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Abstract: Biodegradable containers support zero-waste initiatives when alternative end-of-life
scenarios are available (e.g., composting, bio digestion). Thermoplastic starch (TPS) has emerged
as a readily biodegradable and inexpensive biomaterial that can replace traditional plastics in
applications such as food service ware and packaging. This study has two aims. First, demonstrate
the thermoformability of starch/polycaprolactone (PCL) as a thermoplastic material with varying
starch loadings. Second, incorporate biochar as a sustainable filler that can potentially lower the
cost and enhance compostability. Biochar is a stable form of carbon produced by thermochemical
conversion of organic biomass, such as food waste, and its incorporation into consumer products could
promote a circular economy. Thermoformed samples were successfully made with starch contents
from 40 to 60 wt.% without biochar. Increasing the amount of starch increased the viscosity of the
material, which in turn affected the compression molding (sheet manufacturing) and thermoforming
conditions. PCL content reduced the extent of biodegradation in soil burial experiments and increased
the strength and elongation at break of the material. A blend of 50:50 starch:PCL was selected for
incorporating biochar. Thermoformed containers were manufactured with 10, 20, and 30 wt.% biochar
derived from waste coffee grounds. The addition of biochar decreased the elongation at break but
did not significantly affect the modulus of elasticity or tensile strength. The results demonstrate the
feasibility of using starch and biochar for the manufacturing of thermoformed containers.
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1. Introduction

Zero-waste initiatives call for waste to be either recyclable or compostable. Some municipalities
in the United States (US) have programs to voluntarily separate organic waste, which is collected
and subsequently composted or processed in an anaerobic digester. In this scenario, packaging and
single-use items that are readily degradable present an opportunity to support and enhance closed-loop
systems for organic waste.

Thermoplastic starch (TPS) has emerged as a readily biodegradable and inexpensive biomaterial
that can replace traditional plastics in applications such as food service and packaging [1]. Our previous
study [2] investigated the mechanical performance of TPS blends and polycaprolactone (PCL).
A brittle–ductile transition was observed with the addition of PCL, and the degree of anaerobic
biodegradation correlated with the amount of TPS. However, the preparation of TPS using water and
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glycerol showed inconsistencies from batch to batch, and it was susceptible to aging [2–4]. Therefore,
the development of TPS-based products would benefit from a manufacturing process that avoids the
use of water or glycerol.

Here, a direct mixing of starch and PCL is proposed, which bypasses some of the drawbacks
outlined with TPS and could facilitate scale-up production. Additionally, the manufacturing of
composites using biochar is presented as a means to enhance compostability and valorize a byproduct
from the conversion of organic waste, thus promoting a circular economy [5]. Biochar is produced by
pyrolysis of organic matter at high temperatures under zero-oxygen conditions [6]. This technique
creates a highly stable carbon-rich material with physical properties, such as density, surface area,
and porosity, that can be controlled by selecting critical process parameters, including heating rate,
maximum temperature (typically in the range of 400 to 800 ◦C), and residence time [7]. Biochar has
been highlighted in the Intergovernmental Panel on Climate Change (IPCC) Special Report: Global
Warming of 1.5 ◦C as one of the carbon dioxide removal technologies that can help mitigate climate
change. In the process of gasification, some oxygen is introduced to the system (well below the
stoichiometric requirement for full combustion), and this may improve biochar quality in some cases,
but at the cost of lower yield [8].

The research reported in this paper evolved from our prior work in developing bioplastic–biochar
composite packaging that offers improved end-of-life management options while enabling valorization
of food waste that would otherwise be landfilled. This work builds upon a rapidly expanding collection
of studies published since 2015, summarized in Table 1, that have documented the potential advantages
of using biochar as an additive in plastic products due to its favorable characteristics, including high
surface area and long-term chemical and physical stability [9–27]. Reported improvements in the
performance of polymer–biochar composites include enhanced water adsorption, thermal resistance,
and stiffness. The added benefits of eliminating the disposal of organic wastes in landfills (potentially
generating methane emissions) and sequestering carbon in the biochar material itself further contribute
to its suitability for integration into circular manufacturing systems. In selecting a feedstock suitable for
biochar production, it is desirable to identify a waste stream that is generally homogeneous, available in
large quantities at low or zero cost, with minimal temporal and/or geographic variations. Waste coffee
grounds were determined to satisfy all these requirements and were thus utilized in developing the
prototype composite containers described below. It should be noted that there has been significant
prior work reported on the use of coffee waste in sustainable material development, both in its raw
state (e.g., [28–31]) and after thermochemical conversion to biochar [13,16,21,24,32]. Our results extend
this earlier research by improving the understanding of bioplastic–coffee waste biochar composites
that can meet the required functional specifications while enhancing degradability at the end of life.
In addition, based on our prior research and the literature cited above, biochar has the potential to
reduce the cost of thermoplastic materials by using waste feedstocks to displace common fillers and
colorants, such as carbon black.

Abdelwahab and coworkers [15] investigated the use of biochar on injection-molded polypropylene
and compared it to glass fiber and talc. Compared to propylene alone and the other fillers, biochar
showed better thermal stability as measured by the coefficient of linear thermal expansion. Arrigo and
coworkers [24] incorporated biochar from spent coffee grounds into polylactic acid using two methods,
melt mixing and solvent casting. Alterations to the rheological and thermal behavior of the material
were pointed out. However, the mechanical performance of the composites was not part of the
study. Here we focus on demonstrating the viability of fully compostable biochar composites using
an industrially relevant converting process, such as thermoforming. The processing conditions, as well
as the mechanical performance are discussed, paving the way towards the large scale production of
consumer products and packaging.
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Table 1. Selected studies since 2015 reporting biochar–plastic composites.

Publication Year Biochar Feedstock Base Polymer Citation

2015/2016 waste wood (Pinus radiata), landfill pine
sawdust, sewage sludge, and poultry litter PP [9–11]

2016 bamboo PE [12]
2017 waste coffee PBAT [13]
2018 bamboo PLA [14]
2019 NS PP [15]
2019 waste coffee PE [16]

2019 wheat straw, Miscanthus, oilseed rape, rice
husk, and mixed softwoods epoxy [17]

2019 sugarcane bagasse PE [18]
2019 rice husk starch [19]
2019 maple wood, waste coffee epoxy [20,21]

2019/2020 rice husk, poplar wood PE [22,23]
2020 waste coffee PLA [24]
2020 Miscanthus PHBV [25]
2020 soyhull meal PP [26]
2021 wood, sewage sludge PLA [27]

NS: not specified; PHBV: poly (3-hydroxybutyrate-co-3-hydroxyvalerate); PBAT: poly (butylene adipate-co-
terephthalate); PLA: poly (lactic acid); PE: polyethylene; PP: polypropylene.

2. Materials and Methods

2.1. Materials

Corn starch was obtained from MP Biomedicals LLC (Solon, OH, USA). Polycaprolactone (PCL)
Capa 6800 was supplied by Perstorp (Warrington, UK). Biochar was derived from spent coffee
grounds obtained from the Rochester Institute of Technology (RIT) cafeteria. The material was
first dried using an in-house batch dehydrator (Ecovim-250, Ecovim USA, Los Angeles, CA, USA)
and then processed in a commercial-scale “Biogenic Refinery” manufactured by Biomass Controls
(Putnam, CT, USA) and owned by RIT [33]. To produce biochar, dried coffee grounds were fed through
a hopper and auger assembly at an average flow rate of approximately 5 kg/h. The temperature
setpoint of 800 ◦C was maintained within ±25 ◦C over the course of the approximately 3-h experiment.
After thermochemical conversion, a dual auger system transported the final biochar product to the
collection box, where samples were quenched with water to cool the material and prevent further
reaction with ambient air.

2.2. Sample Preparation

Thermoplastic starch was made using an internal shear mixer, CWB Brabender (South Hackensack,
NJ, USA) Intelli-torque Plasticorder torque rheometer with a 60cc 3-piece mixing head. TPS starch
was blended at 30, 40, 50, and 60 wt.% with PCL in the mixer at 100 ◦C for 8 min and 50 rpm.
The equilibrium torque was recorded as an indirect measurement of the viscosity of the melt, as shown
in Table 2. The samples were compression molded with a heated press (Carver 4391, Wabash, IN, USA).
Thermoforming was performed on a Sencorp (Barnstable, MA, USA) Cera TEK 810/1-CE sheetfed
laboratory thermoformer using a male mold. Optimum forming conditions were achieved through
trial and error by adjusting the heating temperature and dwell time and monitoring the wrapping and
webbing in the blisters (see Table 2).

Biochar composites were manufactured using a 50:50 PCL:Starch blend as the base material, with 10,
20, and 30 wt.% biochar mixed at 85 ◦C. This base material was selected based on the thermoforming
ability while maintaining a high elongation at break and starch content. Thermoforming was performed
at 138 ◦C, a temperature significantly higher than that of the material without biochar (50:50 row in
Table 2). However, going from 10 to 30 wt.% biochar did not affect the thermoforming temperature.
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Table 2. Processing conditions for sample preparation.

Mixing Compression Molding Thermoforming

Material
Composition
PCL:Starch

Equilibrium
Torque
(Nm) Temp (◦C)

Pressure
(tons) Time (min)

Forming
Temp (◦C) Time (min)

60:40 12 200 3 7 110 1.5
50:50 13 200 3.5 8 113 1
40:60 17 180 6.5 15 116 1
30:70 21 210 7 15 138 1

2.3. Mechanical Properties Characterization

Tensile testing of the blend was carried out using an Instron (Norwood, MA, USA) Universal
Testing Machine model 5567 at a crosshead speed of 12.5 mm/min. At least five specimens of
each sample were tested according to American Society for Testing and Materials (ASTM) standard
D638. Samples were conditioned at room temperature for at least 24 h before mechanical testing.
Type 5 samples were cut from the compression molded sheet with a thickness of approximately 1 mm
(similar to the sheet shown in Figure 1).
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Figure 1. Thermoformed samples containing 60 wt.% starch (a) and 70 wt.% starch (b).

2.4. Soil Burial Test/Aerobic Biodegradation

Cellulose, PCL60/Starch40, and PCL40/Starch60 samples were cut into 2.54 cm square pieces to
obtain a uniform sample size for degradation. Eighteen samples of each specimen were prepared and
weighed to record their initial weight. The samples were buried in the soil at a depth of about 2.5 cm.
The test was carried out at room temperature (i.e., 22 ◦C). Water was sprinkled on the soil surface every
three days to ensure that the soil remained humid. The samples were measured for weight loss every
7 days from the day they were initially buried. Three samples of each specimen were measured by
washing them gently with distilled water and drying the samples at 60 ◦C in a vacuum oven until
a constant weight was obtained. Weight loss percentage was calculated based on Equation (1),

Weight loss (%) =
wi −wd

wi
× 100 (1)

where wd is the dry weight of the film after being washed with distilled water and wi is the initial dry
weight of the specimen [34].

3. Results and Discussion

Table 2 shows the processing conditions for the three stages of sample preparation: mixing,
compression molding, and thermoforming. As the starch content in the blend increased, the equilibrium
torque increased. This indicates that the viscosity of the blend increased due to an increase in the
starch content. A higher torque requirement for blending with higher starch content also indicates that
a higher pressure was required for the conversion process. This can be evidenced in the increase in
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pressure requirement for the compression molding stage, accompanied by an increase in temperature.
Similarly, an increase in the starch content increased the forming temperature in the thermoformer
(see Table 2).

Thermoformed blisters were successfully manufactured with starch contents up to 60 wt.%.
Above 60 wt.% starch, the material was unsuitable for thermoforming due to decreased pliability and
the blend being too fragile (see Figure 1).

Figure 2 shows the effect of PCL:starch proportions on the mechanical properties. All samples
showed typical elastomeric behavior with some degree of strain hardening. Pure PCL had the highest
average tensile strength of 55 MPa. The plot displays a U-shape where the strength decreased and then
increased at higher starch concentrations (i.e., 70 wt.%). This behavior could indicate an incompatibility
of the PCL and starch since the strength of some blends was lower than that of pure PLC and sample
with 70 wt.% starch [35]. Similarly, PCL had the highest percentage of elongation at break, which was
expected due to its rubbery nature [36]. As the starch content increased, the elongation decreased.
However, at 60 wt.%, the elongation was higher than at 50 wt.%. This difference may be attributed to
the differences in processing conditions, as shown in Table 2, where the compression molding of the
40:60 sample was done at a lower temperature but higher pressure. This result also points out the
sensitivity of the material to processing conditions. Increasing the starch content from 60 to 70 wt.%
caused a sharp drop in the elongation from 740% to 26%.
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Figure 2. Effect of blend ratio of PCL:Starch on (a) tensile strength and modulus of elasticity and (b)
percentage of elongation at break.

The modulus of elasticity was highest at 70 wt.% starch. The stiffness dropped significantly from
70 to 60 wt.% starch. This drop correlates with the difference in conditions for the compression molding
stage (see Table 2), which affected both the modulus of elasticity and the elongation at break. A further
decrease in the amount of starch showed a nearly linear increase in modulus of elasticity from 60 to
40 wt.% from 43 to 224 MPa, just above the modulus of elasticity of neat PCL (156 MPa).

All the mechanical properties drastically changed, going from 60 to 70 wt.% starch, suggesting
a major change in the structure of the blend where PCL is not the majority component, and the
properties of starch dictate the properties of the blend. This lack of elongation and high stiffness
supports the inability to thermoform the 70 wt.% starch blend.

Figure 3 shows the effect of adding biochar to the TPS containing 50:50 PCL:starch. Adding biochar
increased the modulus of elasticity and slightly reduced the tensile strength. Similar results have been
observed when reinforcing bioplastics with natural fibers [37]. Varying the biochar content from 10 to
30 wt.% did not have a significant effect on the tensile strength and modulus of elasticity of the material
(Figure 3a,b). Conversely, the elongation at break was drastically reduced with the inclusion of biochar.
Increasing the amount of biochar from 10 to 30 wt.% further reduced the elongation at break, making
the composites significantly more brittle.
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Figure 3. Effect of biochar content in 50:50 PCL:starch blend on (a) tensile strength and modulus of
elasticity and (b) percentage of elongation at break.

To demonstrate the thermoforming ability of the composite with biochar, a male mold of a coffee
cup lid was manufactured to demonstrate a potential application for this biodegradable composite
material. All the composites with biochar allowed the sheet to be thermoformed into coffee cup lids
with loadings up to 30 wt.%. Biochar has shown good dispersion in polymeric matrices, such as
polypropylene [15] and polylactic acid [24]. It is expected that the biochar composites presented here
have a good dispersion given the high shear melt mixing process used. Figure 4 shows a coffee lid
containing 10 wt.% biochar. Increasing the biochar load did not affect the thermoforming ability;
however, the surface was rougher with less resolution of the details of the mold. The results demonstrate
the potential to use biochar as a filler material in thermoform containers and packaging. Additionally,
this is an example of a product for coffee shops made from their own waste (i.e., spent coffee grounds).
Biochar thus may offer an opportunity for a close-loop economy while displacing plastic or creating
fully biodegradable solutions.
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Figure 4. Thermoformed coffee lid made with 10 wt.% biochar from spent coffee grounds.

Ongoing research is looking at structure–property relationships to better understand the changes
observed here. Additionally, the rheology of the material should be further studied to expand
the findings of this research to other conversion processes, such as injection molding and blown
film extrusion.

Finally, Figure 5 shows the biodegradation of two samples containing 40 and 60 wt.% starch.
Higher starch content resulted in a higher level of degradation. These results agree with previous
studies [2]. No literature was found on the effect of biochar on the biodegradation of biochar composites.
Our previous study showed similar or better biodegradation under anaerobic conditions when calcium
carbonate was used as a filler in polylactic acid [38,39]. Preliminary experiments suggest that the
addition of biochar enhances biodegradation and further experimentation is ongoing.
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