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Abstract
The performance of autonomous agents in both commercial

and consumer applications increases along with their situational
awareness. Tasks such as obstacle avoidance, agent to agent in-
teraction, and path planning are directly dependent upon their
ability to convert sensor readings into scene understanding. Cen-
tral to this is the ability to detect and recognize objects. Many
object detection methodologies operate on a single modality such
as vision or LiDAR. Camera-based object detection models ben-
efit from an abundance of feature-rich information for classifying
different types of objects. LiDAR-based object detection models
use sparse point clouds, where each point contains accurate 3D
position of object surfaces. Camera-based methods lack accurate
object to lens distance measurements, while LiDAR-based meth-
ods lack dense feature-rich details. By utilizing information from
both camera and LiDAR sensors, advanced object detection and
identification is possible. In this work, we introduce a deep learn-
ing framework for fusing these modalities and produce a robust
real-time 3D bounding box object detection network. We demon-
strate qualitative and quantitative analysis of the proposed fusion
model on the popular KITTI dataset.

Introduction
The task of object detection is a fundamental function of en-

vironment based systems such as self-driving cars, autonomous
robots, and augmented/virtual reality. The world around us is
comprised of 3D geometry and sensing and understanding this
3D geometry is necessary for solving many of the problems in in-
telligent machines such as path planning, obstacle avoidance, and
human-computer interaction. Reliability and safety with respect
to these autonomous machines is highly dependent on its object
detection capability. Considering the criticality of the 3D object
detection (3DOD) task, robustness and real-time inference are the
two major requirements for object detectors.

Data driven 3D deep learning has evolved greatly in the past
few years because of the availability of huge amounts of data from
variety of sensors in the form of well-designed datasets. Some
major datasets for 3D deep learning include KITTI [1], nuScenes
[2], Lyft Level 5 AV Dataset 2019 [3], and Waymo Open Dataset
[4]. 3D sensors like RGBD cameras, LiDAR, and RADAR are
widely available in the market with year over year improved qual-
ity and lower pricing. The 3D object detection (3DOD) is defined
as a task where objects in the scene are identified and localized by
estimating their position in 3D space. Historically, most 3D vi-
sual computing techniques focus on a single modality (primarily
LiDAR or image), thus reaching a limit in terms of accuracy and
robustness. LiDAR and camera provide us with different informa-
tion of the surrounding. LiDAR provides a 3-dimensional point
cloud of the surrounding environment, data rich in depth informa-
tion but lacking color and texture information. Camera provides

Figure 1. Sample 3D object detection on the KITTI [1] dataset.

more detailed texture, color and lighting information in the form
of images or video, but lacks depth information. To combine the
unique qualities of each modality, fusion based detection methods
can be utilized.

We focus our efforts on developing a network which can
smartly fuse the depth information from LiDAR with the textu-
ral information from the camera to achieve simultaneous 3DOD
and localization. Specifically, we experiment with two techniques
of sensor fusion: early and late fusion. Each fusion strategy has
its own properties that pose challenges to deep architecture de-
sign while providing the opportunity for novel and efficient solu-
tions. In this work, we discuss several methods to encode sensor
data into the neural network and explore various fusion strategies
along with key tuning parameters of the resulting fusion network
architecture. We introduce a LiDAR-Camera fusion model called
combined fusion network which provides improved 3D detection
over prior methods. Our combined fusion network is an end-to-
end learn-able network incorporating both early and late fusion.
Figure 1 shows an example of 3D object detection using our com-
bined fusion model on the KITTI dataset.

Related Work
Data driven deep learning based object detectors can be cat-

egorised into two categories, namely single-stage detectors and
two-stage detectors. In a two-stage detector, the first stage in-
volves a fast and lightweight region proposal network (RPN) that
generates a set number of region proposals having high likelihood
of existence of an object. These proposals are then passed through
the second stage which extracts advanced features and performs
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Figure 2. PointPillar Network Overview [5], D = Number of point features (9), P = Number of points per pillar (100), N = Maximum number of pillars (12000), C

= Number of pseudo-image feature maps (64), H,W = Height and Width of the feature maps (496 × 432).

classification and regression on the generated proposals for iden-
tifying the object category and estimating the object’s position in
the 3D space. As the potential bounding box candidates can be in-
finite, RPN narrows down the potential bounding box candidates
to a finite number. Contrary to two-stage detectors, single-stage
detectors skip the RPN step and run feature extraction and clas-
sification on the input image simultaneously. Single-stage detec-
tors are generally faster than two-stage detectors and hence more
apt for real-time applications. Depending on the type of sensor
data used by the encoder, 3DOD methods are further grouped as
camera-only methods, LiDAR-only methods and dual modality
methods using sensor fusion.

Mono3D [6] is a two stage camera-only approach. The first
stage generates 3D object proposals in three different aspect ra-
tios by leveraging the semantic segmentation of the image, loca-
tion priors and other contextual features. The obtained proposals
are fed to the second stage, consisting of a convolutional neural
network (CNN) to generate final labels and oriented 3D bounding
boxes. The network inference time is around 0.7 seconds proving
to be inadequate for real-time applications.

Eduardo et al.[7] presented an overview of 3D object detec-
tion methods, the available datasets, research gaps and future di-
rections. The paper also discusses the pros and cons of fusion
based methods compared to LiDAR-only and camera-only meth-
ods. Voxelnet [8] first discretizes the point cloud into voxels, ap-
plies PointNet to each voxel and then uses a set of 3D convolu-
tional layers on the 4D tensor to consolidate the features across
the vertical axis. The inference time of Voxelnet is about 225ms,
the majority of which is due to the expensive 3D convolution op-
erations. AVOD [9] uses late fusion for fusing data from both a
camera and a LiDAR to perform 3DOD. The point cloud data is
converted into image modality by projecting the cloud onto the
XY plane to obtain a bird’s eye view (BEV) of the vehicle’s sur-
rounding. Although this allows a computationally less expensive
single modal deep neural network for object detection, it sacri-
fices 3D geometrical information such as height for each of the
points in the point cloud.

MV3D by Chen et al.[10] is another example of a two stage
late fusion model. It converts the point cloud data into image
modality by using BEV and front view (FV) projection tech-
niques. BEV projection maps are encoded with height, intensity
and density data of the points in the point cloud while FV projec-

tion maps contain height, distance and intensity information with
respect to front view. BEV projection images are used by the
region proposal network to generate proposals. FV images and
RGB images are passed through separate encoders and the ob-
tained feature vectors are passed into a deep fusion network. The
inference time is about 0.36 seconds. F-PC-CNN[11] is an exam-
ple of a two stage early fusion approach. 2D region proposals are
generated from RGB images. A subset of points are selected from
the point cloud based on the points which fall under the obtained
2D proposal and are passed into a deep CNN network to obtain
oriented 3D boxes. Some methods like F-Pointnet and RoarNet
leverage the data from LiDAR and Camera in a sequential fash-
ion instead of direct fusion. We refer to such work as sequential
fusion.

Pointpillar Encoder - Baseline
The Pointpillar encoder [5] is a PointNet [12] based LiDAR

point cloud encoder. It converts the input 3D point cloud into
2D pseudo BEV projection images by extracting learned features
across the Z-axis of the point cloud. The Pointpillar encoder [5]
authors demonstrate its effectiveness by developing a lean down-
stream network to perform 3DOD task using LiDAR data as input.
The result is an end-to-end learnable network with an inference
time of just 16 ms per point cloud. Its real time performance is
due to two factors, the use of multi-box single shot detector (SSD)
network and the discretization strategy used for converting the un-
bounded point cloud data into bounded pillars instead of voxels.
It significantly outperforms all other state of the art networks on
KITTI 3D object detection benchmark [13] using only LiDAR
point cloud data.

The Pointpillar 3D object detector architecture as shown in
the Figure 2 consists of three components, Pillar Feature Net
(PFN), 2D CNN Backbone and SSD Detection head. First the
point cloud is discretized into evenly spaced grid in the X −Y
plane into multiple vertical columns also known as pillars. For
each non-empty pillar, the maximum number of N points resid-
ing in the pillar is randomly sampled in order to achieve uniform
distribution of points across the space and reduce computational
complexity. If the number of points in a pillar is less than N,
zero padding is applied. This results into a dense tensor of shape
(D×P×N) where P is the number of non-empty pillars per sam-
ple and D is the number of features per point. The PFN extracts
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Figure 3. The structure of the proposed early fusion network.

Table 1: Network Configuration.
Car Network Cyclist-Pedestrian Network

Voxel size [0.16, 0.16, 4] [0.16, 0.16, 3]
Max number of pillars per point cloud (P) 12000 12000

Max number of points per pillar (N) 100 100
Default anchor box sizes (w, l, h) Car : [1.6, 3.9, 1.56] Cyclist : [0.6, 1.76, 1.73] Pedestrian: [0.6, 0.8, 1.73]

learned features across the vertical columns by applying Point-
Net on each of these pillars yielding a C×P feature vector where
C is the number of pseudo-image features maps to be generated.
This eliminates the need for handcrafted features and thus mak-
ing the network end-to-end learnable. These learned features are
then consolidated based on their pillar index and converted into
a pseudo-image like BEV feature maps of size C×H×W which
are then passed through the 2D CNN backbone. Each feature map
is of dimension H×W . The backbone network is a top-down net-
work consisting of series of convolution and deconvolution layers
which generate features at different resolutions. The top-down
features are then concatenated and used by the SSD head to gen-
erate 3DOD predictions.

Proposed Architecture and Implementation
An efficient fusion strategy needs to be implemented to over-

come the limitations of single sensor detection networks and
leverage the use of information from multiple sensor sources. Li-
DAR and camera provide us with complementary information for
robust 3DOD. Camera captures detailed texture information of
the surrounding scene and while LiDAR provides us with depth
information.

We are primarily inspired by and modify the architecture of
Pointpillar [5] to enable multi-modal data input. The real-time
performance of this network was one of the main reason behind
choosing PointPillar network for data fusion experiments. As dis-
cussed before, the three stage structure of the PointPillar network
allows implementation of data fusion strategies. The augmented
LiDAR point l has D = 9 features in the default PointPillar net-
work,

l = [ x, y, z, r, Xc, Yc, Zc, Xp, Yp ] (1)

where Xc, Yc, Zc are offset from the arithmetic mean of all the

points in the pillar, Xp and Yp are the x and y offset from the pillar
center (x,y) and r is the reflectance value from LiDAR.

In the sections below, the three fusion strategies, namely,
early fusion, late fusion, and combined fusion are discussed. Fig-
ure 3, Figure 4 and Figure 6 show the architecture of the three
fusion models respectively. All the fusion models use Pointpil-
lar [5] to encode point cloud data into a pseudo-image like fea-
ture. These features are passed into the SSD network which per-
forms the 3DOD task and predicts the object classes for the ob-
jects present in the scene with their 3D bounding box coordinates.
SSD uses the same backbone as [5]. Table 1 shows the configu-
ration setup for the baseline as well as the fusion models. All the
weights are initialized with uniform random distributions.

Early Fusion
Early fusion combines the raw data from the two sensors be-

fore feeding into the neural network. The Pillar Feature Net (PFN)
is the first stage of the PointPillar network. PFN is responsible to
extract learned features from the input point cloud across the Z-
axis and convert the point cloud to a pseudo-image. This structure
enables early fusion by modifying the PFN stage to take an aug-
mented point cloud as input. Figure 3 shows the architecture of
the Early fusion model. The input point cloud is augmented with
corresponding RGB values obtained from the image. To obtain
the RGB value for a particular point, the 3D point is firstly pro-
jected onto the image frame using the rotation and projection ma-
trices provided in the KITTI development kit and then the point l
is augmented with the RGB value of the pixel location where the
point overlaps on the image frame.

A point x = (x,y,z,1)T in LiDAR coordinate frame to a point
y = (u,v,1)T in the ith camera image frame is given as

y = Prect ∗Rrect ∗ x (2)
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Figure 4. The structure of the proposed network showing late fusion of the two modalities.

where Prect is the rectified projection matrix, and Rrect is the rec-
tified rotation matrix.

Additionally, a mean filter of kernel size 5× 5 is convolved
across the image before overlaying the point cloud onto the image.
This provides a normalization effect for the RGB augmentation.
Experiments showed that a 5×5 kernel gives the best result. The
final augmented LiDAR point l has D = 12 features:

l = [ x, y, z, r, Xc, Yc, Zc, Xp, Yp , R, G, B ]. (3)

The obtained augmented point cloud is then passed into the
network to perform 3DOD.

Late Fusion
Late fusion in deep networks is defined whereby the higher

dimensional features from the individual sensor encoder networks
are combined into a joint feature vector. This joint feature vector
is then used by the object detector network to predict 3D object
detection parameters. Late fusion is popular for fusing data of dif-
ferent dimensions such as image, point cloud and analog data, as
vector representations are easily concatenated with one another.
Late fusion allows for the use of specialized encoding of each
modality for independent processing of raw sensor data. This
freedom can potentially generate more reliable vector represen-
tations of the input data. This strategy assigns weights to the in-
puts automatically during the training phase without the need for
any manual tuning. Unlike the early fusion model, late fusion can
perform 3DOD even if the data from one of the two modalities is
missing.

Figure 4 shows the architecture of the late fusion model. The
first branch consists of the Pointpillar encoder [5] which encodes
the raw point cloud into 64 image-like feature maps each of size
496× 432. The second branch consists of a variant of ResNet

Figure 5. ResNet CNN architecture for image feature extraction.

[14] to extract features from the RGB images. 128 feature maps
each of size 28× 28 are generated after the second block of the
ResNet18 architecture (Figure 5) and are up-scaled to 496× 432
using bilinear interpolation. These up-scaled feature maps are
concatenated with the 64 feature maps obtained from the point
cloud data and passed through a SSD network to generate 3D
bounding boxes and predict the object class.

Combined Fusion
Our combined fusion model incorporates both late fusion

and early fusion in the same network. Figure 6 shows the archi-
tecture of the combined fusion model where early fusion is per-
formed in the first branch, noted as “EF” and late fusion is noted
as “LF”. The first branch consisting of the PFN takes the aug-
mented point cloud with RGB values as input and generates 64
BEV pseudo-images. The second branch is a ResNet [14] based
feature extractor for the RGB image. The feature maps are con-
catenated as per the late fusion model and passed through the SSD
network to output 3D object scores and bounding boxes.

Loss
In the context of 3D object detection task, loss is com-

prised of two parts, the classification loss for object category mis-
match and the localization loss for bounding box offset predic-
tion. The model loss is the weighted sum of the localization loss
(SmoothL1) and the classification confidence loss (Focal loss).
Focal loss Lcls is defined as:

Lcls =−α ∗ (1− pα )γ ∗ log(pα ) (4)

where pα is the class probability of an anchor.
The SmoothL1 loss is used for bounding box regression in

most of the object detection networks like Fast RCNN [15], Faster
RCNN [16], and SSD [17]. It is observed that the SmoothL1 loss
is less sensitive to outliers than L2. The smoothL1 loss Lloc is
defined as:

Lcls =

{
|x| i f |x|> α

1
|α|x

2 i f |x|<= α
(5)

where α is a hyper parameter and is usually taken as 1. Combin-
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Figure 6. The structure of the proposed combined fusion network. EF = Early Fusion, LF = Late Fusion.

ing (4) and (5), the total loss is:

L =
1

Npos
(βcls∗Lcls+βloc∗Lloc) (6)

where Npos is the number of positive anchors, βloc = 2, and βcls
= 1.

The Adam optimiser is used for the optimization of the loss
function during training. The initial learning rate is set as 2×10−4

and the decay factor is set as 0.85 every 15 epochs. The network
is trained for 220 epochs with a batch size of 2.

Evaluation Metrics
Intersection over Union (IoU) and Average Precision (AP)

are commonly used to evaluate the performance of object detec-
tors. IoU is defined as the area of intersection of the predicted and
the ground truth box divided by the joint area occupied by both
boxes:

IoU =
(area of overlap)
(area of union)

. (7)

According to the norms defined by the KITTI benchmark, a
detected box is considered as a true positive (TP) if its IoU with
the groundtruth annotation is greater than the threshold of 0.7 for
“Car” class and 0.5 for “Pedestrian” and “Cyclist” class. If the
IoU is less than the threshold it is considered as a false positive
(FP). A false negative (FN) is defined when the network fails to
generate a box for a real object in the scene. Precision is defined as
the ratio between the number of detected TPs and the total number
of detections:

Precision =
T P

T P+FP
. (8)

Recall is defined as the ratio between the number of TPs and
all the ground truth boxes:

Recall =
T P

T P+FN
. (9)

As per the KITTI Benchmark specifications, average preci-
sion (AP) is defined as the mean of the precision values at each

Table 2: Inference time per point cloud.
Method Inference Time (ms)

Baseline (LiDAR only) 16
Early fusion 32
Late fusion 34

Combined Fusion 34

of eleven defined recall values depending on the eleven differ-
ent confidence thresholds. The maximum precision value corre-
sponding to the given recall value is used for calculating the mean.

AP =
1

11

10

∑
r=0

max
[

p
( r

10

)]
(10)

where p(·) is the calculated precision corresponding the particular
recall value.

Results
Dataset

All the training and evaluations are done using the KITTI
object detection benchmark dataset [1]. The KITTI dataset con-
sists of six hours of real-world road traffic scenarios recorded at
10Hz-100Hz using a variety of sensors. It has about 200k 3D
object annotations for image data from four HD cameras as well
as corresponding point cloud data from a Velodyne LiDAR. The
cameras, laser scanner and localization system are all calibrated
and synchronized. Each scene has up to 15 cars and 30 pedestri-
ans. The data is split into 7481 training samples and 7518 testing
samples. The ground truth labels for the test set are not publicly
available. Evaluation on the test data can be obtained by sub-
mitting the prediction results to the online benchmark server. We
follow the training set split provided by MV3D [10] which is com-
monly used by others. The training set is split into a new training
set of 3712 samples and a validation set of 3769 samples. De-
pending on the amount of truncation and occlusion in the scene,
each annotation label is marked as either “fully visible”, “partly
occluded” or a “largely occluded” target. The annotations are fur-
ther divided into three groups considering the detection difficulty
for that particular annotation as “Easy”, “Moderate” or “Hard”.
For our experimentation, we use the left camera image and the
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Table 3: 3D detection benchmark scores on the KITTI validation set (3769 examples), trained on the KITTI training set (3712
examples).

Method mAP (Mod.) Car (IOU=0.5) Pedestrian (IOU=0.5) Cyclist (IOU=0.5)
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Baseline 58.03 81.49 67.89 65.99 60.80 56.31 50.42 70.18 50.04 47.07
Early Fusion 60.30 84.15 70.34 66.12 62.79 58.42 51.22 72.43 52.16 47.83
Late Fusion 57.20 81.23 66.42 63.11 59.84 56.33 50.12 69.13 48.86 46.02

Combined Fusion 60.44 84.67 70.84 64.88 63.14 58.13 51.88 72.44 52.34 47.17

Table 4: BEV detection benchmark scores on the KITTI validation set (3769 examples), trained on the KITTI training set (3712
examples).

Method mAP (Mod.) Car (IOU=0.5) Pedestrian (IOU=0.5) Cyclist (IOU=0.5)
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Baseline 66.67 90.36 82.16 81.85 69.57 64.15 58.12 73.82 53.70 49.97
Early Fusion 70.12 92.85 86.09 83.22 74.45 67.90 60.20 75.60 56.38 51.34
Late Fusion 66.59 90.20 80.96 81.03 70.32 63.92 56.44 73.12 54.89 49.13

Combined Fusion 70.59 92.15 87.42 83.42 74.33 68.12 60.43 73.55 56.24 50.88

corresponding cropped point cloud from the Velodyne LiDAR.

Fusion Results
Out of the seven classes defined in the KITTI dataset; “Car”,

“Pedestrian”, and “Cyclist” are the three dominant classes. We
train and evaluate our models on these three classes. We evaluate
the models using the official KITTI evaluation detection metrics
for BEV and 3D detection. Each annotation in the KITTI dataset
is categorised as either “Easy”, “Moderate” or “Hard” depend-
ing on the difficulty level of detecting that particular object in the
scene. Results for 3D object detection are shown in Table 3 and
BEV object detection task are shown in Table 4.

Results show that Early fusion performs better than late fu-
sion for both tasks and combined fusion model gives the best re-
sults. Compared to the Baseline LiDAR only method, we see an
improvement of about 2%-4% in the early fusion model. Similar
results are shown for the late fusion model. As indicated in Table
2, inference run-time of the three fusion models is between 32ms
to 34ms, making them suitable for real-time applications. All in-
ference times are measured on an Alienware laptop with an Intel
i7 CPU and 1080ti GPU.

Conclusion
In this paper, the PointPillar architecture is extended to in-

corporate both image pixel data along with LiDAR point cloud
data. We experiment and evaluate different LiDAR-Camera fu-
sion strategies for the task of 3D object detection. The network
is trained in an end-to-end manner and does not require any hand
crafted features. The network takes inputs from two sources, Li-
DAR and camera and outputs 3D bounding box coordinates and
the class label of the detected object.

The results show that early fusion performs better than late
fusion and combined fusion gives the best results. The inference
time for the three models ranges between 32ms to 34ms, suitable
for real-time applications.

The introduced network is scalable to more input modalities
such as BEV projection images, infrared images, and optical flow
images. Recent advances in imaging RADARs such as 80 GHz

RADARs can optionally output point cloud type data with an ad-
ditional velocity field. It is anticipated that such RADAR data
can be fused with LiDAR or image data to further increase the
accuracy and robustness of the proposed model.
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