
Using a Real World Project in a Software Testing Course

Daniel E. Krutz, Samuel A. Malachowsky, and Thomas Reichlmayr
Software Engineering Department
Rochester Institute of Technology

1 Lomb Memorial Drive
Rochester, NY 14623

{dxkvse, samvse, tjrese}@rit.edu

ABSTRACT
Although testing often accounts for 50% of the budget of a
typical software project, the subject of software testing is
often overlooked in computing curriculum. Students often
view testing as a boring and unnecessary task, and educa-
tion is usually focused on building software, not ensuring its
quality. Previous works have focused on either making the
subject of testing more exciting for students or on a more
potent lecture-based learning process.

At the Department of Software Engineering at the Rochester
Institute of Technology, recent efforts have been focused on
the project component of our Software Testing course as an
area of innovation. Rather than previous methods such as
a tightly controlled and repetitive testbed, our students are
allowed to choose a real-world, open source project to test
throughout the term. With the instructor as both counsel
and client, students are expected to deliver a test plan, a
final report, and several class-wide presentations.

This project has achieved significant student praise; quali-
tative and quantitative feedback demonstrates both increased
satisfaction and fulfilled curricular requirements. Students
enjoy the real-world aspect of the project and the ability
to work with relevant applications and technologies. This
paper outlines the project details and educational goals.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and In-
formation Science Education- Computer science education;
Curriculum

General Terms
Design, Reliability, Verification

Keywords
Software Testing, Software Engineering Education, Software
Project

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’14, March 3–8, 2014, Atlanta, GA, USA.
Copyright 2014 ACM 978-1-4503-2605-6/14/03 ...$15.00.
.

1. INTRODUCTION
Software testing is an important aspect of creating reli-

able software. Defects can have numerous adverse affects on
an application, ranging from unhappy customers and users
to injury or even death. Projects should place a more signif-
icant focus on testing; recent studies have indicated that
testing makes up over 50% of the cost of a typical soft-
ware project [15] and a third of the cost of all software bugs
could be eliminated through improved testing [21]. Unfor-
tunately, testing is far too often overlooked in both industry
and academia.

Software Engineering education is far too often deficient
in this area as well. Although most universities have pro-
grams in computing, very few offer courses with a primary
focus in software testing [11] [14] [18]. Additionally, the ed-
ucational mindset of most schools is to teach students how
to build software, not break it [13]. Largely due to the diffi-
culty of grading such a component or a lack of course time,
testing often comprises only a minor portion of the student’s
grade in the majority of programming courses [19] [10]. Stu-
dents often lack enthusiasm about testing; they are usually
much more interested in building software than in ensuring
its quality [1]. Finally, testing as both a concept and a prac-
tice can be very difficult to teach through lectures. Kaner et
al. [9] stated that “the challenge is to develop group activi-
ties that can foster insight—a level of abstract understand-
ing that can apply from situation to situation—rather than
emphasizing detailed procedural understanding.”

There is a significant amount of research which shows the
importance of software testing, with a substantial amount
of improvement needing to be done in both academia and
industry [15] [12]. Additionally, software testing in our ed-
ucational institutions needs to have a more practical focus
with educators doing a better job readying their students
for industry [20] [8].

At the Rochester Institute of Technology (RIT), we have
offered an upper division Software Testing course since 1998,
with a wide focus including process, tools, and analysis. A
project component has always been a significant portion
of this course, but it became obvious that improvements
needed to be made. We have recently altered this project to
more directly address a lack of student enthusiasm regard-
ing testing, the desire for students to work on a real-world
project, and the need for students to become better accli-
mated with contemporary testing technologies.

In this paper, we describe an innovative approach to teach-
ing software testing through a project component. Under
the supervision of the instructor, who also plays the role

as customer, small student teams first choose a moderately
sized open source project. Each team then develops a test
plan to be followed for the rest of the project term and pro-
ceeds to test the chosen application using this plan. Teams
give presentations throughout the term to report their progress.
The project culminates with a final presentation and test re-
port.

This updated project component has been included in sev-
eral class offerings and has had substantial success. Students
have stated that it has not only significantly increased their
knowledge of software testing as a discipline, but of its value
as well. Feedback has shown praise both for the real-world
nature of the project and the reinforcement it gave to the
need for testing.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the Software Testing course with its gen-
eral structure and main components. Section 3 provides an
overview of the project. Section 4 discusses a sample stu-
dent project. Section 5 discusses project results. Section 6
offers student feedback based on the project. Section 7 de-
scribes related work. Section 8 discusses future work on the
project, and section 9 provides a summary of this work.

2. ABOUT THE COURSE
Primarily comprised of upper division Software Engineer-

ing students, the Software Testing course is also offered to
other programs including Computer Science, Computer En-
gineering, Electrical Engineering, and Game Design. The
only prerequisite for our testing course is an earlier class
which introduces basic concepts of software engineering in-
cluding teamwork, development processes, and proper doc-
umentation. In this prerequisite Introduction to Software
Engineering course, students have already been introduced
to some aspects of testing, including unit testing, system
testing, integration testing, and acceptance testing. In many
cases, other non-required courses and a required one-year co-
operative internship (co-op) have exposed students to var-
ious aspects of testing as well. The Software Engineering
department considers the 3-credit Software Testing course
to be the primary means of fully exploring software testing
and closely related disciplines.

The course has three primary learning outcomes: to in-
struct students on the importance of software testing, to
expose them to various testing-related tools and techniques,
and to explain and exercise the decision process and situa-
tions in which certain tests should and should not be used.
While various tools such as jUnit1, DJUnit2, jMock3, and
Selenium4 are discussed throughout the course, it is their
underlying categorization and appropriate use that is em-
phasized. The studies regarding the importance of testing
are expounded both by looking at use cases that illustrate
a need for testing and by exploring why testing is often ne-
glected by development teams.

While most students do not become overly enthralled with
software testing, we do expend effort to dispel the myth that
testing is the bland, monotonous field that many believe it
to be. While approximately half of each classroom session is
devoted to a lecture, the remaining time is reserved for a rel-

1http://junit.org/
2http://works.dgic.co.jp/djunit/
3http://jmock.org/
4http://docs.seleniumhq.org/

evant hands-on activity or discussion. As an example, each
class begins with an interactive ”Bug of the Day” (BotD) ac-
tivity [11] in which students study a real world software bug,
its impacts, and the ways it could have been avoided. This
activity is designed to highlight common bugs and practical
application of course topics to actual examples.

Students are graded on several criteria. Each term there
are three exams, several homework assignments, and a project
based component. Class size is typically 25-40 students.

3. ABOUT THE PROJECT
The Software Testing course at RIT has always had a

significant project component. Previously, the project in-
volved all student groups being assigned the same set of
code in which they were expected to find known bugs. The
tools and testing techniques they were allowed to use was
restricted, and the project was largely viewed as bland and
unexciting for the students. They did not enjoy working on
the same cookie cutter project, wanted something more re-
alistic, were interested in making a real-world contribution,
and wanted something that would look better to potential
employers. In order to address these concerns and to meet
educational goals, we decided to create a new project for the
course.

During the first week of the 15 week term, teams are
formed. Students are able to assist in the team creation
process by choosing which other students they would like to
be partnered with. Team size is targeted to 4-6 students,
as this is often the size of groups in industry and has been
found to be conducive to student learning in previous re-
search [6] [16].

Once the teams have been formed, their first step is to
choose an application to be tested. Students are asked to se-
lect medium-sized open source applications for testing. They
must be large enough to provide an adequately sized test
bed, but not so large as to overwhelm the teams. Appli-
cations with roughly 100-200 classes have been found to be
appropriate for this project, and students are not limited
by programming language, even if the instructor is not fa-
miliar with the chosen language. Projects with a high level
of documentation are preferred, as this provides a basis for
acceptance tests and the documentation itself can also be
tested. The final step in the application selection process is
to have the program approved by the instructor. This must
be done by week 3.

The next major deliverable, due in week 5, is the project
test plan. Students are provided with an initial template,
but test plans are expected to significantly differ from one
another due to the wide variety of applications selected.
Groups are encouraged to make the best test plans possible,
but are not necessarily held to them during the remainder
of the course term. Because of expected but unforeseen hur-
dles as well as new concepts covered in class, students are
allowed to build on to and deviate from this test plan as
necessary.

In week 6, each team presents their test plan, along with
any results already gathered by the team. This gives the
teams an opportunity to receive feedback from their peers,
gain valuable public speaking experience, and exposure for
their classmates to new testing tools and techniques (which
they may use on their own projects). After the presentation,
a question and answer session takes place in which students
must often defend the choices made for their project. Addi-

Table 1: Discovered Defect Types

Week Deliverable

1 Teams Formed
3 Application Chosen
5 Test Plan
5-15 Plan Execution
6 Plan Presentations
10 Progress Report
15 Final Report & Presentation
15 Postmortem

tionally, students must write a 2-4 page reflection document
describing what has and has not gone well so far. A primary
objective of this reflection is to allow the students to under-
stand and continue to build upon their strengths while also
identifying and remedying areas of improvement. Groups
are expected to perform a critical analysis of these findings
and propose resolutions for problematic areas.

In week 10 of the term, groups are asked to submit a brief
report detailing their progress to that point. This deliverable
serves two purposes: it gives the instructor insight with an
opportunity to intervene, and it provides a milestone for
groups mid-project.

In the final week, students submit their final report, which
details not only the findings of their testing, but also the
specific tests used and relevant data. Students are also en-
couraged to state why they chose and carried out particular
tests and provide a rationale for the processes and tech-
niques they employed. They are not expected to propose
resolutions for the discovered bugs, as this could violate the
intent of the exercise and serve to distract the team. Groups
are, however, encouraged to identify the steps needed to du-
plicate the defect, which appropriately represents the similar
action needed in industry to resolve defects. Much like in
week 6, students again present their findings to the rest of
the class, including a 5-10 minute window for questions and
answers.

The final project deliverable is a postmortem. In this
document, students reflect on what went well, what went
poorly, and how they could improve upon each. This critical
analysis is also expected to contain possible resolutions for
all difficulties encountered along the way.

Grading of all deliverables is done using a rubric. The
presentations, for example, are evaluated on how well they
prepared, the quality of project information conveyed to the
class, and how well they answered project questions. No
significant part of the grading is based upon the number
of bugs found by a team, as students are encouraged to be
more concerned with the processes and techniques they are
using rather than the number of defects they discover.

4. SAMPLE PROJECT
As stated in the last section, the primary criteria for se-

lection were size and a restriction to open-source projects.
Students selected a wide range of open source applications,
including both traditional and mobile applications, applica-
tions written for Unix, Windows, and OSX operating sys-
tems, and applications written by both small groups and
organizations the size of Mozilla. A few of the tested appli-

cations included JBrick 5, tuxGuitar 6, Notepad++ 7 and
components of Firefox 8.

In the following example, we will discuss an example stu-
dent testing project which analyzed jBrick, an application
designed to assist handicapped students in programming
Lego robots. The group was comprised of 6 students, 3
of which had previously indicated that they wished to work
together. Because one of the team members had previous
experience with jBrick, it was chosen as the test application
after a brief team discussion.

The students were able to gather both the source code
and a significant amount of documentation from the jBrick
project website. Their initial plan was largely devoted to
usability and acceptance testing of the project. While these
tests would have yield some results, instructor feedback in-
dicated that they should explore a wider variety of applica-
ble tests, keeping in mind the cost/benefit trade-off in their
choices.

The team ultimately decided to add unit and mutation
testing. They met twice a week for 1-2 hours and stayed in
touch via text, Google Docs, and social media. The team
regularly met with the instructor who played both the role
of teacher and customer for the project. During their final
presentation, they indicated that they had performed most
of their intended testing on the application, but were unable
to perform some of the unit tests due to time constraints and
some of the mutation testing due to technical limitations.

The team’s testing revealed some compelling results. Since
jBrick was intended for both the visually and non-visually
impaired, usability testing was performed on the application
using representatives of both groups. While some usabil-
ity issues were identified by visually impaired users, a sur-
prisingly higher number were found by non-impaired users.
Additional issues found included negative application per-
formance due to poorly written code and functions which
needed repair (revealed in unit testing).

In their postmortem, the team indicated that although
they believed their project went well, they felt there was
room for significant improvement in both their testing method-
ologies and their team dynamics. The team expressed that
they should have used more automated testing tools to re-
duce the monotony of some of the tests as well as a wider
variety of tests, including fuzz testing. The team also stated
that they should have met more as a group and stayed in
closer contact with one another throughout the course of
the project. Members indicated that lack of communication
significantly hindered their team’s performance.

5. PROJECT RESULTS
Students have uncovered a wide variety of bugs with vary-

ing levels of severity. Table 2 shows some of the types of
bugs discovered by 18 groups spanning several course offer-
ings with each group testing a unique project. Instructors
should remember that all projects are different and that the
types and number of defects students discover will signifi-
cantly vary. All examined projects are different and a prop-
erly developed testing process does not necessarily lead to
the discovery of a large number or variety of defects.

5http://code.google.com/p/jbrick/
6http://sourceforge.net/projects/tuxguitar/
7http://notepad-plus-plus.org
8http://www.mozilla.org/en-US/firefox/

Table 2: Discovered Defect Types

Type of bug # Found

Minor, non-functional 153
Incorrect Documentation 287
Poor Usability 113
Incorrect Functionality 49
Crash 35

The majority of issues discovered have been relatively mi-
nor, such as grammar mistakes, inadequate documentation,
and poor usability. In most cases, however, students were
able to find significant numbers of more serious issues such as
crashes in the application and functionality that was incor-
rect. In measuring the severity of defects, teams studied the
accuracy of results and if requirements were met or failed.

Students were able to find bugs using a wide variety of
testing tools and technologies. Table 3 includes a list of
those most frequently chosen by the students. The majority
of teams chose to conduct unit, acceptance, usability, and
compatibility testing. While these tests were certainly good
choices, it is likely that teams selected them because they
were both relatively easy to implement and students had
been exposed to them early in the course.

Table 3: Types of Testing Conducted by Teams

Type of test # Found

Unit 16
Acceptance 17
Usability 17
Fuzz 10
Accessibility 8
Security 3
Performance 10
Compatibility 18

After completion, most teams chose to submit their bug
reports to the application’s development team. Several have
received messages from the developers thanking them and
confirming the existence of the errors they had discovered.

6. STUDENT FEEDBACK
Students have expressed a significant amount of satisfac-

tion in this project and it has contributed to their overall
satisfaction with the course. At the conclusion of the term,
students are asked to submit an anonymous survey rating
several aspects of the course, instructor, and project. Sev-
eral of these questions and student responses are shown in
Table 4. These questions have been posed to students in the
last three course offerings, all of which have used this project
component. A total of 78 students from these sections have
responded to the survey.

These results indicate that the vast majority of students
not only enjoyed the project, but would also recommend it
to a classmate as well. Additionally, most students felt that
it reassembled a project which they were likely to encounter
in the real world and were similar to tasks they were asked
to complete while on co-op. Finally, students were asked

Table 4: Student Responses

Yes No Total

Did you enjoy the software project? 66 12 85%
Would you recommend this project? 60 18 77%
Resembles a real world project? 60 18 77%
How much did you learn? (0-5) - - 4.15

to rate how much they learned from the project on a 0-
5 scale, with 0 representing them learning very little and 5
representing the maximum amount of learning. The average
student response was a 4.15/5 indicating that, on average,
students felt the project to be very educational.

The end of term feedback also allowed students to write
some of their thoughts regarding the course project. The
following are samples of written feedback that have been
received:

“The Software Testing course helped to drive
home the importance of testing at every stage in
the software development life cycle. The project
component was especially helpful in this area.
We were able to see the abundance of errors that
existed even in our favorite applications.”

“Testing one of my favorite open source ap-
plications helped to keep me interested in the
project. Not only was I able to examine the
source code of a tool I regularly used, but it made
me feel good to know that I was assisting in re-
moving defects from a tool I used on a regular ba-
sis, for both myself and other open source users
as well. ”

“Testing is a difficult, time consuming and
sometimes monotonous process. It is however,
very important. I was shocked by all the bugs
our team discovered in what I thought to be a
heavily tested and defect free application.”

“Like with many aspects of software engineer-
ing, software testing is heavily process based. Be-
fore this project, I viewed testing as an ad-hoc
process that waited until the conclusion of a project.
This project has taught me the importance of
documentation and process in software testing.
Additionally, I’ve learned that testing should oc-
cur at numerous stages in software development.”

After taking the course and returning from co-op, students
have stated they this course project prepared them very well
for projects which they worked on in industry. The project
has also helped to increase specific interest in software test-
ing for several students, some of which have subsequently
taken full time jobs in the field of software testing. Many
students have reported that they were able to gain a co-op
or full time job in a field of software testing or a related
discipline largely from their experiences with this project.

The enthusiasm students have about the project has also
been stated as a major reason why many decide to enroll
in the class. One testament to this is the growing enroll-
ment figures for the elective course. The first term in which

the new project was offered was in the Fall of 2010. Since
this offering, student enrollment figures have progressively
increased for the course. The second offering of 2012 saw
the maximum number of students allowed for a course, 40,
to be reached, leaving numerous students on the waiting list
unable to attend. While it is impossible to unequivocally
state that the project is the sole reason for the increased
student enrollment figures, we believe that these numbers
act as yet another testament for student enthusiasm regard-
ing the project. It is possible that the enthusiasm of the class
instructors regarding the new project and its inherent varia-
tive nature has been a factor in student satisfaction as well.
A chart representing student enrollment for the course since
2008 is shown in Figure 1. The line in the chart represents
when the project was first offered as part of the course.

2
0
0
8

2
0
0
9

2
0
1
0
-1

2
0
1
0
-2

2
0
1
1

2
0
1
2

20

25

30

35

40

29

25

28

40

37
38

Year

E
n
ro

ll
m

en
t

Enrollment

Project Change

Figure 1: Student Enrollment Change

7. RELATED WORK
There have been numerous works which have stated the

need of further emphasis on software testing education [1] [9] [2].
Some the deficiencies in software testing education include
the inability to excite students about the topic, lack of rel-
evant projects for students to interact with, and a primary
educational focus on building rather than breaking soft-
ware [13] [7] [1].

In order to assist software testing education, previous works
have focused on enhancing the education process either through
making it more exciting for students, or through a more ed-
ucational experience. Gotel et al. [5] described the use of
an open source web-based system for teaching software test-
ing. This project revolved around having student-created
problems which other students were expected to solve. El-
baum et al. [3] created a web-based tutorial known as Bug
Hunt. The goal of this hands on activity was to teach stu-
dents software testing at their own pace. Tutorials provided
instant feedback to the user and automatically assessed the
student’s performance.

Preston [17] described the use of real-world projects in In-
formation Technology education. The use of such projects
was found to allow students to apply the theoretical knowl-

edge they previously learned and solidify their understand-
ing of the subject matter. Harrison [7] described a method
of teaching software testing using viewpoints from both the
developer and the software tester. This approach is bene-
ficial since this allows students to see the importance and
impact of proper software testing from each perspective.
Goldwasser [4] described several fun and innovative meth-
ods of including software testing into a curriculum. In one
example, students acted in a competitive fashion against a
common test set.

8. FUTURE WORK
This project has been utilized in several sections of our

Software Testing course and has been very successful, but
there are enhancements which may be done to the project
and further data which may be collected. One of the main
purposes of the project is to allow a significant amount of
freedom for each project team while achieving stated edu-
cational goals. While project deliverables are defined, each
team is allowed to assign their own team roles, select their
own projects, and choose the tests to run on the target ap-
plication. The opportunity to make their own decisions and
learn how to self-manage team in a supervised setting has
presented some issues. Some of the teams have struggled
with the extent of afforded freedom and have requested an
extra deliverable and guidance during the term. In future
implementations of this project, an extra deliverable will be
added in week 10 which will include a written status and
brief presentation. Finally, in past iterations some teams
have been comprised of as many as 6 students; in the fu-
ture, groups will be limited to 4-5 students to make meeting
scheduling and communication demands more manageable.

This type of real world project is applicable to other ed-
ucational areas of computing and may be applied to these
courses as well. As an example, a software security course
could implement a similar project to check for vulnerabilities
in open source applications and propose fixes. A software
design course could review the design of an application in-
cluding the positive or negative ramifications of that design.
In order to further measure the effectiveness of the project
outlined above, we would like to poll seniors who took the
Software Testing course regarding the effect of the project
had on their subsequent experiences with software testing
(i.e. co-op and senior capstone).

9. SUMMARY
Software Engineers need to understand the importance of

developing high quality, defect free software. In order to en-
sure students are prepared for this task, we have developed
an innovative software testing project which closely resem-
bles tasks students will face upon graduation.

We have witnessed a significant increase in student enthu-
siasm in software testing as a subject and a discipline. This
is largely due to us allowing students to select contemporary
real world projects to test. Students have generally found
the project to be very educational and feedback has indi-
cated that it been a significant asset to them in industry.
At least two other universities are planning to incorporate
a similar project in their Software Testing classes and we
encourage others to consider this approach in their courses
as well.

10. REFERENCES
[1] N. Clark. Peer testing in software engineering

projects. In Proceedings of the Sixth Australasian
Conference on Computing Education - Volume 30,
ACE ’04, pages 41–48, Darlinghurst, Australia,
Australia, 2004. Australian Computer Society, Inc.

[2] S. H. Edwards. Teaching software testing: automatic
grading meets test-first coding. In Companion of the
18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, OOPSLA ’03, pages 318–319, New York,
NY, USA, 2003. ACM.

[3] S. Elbaum, S. Person, J. Dokulil, and M. Jorde. Bug
hunt: Making early software testing lessons engaging
and affordable. In Proceedings of the 29th
international conference on Software Engineering,
ICSE ’07, pages 688–697, Washington, DC, USA,
2007. IEEE Computer Society.

[4] M. H. Goldwasser. A gimmick to integrate software
testing throughout the curriculum. SIGCSE Bull.,
34(1):271–275, Feb. 2002.

[5] O. Gotel, C. Scharff, and A. Wildenberg. Teaching
software quality assurance by encouraging student
contributions to an open source web-based system for
the assessment of programming assignments. SIGCSE
Bull., 40(3):214–218, June 2008.

[6] J. Guo. Group projects in software engineering
education. J. Comput. Sci. Coll., 24(4):196–202, Apr.
2009.

[7] N. B. Harrison. Teaching software testing from two
viewpoints. J. Comput. Sci. Coll., 26(2):55–62, Dec.
2010.

[8] E. L. Jones and C. L. Chatmon. A perspective on
teaching software testing. In Proceedings of the
seventh annual consortium for computing in small
colleges central plains conference on The journal of
computing in small colleges, pages 92–100, USA, 2001.
Consortium for Computing Sciences in Colleges.

[9] C. Kaner and S. Padmanabhan. Practice and transfer
of learning in the teaching of software testing. In
Software Engineering Education Training, 2007.
CSEET ’07. 20th Conference on, pages 157–166, 2007.

[10] F. Kazemian and T. Howles. A software testing course
for computer science majors. SIGCSE Bull.,
37(4):50–53, Dec. 2005.

[11] D. Krutz and M. Lutz. Bug of the day: Reinforcing the
importance of testing. In Frontiers in Education, 2013.

[12] C. Mao. Towards a question-driven teaching method
for software testing course. In Computer Science and
Software Engineering, 2008 International Conference
on, volume 5, pages 645–648, 2008.

[13] A. Meneely and S. Lucidi. Vulnerability of the day:
concrete demonstrations for software engineering
undergraduates. In Proceedings of the 2013
International Conference on Software Engineering,
ICSE ’13, pages 1154–1157, Piscataway, NJ, USA,
2013. IEEE Press.

[14] G. J. Myers and C. Sandler. The Art of Software
Testing. John Wiley & Sons, 2004.

[15] L. Osterweil. Strategic directions in software quality.
ACM Comput. Surv., 28(4):738–750, Dec. 1996.

[16] D. Petkovic, G. Thompson, and R. Todtenhoefer.
Teaching practical software engineering and global
software engineering: evaluation and comparison.
SIGCSE Bull., 38(3):294–298, June 2006.

[17] J. A. Preston. Utilizing authentic, real-world projects
in information technology education. SIGITE Newsl.,
2(1):4:1–4:10, Apr. 2005.

[18] T. Shepard, M. Lamb, and D. Kelly. More testing
should be taught. Commun. ACM, 44(6):103–108,
June 2001.

[19] J. Smith, J. Tessler, E. Kramer, and C. Lin. Using
peer review to teach software testing. In Proceedings
of the ninth annual international conference on
International computing education research, ICER ’12,
pages 93–98, New York, NY, USA, 2012. ACM.

[20] J. A. Whittaker. What is software testing? and why is
it so hard? IEEE Softw., 17(1):70–79, Jan. 2000.

[21] W. Wong, A. Bertolino, V. Debroy, A. Mathur,
J. Offutt, and M. Vouk. Teaching software testing:
Experiences, lessons learned and the path forward. In
Software Engineering Education and Training (CSEE
T), 2011 24th IEEE-CS Conference on, pages
530–534, 2011.

