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Abstract The single-celled green algae Chlamydomonas reinhardtii with its two flagella—

microtubule-based structures of equal and constant lengths—is the canonical model organism for

studying size control of organelles. Experiments have identified motor-driven transport of tubulin

to the flagella tips as a key component of their length control. Here we consider a class of models

whose key assumption is that proteins responsible for the intraflagellar transport (IFT) of tubulin

are present in limiting amounts. We show that the limiting-pool assumption is insufficient to

describe the results of severing experiments, in which a flagellum is regenerated after it has been

severed. Next, we consider an extension of the limiting-pool model that incorporates proteins that

depolymerize microtubules. We show that this ‘active disassembly’ model of flagellar length control

explains in quantitative detail the results of severing experiments and use it to make predictions

that can be tested in experiments.

Introduction
The size regulation of cellular organelles is a fundamental problem in biology (Marshall, 2016;

Milo and Phillips, 2015). For example, nuclear size is tightly coupled with cell size across a wide

range of species (Hara and Merten, 2015) and the loss of this coupling mechanism is implicated in

various types of cancer (Zink et al., 2004).

A striking example of organelle size control in eukaryotes is the single-celled algae Chlamydomo-

nas reinhardtii (Figure 1), which uses two flagella to move through its aqueous environment. The

backbone of each flagellum is an assembly known as the axoneme that consists of nine microtubule

doublets arranged in a ring around a central pair of microtubules (Fawcett and Porter, 1954;

Witman et al., 1972). Unlike the dynamic instability of cytoplasmic microtubules, which can alternate

between rapidly shortening ‘catastrophe’ and stable ‘rescue’ states depending on whether or not

the tip is bound to GTP, microtubules in the axoneme exist in a highly stable state (Behnke and

Forer, 1967; Orbach and Howard, 2019). This stability reflects a tight control over flagellar lengths,

the loss of which has dramatic physiological consequences; mutants with longer flagella have

decreased swimming velocities and beat frequencies (Khona et al., 2013) compared to wild type

cells and mutants with unequal flagellar lengths are observed to spin around in circles (Tam et al.,

2003).

A key process contributing to the assembly of flagella is the continual transport of proteins from

the flagellar base to tip and back. The original evidence for this intraflagellar transport (IFT) was pro-

vided around 25 years ago by experimental observations in Chlamydomonas of particles moving

processively along the flagellum at constant speed (Kozminski et al., 1993). In the time since, a
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significant body of work has revealed the many proteins and biochemical pathways that coordinate

this complex process in Chlamydomonas and other organisms such as C. elegans, as described in

several review articles (Prevo et al., 2017; Scholey, 2003; Scholey, 2008; Cole, 2003;

Rosenbaum et al., 1999; Rosenbaum and Witman, 2002; Rosenbaum et al., 1999).

Already at the time of its discovery, IFT was hypothesized to play a role in flagellar length control

by transporting building blocks to the tip of the flagellum (Kozminski et al., 1993). IFT particles con-

taining tubulin are transported along the flagellum by two different motor proteins: kinesin-2 trans-

ports IFT particles from the flagellar base to tip (the anterograde direction) whereas dynein carries

IFT particles from the tip to the base (the retrograde direction). As shown in subsequent work

(Song and Dentler, 2001; Marshall and Rosenbaum, 2001; Buisson et al., 2013), these flagellar

proteins are continually exchanged with those localized to the basal body of the flagellum, repre-

sented schematically in Figure 2a as a basal pool.

These observations motivated the development of mathematical models of flagellar length

dynamics such as the balance point model (Marshall and Rosenbaum, 2001; Marshall et al., 2005).

In the balance point model, there is a continual competition between assembly and disassembly,

and either the rate of assembly, the rate of disassembly, or both, may be length-dependent. The

steady-state length is determined by the point at which the assembly and disassembly processes

come into balance.

Up to now, the balance point model has been considered primarily for a single flagellum and the

focus has been on assembly being the length dependent process that leads to length control
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Figure 1. Experimental background. (a) Electron microscopy images of the biflagellate green algae Chlamydomonas and its flagella captured by Elisa

Vannuccini and Pietro Lupetti (University of Siena, Italy) and reproduced from Morga and Bastin (2013) under the Creative Commons Attribution

License CC BY 2.0 [http://creativecommons.org/licenses/by/2.0]). The inset shows the whole organism (scale bar 5 mm) and the close-up shows the

flagellar basal body (BB), transition zone (TZ), and cell wall (CW) (scale bar 1 mm). (b) Severing experiments: after one flagellum is severed, the two

flagella equalize at a shorter length and then grow together to the original steady-state length. This is demonstrated in experimental data of 20

severing experiments from Ludington et al. (2012) provided by the authors. The green and blue shaded regions show the mean plus or minus one

standard deviation.
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(Marshall and Rosenbaum, 2001). However, other formulations of the balance point model, such as

the case in which the disassembly rate is also length-dependent, have received considerably less

attention. In this work, we revisit the balance point model and particularly the assumption of a con-

stant rate of disassembly in the context of simultaneous length control of multiple flagella assembled

from a shared pool of biomolecules.

We limit our theoretical exploration to the space of models defined by the following processes:

IFT particle assembly and injection at the flagellar base, motion of IFT proteins along the flagellum,

and tubulin polymerization and depolymerization at the flagellar tip (see schematic Figure 2a). We

further assume that IFT particle injection satisfies first-order chemical kinetics and allow for a control

mechanism that regulates protein levels in the basal pool. Note that this model space does not

include all possibilities. In particular, it does not include the time-of-flight model (Wren et al., 2013),

in which additional reactions affect protein state inside the flagellum (e.g. proteins enter in an acti-

vated state and deactivate at some rate).

Nevertheless, our work retains a high degree of generality. For example, it allows for different

modes of coupling between proteins in basal pools (shared or separate), different modes of IFT

motion (ballistic or diffusive and processive or non-processive), and general depolymerizing activity.

Within the model space outlined, our main results hold independent of these details. Notably, we

find that length-independent disassembly of microtubules cannot account for the experimental

results, whereas incorporating length-dependent disassembly (e.g. through the ballistic-to-diffusive

motion of a depolymerizing protein) leads to reasonable agreement with the experiments.

We analyze these models at two levels of detail, both using detailed agent-based stochastic simu-

lations and a reduced description in terms of ordinary differential equations (ODEs) and compare

the results of simulations to experimental data. It is known from experiments on Chlamydomonas
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Figure 2. IFT in Chlamydomonas with diffusive return of kinesin-2 to the base. (a) Kinesin-2, dynein, and tubulin combine to form a complex with other

IFT components in the basal pool and are injected into the flagellum. The kinesin-2 motors move toward the tip of the flagellum, where the complex

eventually breaks down into its constituent parts. Dynein motors move in the retrograde direction carrying back some, but not all IFT components.

Specifically, kinesin motors are not part of the retrograde IFT complex and they diffuse back to the base. In steady-state, the injection flux Ji, ballistic

flux Jb, and diffusive flux Jd are all equal. (b) IFT flux vs. length, comparison between the quasi-steady state approximation (Equation 4) and stochastic

simulations (Appendix 1). The shaded red area represents the mean and standard deviation computed from 10 realizations of the stochastic

simulations. (inset) Kinesin-2 concentration vs. position along the flagellum (steady-state approximation (Equation 31)).
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that (i) its two flagella reach steady-state lengths of about 10 mm, and that (ii) the flagellar lengths

are correlated since, if one flagellum is severed, the remaining flagellum shortens until it reaches the

length of the growing, previously severed flagellum (Rosenbaum et al., 1969). This latter protocol is

typically referred to as a ‘severing’ or ‘long-zero’ experiment.

As shown in Figure 1b, the severing experiments contain two separate timescales. There is an ini-

tial fast timescale of 10–20 min over which the flagellar lengths first equalize, followed by a slower

timescale of 60–90 min over which the lengths increase simultaneously to their original lengths. With

respect to the short time behavior, we find that none of the candidate models assuming constant

disassembly capture the rapid length equalization observed experimentally. Moreover, if an external

control mechanism is added that replenishes proteins lost due to severing over a slower timescale,

the constant disassembly models within our model space fail to control lengths at all.

Motivated by experimental observations of microtubule-depolymerizing proteins within the fla-

gellum (Piao et al., 2009; Luo et al., 2011; Hilton et al., 2013), we subsequently consider a model

in which the disassembly rate is dependent on the local concentration of a depolymerizing protein at

the flagellar tips. This gives rise to a length-dependent disassembly rate, which is a departure from

existing models that assume constant disassembly. We find that this model is consistent with the

rapid length equalization observed in experiments. Further, upon adding a control mechanism on

protein levels in the basal protein pool, the model is able to capture the slow return to the original

steady-state lengths observed experimentally. In the Discussion, we examine this model in light of

the currently available experimental data and discuss possible candidates for the depolymerizing

protein.

Results

Limiting motor pool gives rise to length-dependent injection rate
It is known from experiments that the injection rate of IFT particles in Chlamydomonas is length-

dependent (Dentler, 2005). In this section, we show how length-dependent injection is a conse-

quence of mass action kinetics of proteins available in limiting amounts.

We first consider the flagellar length dynamics of a single flagellum. Our approach initially closely

follows Hendel et al. (2018), although important differences will appear later on in the case of two

flagella. The key biochemical variables are the tubulin dimers that make up the flagellar axoneme

and the molecular motors kinesin-2 and dynein that transport IFT particles from the base to the tip

and back. IFT particles combine in the basal pool with kinesin-2, tubulin and dynein to form a com-

plex that is injected into the flagellum (Cole et al., 1998); see the schematic in Figure 2a.

Here we consider the case that the rate-limiting molecule is kinesin-2, although similar results

would apply to any other protein being rate-limiting for IFT assembly. Denoting the number of free

molecular motors in the pool at the flagellar base by Mf , the injection flux Ji of IFT particles into the

flagellum satisfies

Ji ¼ konMf : (1)

Note that we consider the cell volume to be fixed, in which case biomolecule numbers and concen-

trations may be used interchangeably.

First we consider the case in which the total number of motors is conserved. Later on we will also

consider the case in which motor concentrations in basal pools are regulated by an external control

mechanism, motivated by the severing experiments described previously in which length recovery

indicates replenishment of protein levels.

Kinesin-2 has been shown to undergo ballistic transport in the anterograde direction and diffusive

motion in the retrograde direction (Chien et al., 2017). The total number of motors M satisfies

M ¼ Mf þMb þMd, where Mb is the number of motors moving ballistically on the flagellum in IFT par-

ticles and Md is the number of motors moving diffusively. Therefore we may rewrite Equation 1 as

J ¼ konðM�Mb�MdÞ: (2)

The intraflagellar dynamics are fast compared to changes in length. The timescale of flagellar length

dynamics, for example the recovery time after severing, is of the order of 10 min, whereas the
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molecular motors involved in IFT take at most tens of seconds to traverse the length of the flagellum

by either ballistic or diffusive motion. Based on this separation of timescales, we treat IFT as a quasi-

steady state process in which the injection flux Ji, diffusive flux Jb, and ballistic flux Jd are balanced,

that is

Ji ¼ Jb ¼ Jd ¼: J: (3)

As shown in Materials and methods, the quasi-steady state assumption of flux balance together with

mass action kinetics of injection expressed in Equation 1 imply that

J ¼
konM

1þ konL=vþ konL2=2D
; (4)

where kon is the rate constant of motor injection, M is the total number of motors, v is the ballistic

motor speed in IFT, and D is the diffusion coefficient of motors in the flagellum.

We have validated the quasi-steady state assumption used to derive Equation 4 by comparing

the IFT particle flux and the concentration of diffusing motors in the flagellum to the results of sto-

chastic simulations (see Appendix 1), in which the dynamics of motors as well as the dynamics of

microtubule assembly are taken into account explicitly; see Figure 2b. Parameter values used in sim-

ulations are provided in Table 1. (Note that in Equation 4 and throughout the manuscript, terms

written in the form x=yz are shorthand for x=ðyzÞ, for example konL
2=2D is to be read as konL

2=ð2DÞ.)

IFT particle injection arising from a finite number of motors shared between the flagellum and the

basal pool therefore leads to a length-dependent flux. This result holds true regardless of the iden-

tity of the rate-limiting IFT protein. However, the scaling of formula Equation 4 with length depends

on whether ballistic or diffusive transport dominates. In the limit D � Lv, the 1=L scaling of

Marshall and Rosenbaum (2001) is recovered whereas in the limit D � Lv, we recover the 1=L2 scal-

ing of Hendel et al. (2018). Note that a distinction between our model and these previous works is

the presence of a constant term in the denominator of Equation 4, which implies that in our formula-

tion the flux does not blow up at L ¼ 0.

Table 1. Parameter values and definitions.

Symbol Definition Value Units References

Parameters

Lss Steady-state length 10–12 mm Marshall and Rosenbaum, 2001; Rosenbaum et al., 1969

T=N Tubulin pool per flagellum 38–47 mm Marshall et al., 2005

d Disassembly speed 0.5 mm/min Marshall and Rosenbaum, 2001; Ludington et al., 2012

v IFT speed 2.5–3 mm/s Kozminski et al., 1993; Buisson et al., 2013

D Diffusion coefficient 1.7 mm2/s Chien et al., 2017

gkonM=N Assembly rate per tubulin 2.3 � 10-2 –3.6 � 10-2 min�1 Fit

kon Injection rate constant 0.8–4 min�1 Fit

g Prefactor in Equation 5 2.5 � 10-4 Estimate (Appendix 2)

Variables

N Number of flagella

Tf Free tubulin mm

M Total motors

Mf Free motors

Mb Ballistic motors

Md Diffusing motors

J Flux min�1

cdðxÞ Motor concentration mm�1

cd Average concentration mm�1
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In our model the assembly rate is determined by the rate of tubulin transport to the flagellar tip,

as in Marshall and Rosenbaum (2001) and Hendel et al. (2018). Given mass-action kinetics of IFT

particle assembly in the basal pool, this is simply the flux J of IFT particles times the amount of free

tubulin Tf , so that the growth rate is given by the following ODE:

dL

dt
¼ gJTf � d; (5)

where d is the disassembly speed (assumed constant for now) and g is a constant. The total amount

of tubulin T is assumed to be conserved for now so that T ¼ Tf þL, where tubulin is measured in

units of corresponding flagellar length. As previously mentioned, later on we will consider the case

in which protein levels in basal pools are not conserved and are instead monitored and regulated by

an external control mechanism.

Substituting the expression Equation 4 for the flux into the above growth rate results in

dL

dt
¼

gkonM

1þ konL=vþ konL2=2D
ðT �LÞ� d: (6)

As shown in Materials and methods, this equation yields a stable steady-state length Lss for the sin-

gle flagellum.

Limiting-pool mechanisms alone cannot account for the rapid length
equalization observed in severing experiments
Whereas for a single flagellum the limiting-pool mechanism leads to a stable steady-state length, we

show next that this mechanism is insufficient for the simultaneous length control of two flagella. A

general limiting-pool model for the dynamics of two flagella having lengths L1ðtÞ and L2ðtÞ is given

by the following ODEs:

dL1

dt
¼ gJ1Tf ;1� d; (7)

dL2

dt
¼ gJ2Tf ;2� d; (8)

where Ji and Tf ;i for i¼ 1; 2 denote the fluxes of IFT particles into the two flagella and the amounts

of free tubulin in their basal pools, respectively. As we will show next, the particular forms of Ji and

Tf ;i depend on how the pools are coupled. In particular, the fluxes and free tubulin will be equal for

the two flagella if the basal proteins are held in a common shared pool.

Severing experiments illustrate that the flagella are coupled. We consider various modes of cou-

pling, that is shared or separate motor pools and shared or separate tubulin pools, as depicted in

Figure 3a, that give rise to different forms of Ji and Tf ;i within our model. We investigate their conse-

quences for length control by focusing on the solutions to the steady-state equations

0¼ gJ1Tf ;1� d; (9)

0¼ gJ2Tf ;2� d: (10)

Length control implies that these steady-state equations must yield a unique steady-state solution

for L1 and L2. We consider the steady-state lengths before and after severing. It is known from

experiments (Figure 1b) that initially the two flagella have equal lengths, and that after severing,

which is accompanied by a loss of material (e.g. tubulin and motors lost from the severed flagellum),

there is a rapid equalization of flagellar lengths. This initial, fast equalization of lengths leads to fla-

gella that are shorter than they were before the severing. These experimental observations may be

used to reject candidate models. Here we focus on the short-time dynamics after severing and there-

fore do not account for protein replenishment; however, as we show in the next section, incorporat-

ing protein replenishment is incompatible with the constant disassembly models considered here.

As we shall see, the constant disassembly models within our model space do not yield the rapid

length equalization observed experimentally. As shown in Figure 3b and considered next on a case-
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Figure 3. Length dynamics of two flagella assembling from shared pools of building blocks. (a) Flagellar assembly in Chlamydomonas reinhardtii and

modes of coupling between basal proteins pools. (b) Simulations of the severing experiment using different modes of coupling between basal pools of

proteins. In all cases severing occurs at time zero. (i) In the case of separate pools of both motors and tubulin (Equations 44 and 45), the unsevered

flagellum does not decrease in length. (ii) When only motors are shared (Equations 49 and 50), the flagellar lengths do not equalize after severing. (iii)

Figure 3 continued on next page
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by-case basis, if the lengths are in steady-state prior to severing, they are also in steady-state imme-

diately after severing as well so that no length equalization occurs. This is because in these models

the assembly and disassembly rates depend only on free protein levels in the basal protein pools,

which are unaffected by severing. To be more precise, we may rewrite the governing equations

Equations 7 and 8 in terms of the number of free motors Mf ;1 and Mf ;2 in the following form:

dL1

dt
¼ gkonMf ;1Tf ;1 � d; (11)

dL2

dt
¼ gkonMf ;2Tf ;2 � d: (12)

In order to simulate a severing experiment, we first allow the two flagella to reach steady-state. Prior

to severing, there is an amount of tubulin L1 and a number of motors M1;b þM1;d loaded on the first

flagellum corresponding to the numbers of motors undergoing ballistic or diffusive motion (see

Materials and methods). Severing is modeled by setting L1 ! 0, T1 !ðT1�L1Þ, and

M1 !ðM1�M1;b �M1;dÞ. Because severing does not change any of the protein levels in the basal

pools, Mf ;i and Tf ;i for i¼ 1; 2 are the same before and after severing. Moreover, the linear concen-

tration profile of diffusing motors remains linear in the truncated flagellum; no redistribution of

motors is required to maintain quasi-steady state. As a consequence the constant disassembly mod-

els predict no length recovery of the severed flagellum, contrary to what is observed.

Tubulin separate, motors separate
The case of separate tubulin pools and individual motor pools leads to two uncoupled instances of

(6). This is fundamentally inconsistent with the coupling observed in severing experiments, in particu-

lar the significant decrease in the length of the unsevered flagellum (Figure 3b(i)). In this model, the

unsevered flagellum does not change length after severing, and therefore it may be ruled out.

Tubulin separate, motors shared
When motors are shared through a common pool, IFT particles are injected into either flagellum

with equal probability. Therefore J1 ¼ J2 ¼: J and it can be shown by a straightforward generaliza-

tion of Equation 4 (see Materials and methods) that the flux satisfies

J ¼
konM=2

1þ konðL1 þL2Þ=2vþ konðL21 þL2
2
Þ=4D

: (13)

Initially the tubulin pools are equal, as are the flagellar lengths. However, after the loss of material

due to severing, T1 6¼ T2 and the lengths do not equalize (see Figure 3b(ii) and Figure 3—video 1).

Figure 3 continued

When only tubulin is shared (Equations 56 and 57), the flagellar lengths do not equalize after severing. (iv) When both tubulin and motors are shared

(Equations 58 and 59), there is no unique steady-state. The difference between the two flagellar lengths undergoes a random walk, as shown by the

mean square displacement (inset, average over 10 runs).

The online version of this article includes the following video(s) for figure 3:

Figure 3—video 1. The constant disassembly model with tubulin separate and motors shared does not yield length equalization.

https://elifesciences.org/articles/42599#fig3video1

Figure 3—video 2. The constant disassembly model with tubulin shared and motors separate does not yield length equalization.

https://elifesciences.org/articles/42599#fig3video2

Figure 3—video 3. The constant disassembly model with both tubulin and motors shared does not yield length control.

https://elifesciences.org/articles/42599#fig3video3

Figure 3—video 4. Replenishing protein pools in the constant disassembly model with tubulin separate and motors shared does not yield length control.

https://elifesciences.org/articles/42599#fig3video4

Figure 3—video 5. Replenishing protein pools in the constant disassembly model with tubulin shared and motors separate does not yield length control.

https://elifesciences.org/articles/42599#fig3video5

Figure 3—video 6. Replenishing protein pools in the constant disassembly model with both tubulin and motors shared does not yield length control.

https://elifesciences.org/articles/42599#fig3video6
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Because of the separate tubulin pools, severing leads to asymmetrical tubulin depletion and unequal

steady-state lengths after severing. Therefore, we may rule out the model.

Tubulin shared, motors separate
This case is analogous to the previous model in which only motors are shared, but this time only the

tubulin pools are shared so that Tf ;1 ¼ Tf ;2 ¼: Tf , with

Tf ¼ T �L1 �L2: (14)

As shown in Figure 3b(iii) and Figure 3—video 2, this model does not capture the length equaliza-

tion observed in severing experiments and therefore may be ruled out. See Materials and methods

for details.

Tubulin shared, motors shared
The flux resulting from the shared motor assumption is the same as in Equation 13, and we are left

with the steady-state equations

0¼ gJðT �L1 �L2Þ� d; (15)

0¼ gJðT �L1 �L2Þ� d: (16)

Because the two steady-state equations are identical, that is dL1=dt¼ dL2=dt, this model does not

account for the simultaneous positive and negative growth rates for the two flagella observed in the

severing experiment.

More strikingly, subtracting the steady-state equations yields

dðL1 �L2Þ

dt
¼ 0; (17)

so that the difference in lengths is not controlled at all. Note that this result is independent of the

parameters. Indeed, a similar conclusion was reached in the context of actin filaments

(Mohapatra et al., 2017), in which it was observed that sharing all biomolecules between filaments

does not yield simultaneous length control. In the context of the full stochastic simulations, this

degeneracy is manifested by the difference in lengths undergoing a random walk (inset to Figure 3b

(iv) and Figure 3—video 3).

The above analysis shows that, regardless of the manner in which tubulin and motors are shared

between flagella, the constant disassembly models we have considered are unable to explain the

results of severing experiments. Although sharing either tubulin or motors, but not both, yields a

unique steady-state, these models do not agree with the rapid length equalization observed in sev-

ering experiments. This motivates us to extend our study beyond the models considered thus far.

Controlling protein levels in the basal pool is incompatible with the
constant disassembly models considered
So far, we have assumed that the tubulin pool T and motor pool M are fixed throughout the simula-

tion. While this assumption is reasonable for the fast initial phase of the severing experiment in

which the flagellar lengths rapidly equalize, the slower second phase of recovery to the original

steady state lengths requires replenishment of proteins back to their original levels. This was shown

experimentally by using cycloheximide at the time of severing to block the synthesis of new proteins

(Rosenbaum et al., 1969), resulting in shorter flagella that did not recover to their original lengths.

It may seem plausible that adding an external control mechanism that replenishes protein levels

would lead to length equalization, thus resolving the issue of unequal steady-state lengths after sev-

ering. However, as we next show, adding such a control mechanism on free proteins levels in the

basal pool does not lead to length equalization. Instead, in this case the constant disassembly mod-

els we have considered completely fail to control lengths.

To incorporate control on protein levels into our model, we assume that the total levels T and M

of tubulin and motors are replenished over a timescale tr as the cell synthesizes new protein to

achieve target protein levels T f and Mf in the basal pool:
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tr
dT

dt
¼ T f �Tf ; (18)

tr
dM

dt
¼Mf �Mf : (19)

In steady-state, the above equations become Tf ¼ T f and Mf ¼Mf . The steady-state equation for

length then becomes 0¼ gkonMfT f � d, that is length drops out of the assembly term completely!

Therefore, this external control mechanism actually destabilizes the flagellar lengths (see Figure 3—

videos 4—6 to observe this destabilization for various modes of coupling). Note that although we

have used the simplest case of linear feedback Equations 18 and 19 to illustrate the point, this argu-

ment is general and does not depend on the details of the control mechanism. The only requirement

is that the free protein levels Tf and Mf are driven to their target values T f and M f in steady state.

This argument gives another compelling reason to look beyond the constant disassembly models

considered thus far.

Tubulin shared, motors shared and concentration-dependent
disassembly
We next consider a model that allows for full exchange of IFT components between basal protein

pools and replaces the constant disassembly assumption with a concentration-dependent disassem-

bly rate. The assumption of a constant disassembly rate was based on experiments on mutants in

which IFT was disabled (Marshall et al., 2005). However, subsequent experiments in organisms with

intact IFT led to 50-fold greater disassembly rates than those measured in the absence of IFT

(Ludington et al., 2012).

Experimental observations that some kinesin species (e.g. kinesin-13) participate in microtubule

disassembly (Piao et al., 2009) provide a potential biochemical basis for IFT-dependent disassembly.

In what follows we take the disassembly rate to depend on the concentration of a depolymerizing

protein. This is a reasonable model for a depolymerizer that is non-processive in its depolymerization

activity in that it removes at most a few tubulin subunits before falling off into a deactivated state.

(The case of processive depolymerizers is investigated in Appendix 3).

We will assume that the depolymerizer has the same motion as kinesin-2—uninterrupted ballistic

motion to the tip followed by diffusive motion to the base—resulting in a linear concentration pro-

file. This would be the case for any non-motile protein that is transported ballistically to the flagellar

tip as IFT cargo and diffuses back to the flagellar base. Note however that the ballistic-to-diffusive

assumption is not essential for the model; so long as there is a gradient in the depolymerizer con-

centration, the conclusion of simultaneous length control holds. The essential ingredient is the non-

constant concentration along the length of the flagellum, which in this case is achieved by ballistic

anterograde motion and diffusive return.

Given that the formulas for the steady-state flux apply for any rate-limiting IFT protein undergo-

ing ballistic-to-diffusive motion along the flagella, for convenience we assume in what follows that

the depolymerizer is the rate-limiting protein. However, this assumption is made only for conve-

nience; in the more general case that the depolymerizer and the rate-limiting IFT protein are differ-

ent, the same results are obtained with suitably rescaled parameters, as shown in Appendix 3.

We replace the assumption of constant disassembly by a disassembly speed of the form

d0 þ d1cdðLÞ, where cdðLÞ is the concentration of diffusing motors at the tip of the flagellum and

d1>0. In general the disassembly rate may be an arbitrary function of concentration, in which case

this model may be viewed as a first-order Taylor series expansion valid near steady-state. The flux

and concentration at the flagellar tip are related by cdðLÞ ¼ JL=D (Equation 31 in Materials and

methods and Figure 2b (inset)), so that we may rewrite the governing equations as

dL1

dt
¼ gJðT �L1�L2Þ� d0 � d1

JL1

D
; (20)
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dL2

dt
¼ gJðT �L1�L2Þ� d0 � d1

JL2

D
; (21)

where as before in the case of shared motors

J ¼
konM=2

1þ konðL1 þL2Þ=2vþ konðL21 þL2
2
Þ=4D

: (22)

This model yields simultaneous length control and length equalization after severing (Figure 4

and Figure 4—video 1). Subtracting Equation 21 from Equation 20, it follows immediately that

L1;ss ¼ L2;ss ¼: Lss, and solving for the steady-state length results in

Lss ¼
D

v
þ
gDM

d0
þ
Md1

2d0

� �
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

d0T

gMD

� �
1� 2d0=gkonMT

1þ d0=gMvþ d1=2gDð Þ2

s8
>>>>:

9
>>>>;: (23)

In Appendix 3 we show that this solution is stable using linear stability analysis. Therefore, concentra-

tion-dependent disassembly yields simultaneous length control when all biomolecules are shared

between flagella and is consistent with the rapid length equalization observed after severing

Figure 4b. The presence of a concentration gradient is a critical ingredient in this model and here it

is achieved by ballistic transport to the flagellar tip with diffusive return. The concentration gradient

makes the disassembly rates length-dependent and yields independent equations for the steady-

state lengths.

Unlike the constant disassembly models we have considered, for which a limiting-pool mechanism

is essential for length control, concentration-dependent disassembly yields length control under mild

assumptions including the case that all biomolecules are in excess. Nevertheless, limiting-pools of

biomolecules are needed to capture the depletion effects observed in severing experiments on

Chlamydomonas, for example the shortening of the unsevered flagellum and the previously-men-

tioned absence of length recovery after cyclohexamide treatment (Rosenbaum et al., 1969). In

Appendix 3 we explain that limiting pools of IFT motors are necessary for agreement with data

whereas tubulin may either be limited or in excess. The presence of a limiting-pool once again raises

the question, now in the context of concentration-dependent disassembly, of how biomolecules may

be shared between flagella. In Appendix 3 we show that all relevant biomolecule pools must be

shared for the concentration-dependent disassembly model to capture the rapid length equalization

observed.

Another feature of the concentration-dependent disassembly model is that it allows for an exter-

nal control mechanism on protein levels in the basal pool, unlike the constant disassembly models

we have considered. As shown in Figure 4c and Figure 4—video 2, upon including protein replen-

ishment via Equations 18 and 19 on a timescale of tr ¼ 10 mins, the recovery of the flagella back to

their original lengths is in reasonable agreement with experimental data.

Generalization to N>2 flagella
The concentration-dependent disassembly model may be generalized to arbitrary flagellar number

N, and here we demonstrate simultaneous length control in the case of N ¼ 8 flagella (Figure 5).

Because motors are shared, the injection fluxes are equal and Ji ¼ J for all i ¼ 1 . . .N, with J

satisfying

J ¼
konM=N

1þ konð
PN

i¼1
LiÞ=Nvþ konð

PN
i¼1

L2i Þ=2ND
; (24)

and length dynamics given by

dLi

dt
¼ gJ T �

XN

j¼1

Lj

 !
� d0 � d1

JLi

D
; i¼ 1 . . .N; (25)

where we have applied the boundary condition cd;ið0Þ ¼ 0 as before. Taking any pairwise difference

between the ith and jth equations at steady-state yields immediately Li;ss ¼ Lj;ss, so that the steady-

state lengths are equal to
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Figure 4. Concentration-dependent disassembly model: simultaneous length control is achieved using shared tubulin and shared depolymerizers. (a)

The depolymerizer moves ballistically to the flagellar tip and diffuses back, (b) The model Equations 20 and 21 captures rapid length equalization, (c)

Protein replenishment with timescale tr ¼ 5 min is included through Equations 18 and 19 and the model is fit to severing data from Ludington et al.

(2012) (and to Rosenbaum et al., 1969, see inset). For the fit to Ludington et al. (2012), we use fitting parameters of Lss ¼ 12:5�m, T ¼ 28�m,

d0 ¼ 2�m=min, d1 ¼ 2:7� 10
�3 �m2=min, and gkonM ¼ 2:5min�1; all other parameters are as in Table 1. For the fit to Rosenbaum et al. (1969), we use

the same fitting parameters except for tr ¼ 8min, Lss ¼ 10:2�m, and d1 ¼ 8:4� 10
�3�m2=min.

The online version of this article includes the following video(s) for figure 4:

Figure 4—video 1. The active disassembly model with both tubulin and motors shared but without protein replenishment exhibits rapid length

equalization.

https://elifesciences.org/articles/42599#fig4video1

Figure 4—video 2. Replenishing protein pools in the active disassembly model with both tubulin and motors shared exhibits rapid length equalization

and slow recovery.

https://elifesciences.org/articles/42599#fig4video2
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Li;ss ¼
D

v
þ
gDM

d0
þ
Md1

Nd0

� �
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2d0T

NgMD

� �
1�Nd0=gkonMT

1þ d0=gMvþ d1=NgDð Þ2

s !
; (26)

for all i¼ 1; . . . ;N. Stability follows from analyzing the linearized equations, as shown in Appendix 3.

Discussion
In this work, we capture the aspects of IFT essential for length control, that is the motor-driven trans-

port of tubulin across the flagellum, to explore models of flagellar length dynamics. Our theoretical

framework makes it possible to investigate the consequences of biomolecule exchange between fla-

gella on length control. In our initial exploration, in which we take the disassembly rate to be con-

stant, we find that sharing both tubulin and motors leads to an indeterminate system of equations

regardless of the details of the model, whereas sharing either tubulin or motors, but not both,

results in simultaneous length control of both flagella. However, by examining the steady-state

lengths immediately before and after severing and accounting for depletion in both the tubulin and

motor pools, we observe that none of the constant disassembly models we have considered are

able to capture the length equalization observed in experiments.

Given that the constant disassembly models we have considered are unable to explain the experi-

ments, we have proposed a model in which disassembly depends on the local concentration of a

depolymerizing protein at the tip of the flagellum (Figure 4). In this ‘active disassembly’ model, a

length-dependent concentration at the tip is achieved by assuming that the depolymerizer under-

goes ballistic motion to the tip and returns diffusively. This model agrees with the results of severing

experiments. As suggested by the title of Hendel et al. (2018), the linear concentration gradient

generated by diffusion acts as a ruler. However, in our model diffusion must be combined with a

mechanism such as concentration-dependent disassembly; the constant disassembly models we

have considered are inconsistent with severing experiments regardless of whether the motor dynam-

ics are ballistic, diffusive, or some combination.

We remark on the differences between our model and Hendel et al. (2018), in which simulta-

neous length control was obtained using a balance point model with constant disassembly. As we

describe in Materials and methods, the formulation of Hendel et al. (2018) is very similar to Equa-

tions 56 and 57 derived in the case of shared tubulin pools and separate motor pools with constant

disassembly. Whereas these equations do not lead to length equalization after severing in the case

of no protein replenishment (Figure 3b(iii)), the model of Hendel et al. (2018) achieves length

equalization by replenishing the total number of motors on the flagellum, that is through an addi-

tional control mechanism that instantaneously

adds the motors lost through severing back into

the basal pool. The importance of replenishment

for the model appears to be inconsistent with

severing experiments that show length equaliza-

tion occurs even when protein synthesis is

blocked using cyclohexamide (Rosenbaum et al.,

1969). In contrast, the concentration-dependent

disassembly model achieves length equalization

with or without replenishment (Figure 4b and

Figure 4c). Note further that controlling motor

number in the flagellum is not equivalent to con-

trolling protein concentrations in the basal pool.

As shown in Results, when basal pool concentra-

tions are controlled according to Equations 18

and 19, there is a breakdown of length control

for the constant disassembly models.

Our model predicts that the tubulin and depo-

lymerizer pools must both be shared for the con-

centration-dependent disassembly model to

capture the rapid length equalization observed
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time (min)

0

5

10

15

L
e

n
g

th
 (

u
m

)
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Figure 5. The concentration-dependent disassembly

model generalizes to arbitrary flagellar number N. We

solve (Equations 25) with N ¼ 8 flagella and the larger

shared pool T ¼ 336�m, d0 ¼ 0:1�m=min, and

d1 ¼ 120�m2=min; otherwise all parameters are as in

Table 1.
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(Appendix 3). This illustrates the dramatic consequences in behavior that can occur when biomole-

cules are shared between compartments, and highlights the importance of knowing which proteins

are exchanged between the basal pools in the context of flagellar length control. In particular, hav-

ing a protein that is not exchanged can provide simultaneous length control by a limiting-pool mech-

anism, but it introduces asymmetries that contradict the length equalization observed in severing

experiments.

In addition to our claim that the depolymerization rate is non-constant and dependent on length,

our model leads to testable predictions that may be useful in identifying candidate depolymerizers.

For example, according to our model the depolymerizer active in length control is not uniformly dis-

tributed along the flagellum; its concentration increases toward the flagellar tip. This could be tested

experimentally by fluorescently labeling candidate depolymerizers and studying their concentration

profiles along the flagellum as recently done to characterize the concentration profile of kinesin-13

in Giardia (McInally et al., 2019).

In our model the essential ingredient that leads to simultaneous length control is the presence of

a depolymerizing protein with a concentration gradient along the flagellum. How proteins can

develop and maintain such concentration profiles is therefore one of the key questions raised by the

model. Indeed, concentration gradients (unassociated with depolymerizing activity) were observed

already in Hendel et al. (2018) as the result of ballistic-to-diffusive motion. Although here as proof

of principle this concentration gradient is achieved by the mechanism of ballistic-to-diffusive motion,

our main results are independent of the detailed form of this concentration gradient and how it is

generated. As shown in Appendix 3—figure 3b, our model allows for depolymerizers with nonlinear

concentration profiles and different patterns of motion, for example exponential concentration distri-

butions such as those recently observed in Giardia (McInally et al., 2019) and those generated by

motile proteins that bind and unbind to cytoskeletal filaments, as theorized in the context of actin-

myosin systems (Naoz et al., 2008; Orly et al., 2014; Pinkoviezky and Gov, 2014;

Pinkoviezky and Gov, 2017; Yochelis et al., 2015).

Our main results do not rely on many of the details of the model. Although here we have taken

depolymerase activity to depend linearly on concentration, the model generalizes to the non-linear

case in a straightforward manner. For a local depolymerization rate that is an arbitrary function of

concentration, a Taylor series expansion may be performed as in Klein et al. (2005) to obtain the

corresponding linearized system discussed in Appendix 3. Further, whereas here we have explored

the case of non-motile depolymerizers transported to the flagellar tip by IFT, motile proteins could

in principle aggregate at the flagellar tip independent of IFT. Although we are not aware of any such

examples in Chlamydomonas, interestingly in budding yeast the motile protein Kip3p has been

shown to depolymerize microtubules in a length-dependent manner (Varga et al., 2009). The aggre-

gation of motile depolymerizing proteins has also been demonstrated in previous theoretical studies

of microtubule length control (Klein et al., 2005; Johann et al., 2012; Reese et al., 2014); note

however that these previous works differed from our model of flagellar IFT in that they considered

isolated microtubules surrounded by a constant concentration bath and/or significant steric interac-

tions between motile proteins.

Finally, although in principle concentration-dependent disassembly yields length control even the

case that all biomolecules are in excess, in Chlamydomonas severing experiments have shown that

depletion effects are important (e.g. cyclohexamide treatment yields short flagella that do not return

to their original steady-state lengths [Rosenbaum et al., 1969]). Within our model such depletion

effects arise through limiting-pools of proteins, and in Appendix 3 we explain that limiting pools of

IFT motors are necessary for agreement with data whereas tubulin may either be limited or in

excess.

Although our results suggest that having a depolymerizer—one which is ballistically transported

to the tip and then diffuses back—provides an appealing model for simultaneous length control,

such a depolymeriser has yet to be identified in Chlamydomonas. Further experiments such as the

single molecule turnaround experiments pioneered recently in C. elegans (Mijalkovic et al., 2018)

are needed to establish the identity of the hypothesized depolymerizer. While recent experiments

have shown kinesin-13 to be involved in length control in Giardia (McInally et al., 2019), the obser-

vation that only negligible amounts of flagellar kinesin-13 are present at steady-state (Wang et al.,

2013) appears to preclude it from being the candidate depolymerizer of our model. Other candi-

dates include aurora-like kinase CALK, which has been shown to influence disassembly through its
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state of phosphorylation (Luo et al., 2011; Cao et al., 2013), and CNK2, a NIMA-related protein

kinase known to localize to flagella (Bradley and Quarmby, 2005) whose absence yields Chlamydo-

monas with abnormally long flagella and decreased disassembly rates (Hilton et al., 2013).

On the side of theory, a promising avenue to further test the active disassembly model and dis-

criminate between different possibilities is to study length fluctuations about steady-state. This could

be done using agent-based stochastic simulations, stochastic differential equations, or a combination

of the two. The fluctuation spectra of each model provides a signature that can be used to assess

both the general model framework and to test the autocorrelation timescales predicted by each

model (Amir and Balaban, 2018).

Materials and methods

Single flagellum
We first consider a single flagellum with time-dependent length LðtÞ. Given the highly regular struc-

ture of the axoneme revealed by cryo-electron microscopy (Bui et al., 2008; Barber et al., 2012),

we assume a constant cross-sectional area in which case the flagellar geometry is fully described by

its length. In our model the flagellar assembly rate is proportional to the flux J of IFT particles times

the tubulin carried per particle. The tubulin carried is proportional to the amount of free tubulin Tf ,

assuming mass action kinetics in the basal pool (i.e. constant probability per time of tubulin binding

to an IFT particle). For now we take the disassembly speed to be equal to a constant d. This yields

the growth rate

dL

dt
¼ gJTf � d: (27)

As described in Results, we assume that motors are conserved having total number

M ¼Mf þMbþMd, where Mf is the number of motors freely available in the basal protein pool, Mb is

the number of motors moving ballistically on the flagellum in IFT particles, and Md is the number of

motors moving diffusively.

We assume a limiting pool of tubulin in addition to the limiting pool of motors, that is tubulin is

conserved with total amount T ¼ Tf þ L. As the flagellum grows it incorporates more tubulin and the

size of the free tubulin pool decreases. (In reality T ¼ Tb þ Tf þ L, where Tb is the amount of tubulin

undergoing IFT, but this correction is negligible; the amount of tubulin moving ballistically in IFT sat-

isfies Tb=Tf<2gkonMLss=v, and consequently Tb=Tf<2:6� 10
�3 for the parameters contained in

Table 1).

Flux balance
In our model the flux, or injection rate, is proportional to the number of free molecular motors Mf so

that

J ¼ konMf ; (28)

according to mass action kinetics with first-order rate constant kon. By mass action and conservation

of motors, the flux of motors may be expressed as

J ¼ konðM�Mb�MdÞ: (29)

The ballistic flux is related to concentration in a simple manner. It satisfies J ¼ cav, where ca is the

average concentration of motors moving in the anterograde direction and v is the anterograde

velocity. (As mentioned previously, it follows from the quasi-steady state assumption that the injec-

tion flux, anterograde flux, and retrograde flux are equal so that there is a single flux J.) Therefore

Mb ¼ Lca ¼ LJ=v: (30)

In quasi-steady state, the diffusive flux Dqcd=qx must equal the injection rate J. By Fick’s law, for con-

stant J the concentration profile cdðxÞ of the diffusing motors is linear, that is
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cdðxÞ ¼ cd þ
J

D
x�

L

2

� �
; (31)

in which cd is the average concentration along the flagellum and D is the diffusion constant

(Figure 2b (inset)). We treat the flagellar base as a diffusive sink by fixing the boundary condition

cdð0Þ ¼ 0, which assumes that motors in the basal pool cannot leak diffusively into the flagellum;

instead they attach to the microtubules in the axoneme and move directionally toward the tip (More

general boundary conditions are discussed in Appendix 2.) This implies that

cd ¼
JL

2D
: (32)

Therefore

Md ¼ cdL¼
JL

2D

� �
L¼

JL2

2D
; (33)

for the diffusively-moving motors. Substituting the expressions Equation 30 and Equation 33 for Mb

and Md into Equation 29 results in

J ¼
konM

1þ konL=vþ konL2=2D
: (34)

The denominator is a quadratic function in length, and it is interesting to note that the flux has a sim-

ilar functional form to the familiar substrate production rate in Michaelis-Menten enzyme kinetics

(Fall, 2002); this is because of the separation of timescales assumption invoked in both derivations.

Using the above expression for the flux in the growth rate Equation 27 together with the relation

Tf ¼ T � L gives

dL

dt
¼

gkonM

1þ konL=vþ konL2=2D
ðT �LÞ� d: (35)

Solving Equation 35 for the steady-state results in a quadratic equation for Lss. One root is always

negative, leaving the solution

Lss ¼
D

v
þ
gDM

d

� �
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2dT

gMD

� �
1� d=gkonMT

1þ d=gMvð Þ2

s !
; (36)

which is positive provided that T>d=gkM. (We remind the reader that terms such as d=gkonM are to

be interpreted as d=ðgkonMÞ.) This inequality provides a theoretical lower limit on the product of total

motors and tubulin needed to obtain a positive steady-state length. When the inequality is not satis-

fied, that is T � d=gkonM, the disassembly term dominates and the length shrinks to zero.

We evaluate the stability of this solution by linearizing about Lss. Expanding to first order in

DL :¼ L� Lss, we find that the steady-state is stable, that is dðDLÞ=dt ¼ �lðDLÞ with l a positive con-

stant given by

l¼
gkonM

1þ konLss=vþ konL2ss=2D

� �
1þ

kon=vþ konLss=D

1þ konLss=vþ konL2ss=2D
ðT �LssÞ

� �
: (37)

Based on the parameters estimated in Appendix 2, the associated timescale t :¼ 1=l is approxi-

mately 15 min, which is consistent with experiment. This timescale is long compared to the few tens

of seconds needed for molecular motors to traverse the flagellum in IFT, which justifies a posteriori

our approximation of IFT as a quasi-steady state process.

We next consider the parameter space associated with the length dynamics. Introducing the non-

dimensional length eL ¼ L=Lss and nondimensional time et ¼ tgkonMT=Lss, we may rewrite Equation 35

in terms of the dimensionless parameters p1 ¼ d=gkonMT, p2 ¼ Lss=T , p3 ¼ konLss=v, and

p4 ¼ konL
2

ss=2D as
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deL
det ¼

1�p2
eL

1þp3
eLþp4

eL2
�p1: (38)

We interpret these parameters as follows: p1 is the ratio of disassembly and assembly rates, p2 is

the fraction of the tubulin pool taken up by the flagellum at steady-state, p3 ¼ tb=ti is the ratio of

the ballistic timescale tb :¼ Lss=v of IFT transport to the injection timescale ti :¼ k�1

on , and p4 ¼ td=ti is

an analogous ratio of the diffusive timescale td ¼ L2ss=2D to the injection timescale. (We could equiva-

lently think of p3 and p4 as ratios of lengthscales related to the same physical processes.)

In terms of the experimentally measured parameters and those estimated in Appendix 2, we find

p1 » 0:4, p2 » 0:2, p3 » 0:1, and p4 » 0:8. The relatively small values of p2 and p3 lead us to consider

the limit p2 ! 0 (i.e. no tubulin depletion) and p3 ! 0 (i.e. instantaneous ballistic motion). In this

limit, we have

dL

dt
¼

gkonMT

1þ konL2=2D
� d; (39)

nearly recovering the model of Hendel et al. (2018) with the distinction that, as mentioned above,

in our model there is an additional constant term in the denominator. Note however that the essen-

tial difference between our model and Hendel et al. (2018) lies in their effective control mechanism

on the number of motors loaded on the flagella, which is not captured by any differences in these

formulas (see Discussion).

Two flagella
In the case of two flagella with lengths L1ðtÞ and L2ðtÞ the length dynamics are given by

dL1

dt
¼ gJ1Tf ;1� d; (40)

dL2

dt
¼ gJ2Tf ;2� d; (41)

where Ji and Tf ;i for i¼ 1; 2 denote the fluxes and free amounts of tubulin for the two flagella, which

may be equal when the biomolecule pools are shared. We consider various modes of coupling

between the flagella giving rise to different forms of Ji and Tf ;i and their consequences for length

control. To assess whether a model achieves simultaneous length control we analyze the stability of

solutions to the following steady-state equations:

0¼ gJ1Tf ;1� d; (42)

0¼ gJ2Tf ;2� d: (43)

Here, we focus on short-time behavior, that is whether a candidate model yields rapid length equali-

zation, and do not include the protein replenishment that takes place over a longer timescale.

Tubulin separate, motors separate
The presence of separate tubulin pools and separate motor pools leads to two uncoupled instances

of the single flagellum dynamics, that is

dL1

dt
¼

gkonM1

1þ konL1=vþ konL
2

1
=2D

ðT1�L1Þ� d; (44)

dL2

dt
¼

gkonM2

1þ konL2=vþ konL
2

2
=2D

ðT2�L2Þ� d: (45)

Setting M1 ¼M2 ¼M and T1 ¼ T2 ¼ T leads to steady state lengths given by Equation 36.
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Tubulin separate, motors shared
In the case of separate tubulin pools, we have Tf ;1 ¼ T1 � L1 and Tf ;2 ¼ T2 � L2. The flux may be cal-

culated according to

J ¼
1

2
konMf ¼

1

2
konðM�Mb �MdÞ; (46)

where the factor of one-half comes from assuming equal injection probability into either flagellum.

Further, Mb ¼ JðL1 þL2Þ=v and

Md ¼ cd;1L1 þ cd;2L2 ¼ J
L2
1

2D
þ

L2
2

2D

� �
; (47)

so that

J ¼
konM=2

1þ konðL1 þL2Þ=2vþ konðL21 þL2
2
Þ=4D

: (48)

This yields the flagellar length dynamics

dL1

dt
¼

gkonM=2

1þ konðL1 þL2Þ=2vþ konðL21þL2
2
Þ=4D

ðT1�L1Þ� d; (49)

dL2

dt
¼

gkonM=2

1þ konðL1 þL2Þ=2vþ konðL21þL2
2
Þ=4D

ðT2�L2Þ� d: (50)

The steady-state equations are given by

0¼ gJðT1 �L1;ssÞ� d; (51)

0¼ gJðT2 �L2;ssÞ� d: (52)

When T1 ¼ T2 it follows from subtracting the above equations that L1;ss ¼ L2;ss. The steady-state equa-

tions are identical to the corresponding steady-state Equation 35 for a single flagellum with M

replaced by M=2. Therefore the steady-state length satisfies Equation 36 upon rescaling M!M=2:

L1;ss ¼ L2;ss ¼
D

v
þ
gDM

2d

� �
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4dT

gMD

� �
1� 2d=gkonMT

1þ 2d=gMvð Þ2

s !
: (53)

The steady state lengths are only equal if T1 ¼ T2, which is not the case after asymmetrical depletion

of tubulin pools by severing (see Figure 3b(ii)).

Tubulin shared, motors separate
We next consider the case in which tubulin is shared but the motor pools are separate. The separate

motor pools yield decoupled fluxes identical to Equations 44 and 45:

J1 ¼
konM1

1þ konL1=vþ konL
2

1
=2D

; (54)

J2 ¼
konM2

1þ konL2=vþ konL
2

2
=2D

; (55)

which leads to the systems of equations

dL1

dt
¼

gkonM1

1þ konL1=vþ konL
2

1
=2D

ðT �L1 �L2Þ� d; (56)

dL2

dt
¼

gkonM2

1þ konL2=vþ konL
2

2
=2D

ðT �L1 �L2Þ� d: (57)
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This system of equations is similar to the case of no sharing given by Equations 44-45, with the

notable exception that the equations are coupled through the shared tubulin pool term

T �L1�L2. The resulting steady-state equations are identical to those of Equation 35 for a single

flagellum, with T replaced by T=2 and g replaced by 2g. Therefore the steady-state lengths satisfy

Equation 36 upon rescaling T ! T=2 and g! 2g. This model yields simultaneous length control, and

the resulting steady-state lengths satisfy L1;ss ¼ L2;ss only if M1 ¼M2 ¼M. It follows that the steady-

state lengths are unequal after severing because one of the two motor pools is depleted.

The model equations have a similar form to existing models (Marshall et al., 2005; Hendel et al.,

2018), in which the assembly rates involve a factor of T � L1 � L2 and either a 1=Li or 1=L
2

i -depen-

dence in the denominator, for i ¼ 1; 2 as discussed earlier in the context of a single growing flagel-

lum. Although the equations are similar, the absence of length equalization in our model

(Figure 3biii) contrasts with the length equalization achieved in Hendel et al. (2018) by an addi-

tional control mechanism that instantaneously replenishes the number of motors on the flagellum

after severing. As noted in the Discussion, the importance of protein replenishment for the model

appears to be inconsistent with experimental results (Rosenbaum et al., 1969), which show that

length equalization occurs even in the absence of new protein synthesis.

Tubulin shared, motors shared
We finally consider the case in which both tubulin and motors are shared through a common pool.

By the shared tubulin pool assumption Tf ;1 ¼ Tf ;2 ¼ T � L1 � L2. Further, by the shared motor pool

assumption the injection rates satisfy J1 ¼ J2 � J. Therefore

dL1

dt
¼ gJðT �L1 �L2Þ� d; (58)

dL2

dt
¼ gJðT �L1 �L2Þ� d; (59)

in which J satisfies Equation 48. We are left with the steady-state equations

0¼ gJðT �L1;ss �L2;ssÞ� d; (60)

0¼ gJðT �L1;ss �L2;ssÞ� d: (61)

These equations are identical, so that there is only a single equation for the two unknowns L1;ss and

L2;ss and the steady-state lengths are indeterminate provided that the disassembly rate is constant.

Note that this conclusion holds regardless of the particular form of the flux.

We next use linear stability analysis to demonstrate this breakdown of simultaneous length in

greater detail. Let L1;ss and L2;ss denote any one of the infinitely-many possible solutions to Equa-

tions 60 and 61. Letting DL1 and DL2 be the deviations from steady-state such that L1 ¼ L1;ss þ DL1

and L2 ¼ L2;ss þ DL2, linearizing about any one of these solutions yields a matrix equation of the form

d

dt

DL1

DL2

� �
¼�

a a

a a

� �
DL1

DL2

� �
; (62)

for a>0. The 2 � 2 matrix above has an vanishing eigenvalue, as we now show. Diagonalizing in

terms of the sum S¼ DL1þDL2 and difference G¼ DL1 �DL2 gives

d

dt

S

G

� �
¼�

2a 0

0 0

� �
S

G

� �
: (63)

There is a vanishing eigenvalue associated to the difference of lengths, that is perturbations from

steady-state in the difference of lengths do not decay on a finite timescale. This is consistent with

previous results from stochastic simulations that the model with constant disassembly in which all

biomolecules are shared does not yield simultaneous length control (Mohapatra et al., 2017). Noise

must be included to observe this result; if fluctuations are not included, as in the deterministic ODE,
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any initial state with the correct sum in lengths appears stable. This is because the zero eigenvalue

causes such states to be marginally stable.
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Appendix 1

Stochastic simulation
The simulations are done using an agent-based model in which individual motors are tracked

at each point of time, similar to that used in Hendel et al. (2018).

The simulations are run for a fixed amount of time discretized into small time steps of size

Dt. Parameters such as the diffusion constant D, velocity v, disassembly rate d, and injection

rate kon are fixed. Four different variables are tracked for each motor:

. A variable indicating whether motors are located in the basal pool (value 0) or the flagellum
(value 1). In the case of multiple flagella with shared motors, each flagellum is assigned a dif-
ferent positive integer.

. A Boolean variable indicating whether motors are undergoing ballistic or diffusive motion.

. The position xjðtÞ of motor j for j ¼ 1; . . . ;M.

. The amount of tubulin tjðtÞ carried by the motor (tj ¼ gTf at the time of injection).

The following processes take place at each time step:

. The length of each flagellum LiðtÞ for i ¼ 1; 2 is decreased by a constant amount dDt (in the
case of constant disassembly) or by an amount ðd0 þ d1cdðLÞÞDt (in the case of concentration-
dependent disassembly), where the concentration cdðLÞ is computed by counting the number
of diffusing motors within 1 mm of the flagellar tip.

. Motors are injected into the flagella with a probability konMfDt, where Mf is the number of

motors in the basal pool.
. Motors undergoing ballistic motion are advanced along the flagellum by a constant amount

vDt.
. Motors undergoing diffusive motion are advanced by a random amount drawn from a normal

distribution with mean 0 and variance 2DDt.
. If a motor undergoing ballistic motion reaches the tip of the flagellum, the flagellar length is

increased by the amount of tubulin tj carried by the motor. The motion of the motor is

changed to diffusive and its position is reset to LðtÞ, that is the location of the flagellar tip.
. If the position of a motor moving diffusively exceeds the length of flagella, that is xjðtÞ>LðtÞ,

it is reflected according to xjðtÞ ! LðtÞ � xjðtÞ � LðtÞ
� �

.
. If a diffusive motor reaches the base of the flagellum, it is taken up into the basal pool and

stops diffusing. This enforces the absorbing boundary condition cdð0Þ ¼ 0.

By advancing the above processes in time, we obtain the length profiles LiðtÞ.

To simulate the severing experiments, the length of one flagellum is shortened at a

particular time and the motors and tubulin within the severed part of the flagellum are lost.

For those simulations with no protein replenishment (Figure 3—videos 1, 2, 3 and

Figure 4—video 1) we fix the total amount of tubulin T and the total number of motors M.

For those simulations in which we incorporate the replenishment of proteins in the basal pool

(Figure 3—videos 4, 5, 6 and Figure 4—video 2), the target protein numbers T f and M f are

fixed along with the timescale of replenishment tr. At each time step, there is a possibility of

adding or removing a protein to or from the basal pool. The probability of addition or removal

is proportional to the difference between the target number and the number of proteins

currently in the basal pool.

The videos were made using the following parameters: D ¼ 1:7�m2=s, kon ¼ 0:075 s�1,

T ¼ 38�m=flagellum, M ¼ 200=flagellum, g ¼ 2:5� 10
�4, d0 ¼ 0:01�m=s, d1 ¼ 1:7� 10

�3 �m2=s,

v ¼ 2:5�m=s. In Figure 3—videos 4–6, the replenishment timescale is tr ¼ 300 s.
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Appendix 2

Parameter estimation
To estimate the model parameters, we fit to experimentally-measured data. First, we

extrapolate from Marshall et al. (2005) to estimate that the growth rate upon severing a

flagellum is approximately 0.4 mm/min. This implies

gkonMT � d»0:4: (64)

We next estimate the product gkonM. To do so, we use the measured disassembly speed d¼

0:5�m=min (Marshall and Rosenbaum, 2001) and an estimated initial tubulin pool of

T ¼ 25� 40�m. This yields gkonM ¼ 2:3� 10
�2–3:6� 10

�2min�1. The estimate T for the tubulin

pool of a single flagellum is based on the reported amount 76–94 �m for the total tubulin

shared by two flagella (Marshall et al., 2005), allowing for some tubulin loss after severing.

The estimate for gkonM is not expected to be very precise, particularly given that the total

tubulin pool size from Marshall et al. (2005) was itself obtained by fitting the parameters of a

related model to data on mutants with extra flagella.

We subsequently estimate kon by fitting it to the steady-state length observed in the

severing experiment. Returning to Equation 35, we may express kon in terms of quantities that

have already been measured or estimated:

kon »
Lss

v
þ
L2ss
2D

� ��1
gkM

d
ðT �LssÞ� 1

� �
: (65)

Plugging in the values for gkM,d, and T above as well as the measured values v¼ 150�m=min

(Kozminski et al., 1993; Buisson et al., 2013), D¼ 102�m2=min (Chien et al., 2017), and Lss ¼

10�m measured in Ludington et al. (2012), we obtain kon ¼ 0:8� 4:5min�1. See the parameter

values and definitions in Table 1.

Boundary conditions
Here we discuss potential boundary conditions besides the diffusive sink cdð0Þ ¼ 0 described in

Materials and methods. Repeating the previous calculation for a general prescribed

concentration cdð0Þ ¼ c0 at the flagellar base yields

J ¼
konðM� c0LÞ

1þ konL=vþ konL2=2D
: (66)

Therefore, to first order in DL¼ L�Lss the effect of nonzero c0 is equivalent to rescaling M in

Equation 4.

We also consider the scenario in which the basal pool concentration depends on the

number of free molecular motors Mf through cdð0Þ ¼ AMf =V , where A and V are geometric

parameters representing the flagellar cross sectional area A and the basal pool volume V ,

respectively. Mass action kinetics of injection J ¼ konMf may be used to rewrite the

basal concentration as cdð0Þ ¼ AJ=ðkonVÞ. Substituting this expression into Equation 66 results

in

J ¼
konM

1þ kon=vþA=Vð ÞLþ konL2=2D
: (67)

Therefore, to first order in DL the effect of the boundary condition in this case is equivalent to

rescaling v! v=ð1þðA=VÞðv=konÞÞ in Equation 4.
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Appendix 3

Concentration-dependent disassembly model

Separate pools
We test various modes of coupling within the concentration-dependent depolymerization

model and find that only the case of fully shared biomolecule pools is consistent with data

(Appendix 3—figure 1). Unlike the constant disassembly models we have considered, there is

some degree of length recovery after severing when only one biomolecule is shared. However,

there is still no length equalization after severing because of the asymmetical depletion caused

by separate pools.

(i) (ii)

(iii) (iv)

Depolymerizer separate Depolymerizer shared

Tubulin

separate

Tubulin

shared

No coupling

No length equalization
No length equalization

No length equalization Rapid length equalization

Appendix 3—figure 1. Concentration-dependent disassembly model: simulations of severing

experiment with different modes of coupling between basal pools (and no replenishment of

protein levels). We conclude that biomolecule pools are fully shared after ruling out all models

that disagree with the rapid length equalization that occurs in severing experiments. (i) In the

case of separate pools of both tubulin and depolymerizers, the unsevered flagellum does not

decrease in length. (ii) When only depolymerizers are shared, the flagellar lengths do not

equalize after severing. (iii) When only tubulin is shared, the flagellar lengths do not equalize

after severing. (iv) When both tubulin and depolymerizers are shared, the flagella lengths

rapidly equalize after severing, as observed in experiments.
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Biomolecules in excess
Flagellar growth in Chlamydomonas is limited by the supply of proteins. As discussed in

Results, the importance of depletion effects is evidenced by the shortening of the long

flagellum in severing experiments and by the cyclohexamide experiments of

Rosenbaum et al. (1969) that blocked new protein synthesis and resulted in shorter flagella.

Within the proposed active disassembly model this limiting-pool mechanism may arise in three

ways: (i) both tubulin and motors are limited, (ii) tubulin is limited and motors are in excess, or

(iii) tubulin is in excess and motors are limited. In Figure 4 we considered case (i) given by

Equations 20 and 21 in which both biomolecules are limited. Here for completeness we

consider the other two cases as well. Case (ii) may immediately be ruled out: if the rate-

limiting IFT protein were in excess, their injection rate would not depend on flagellar length as

observed in experiments (Dentler, 2005). A limiting pool of IFT proteins is therefore necessary

for agreement with the severing data. We further consider the following model in which

tubulin is in excess:

dL1

dt
¼ gJT � d0� d1

JL1

D
; (68)

dL2

dt
¼ gJT � d0� d1

JL2

D
; (69)

where T is constant since tubulin is in excess and the flux J is given as before by

J ¼
konM=2

1þ konðL1 þL2Þ=2vþ konðL21þL2
2
Þ=4D

: (70)

Simulations show that the model Equations 68 and 69 is consistent with severing data

(Appendix 3—figure 2). Therefore, a limiting pool of IFT proteins is necessary for agreement

with data, whereas tubulin may either be limited or in excess.

Appendix 3—figure 2. Concentration-dependent disassembly model Equation 68 and 69 with

tubulin in excess yields rapid length equalization consistent with severing experiments, here

with replenishment timescale tr ¼ 5min.

Linearization
Stability is established by linearizing about steady-state. We perform the linearization for the

concentration-dependent disassembly model and discuss how the result generalizes to

simultaneous length control with arbitrary flagellar number.

Let DL1 and DL2 be the deviations from steady-state such that L1 ¼ Lss þ DL1 and

L2 ¼ Lss þ DL2. From (13), the flux J is given by
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J ¼
konM=2

1þ konððLssþDL1Þþ ðLssþDL2ÞÞ=2vþ konððLss þDL1Þ
2 þðLssþDL2Þ

2Þ=4D
; (71)

Keeping only terms up to first order in DL1 and DL2 in the denominator,

J ¼
konM=2

1þ konLss=vþ konL
2

ss=2Dþ konðDL1þDL2Þ=2vþ konLssðDL1 þDL2Þ=2D

þOðDL2
1
ÞþOðDL1 �DL2ÞþOðDL2

2
Þ;

(72)

so that the first-order Taylor series expansion yields

J ¼
konM=2

1þ konLss=vþ konL2ss=2D
1�

konðDL1 þDL2Þ=2vþ konLssðDL1þDL2Þ=2D

1þ konLss=vþ konL2ss=2D

� �

þOðDL1 �DL2ÞþOðDL2
2
Þ;

(73)

Substituting this expression for the flux into the dynamical equations Equations 20 and 21

results in

dðDL1Þ

dt
¼

d1konM=2D

1þ konLss=vþ konL2ss=2D
ð�DL1Þ

þ
gkonM=2

1þ konLss=vþ konL2ss=2D
1þ

kon=2vþ konLss=2Dð Þ T �ð2þ d1=gDÞLssð Þ

1þ konLss=vþ konL2ss=2D

� �
ð�DL1 �DL2Þ;

(74)

dðDL2Þ

dt
¼

d1konM=2D

1þ konLss=vþ konL2ss=2D
ð�DL2Þ

þ
gkonM=2

1þ konLss=vþ konL2ss=2D
1þ

kon=2vþ konLss=2Dð Þ T �ð2þ d1=gDÞLssð Þ

1þ konLss=vþ konL2ss=2D

� �
ð�DL1 �DL2Þ;

(75)

where we have retained terms up to first order in DL1 and DL2. Defining

a ¼
gkonM=2

1þ konLss=vþ konL2ss=2D
1þ

kon=2vþ konLss=2Dð Þ T �ð2þ d1=gDÞLssð Þ

1þ konLss=vþ konL2ss=2D

� �
;

b ¼
d1konM=2D

1þ konLss=vþ konL2ss=2D
;

we may write this system in the matrix form

d

dt

DL1

DL2

� �
¼�

aþ b a

a aþ b

� �
DL1

DL2

� �
: (76)

The matrix above is the sum of a rank-one matrix and a diagonal perturbation. Roughly

speaking, a corresponds to the shared quantities whereas b corresponds to the independent

quantities. This system may be diagonalized in terms of the sum S¼ DL1 þDL2 and difference

G¼ DL1 �DL2 to yield

d

dt

S

G

� �
¼�

2aþ b 0

0 b

� �
S

G

� �
: (77)

Note that the eigenvalues

lS ¼�ð2aþ bÞ; (78)

lG ¼�b; (79)

are both negative, so that the steady-state is stable, since b is clearly positive and T>2Lss
implies the positivity of a. The fact that lS and lG are distinct is noteworthy as it provides a

possible means to extract two independent parameters from experiment.
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Arbitrary flagellar number
This rank-one plus diagonal matrix structure also applies to the case of arbitrary flagellar

number N discussed in Results. Let DLi :¼ Li � Lss denote the deviation of the ith flagellum

from steady-state for i ¼ 1; . . . ;N. The linearized equations satisfy

DL¼MDL; (80)

where DL¼ ðDL1; . . . ;DLNÞ and the matrix M is of the form

M ¼�aR� bI; (81)

with R¼ 11
T the rank-one matrix satisfying Rij ¼ 1 for all i; j and I the N�N identity matrix,

for example for N = 3

M ¼�a

1 1 1

1 1 1

1 1 1

0
@

1
A� b

1 0 0

0 1 0

0 0 1

0
@

1
A¼

�a� b �a �a

�a �a� b �a

�a �a �a� b

0
@

1
A:

M is straightforward to diagonalize. The vector v1 :¼ 1¼ ð1; . . . ;1ÞT corresponding to the sum

of all lengths is an eigenvector of M:

M1 ¼�aR1� bI1

¼�ðaNþ bÞ1:
(82)

Further, for any vector x¼ ðx1; . . . ;xNÞ such that
PN

i¼1
xi ¼ 0, we have Rx¼ 0 and

Mx¼�bx; (83)

therefore it is an eigenvector with eigenvalue l¼�b. Note that the pairwise differences

vk ¼ ð0; :::0; 1|{z}
ðk�1Þstentry

; �1|{z}
kthentry

;0; :::;0Þ

for k¼ 2; . . . ;N form a convenient basis for the space of such vectors x whose components sum

to zero. In terms of the basis fv1;v2; . . . ;vNg consisting of the sum and differences in lengths,

the evolution equations diagonalize with eigenvalues

lSðNÞ ¼�aðNþ bÞ; (84)

lGðNÞ ¼�b; (85)

for the sum and differences, respectively, so that lSðNÞ is an eigenvalue of multiplicity 1 and

lGðNÞ is an eigenvalue of multiplicity N� 1. Note that in addition to the explicit dependence of

lSðNÞ and lGðNÞ on N there is an implicit number-dependence through the steady-state length

(and potentially the size of the pool T). Since lSðNÞ 6¼ lGðNÞ, the dynamics involve two distinct

timescales tSðNÞ ¼ lSðNÞ
�1 and tGðNÞ ¼ lGðNÞ

�1 corresponding to these two eigenvalues.

Different depolymerizer and rate-limiting IFT protein
In the description of the concentration-dependent disassembly model in Results, for

convenience we made the assumption that the depolymerizer is the rate-limiting IFT protein.

Here, we consider the more general case that the depolymerizer is not the rate-limiting IFT

protein, but rather a different protein that is carried to the flagellar tip by IFT and present in

excess in the basal pool. The formula derived in the manuscript for the flux J represents the

flux of IFT particles, and in this case the flux of depolymerizer is KJ, where the capacity K of

depolymerizers per IFT particle is assumed constant. Assuming the depolymerizer diffuses

Fai et al. eLife 2019;8:e42599. DOI: https://doi.org/10.7554/eLife.42599 29 of 31

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.42599


back from the flagellar tip with diffusivity D0, the concentration c0d of diffusing depolymerizer

proteins satisfies

D0 qc
0
d

qx
¼KJ; (86)

so that the concentration at position x along the flagellum satisfies c0dðxÞ ¼ c0
0
þ KJ

D0 x under the

boundary condition c0dð0Þ ¼ c0
0
. (Primes are used to distinguish the parameters for the

depolymerizer from those of the rate-limiting IFT protein.) In this case the dynamical equations

for length become

dL1

dt
¼ gJðT �L1 �L2Þ� d0 � d1 c0

0
þ
KJL1

D0

� �
; (87)

dL2

dt
¼ gJðT �L1 �L2Þ� d0 � d1 c0

0
þ
KJL2

D0

� �
; (88)

Therefore Equations 20 and 21 derived in Results remain valid in this more general case upon

making the identification d0 ! d0 þ d1c
0
0
and d1 !

KD
D0 d1. We have verified these results through

agent-based simulations (Appendix 3—figure 3a).
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Appendix 3—figure 3. Simultaneous length control is achieved by different versions of the con-

centration-dependent disassembly model. (a) Results from agent-based simulations with

different populations of depolymerizer and rate-limiting IFT protein, using capacity K ¼ 2,

(inset) Concentrations along the flagellum of diffusing IFT proteins and depolymerizers, (b) An

exponential profile is generated by motile proteins that bind and unbind from the flagellum,

move ballistically in the anterograde direction when bound, and undergo diffusion when

unbound, (inset, fit to Equation 89), (c) Agent-based simulations of processive

depolymerization, in which depolymerizers diffusing near the flagellar tip have some

probability of binding and removing tubulin at a fixed rate. We perform simulations of

severing over a range of mean depolymerization times from 10 s to 600 s.
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Exponential concentration gradient
To show that our model allows for non-linear concentration gradients, we set up agent based

simulations which would lead to an exponential concentration distribution, similar to

Naoz et al. (2008).

In our simulations, after injection motors travel ballistically to the tip of the flagellum where

they begin to diffuse back toward the base as discussed in Appendix 1. In addition motors

may detach with rate kd to undergo diffusive motion and reattach with rate ka to switch from

diffusive to ballistic motion. This leads to an exponential distribution with the concentration

profile of diffusing motors being

CðxÞ ¼
Jvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2kd
2 þ 4kav2d

p ðexpðlþxÞ� expðl�xÞÞ; (89)

where as before J = injection rate = konMf =2 and l� is given by

l� ¼
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð4ka=DÞðv=kdÞ

2

q

2v=kd
: (90)

The concentration profile of diffusing motors with a fit to the above equation is shown along

with the length regulation of flagella in Appendix 3—figure 3b for rates ka ¼ 6:3� 10
�2 s�1

and kd ¼ 3:13� 10
�4 s�1. The results are found to be qualitatively similar to the case of a linear

concentration gradient, supporting our claim that concentration-dependent disassembly is

able to control lengths independent of the precise form of the concentration gradient.

Processive depolymerizers
By taking the disassembly rate to depend on local depolymerizer concentration, we have

implicitly assumed that the depolymerizer acts non-processively. However, this is not a

fundamental restriction. We have used our agent-based model to explore a mechanism of

processive depolymerization, in which depolymerizers diffusing within 1 micron of the flagellar

tip bind at rate 9.4 � 10-2 s�1 and depolymerize at a rate of 9.7 � 10-4 mm/s. The

depolymerization duration is drawn from an exponential distribution with prescribed mean.

We have verified that this model achieves simultaneous length control over a range of mean

depolymerization times. In Appendix 3—figure 3c we show the results of simulations using

mean depolymerization times from 10 s (corresponding to 0.01 mm) up to 10 min

(corresponding to 0.6 mm). For mean depolymerization times up to 100 s, we find the results

to be qualitatively similar to the non-processive case, whereas for longer mean

depolymerization times the steady-state lengths exhibit oscillations about the steady-state.

The emergence of oscillations is not entirely surprising since processive depolymerization

effectively introduces into the equations a time delay, which is known to give rise to

oscillations in many contexts (Richard, 2003).
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