(3)(τ1, τ2) has the maximum value g(3)(τ1 = 0, τ2 = 0) = 6. This is in agreement with the results
in Fig. 3. When the time delays do not all equal zero, there are three ridges. They intersect the
origin along the line τ1 = 0, τ2 = 0 and τ1 = τ2. When the modulation increases, there is still
one maximum at the origin and three ridges, but g(3)(τ1, τ2) decreases until the phonon number
distribution approaches Poissonian, i.e. such that g(3)(τ1, τ2) ≈ 1.

Similarly, we consider the fourth order correlation below, near and above the threshold, and the
corresponding properties of g(4)(τ1, τ2,−τ1) have been shown in Fig. 7. The peak value of g(4)
occurs at the point (τ1 = 0, τ2 = 0, τ3 = 0). Different amplification modulation factors lead to
different maxima of g(4) with larger Ma leading to smaller maxima. When the modulation leads
the laser to far above threshold, the fourth order correlation is unity. There are also ridges like
in Fig. 6, which can be deduced from the symmetries of g(4)(τ1, τ2,−τ1) in Eq. (5). Physically
the center of the graph corresponds to four-phonon bunching and the ridges to three-phonon
bunching.
We explore further the case for g(4) when the phonon laser works below threshold and τ3

is not always equal to −τ1. The corresponding τ3 evolution of the fourth order correlations is
shown in Fig. 8. In this case, there is always a maximum value at the origin, which occurs when
τ1 = τ2 = τ3 = 0, g(4) reaches its peak value of 24.
When τ3 , 0, g(4) displays a rich structure. There are five ridges which correspond to τ1 = 0,

τ2 = 0, τ1 = τ2, τ1 = τ3 and τ2 = τ3. These ridges intersect at four points and display four
maxima.
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Fig. 6. The correlation g(3)(τ1, τ2) from experiment (upper row) and theory (lower row)
below (left column), near (center column) and above (right column) threshold. The radius of
the particle is R = 76.6 nm, and the residual air pressure is 2 × 10−6mbar. The modulation
of feedback cooling isMc = 10−4 Hz, and feedback amplification modulationMa equals 0.0
(below), 3 × 10−5 (near) and 10−3 (above) threshold.

Fig. 7. The correlation g(4)(τ1, τ2,−τ1) from experiment (upper row) and theory (lower
row), below (left column), near (center column) and above (right column) threshold. The
parameters are the same as in Fig. 6.
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Fig. 8. g(4)(τ1, τ2, τ3) with different τ3 below threshold in experiment (upper row) and
theory (lower row). The values of τ3 are displayed in the labels above the figures. The
parameters are the same as in Fig. 6.

When τ3 increases from negative to zero, these five ridges and four maxima gather together
and contract to one peak value, g(4) = 4! and three ridges. This behavior can be traced to the
symmetry of g(4)(τ1, τ2, τ3); because it is symmetric with respect to τ3, the single peak of g(4) at
τ3 = 0 disperses from one to four. To conclude this section, we note that theory and experiment
display good agreement for all the correlations presented here.

3.3. Ginzburg-Landau theory for a phonon laser

In this section we consider the use of higher-order correlation functions to determine how well
a standard paradigm of second-order phase transitions, namely the Ginzburg-Landau (G-L)
model, can describe our phonon laser [46–48]. G-L is an elegant, powerful and useful theory,
allowing, for example, for the analytical calculation of correlation functions. It is therefore of
interest to see how well these analytic results from a standard theory can model our experimental
correlations. A compact method for displaying the range of agreement, independent of detector
quantum efficiency, has been suggested recently; this method involves comparing the higher
order correlations, rather than the full phonon statistics, and we follow those authors [48].
By utilizing the transformation ρ(t) =

∫
φ|v〉〈v|d2v, the master equation of Eq. (1) was

transformed into the Glauber-Sudarshan P representation and the Fokker-Planck equation for the
P-function φ is obtained. For obtaining the standard G-L Fokker-Planck equation, third order
terms were neglected, as shown in Appendix B. This gives

∂

∂t
φ =

(
(At + Dp + Dx + (γa − γg − 6γc))

∂2

∂v∂v∗
− (γa − γg − 6γc)

(
v∗

∂

∂v∗
+ v

∂

∂v
)

+ 6γc(v∗ |v|2
∂

∂v∗
+ v|v|2

∂

∂v
)

)
φ(v, t).

(9)

Utilizing the transformation, v = reiϕ , Eq. (9) is transformed to

∂

∂t
φ = −β

1
r
∂

∂r
{(d − r2)r2φ} + q{

1
r
∂

∂r
(r
∂φ

∂r
) +

1
r2
∂2φ

∂ϕ2
}, (10)
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where β = 6γc, d = (γa − γg)/(6γc) and q = (At + Dp + Dx + γa − γc)/4. From standard
Ginzburg-Landau laser theory [48], we can get the Ginzburg-Landau potential,

F(r) =
1
q

(
−
βd
2
r2 +

β

4
r4

)
. (11)

and the phonon correlation function g(l)0 (∞) as

g(l)0 (∞) =
l!D−l−1

(
a√
2b

) [
D−1

(
a√
2b

)] l−1[
D−2

(
a√
2b

)] l , (12)

where a = −βd/2q, b = β/4q and Dν(z) is the parabolic cylinder function.
Substituting the experimental parameters into the Ginzburg-Landau potential, we have plotted

the logarithms of the higher order (l = 3, 4) correlations versus the logarithm of the l = 2
correlation in the Fig. 9(a), both for G-L theory and from our experiment in the manner of [48].
Since the correlation functions all approach unity far above threshold, their logarithms approach
zero in that limit. Keeping this in mind, we can see from Fig. 9 that the G-L theory matches
experimental results only far above threshold. We find this is due to higher order terms having
been neglected to arrive at the G-L form of the Fokker-Planck equation, Eq. (9). The effect can
also be seen in Fig. 9(b) where the disagreement between G-L theory and experiment worsens
for higher-order correlations at low gain modulations, i.e. below threshold.

Fig. 9. Test of applicability of the G-L theoretical model to our phonon laser experiment: (a)
shows the third and fourth order correlations as a function of the second order correlations.
(b) shows the higher-order correlations as a function of the gain modulation Ma. The region
below threshold is shown in semi-transparent gray color. The parameters are the same as in
Fig. 3.

4. Conclusion

In this paper, we have investigated equal-time and non-equal-time higher order correlations for the
levitated nanoparticle phonon laser using theoretical as well as experimental methods. Utilizing
the master equation, the modulation-evolution of phonon number probability distribution was
obtained by numerical methods. The phonon number probability distribution satisfies the thermal
state distribution when the optical tweezer phonon laser works far below the threshold. When the
phonon laser is operated far above the threshold, the phonon number probability distribution
approximates the coherent state distribution. These calculations are verified by experimental
results.
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On the one hand, the equal-time higher order correlations of a phonon laser are numerically
and experimentally studied in steady state as well as transient state. When modulation of
feedback amplification is far below the threshold, the phonon distribution obeys the thermal
state distribution, and higher order correlations of phonons satisfy g(n)0 = n!. The higher order
correlations gradually decrease with the increment of the modulation of feedback amplification
until g(n)0 = 1 as expected for a Poisson distribution. On the other hand, the non-equal-time
higher order correlations of the phonon laser are obtained from a quantum Langevin equation
correspondign to our master equation; the higher order correlations thus obtained below, near and
above the threshold are compared to experimental data. Overall, all numerical results match well
with experimental results. Finally, the Ginzburg-Landau theory is used to calculate analytically
the higher order correlations of the optical tweezer phonon laser; we find the G-L theory is
suitable for the optical tweezer phonon laser far above threshold only.
Our work extends the validity of the optical analogy for a phonon laser to the regime of

higher order correlations. The ability to measure and model these correlations, which we have
demonstrated, should be useful in physically interesting situations wheremechanical nonlinearities
can cause the phonons to self-interact, in establishing the validity of various paradigms of laser
action (such as Ginzburg-Landau), and in characterizing conditioned measurements (e.g.,
g(3)(τ1, τ2, τ3)/g(2)(τ1, τ2) gives information about three-phonon coincidence conditioned on
two-phonon coincidence).

Appendices

A. Calculation of higher order correlations for experiment and numerical method

Since the experiments are in the classical regime, all dynamical variables commute, and the
higher order correlation functions can be represented as:

g(2)(t, τ) =
〈N(t)N(t + τ)〉
〈N(t)〉2

g(3)(t, τ1, τ2) =
〈N(t)N(t + τ1)N(t + τ2)〉

〈N(t)〉3

g(4)(t, τ1, τ2, τ3) =
〈N(t)N(t + τ1)N(t + τ2)N(t + τ3)〉

〈N(t)〉4
,

(13)

where τ, τ1, τ2 and τ3 are the time delays between measurements of N, and 〈·〉 denotes an
ensemble average. The phonon number N is related to measurable quantities through the relation
N = mΩ0q2/~, with q being the displacement of the particle’s center-of-mass with respect to the
center of the trap.

B. The derivation of Fokker-Planck equation

The master Eq. (1) can be transferred into P representation, and some terms in Eq. (1) can be
transferred into P representation as follows,

b̂†b̂ρ → v(v∗ + ∂
∂v )|v〉〈v|, ρb̂†b̂→ v∗(v + ∂

∂v∗ )|v〉〈v|,

b̂†ρb̂ → (v∗ + ∂
∂v )(v +

∂
∂v∗ )|v〉〈v|, b̂ρb̂† → vv∗ |v〉〈v|,

b̂†ρb̂†b̂2 → v∗(v∗ + ∂
∂v )(v +

∂
∂v∗ )

2 |v〉〈v|, b̂ρb̂†2b̂→ vv∗2(v + ∂
∂v∗ )|v〉〈v|.

(14)



Research Article Vol. 28, No. 3 / 3 February 2020 / Optics Express 4246

Therefore, the P representation of master equation is as follows,∫
Ûφ(v, t)|v〉〈v|d2v =

∫
φ(v, t)

(
(At + Dp + Dx)

∂2

∂v∂v∗

+ (γg − γa)
(
−

∂2

∂v∂v∗
− v∗

∂

∂v∗
− v

∂

∂v

)
− γc(6v

∂

∂v
+ 3v∗

∂2

∂∗2
+ 6v∗ |v|2

∂

∂v∗
+ 6v∗

∂

∂v∗

+ 6v|v|2
∂

∂v
+ 12|v|2

∂2

∂v∂v∗
+ 3v∗

∂3

∂v∂v∗2

+ 6
∂2

∂v∂v∗
+ 3

∂2

∂v2
+ 3v

∂3

∂v2∂v∗
)

)
|v〉〈v|dv

≈

∫ (
(At + Dp + Dx + (γa − γg − 6γc))

∂2

∂v∂v∗

− (γa − γg − 6γc)
(
v∗

∂

∂v∗
+ v

∂

∂v
)

+ 6γc(v∗ |v|2
∂

∂v∗
+ v|v|2

∂

∂v
)

)
φ(v, t)|v〉〈v|d2v.

(15)

For getting the standard Fokker-Planck equation, the terms −12γc |v|2 ∂2

∂v∂v∗ φ + 3γcv
∂3

∂v2∂v∗ φ +

3γcv∗ ∂3

∂v∂v∗2 φ which involve third order derivatives were neglected. The complex amplitude ν
can be replaced by ν = x1 + ix2. Therefore,

∂

∂ν
−→

1
2
(
∂

∂x1
− i

∂

∂x2
),

∂

∂ν∗
−→

1
2
(
∂

∂x1
+ i

∂

∂x2
), (16)

and the Fokker-Planck equation becomes

∂φ(x, t)
∂t

= −

2∑
i=1

∂

∂xi

(
(γa − γg) − 6γcx2

)
xiφ(x, t)

+
1
4
(At + Dp + Dx + (γa − γg))

2∑
i=1

∂2

∂x2i
φ(x, t).

(17)

For simplicity, the parameters are redefined as follow:

(
1
4
(At + Dp + Dx + (γa − γg))6γc)1/2t ≡ t′

(24γc/(At + Dp + Dx + (γa − γg)))
1/4x ≡ x′

2(γa − γg)
(6γc(At + Dp + Dx + (γa − γg)))1/2

≡ a,

(18)

and the standard Fokker-Planck equation is obtained as follows,

∂φ(x, t)
∂t

= −

2∑
i=1

∂

∂xi
[(a − x2)xiφ(x, t)] +

2∑
i=1

∂2

∂x2i
φ(x, t). (19)

The primes were introduced in Eq. (18) have been dropped again for simplicity. By using
polar-coordinates

x1 = r cos ϕ, x2 = r sin ϕ. (20)
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At last, Eq. (17) is transformed into:

∂φ

∂t
+ β

1
r
∂

∂r

(
(d − r2)r2φ

)
= q

(1
r
∂

∂r
(
r
∂φ

∂r
)
+

1
r2
∂2φ

∂ϕ2

)
, (21)

where β = 6γc, d = (γa − γg)/(6γc), and q = (At + Dp + Dx + (γa − γg))/4.
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