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Abstract—Wireless indoor localization is critical for au-
tonomous agents in modern and future smart warehouses.
Millimeter-wave (mmWave) frequencies have been investigated
for high-precision localization in recent years for indoor as
well as outdoor positioning. We propose machine learning (ML)
techniques over a radio map to estimate the location of an
autonomous material handling agent used in warehouses. Based
on our experimental results we demonstrate that a Multilayer
Perceptron (MLP) based positioning achieves centimeter level
accuracy with Root Mean Square Error (RMSE) of 0.84m.
The proposed localization technique achieves up to 80% lower
positioning error compared to state-of-the-art mmWave wireless
localization techniques.

Index Terms—Millimeter-wave, indoor localization, machine
learning

I. INTRODUCTION

Accurate and cost effective indoor positioning system is
one of the major requirements towards automation for the
next generation industrial revolution, Industry 4.0 and beyond.
Smart and automated warehouses have been a key focus in the
industrial development, that includes advanced communication
systems, autonomous navigation and automation of machines
[1]–[3]. Precise and robust localization is one of the critical
requirements for the Industry 4.0 as it forms the basis to ensure
the safety of the workers as well as to navigate the autonomous
agents (or vehicles).

For indoor localization such as warehouses, wireless sensor
based approaches are vastly investigated [4] and have been
the preferred positioning approach for indoor environment
due to the low cost, easy deployment and power efficiency.
Many wireless based localization techniques are based on
trilateration and triangulation [5], for which Line-of-Sight
(LoS) measurement is required. Such techniques are not effi-
cient for accurate indoor positioning in environments such as,
warehouses due to lack of proper LoS due to obstacles, moving
components and the shelf partitions. Furthermore, large num-
ber of errors occur in the triangulation technique because of the
multi-route radio wave phenomenon in which different signals
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are reflected and cause interference. Fingerprinting based ap-
proaches [5], [7] are more suited for indoor environment and in
our work we propose to use millimeter-wave (mmWave) based
wireless technology for wireless fingerprinting using Machine
Learning (ML). Using Global Positioning System (GPS), good
outdoor accuracy can be achieved but it lacks performance in
indoor environment due to weak signal strengths.

Millimeter-wave frequencies ranges between 30 GHz to
300 GHz, particularly in the unlicensed 60 GHz spectrum,
allows higher data rates of multi-gigabit-per-second making
it suitable for many applications that require high speed
wireless data rates like robot navigation and smart cities [6].
Hence, for such applications it may well suit to utilize the
mmWave communication, efficient and cost effective localiza-
tion methodologies will be possible as we can reuse the already
existing communication infrastructure. This will significantly
reduce the overall cost. Further with the advancement in the
field of the autonomous vehicles, mmWave technology is
essential for providing the communication infrastructure for
multi-giga-bit data rate communication requirement for these
autonomous vehicles or agents [7], [8]. Our approach is to
reuse this high-speed communication infrastructure to provide
the localization information which is one of the fundamental
requirement for any autonomous systems.

The contributions of this work are outlined as follows:
• We design an indoor warehouse localization system using

consumer-grade off-the-shelf 60 GHz wireless routers.
For this, we use Signal-to-Noise-Ratio (SNR) as a feature
from consumer-grade wireless Access Points (APs) in
ML based localization algorithm.

• We implement a ML based learning algorithm for the
task of localization. We evaluate our trained ML models
in a working warehouse environment to accurately test
the localization accuracy.

• Further, we evaluate and study the impact of the router
orientation with localization accuracy. As consumer-grade
60 GHz routers have irregular beam shapes and this
changes the SNR information received with the orien-
tation of the receiver’s antenna.

• We introduce a method to deal with the missing feature
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information from the APs during the training and infer-
ence of the ML models as consumer-grade APs can lose
connectivity intermittently.

II. RELATED WORK

WiFi based wireless indoor localization has been researched
in past years [9]. In [10], authors have evaluated the perfor-
mance of mmWave wireless systems for localization and have
shown that the same techniques that can be used for WiFi can
also be used in mmWave systems. The results were simulation
based and the hardware changes required to generate the
necessary signals for different localization techniques were not
discussed.

Authors in [11] have used off-the-shelf hardware for the
60 GHz and designed a location estimation system using the
particle filter with linear programming and Fourier analysis
and have reported sub meter accuracy. However, in their
methodology they used 400 measurements per location during
their data collection and this can be very time consuming for
a large scale environment.

In [12], authors have proposed single-anchor based local-
ization technique for mmWave systems. They have compared
distance and angle based localization techniques along with
fingerprint based technique. The path loss model characteri-
zation needs to be done for Received Signal Strength (RSS)
based triangulation and it is usually done by experimen-
tation. For mmWave, the path loss model parameters can
vary significantly for different receiver location within the
same environment. Therefore, mechanisms to estimate location
which are more resilient to statistical variations in the channel
model needs to be developed.

III. SYSTEM ARCHITECTURE

In this section, we describe the wireless features used by our
system, the placement strategy of APs inside the warehouse,
the data collection setup, and the feature extraction process
for the proposed localization methodology.

A. AP Deployment in the Warehouse

The APs used in our system are the 60 GHz TP-Link
AD7200 wireless routers [13]. We select these routers at the
time of experimentation as they were the only available 60
GHz consumer-grade routers. Fig. 1 shows the placement of
the APs on the ceiling of the warehouse as the top view.
The APs are mounted on the warehouse ceiling along the
edges of the aisle in a zig-zag arrangement depending on the
availability of trusses. This particular placement of APs is used
to maximize the coverage of wireless signal within the aisle. A
60 GHz router is configured in the client mode and is mounted
on top of the autonomous agent. The routers are configured
in the AP mode by default. Configuring the routers in client
mode is done by flashing the router by the firmware provided
by [11]. Also as shown in Fig. 1, the total length of an aisle
used in our experimental setup is 20.11 meters (66 feet) and
we have placed five APs within the aisle.

Fig. 1. Blue dots indicates the positions at which data is collected

B. Data Collection Routine

We adopt a supervised ML model for the task of localization
in the warehouse as our training models are trained by using
the input features along with the corresponding output labels.
For supervised ML algorithms, the training data is required to
build the learning model. The training data consists of the input
features and the corresponding Ground Truth (GT). This is the
output that the learning model uses to evaluate its prediction
accuracy and then it tries to minimize the prediction error
during the training process.

For different ML tasks like image classification, object
detection, the training datasets are widely available online but
as our task uses the new 60 GHz hardware inside a warehouse
and to the best of our knowledge no prior datasets are available
online. We divide the aisle into multiple coordinate location
a shown in Fig. 1, where the (blue) dots within the aisle
represents the location at which we collect the SNR signals
from the APs at the client. Each of the locations are carefully
marked using measuring tape and lasers for precise alignment
form GT location 1 (GT 1) to GT location 34 (GT 34). The
separation between the marked locations along the vertical y-
axis is 0.609 meters (2 feet) i.e., precision of localization is
less than 2 feet.

During data collection process, the SNR information is
recorded 10 times at each location on the client and this is
published from the agent to a remote server. At the time of
experimentation, no traditional computing device (laptop) is
available with 60 GHz wireless client, so, on the client router
we execute in-house scripts that continuously scans for APs
and get SNR values along with the Medium Access Control
(MAC) address.

C. Dataset Processing Methodology

In our approach, the APs are distributed in an aisle and
during the data collection routine, the client may not be able
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Fig. 2. Proposed 60 GHz warehouse localization system

to capture the SNR information from all available APs. This is
due to the interference and the shadowing effect that can occur
with the high frequency radio signals. Further, there can be
situations when the SNR information from the sectors of APs
are missing and this is what we also observe while analyzing
the collected dataset. This missing sector information and APs
(features) are inconsistent and this can cause our model to not
generalize for unseen test data. To overcome the missing SNR
information, which can have large impact on the performance,
we perform a mean substitution of for each missing feature in
the training dataset as a pre-processing step before we train
the ML model. During the test-time i.e., inference, we save the
pre-processed information and perform a pre-processing on the
test data before we perform inference. The performance and
effect of the pre-processing on the ML models in our testbed
is explained in Section IV-A.

D. Proposed Localization System

After data collection, the next step is the design and training
of ML localization models. Here, we present the system archi-
tecture designed for our indoor wireless localization system.
The data collected at different positions in the aisle represent
a feature-rich radio map. A point in this radio map gives
the SNR information seen by the client from all available
APs. The 60 GHz AP uses a phased array antenna in it’s
hardware and the communication between the AP and client
happens by selection of the best sector between them through
optimization based on SNR values for all the sectors. The
Talon routers consists of 36 sectors [11] so in our approach
instead of using the final SNR information at the client, we
extract all available SNR information from all 36 sectors to
construct the radio map. Fig. 2 shows the implemented system,
the agent is the vehicle that we want to localize i.e. estimate
the position within the warehouse. The agent consists of a
computing device, referred to as computation node in the Fig.
2. The agent used in our work is a robotic platform on which

we have evaluated our system performance but we envision the
agent can also be a warehouse forklift for which, the proposed
system can be easily adapted.

For configuring the router in AP or client mode, we utilize
the modified open source firmware source code provided
by [11]. There are two phases involved in the design and
implementation of our localization system. The first phase
is the data collection and pre-processing stage where the
required data is collected for training of ML models. The
next phase is the deployment of the trained model on the
agent and evaluation of the inference performance. During the
first phase we perform offline data collection over number
of different days in the warehouse. The rationale to collect
data over multiple days is to capture the temporal variations
within the SNR features that can occur due to environmental
changes. This is a mandatory step for any supervised ML-
based networks. In the second phase, we employ ML based
localization approach which is described in more details below.

E. Machine Learning based Localization Approach

Here we present the ML approach for localization imple-
mented for the indoor warehouse localization. Our dataset
consists of X number of input features, where X is the
number of APs multiplied by 36 features (or sector data)
per AP in the warehouse and for each training example we
have a corresponding GT. Our approach is to solve the task
of localization by predicting the real valued location estimate
in two-dimensional space. In this approach the GT label for
each training example in our dataset will be the known position
location at with SNR value was recorded. Input dimension of
our dataset is N ×X , where N are the number of training data
points. The dimension of GT in the dataset are N × 1, as for
each training sample we have position in two-dimension space
on the warehouse floor, but in our work the agent moves in one
dimension so we have only considered the dimension in which
the agent moves in one direction. This is realistic in many
practical warehouses for autonomous forklifts where only one
forklift is allowed to move in a single aisle at any given time
and usually unidirectional motion is allowed [3]. However, this
approach can be extended to multiple dimensions by extending
the computations to the independent dimensions.

IV. EXPERIMENTAL ANALYSIS

In this section, we will discuss the performance of the our
implemented localization model. Inside the warehouse we have
mounted 5 APs on the ceiling along the aisle to which we had
access in the working warehouse [14]. For APs and client we
have used TP-Link AD7200 routers. During the data collection
routine, we collect 680 data points to train our ML models and
then for testing i.e., real-time localization and positioning, we
employ 340 data points. We pre-process the collected dataset
based on the mean imputation method described in subsection
III-C. Next, we will describe the performance of implemented
localization model and we also present comparison with other
state-of-the-art wireless localization techniques.
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Fig. 3. Pre-processing of dataset

A. SNR Data Imputation Analysis

Here we evaluate the performance of the ML models with
mean imputation technique as described in section III-C. We
show that with our approach of feature based mean imputation
of SNR signal values we achieve significant performance
improvement during the training and test time inference of the
ML models. Fig. 3 shows an example of mean data imputation
on the training dataset before and after the imputation. In our
approach we calculate the mean of each input feature, that is,
each column in the input of training dataset. Then we use the
computed mean to impute the missing feature corresponding
to each input feature. In our training dataset, each of the sector
from all APs corresponds to input feature as shown in Fig. 3.

We compare performance of our imputation technique with
the single mean imputation technique which is commonly used
for missing features, where the missing data is imputed by zero
value. It can be seen from Table I, that compared to a zero
imputation of missing data we achieve better performance im-
provement for all different ML models. Also for our optimized
MLP we achieve 54% improvement in performance with our
mean imputation technique. This behavior is observed due to
the fact that for high frequency wireless signals, particularly in
the range of mmWave, there exists high temporal variations.
This temporal variation is also dependent on the environment
and our environment is a complex working warehouse, where
due to the metallic structures, shelf content and shelf parti-
tioning the client may drop SNR.

B. Localization Performance Analysis

For ML based localization we have trained and evaluated
three different regression based ML models namely, Linear
Regression (LR), Support Vector Regression (SVR) and MLP.
Table II illustrates the performance comparison between the

TABLE I
PERFORMANCE COMPARISON WITH AND WITHOUT IMPUTATION

ML Model Without Imputation With Imputation

MLP 1.86m 0.84m
SVR 3.46m 2.1m
LR 10.95m 2.4m

TABLE II
PERFORMANCE COMPARISON WITH DIFFERENT ML MODELS

ML Model Configuration RMSE

LR Linear Model 2.4m
SVR Polynomial kernel 2.1m
MLP 200, 200, 200 0.84m

three different ML models. It can be seen that the LR model
has poor performance with RMSE of 2.4m. This shows that
the learning of SNR information with distances is a complex
problem and needs more complex ML models. SVR and MLP
performs better than LR model with improved RMSE error.
But compared to SVR, the MLP model performs the best to
learn the features and achieves the lowest RMSE of 0.84m
which is less than 1 meter and is a desired performance for
the warehouse level localization systems.

Our optimized configuration of MLP consists of three hid-
den layers with 200 hidden neurons in each layer. At the output
we have one neuron that predicts the location in y-dimension.
We have used rectified linear units (ReLu) activation function
at each layer and Adam optimizer during the training process.
ReLu is selected as the choice for activation function, as
ReLu speeds up the training process of neural networks [15]
due to its lower computational complexity. We train on two
datasets collected separately on two different days capturing
the temporal variations in an active warehouse aisle and then
test the trained model on a different separately held out dataset
from a third day to investigate the efficiency of the localization
in presence of temporal variations in the environment. This
helps in determining the efficacy and efficiency of proposed
technique in real-world scenarios where the temporal varia-
tions often happens.

Table III shows the accuracy obtained by tuning parameters
and hyperparameters for a given configuration of number of
hidden layer and neurons to achieve best optimized ML model.
We evaluated the configurations of different MLP using three
error metrics, Mean Absolute Error (MAE), Mean Square
Error (MSE) and Root Mean Square Error (RMSE). For our
optimized model we achieve best error accuracy in all the
three metrics with RMSE of 0.84m and mean error of 0.37m.
Further, we also observe that the accuracy decreases when the
network becomes any deeper. This is due to the fact that for
the given dataset if we make MLP more deeper with more
hidden layer and neurons, the total parameters that network
need to learn increases substantially and leading to overfitting
and similarly underfitting for the smaller MLPs. This can be

TABLE III
ML MODEL OPTIMIZATION

Configuration MAE (m) MSE (m2) RMSE (m)

125, 125 0.61 0.88 0.94
125, 125, 125 0.81 1.14 1.07
300, 300, 300 0.47 0.9 0.95
200, 200, 200 0.37 0.7 0.84

200, 200, 200, 200 1.34 3.97 1.99
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Fig. 4. Scatter plot for actual position vs predicted position

observed with the decrease in the accuracy with four hidden
layers configuration shown in Table III.

In Fig. 4, we depict the scatter plot between the actual
position and the predicted position from the ML model.
The plot shows the correlation between the actual and the
predicted location on the test data. It can be seen that the data
follows a linear straight line fit representing high accuracy
of the proposed indoor positioning. In [11] regression-based
localization with 60 GHz APs are proposed and evaluated with
a particle filter approach combined with linear programming
and Fourier analysis. The median errors are reported in [11]
vary between 1.1m to 1.4m. In comparison, we achieve median
error of 0.22m i.e., 80% reduction, and that can be seen
from the Cumulative Distribution Function (CDF) plot of our
localization error in Fig. 5. It also shows that for 90% of the
test cases, we achieve error less than 1 meter.

C. Antenna Orientation Analysis

In this section, we evaluate the localization performance
of the agent with different antenna orientation of the client.
Fig. 6 shows the radio signal map recorded by the client
router for two different orientations. The figure shows the SNR
values seen by the client at different positions. The red color

Fig. 5. CDF plot for the optimized regression model

Fig. 6. Radio map of warehouse for two different orientations

indicates no SNR received. The yellow and the green region
represents the non-zero SNR values received at the client.
In first orientation, orientation-1, the antennas of the client
router faces the ceiling upwards and in the second orientation,
orientation-2, the client antenna face the shelf within the aisle.
Also, different orientation effect of the APs on the ceiling can
be evaluated, but the APs are a fixed infrastructure and are
also used for communication so the preferred orientation of
APs are selected and kept fixed.

Fig. 6a, shows the radio map for orientation-1 and Fig.
6b shows the radio map for orientation-2. The radio map
represents the SNR signal values from all sectors of the APs
as seen by the client router during the data collection phase.
In Fig. 6 the black box region in both the radio maps shows
the difference in the SNR intensity values at same locations
representing the variation of the SNR with antenna orientation.
This shows that the antenna orientation of the consumer-grade
60 GHz routers will affects the SNR between the client and
the APs. So, for ML models to achieve maximum accuracy
in localization it’s critical to study the impact of the antenna
orientation of the client. For this we evaluate and analyze ML
models with datasets from both the orientations.

Table IV illustrates the performance comparison between
the orientation and localization accuracy with three different
ML models. Support Vector Regression (SVR), Linear Re-
gression (LR) and Multilayer Perceptron (MLP) are used to
evaluate the effect of orientation on localization accuracy. It
can be seen for all the three ML models the orientation-1
outperforms the orientation-2 based localization approach. The
ML models are optimized for the high accuracy, and for the
optimized MLP we achieve high accuracy in terms of Root
Mean Square Error (RMSE) for both orientations. But for
orientation-1 of the client router RMSE is lowest of all three
ML models. This is observed as the input feature information
is captured more consistently with fewer missing sector data
at the client for orientation-1. So, the ML model trained on
orientation-1 is able to learn the feature information required
for high localization accuracy. Hence, in our implemented

TABLE IV
LOCALIZATION PERFORMANCE FOR TWO ANTENNA ORIENTATIONS

ML Model Orientation-1 Orientation-2

LR 2.4m 3.42m
MLP 0.84m 2.02m
SVR 2.14m 3.09m
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TABLE V
PERFORMANCE COMPARISON WITH DIFFERENT WIRELESS BASED LOCALIZATION TECHNIQUES

Work Wireless Frequency Environment Methodology Performance

Bahl [16] RF-based 2.4 GHz Indoor KNN 2m-3m
Laoudias [17] WiFi 2.4 GHz Indoor ANN Mean error of 3.4m

Yang [18] WiFi 2.4 GHz Indoor WiFi Fingerprinting Mean error of 5.88m
Kanhere [19] mmWave 28 GHz Indoor Fusion of AoA and received power Mean error of 1.86m
Kanhere [19] mmWave 28 GHz Outdoor Fusion of AoA and received power Mean error of 34m
Bielsa [11] mmWave 60 GHz Indoor Particle filter Median error of 1.1m to 1.4m
Wei [20] mmWave 60 GHz Outdoor DoA based WKNN fingerprint Mean error 1.32m

Proposed Approach mmWave 60 GHz Indoor MLP-Regression Mean error of 0.37m

localization model we have selected orientation-1 to be the
antenna orientation of the 60 GHz client router.

D. Comparison with Different Localization Approaches

In this subsection, we evaluate the performance of our
localization system with different localization methodologies.
Table V illustrates the performance of our approach with other
wireless based localization approaches. It is seen that our ML
model for 60 GHz based localization work achieves better
performance in terms of localization error, with mean error of
0.37m compared to different wireless localization techniques.
Further, it is seen form Table V that the mmWave based
localization techniques achieves better performance compared
to low frequency based WiFi techniques. This is because of
the shorter wavelength of the 60 GHz band enables a higher
resolution of the radio-map with richer features. Our 60 GHz
based ML models outperforms the recent mmWave based
localization systems proposed in [11], [19], [20] as our system
uses mean imputation as pre-processing before we train the
ML models and we also show that compared to simple KNN
[16] and LR based models, more complex ML models like
MLPs are more efficient in learning the complex SNR features.

V. CONCLUSION

We propose to use consumer-grade based 60 GHz routers
for indoor wireless localization. Our approach uses machine
learning to learn the wireless SNR features from the 60 GHz
routers for the location estimation. In our methodology, to
minimize the real-world challenges such as missing signal
information from APs, we present a mean imputation approach
during the training and is seen to achieve significant perfor-
mance improvement during inference i.e., localization during
runtime. We further analyse the effect of client’s antenna
orientation with respect to the APs, as for consumer-grade
60 GHz routers the signal strength depends on the antenna
orientation and which affects the localization accuracy. Our
localization system achieves centimeter level accuracy with
RMSE of 0.84m and MAE of 0.37m which is a desired
accuracy for warehouses. Our work also performs better than
current WiFi and 60 GHz based localization systems with
maximum improvement in accuracy by 80% compared to other
consumer-grade mmWave based localization system.
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