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ABSTRACT 
Computer simulations of quasi-particle based phonon transport 
in semiconductor materials rely upon numerical dispersion 
relations to identify and quantify the discrete energy and 
momentum states allowable subject to quantum constraints.  The 
accuracy of such computer simulations is ultimately dependent 
upon the fidelity of the underlying dispersion relations.  
Dispersion relations have previously been computed using 
empirical fits of experimental data in high symmetry directions, 
lattice dynamics, and Density Function Theory (DFT) or Density 
Functional Perturbation Theory (DFPT) approaches.  The current 
work presents high fidelity dispersion relations describing full 
anisotropy for all six phonon polarizations with an adjustable 
computational grid.  The current approach builds upon the 
previously published Statistical Phonon Transport Model 
(SPTM), which employed a first nearest neighbor lattice 
dynamics approach for the dispersion calculation.  This paper 
extends the lattice dynamics approach with the use of both first 
and second nearest neighbors interactions that are quantified 
using published interatomic force constants calculated from 
DFT.  The First Brillouin Zone (FBZ) is segmented into eight 
octants of high symmetry, and discretized in wave vector space 
with a 14 by 14 by 14 grid.  This results in 65,586 states of unique 
wave vector and frequency combinations.  Dispersion 
calculations are performed at each of the six faces of the wave 
vector space volume elements in addition to the centroid, 
resulting in 460,992 solutions of the characteristic equations.  
For the given grid, on the order of 108 computations are required 
to compute the dispersion relations.  The dispersion relations 
thus obtained are compared to experimental reports available for 
high symmetry axes.  Full anisotropic results are presented for 
all six phonon polarizations across the range of allowable wave 
vector magnitude and frequency as a comprehensive model of 
allowable momentum and energy states.  Results indicate 
excellent agreement to experiment in high symmetry directions 
for all six polarizations and illustrate an improvement as 
compared to the previous SPTM implementation.  Dispersion 
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relations based on the lattice dynamic model with first and 
second nearest neighbor atomic interactions relying upon DFT 
calculated inter-atomic force constants provides an accurate high 
fidelity energy and momentum model for use in phonon transport 
simulations. 
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NOMENCLATURE 
a  Acceleration or lattice constant 
k  Wave vector 
m  Mass 
r  Position vector 
u  Atomic displacement from equilibrium 
x  Cartesian coordinate direction 
y  Cartesian coordinate direction 
z  Cartesian coordinate direction 
A  Amplitude of atomic displacement 
F  Force 
M  Atomic mass 
V  Interatomic potential 
α  On site or first nearest neighbor force constant 
β  First nearest neighbor force constant 
  Second nearest neighbor force constant 
  Second nearest neighbor force constant
   Second nearest neighbor force constant
   Second nearest neighbor force constant
  Angular frequency 

 
1. INTRODUCTION 
 Dispersion curves show the available energy levels for 
phonons and the relationship between momentum and energy.  
Accurate determination of the dispersion relationships is vital as 
they affect the interaction among phonon modes that take place 
in three phonon scattering as well as the average speed that 
phonon wave packets travel through the physical domain.  
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Quasi-particle based phonon transport simulations, like those of 
the Monte-Carlo technique, have treated dispersion with varying 
levels of detail.  Initial works gave all phonons the same group 
velocity and did not consider different polarizations [1].  
Improvements were made to account for non-linear dispersion of 
acoustic phonons in an isotropic manner [2].  Curve fits to 
experimental dispersion data were implemented in an isotropic 
manner [3].  More recent work has used realistic dispersion 
relations calculated from the adiabatic bond charge model [4] or 
interatomic force constants from density functional theory [5].  
This work builds upon the dispersion relations employed in the 
previously published Statistical Phonon Transport Model 
(SPTM) [6-8].  The lattice dynamics approach is extended to 
include both first and second nearest neighbor interactions.  The 
interatomic interactions are quantified with published force 
constants calculated from Density Functional Theory [9, 10].  
Full anisotropic results are computed for the all the acoustic and 
optical polarizations across the range of allowable wavevectors.  
The dispersion relations show excellent agreement to 
experimental results in high symmetry directions and provide for 
high fidelity phonon transport modeling with the SPTM. 
 
2. METHODS 
2.1 THEORY. This work makes use of the lattice dynamics 
technique with the harmonic assumption to calculate dispersion 
relations [11, 12].  This technique amounts to the application of 
Newton’s second law to the atomic lattice where interatomic 
forces are expressed as a function of interatomic force constants 
and atomic displacements.  Solutions to the system of equations 
that take the form of normal modes of vibration with a given 
frequency are found.  The difficulty in the use of this method to 
obtain accurate results lies in the use of accurate interatomic 
force constants and the inclusion of enough neighboring 
interactions to reproduce the relevant physics.  This model makes 
use of interatomic force constants calculated from Density 
Functional Theory (DFT) [9] and includes up to second nearest 
neighbor interactions.   
Development of the model follows closely that of Herman [11].  
For illustration, the relative arrangement of the first and second 
nearest neighbor atoms of silicon are shown below.  The two 
atoms that make up the basis of silicon are illustrated with the 
box.  If these atoms are applied to the Face-Centered-Cubic 
(FCC) lattice, then the diamond lattice is created. 
 

 

FIGURE 1:  SILICON ATOMIC LATTICE.  FIRST AND 
SECOND NEAREST NEIGHBORS.  ADAPTED FROM [13]. 

The atoms in FIGURE 1 are labeled with the following scheme.  
The central atom is black and labeled as 0, the four nearest 
neighbor atoms are yellow and labeled 11-14, and the twelve 
second nearest neighbor atoms are red and labeled as 21 – 212.  
The derivation begins with application of Newton’s second law 
to the central atom in each coordinate direction as follows: 

𝛴𝐹௫ = 𝑚𝑎௫   (1) 

𝛴𝐹௬ = 𝑚𝑎௬   (2) 

𝛴𝐹௭ = 𝑚𝑎௭   (3) 

An expanded version of the forces acting in the x-direction on 
atom 0 is shown in equation 4. 

∑ 𝐹௫(0) = 𝐹௫(00𝑥) + 𝐹௫(00𝑦) + 𝐹௫(00𝑧) +

𝐹௫(011𝑥) + 𝐹௫(012𝑥) + 𝐹௫(013𝑥) +

𝐹௫(014𝑥) + 𝐹௫(011𝑦) − 𝐹௫(012𝑦) +

𝐹௫(013𝑦) − 𝐹௫(014𝑦) + 𝐹௫(011𝑧) −

𝐹௫(012𝑧) + 𝐹௫(013𝑧) − 𝐹௫(014𝑧) +

𝐹௫(021𝑥) + 𝐹௫(022𝑥) + 𝐹௫(023𝑥) +

𝐹௫(024𝑥) + 𝐹௫(025𝑥) + 𝐹௫(026𝑥) +

𝐹௫(027𝑥) + 𝐹௫(028𝑥) + 𝐹௫(029𝑥) +

𝐹௫(0210𝑥) + 𝐹௫(0211𝑥) + 𝐹௫(0212𝑥) +

𝐹௫(021𝑦) + 𝐹௫(022𝑦) + 𝐹௫(023𝑦) +

𝐹௫(024𝑦) + 𝐹௫(025𝑦) + 𝐹௫(026𝑦) +

𝐹௫(027𝑦) + 𝐹௫(028𝑦) + 𝐹௫(029𝑦) +

𝐹௫(0210𝑦) + 𝐹௫(0211𝑦) + 𝐹௫(0212𝑦) +

𝐹௫(021𝑧) + 𝐹௫(022𝑧) + 𝐹௫(023𝑧) +

𝐹௫(024𝑧) + 𝐹௫(025𝑧) + 𝐹௫(026𝑧) +
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𝐹௫(027𝑧) + 𝐹௫(028𝑧) + 𝐹௫(029𝑧) +
𝐹௫(0210𝑧) + 𝐹௫(0211𝑧) + 𝐹௫(0212𝑧) (4) 

Each term represents the force resulting on atom 0 in the x 
direction when the given atom is displaced in a certain direction.  
For example, 𝐹௫(011𝑥) indicates the force in the x-direction on 
atom 0 when the atom labeled 11 is displaced in the x-direction.  
𝐹௫(027𝑧) Indicates the force in the x-direction on atom 0 when 
atom 27 is displaced in the z-direction.  Next, the forces acting 
on the atoms are expressed in terms of interatomic force 
constants multiplied by atomic displacements.  This amounts to 
the harmonic assumption and will lead to reasonable results as 
deviation from equilibrium is relatively small for temperatures 
of interest to this work.  This is expressed with equation 5, 

𝐹௫(011𝑥) =
డమ௏

డ௫మ 𝑢ଵଵ௫  ,  (5) 

where ∂
2

V

∂x
2 is the second derivative of the interatomic potential 

between atom 0 and atom 11 and uଵଵ୶is the displacement of atom 
11 in the x-direction.  The second derivatives are the interatomic 
force constants and are traditionally expressed using the notion 
shown in TABLE 1. 

TABLE 1:  INTERATOMIC FORCE CONSTANTS [9] 

 On-site interaction 

 First nearest 
neighbors 


Second nearest 

neighbors 




 

Where a subscript of 0 indicates the original atom, a subscript of 
1 indicates first nearest neighbors and 2 second nearest 
neighbors.  The different force constants represent different 
interactions between the atoms involved.  For example, 
represents the interaction between atom 0 in a given 
coordinate direction when the first nearest neighbors are 

displaced in the same directions.  Thus, in equation 5, ∂
2

V

∂x
2   is equal 

to .  Similarly, represents the interaction between atoms 0 in 
a given direction when the first nearest neighbors are displaced 
in orthogonal directions from atom 0.  So,  would appear in the 
equation for 𝐹௫(011𝑦) representing the second derivative term.  
Likewise, the second nearest neighbor force constants are used 
in a similar manner for the forces between atom 0 and the second 
nearest neighbor atoms labeled 21-212.  However, the second 
nearest neighbor atoms form a different geometric configuration 
around atom 0 than compared to the first nearest neighbor atoms.  
Atoms 21 – 24 all lie in the x-y plane, atoms 25 – 28 lie in the y-
z plane, and atoms 29 – 212 lie in the x-z plane.  Because of this 
planar nature, four force constants are required to describe the 

interactions depending on whether the atoms are moved within 
the plane of the second nearest neighbors or out of the plane.   
represents the force constant between atom 0 and atoms in the x-
y and x-z planes when the atoms are displaced in the same in-
plane coordinate direction.  represents the force constant 
between atom 0 and atoms in x-y and x-z planes when the atoms 
are moved in the orthogonal in-plane direction.  represents the 
force constant between atom 0 and the atoms in the x-y and y-z 
planes when they are moved in the orthogonal out-of-plane 
direction.   represents theforce constant between atom 0 and 
the atoms in the y-z plane when they are moved in the same 
coordinate, out-of-plane, direction.  The force constants above 
are obtained from the use of a first principles quantum electronic 
configuration calculation called DFT.    For reference on DFT, 
please refer to Sholl [14].   
After insertion of the force constant notation, the sum of the 
forces acting in the x-direction on atom 0 is shown with equation 
6. 

−𝛼଴𝑢௫(0) − 𝛼ଵ𝑢௫(11) − 𝛼ଵ𝑢௫(12) −

𝛼ଵ𝑢௫(13) − 𝛼ଵ𝑢௫(14) − 𝛽ଵ𝑢௬(11) +

𝛽ଵ𝑢௬(12) + 𝛽ଵ𝑢௬(13) − 𝛽ଵ𝑢௬(14) −

𝛽ଵ𝑢௭(11) + 𝛽ଵ𝑢௭(12) − 𝛽ଵ𝑢௭(13) +

𝛽ଵ𝑢௭(14) − 𝜇ଶ𝑢௫(21) − 𝜇ଶ𝑢௫(22) −

𝜇ଶ𝑢௫(23) − 𝜇ଶ𝑢௫(24) − 𝜆ଶ𝑢௫(25) −

𝜆ଶ𝑢௫(26) − 𝜆ଶ𝑢௫(27) − 𝜆ଶ𝑢௫(28) −

𝜇ଶ𝑢௫(29) − 𝜇ଶ𝑢௫(210) − 𝜇ଶ𝑢௫(211) −

𝜇ଶ𝑢௫(212) + 𝜈ଶ𝑢௬(21) − 𝜈ଶ𝑢௬(22) +

𝜈ଶ𝑢௬(23) − 𝜈ଶ𝑢௬(24) + 𝜈ଶ𝑢௬(29) −

𝜈ଶ𝑢௬(210) + 𝜈ଶ𝑢௬(211) − 𝜈ଶ𝑢௬(212) −

𝛿ଶ𝑢௭(21) − 𝛿ଶ𝑢௭(22) + 𝛿ଶ𝑢௭(23) +

𝛿ଶ𝑢௭(24) − 𝛿ଶ𝑢௭(29) + 𝛿ଶ𝑢௭(210) −
𝛿ଶ𝑢௭(211) + 𝛿ଶ𝑢௭(212) = 𝑀଴𝑢௫̈(0)     (6) 

 
The atomic displacements are assumed to take the form of 
a wave solution.  This can be thought of as a travelling 
wave moving through the lattice.  An example of the 
displacement of atom 0 in the x-direction is shown with 
equation 7, 

𝑢௫(0) = 𝐴௫(0)𝑒
௜ቀఠ௧ି௞ሬ⃗ ∙௥⃗(଴)ቁ   ,   (7) 

 
where 𝐴௫(0) is the amplitude of the displacement of atom 
0 in the x-direction, 𝜔 is the angular frequency of the 

wave, 𝑘ሬ⃗  is the wavevector and 𝑟(0) is the postion vector 
to atom 0.  Upon insertion into the equations of motion, 
the following characteristic equation emerges.  

𝛼଴𝐴௫(0) + 𝛼ଵ𝐴௫(1)ൣ𝑒ି௜௄∙௥(ଵଵ) + 𝑒ି௜௄∙௥(ଵଶ) +

𝑒ି௜௄∙௥(ଵଷ) + 𝑒ି௜௄∙௥(ଵସ)൧ + 𝛽ଵ𝐴௬(1)ൣ𝑒ି௜௄∙௥(ଵଵ) −

𝑒ି௜௄∙௥(ଵଶ) − 𝑒ି௜௄∙௥(ଵଷ) + 𝑒ି௜௄∙௥(ଵସ)൧ +
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𝛽ଵ𝐴௭(1)ൣ𝑒ି௜ ∙௥(ଵଵ) − 𝑒ି௜௄∙௥(ଵଶ) + 𝑒ି௜ ∙௥(ଵଷ) −

𝑒ି௜ ∙௥(ଵସ)൧ + 𝜇ଶ𝐴௫(0)ൣ𝑒ି௜௄∙௥(ଶଵ) + 𝑒ି௜௄∙௥(ଶଶ) +

𝑒ି௜௄∙௥(ଶଷ) + 𝑒ି௜௄∙௥(ଶସ) + 𝑒ି௜௄∙௥(ଶଽ) +

𝑒ି௜௄∙௥(ଶଵ଴) + 𝑒ି௜௄∙௥(ଶଵଵ) +

𝑒ି௜௄∙௥(ଶଵଶ)൧+𝜆ଶ𝐴௫(0)ൣ𝑒ି௜൫௄∙௥(ଶହ)൯ +

𝑒ି௜൫௄∙௥(ଶ଺)൯ + 𝑒ି௜൫௄∙௥(ଶ଻)൯ + 𝑒ି௜൫௄∙௥(ଶ଼)൯൧ +

𝜈ଶ𝐴௬(0)ൣ−𝑒ି௜ ∙௥(ଶଵ) + 𝑒ି௜௄∙௥(ଶଶ) − 𝑒ି௜௄∙௥(ଶଷ) +

𝑒ି௜௄∙௥(ଶସ) − 𝑒ି௜௄∙௥(ଶଽ) − 𝑒ି௜௄∙௥(ଶଵ଴) +

𝑒ି௜௄∙௥(ଶଵଵ) + 𝑒ି௜௄∙௥(ଶଵଶ)൧ +

𝛿ଶ𝐴௭(0)ൣ𝑒ି௜௄∙௥(ଶଵ) + 𝑒ି௜௄∙௥(ଶଶ) − 𝑒ି௜௄∙௥(ଶଷ) −

𝑒ି௜௄∙௥(ଶସ) + 𝑒ି௜௄∙௥(ଶଽ) − 𝑒ି௜ ∙௥(ଶଵ଴) +

𝑒ି௜௄∙௥(ଶଵଵ) − 𝑒ି௜௄∙௥(ଶଵଶ)൧ = 𝑀଴𝜔ଶ𝐴௫(0)     (8) 
 
The terms have been grouped in terms of the amplitude of 
displacements of atom 0 and atom 1 in the x, y, and z 
directions.  Atom 0 is the first basis atom in the silicon 
lattice and atom 1 is the second basis atom.  Note that the 
second nearest neighbor atoms will share the same 
amplitude of displacements as the atom labeled 0 as they 
are identical by symmetry arguments.  If the equations of 
motion are applied in this manner to the y and z directions 
to both the first and second basis atoms, six equations will 
result with six unknown displacement amplitudes.  This 
sets up a system of equations that are shown in matrix 
form in equation 9, 
 

⎣
⎢
⎢
⎢
⎢
⎡

𝐴 𝐵 𝐶 𝐷 𝐸 𝐹
𝐺 𝐻 𝐼 𝐸 𝐷 𝐿
𝑀 𝑁 𝑂 𝐹 𝐿 𝐷
𝐷∗ 𝐸∗ 𝐹∗ 𝐴 𝐵 𝐶
𝐸∗ 𝐷∗ 𝐿∗ 𝐺 𝐻 𝐼
𝐹∗ 𝐿∗ 𝐷∗ 𝑀 𝑁 𝑂⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐴௫(0)

𝐴௬(0)

𝐴௭(0)
𝐴௫(1)
𝐴௬(1)

𝐴௭(1)⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐴௫(0)𝑀𝜔ଶ

𝐴௬(0)𝑀𝜔ଶ

𝐴௭(0)𝑀𝜔ଶ

𝐴௫(1)𝑀𝜔ଶ

𝐴௬(1)𝑀𝜔ଶ

𝐴௭(1)𝑀𝜔ଶ⎦
⎥
⎥
⎥
⎥
⎥
⎤

  , 

  (9) 
where the left hand six by six matrix is known as the 
dynamical matrix.  Its coefficients contain all of the 
interatomic force constants above and are also a function 
of a given wavevector.  A star (*) indicates the complex 
conjugate.  The elements of the dynamical matrix are 
shown below.   

𝐴 = 𝛼଴  +  𝜇ଶ ቂ4𝑐𝑜𝑠 ቀ
௔

ଶ
𝑘௫ቁ 𝑐𝑜𝑠 ቀ

௔

ଶ
𝑘௬ቁ +

 4𝑐𝑜𝑠 ቀ
௔

ଶ
𝑘௫ቁ 𝑐𝑜𝑠 ቀ

௔

ଶ
𝑘௭ቁቃ +  𝜆ଶ ቂ4𝑐𝑜𝑠 ቀ

௔

ଶ
𝑘௬ቁ 𝑐𝑜𝑠 ቀ

௔

ଶ
𝑘௭ቁቃ   

 (10) 
 

𝐵 = 𝜈ଶ ቈ−𝑒
ି௜൬

ೌ

మ
൫௞ೣି௞೤൯൰

+ 𝑒
ି௜൬

ೌ

మ
൫௞ೣା௞೤൯൰

− 𝑒
ି௜൬

ೌ

మ
൫ି௞ೣା௞೤൯൰

+

𝑒ି௜ቀ
ೌ

మ
(ି௞ೣି௞೤)ቁ቉ + 𝛿ଶ ቈ−𝑒

ି௜൬
ೌ

మ
൫ି௞೤ା௞೥൯൰

− 𝑒
ି௜൬

ೌ

మ
൫௞೤ା௞೥൯൰

+

𝑒
ି௜൬

ೌ

మ
൫௞೤ି௞೥൯൰

+ 𝑒
ି௜൬

ೌ

మ
൫ି௞೤ି௞೥൯൰

− 𝑒
ି௜൬

ೌ

మ
(ି௞ೣି௞೥)൰

+

𝑒
ି௜൬

ೌ

మ
(ି௞ೣା௞೥)൰

+ 𝑒
ି௜൬

ೌ

మ
(௞ೣା௞೥)൰

− 𝑒
ି௜൬

ೌ

మ
(௞ೣି௞೥)൰

቉  (11) 

 

𝐶 = 𝜈ଶ ቈ𝑒
ି௜൬

ೌ

మ
(ି௞ೣି௞೥)൰

− 𝑒
ି௜൬

ೌ

మ
(ି௞ೣା௞೥)൰

+ 𝑒
ି௜൬

ೌ

మ
(௞ೣା௞೥)൰

−

𝑒
ି௜൬

ೌ

మ
(௞ೣି௞೥)൰

቉ + 𝛿ଶ ቈ𝑒
ି௜൬

ೌ

మ
൫௞ೣି௞೤൯൰

+ 𝑒
ି௜൬

ೌ

మ
൫௞ೣା௞೤൯൰

+

𝑒
ି௜൬

ೌ

మ
൫ି௞ೣା௞೤൯൰

+ 𝑒ି௜ቀ
ೌ

మ
(ି௞ೣି௞೤)ቁ + 𝑒

ି௜൬
ೌ

మ
൫ି௞೤ା௞೥൯൰

−

𝑒
ି௜൬

ೌ

మ
൫௞೤ା௞೥൯൰

+ 𝑒
ି௜൬

ೌ

మ
൫௞೤ି௞೥൯൰

− 𝑒
ି௜൬

ೌ

మ
൫ି௞೤ି௞೥൯൰

቉   (12) 

 

𝐷 = 4𝛼ଵ𝑐𝑜𝑠 ቀ
௔

ସ
𝑘௫ቁ 𝑐𝑜𝑠 ቀ

௔

ସ
𝑘௬ቁ 𝑐𝑜𝑠 ቀ

௔

ସ
𝑘௭ቁ +

𝑖 ቂ4𝛼ଵ𝑠𝑖𝑛 ቀ
௔

ସ
𝑘௫ቁ 𝑠𝑖𝑛 ቀ

௔

ସ
𝑘௬ቁ 𝑠𝑖𝑛 ቀ

௔

ସ
𝑘௭ቁቃ  (13) 

 
 

𝐸 = 𝛽ଵ ቈ𝑒
ି௜൬

ೌ

ర
൫௞ೣା௞೤ା௞೥൯൰

− 𝑒
ି௜൬

ೌ

ర
൫௞ೣି௞೤ି௞೥൯൰

−

𝑒
ି௜൬

ೌ

ర
൫ି௞ೣା௞೤ି௞೥൯൰

+ 𝑒
ି௜൬

ೌ

ర
൫ି௞ೣି௞೤ା௞೥൯൰

቉  (14) 

 

𝐹 = 𝛽ଵ ቈ𝑒
ି௜൬

ೌ

ర
൫௞ೣା௞೤ା௞೥൯൰

− 𝑒
ି௜൬

ೌ

ర
൫௞ೣି௞೤ି௞೥൯൰

+

𝑒
ି௜൬

ೌ

ర
൫ି௞ೣା௞೤ି௞೥൯൰

− 𝑒
ି௜൬

ೌ

ర
൫ି௞ೣି௞೤ା௞೥൯൰

቉  (15) 

 

𝐺 = 𝜈ଶ ቈ−𝑒
ି௜൬

ೌ

మ
൫௞ೣି௞೤൯൰

+ 𝑒
ି௜൬

ೌ

మ
൫௞ೣା௞೤൯൰

− 𝑒
ି௜൬

ೌ

మ
൫ି௞ೣା௞೤൯൰

+

𝑒ି௜ቀ
ೌ

మ
(ି௞ೣି௞೤)ቁ቉ + 𝛿ଶ ቈ𝑒

ି௜൬
ೌ

మ
൫ି௞೤ା௞೥൯൰

+ 𝑒
ି௜൬

ೌ

మ
൫௞೤ା௞೥൯൰

−

𝑒
ି௜൬

ೌ

మ
൫௞೤ି௞೥൯൰

− 𝑒
ି௜൬

ೌ

మ
൫ି௞೤ି௞೥൯൰

+ 𝑒
ି௜൬

ೌ

మ
(ି௞ೣି௞೥)൰

−

𝑒
ି௜൬

ೌ

మ
(ି௞ೣା௞೥)൰

− 𝑒
ି௜൬

ೌ

మ
(௞ೣା௞೥)൰

+ 𝑒
ି௜൬

ೌ

మ
(௞ೣି௞೥)൰

቉ (16) 

 

𝐻 = 𝛼଴  +  𝜇ଶ ቂ4𝑐𝑜𝑠 ቀ
௔

ଶ
𝑘௫ቁ 𝑐𝑜𝑠 ቀ

௔

ଶ
𝑘௬ቁ +

 4𝑐𝑜𝑠 ቀ
௔

ଶ
𝑘௬ቁ 𝑐𝑜𝑠 ቀ

௔

ଶ
𝑘௭ቁቃ +  𝜆ଶ ቂ4𝑐𝑜𝑠 ቀ

௔

ଶ
𝑘௫ቁ 𝑐𝑜𝑠 ቀ

௔

ଶ
𝑘௭ቁቃ   (17) 

 
 

𝐼 = 𝜈ଶ ቈ−𝑒
ି௜൬

ೌ

మ
൫ି௞೤ା௞೥൯൰

+ 𝑒
ି௜൬

ೌ

మ
൫௞೤ା௞೥൯൰

− 𝑒
ି௜൬

ೌ

మ
൫௞೤ି௞೥൯൰

+

𝑒
ି௜൬

ೌ

మ
൫ି௞೤ି௞೥൯൰

቉ + 𝛿ଶ ቈ𝑒
ି௜൬

ೌ

మ
൫௞ೣି௞೤൯൰

+ 𝑒
ି௜൬

ೌ

మ
൫௞ೣା௞೤൯൰

−
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𝑒
ି௜൬

ೌ

మ
൫ି௞ೣା௞೤൯൰

− 𝑒
ି௜൬

ೌ

మ
൫ି௞ೣି௞೤൯൰

+ 𝑒
ି௜൬

ೌ

మ
(ି௞ೣି௞೥)൰

+

𝑒
ି௜൬

ೌ

మ
(ି௞ೣା௞೥)൰

− 𝑒
ି௜൬

ೌ

మ
(௞ೣା௞೥)൰

− 𝑒
ି௜൬

ೌ

మ
(௞ೣି௞೥)൰

቉  (18) 

 

𝐿 = 𝛽ଵ ቈ𝑒
ି௜൬

ೌ

ర
൫௞ೣା௞೤ା௞೥൯൰

+ 𝑒
ି௜൬

ೌ

ర
൫௞ೣି௞೤ି௞೥൯൰

−

𝑒
ି௜൬

ೌ

ర
൫ି௞ೣା௞೤ି௞೥൯൰

− 𝑒
ି௜൬

ೌ

ర
൫ି௞ೣି௞೤ା௞೥൯൰

቉  (19) 

 

𝑀 = 𝜈ଶ ቈ𝑒
ି௜൬

ೌ

మ
(ି௞ೣି௞೥)൰

− 𝑒
ି௜൬

ೌ

మ
(ି௞ೣା௞೥)൰

+ 𝑒
ି௜൬

ೌ

మ
(௞ೣା௞೥)൰

−

𝑒
ି௜൬

ೌ

మ
(௞ೣି௞೥)൰

቉ + 𝛿ଶ ቈ𝑒
ି௜൬

ೌ

మ
൫௞ೣି௞೤൯൰

− 𝑒
ି௜൬

ೌ

మ
൫௞ೣା௞೤൯൰

−

𝑒
ି௜൬

ೌ

మ
൫ି௞ೣା௞೤൯൰

+ 𝑒
ି௜൬

ೌ

మ
൫ି௞ೣି௞೤൯൰

− 𝑒
ି௜൬

ೌ

మ
൫ି௞೤ା௞೥൯൰

+

𝑒
ି௜൬

ೌ

మ
൫௞೤ା௞೥൯൰

+ 𝑒
ି௜൬

ೌ

మ
൫௞೤ି௞೥൯൰

− 𝑒
ି௜൬

ೌ

మ
൫ି௞೤ି௞೥൯൰

቉  (20) 

 

𝑁 = 𝜈ଶ ቈ−𝑒
ି௜൬

ೌ

మ
൫ି௞೤ା௞೥൯൰

+ 𝑒
ି௜൬

ೌ

మ
൫௞೤ା௞೥൯൰

− 𝑒
ି௜൬

ೌ

మ
൫௞೤ି௞೥൯൰

+

𝑒
ି௜൬

ೌ

మ
൫ି௞೤ି௞೥൯൰

቉ + 𝛿ଶ ቈ−𝑒
ି௜൬

ೌ

మ
൫௞ೣି௞೤൯൰

− 𝑒
ି௜൬

ೌ

మ
൫௞ೣା௞೤൯൰

+

𝑒
ି௜൬

ೌ

మ
൫ି௞ೣା௞೤൯൰

+ 𝑒
ି௜൬

ೌ

మ
൫ି௞ೣି௞೤൯൰

− 𝑒
ି௜൬

ೌ

మ
(ି௞ೣି௞೥)൰

−

𝑒
ି௜൬

ೌ

మ
(ି௞ೣା௞೥)൰

+ 𝑒
ି௜൬

ೌ

మ
(௞ೣା௞೥)൰

+ 𝑒
ି௜൬

ೌ

మ
(௞ೣି௞೥)൰

቉  (21) 

 

𝑂 = 𝛼଴  +  𝜇ଶ ቂ4𝑐𝑜𝑠 ቀ
௔

ଶ
𝑘௬ቁ 𝑐𝑜𝑠 ቀ

௔

ଶ
𝑘௭ቁ +

 4𝑐𝑜𝑠 ቀ
௔

ଶ
𝑘௫ቁ 𝑐𝑜𝑠 ቀ

௔

ଶ
𝑘௭ቁቃ +  𝜆ଶ ቂ4𝑐𝑜𝑠 ቀ

௔

ଶ
𝑘௫ቁ 𝑐𝑜𝑠 ቀ

௔

ଶ
𝑘௬ቁቃ 

 (22) 
 
For a given wavevector, there exist six solutions for the 
frequency that satisfy the equations of motion.  These are the 
eigenvalues of the dynamical matrix and represent the six 
phonon modes (or polarizations). They consist of the two 
transverse acoustic (TA1, TA2), the longitudinal acoustic (LA), 
the two transverse optical (TO1, TO2), and the longitudinal 
optical (LO) mode (or polarization). 
 
2.2 IMPLEMENTATION. The lattice dynamics model 
described in the preceding section can be used to calculate the 
frequencies of the six modes corresponding to any given 
wavevector.  Within the SPTM, it is implemented on a uniform 
discretization of wavevector (k) space.  This paper uses a mesh 
size of 14 but it is recognized that results can be sensitive to the 
chosen mesh size. For the proposal, a mesh size of 14 implies 
that the principle directions within the wavevector space are 
divided into 14 equal sized elements.  This is shown in three 
dimensions for one eighth (one octant) of the FBZ with the 
FIGURE 2.  

 
FIGURE 2:  DISCRETIZATION OF ONE OCTANT OF 
WAVEVECTOR SPACE FOR A MESH SIZE OF 14. 

The k-space elements are labeled by the location of their 
centroids.  With the mesh size chosen, there are 10,976 elements 
in the FBZ.  The lattice dynamics model is applied to calculate 
the six representative frequencies at the centroids of the 
elements.  The wavevector and frequency values associated with 
the centroid points are used as labels and unique combinations 
of wavevector centroid and calculated frequency are referred to 
as pseudo-states.  There are 65,856 pseudo-states in the FBZ for 
the chosen mesh size.  For a mesh size of 12 there are 41,472 
pseudo-states and for a mesh size of 16 there are 98,304 pseudo-
states.  Dispersion calculations are performed at each of the six 
faces of the wavevector space volume elements in addition to the 
centroid. Thus, for an implementation of the dispersion 
calculation on a mesh size of 14, there are seven solutions of 
equation 19 generated in complex double precision for each of 
the 65,856 pseudo-states.  This results in 460,992 instances of 
Equation 19 that are solved through the use of the GNU 
Scientific Library (GSL) open source software package [15].  
This package contains a complex eigenvalue solver.  The GSL 
complex eigenvalue solver uses the complex form of the 
symmetric bi-diagonalization and QR reduction method.  This 
method is assumed to take on the order of N3 calculations [16].  
Thus for the mesh size of 14, on the order of 108 computations 
would be involved for the dispersion calculations.  
Values of the interatomic force constants that were implemented 
in the solution of the dynamical matrix for the calculation of 
dispersion relationships in pure silicon are shown with TABLE 
2.  The values for germanium are shown as well and could be 
implemented to compute dispersion relations for pure 
germanium. 

 

 

 

K
z
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TABLE 2:  INTERATOMIC FORCE CONSTANTS IN 
UNITS OF N/M [10] 

 Silicon Germanium 
 215.41173 185.33255 
 -52.54514 -45.88164 
 -36.64926 -32.63248 
 -2.92696 -2.31977 
 -2.83355 -2.10181 
 1.72815 1.38563 
 6.69464 6.00961 

 
The value of for siliconis adjusted to -4.001216 N/m to ensure 
enforcement of the acoustic sum rule.  This rule implies the 
following when using interatomic force constants up to second 
nearest neighbors [17].   

𝛼଴ = −4𝛼ଵ − 8𝜇ଶ − 4𝜆ଶ   (23) 
The solutions from the dispersion calculations are stored for 
future use in both scattering and drift algorithms.  The group 
velocities are calculated in each of the coordinate directions with 
knowledge of the frequencies and wavevectors.  Group velocities 
are used when considering the drift (unimpeded movement) of 
phonons between different geometric cells.  The wavevector and 
frequency will be used in both the selection of three phonon 
scattering partners and the calculation of the three phonon 
scattering rates.   

 
3. RESULTS AND DISCUSSION 
The lattice dynamics formulation previously implemented in the 
SPTM utilized only first nearest neighbor interactions and force 
constants reported by Ghatak and Kothari [18].  The results of 
this calculation, which were previously reported by Wang and 
Murthy [19] (and reproduced by Brown III [8]), show that at the 
worst case location (close to the X point) the prediction is off by 
about 75%.  The results for the enhanced dispersion model 
implemented in this work compared to similar experimental data 
are shown in FIGURE 3. 

 

FIGURE 3:  PREDICTED DISPERSION RESULTS FOR 
LATTICE DYNAMICS MODEL (WITH UP TO SECOND 
NEAREST NEIGHBOR INTERACTIONS AND FORCE 
CONSTANTS CALCULATED FROM FIRST 
PRINCIPLES DFT) COMPARED TO EXPERIMENTAL.  
THE PREDICTIONS ARE FOR 500 K AND THE DATA 
WAS TAKEN AT 300 K.  THE TRIANGLES ARE FROM 
NILSSON AND NELIN [20] AND THE STARS ARE 
FROM G. DOLLING [21]. 

There is much better agreement in the high symmetry directions 
with the enhanced dispersion calculation of the SPTM.  At the 
worst case location, the model predictions are only off by 19%.   
In addition to results in high symmetry directions, the SPTM 
calculations produce dispersion relations in all directions within 
the FBZ.  This is in contrast to many MC simulations such as 
those of Pop et al. [22], Mittal et al. [23], and Hao et al. [24], 
where dispersion relations are assumed to be isotropic and are 
developed from either fits of experimental data in high symmetry 
directions or from simple sin-shaped functions.  The results of 
the complete anisotropic dispersion calculation of the SPTM are 
shown in FIGURE 4.   

 
FIGURE 4:  PREDICTED DISPERSION RESULTS 
FROM LATTICE DYNAMICS WITH SECOND 
NEAREST NEIGHBOR INTERACTIONS IN ALL 
MODELED DIRECTIONS IN THE FBZ.  MESH SIZE OF 
14.  TEMPERATURE OF 500 K. 

 

4. CONCLUSION 
The lattice dynamics approach has been implemented 

to improve the computed dispersion relations utilized in the 
SPTM.  The interactions are extended to include both first and 
second nearest neighbor interatomic influences.  The force 
constants have been quantified with the use of the first 
principles electronic configuration calculations of DFT.  The 
improved model shows excellent agreement to experiment in 
high symmetry directions and provides the foundation to a high 
fidelity phonon transport method.   
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