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The interface shape of a fluid in rigid body rotation about its axis and partially filling the container is
often the subject of a homework problem in the first graduate fluids class. In that problem, surface tension
is neglected, the interface shape is parabolic and the contact angle boundary condition is not satisfied in
general. When surface tension is accounted for, the shapes exhibit much richer dependencies as a function
of rotation velocity. We analyze steady interface shapes in rotating right-circular cylindrical containers
under rigid body rotation in zero gravity. We pay special attention to shapes near criticality, in which the
interface, or part thereof, becomes straight and parallel to the axis of rotation at certain specific rotational
speeds. We examine geometries where the container is axially infinite and derive properties of their
solutions. We then examine in detail two special cases of menisci in a cylindrical container: a meniscus
spanning the cross-section and a meniscus forming a bubble. In each case, we develop exact solutions
for the respective axial lengths as infinite series in powers of appropriate rotation parameters, and we
find the respective asymptotic behaviors as the shapes approach their critical configuration. Finally, we
apply the method of asymptotic approximants to yield analytical expressions for the axial lengths of the
menisci over the whole range of rotation speeds. In this application, the analytical solution is employed to
examine errors introduced by the assumption that the interface is a right circular cylinder; this assumption
is key to the spinning bubble method used to measure surface tension.

Keywords: rigidly rotating fluid interface shapes.

1. Introduction

The shapes of fluid interfaces in rigid body rotation have been well studied, with the spinning bubble
tensiometer being a notable example, see Vonnegut (1942), Hu & Joseph (1994). Since about the mid-
1950s, interest in such problems has grown with the need to engineer fluid containers in zero gravity
for spacecraft, where guaranteeing a known location for the liquid phase is crucial for rockets to fire
properly. Seebold (1965) performed a stability analysis of the menisci in circular cylindrical containers
in rigid-body rotation with arbitrary axial gravity and contact angle. He derived stability limits by a
variational analysis of the Hamilton principle. Later, Joseph & Preziosi (1987) analyzed the stability of
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ON THE SHAPE OF AIR–LIQUID INTERFACES 1267

Fig. 1. Schematics of surface configurations with fluids in rigid body rotation about the axis of a cylindrical container. Liquid is
below the interface. (a) Typical shapes at λ < λc, for wall contact angles, α = 0, π/4 and π/2, as marked. θ is the slope angle of
the interface. z = 0 is chosen so that the volumes of liquid above and below are equal. H is the axial meniscus length. (b) Shape
with λ close to λc, for a 90-degree contact angle. Most of the surface is a straight circular cylinder of radius rc. H continually
increases as λ → λc. (c) Spinning bubble. Rb is the maximum radius and H the total axial length. The half-bubble on either side
of the equator is mathematically identical to the α = 0 case in Fig. 1(a).

periodic interface shapes in rigid body rotation by minimization of an energy potential under conditions
of negligible gravity, obtaining results that are wholly consistent with those of Seebold (1965).

Similar to a static meniscus in a gravitational field, the shape of the interface between two immiscible
fluids in rigid body rotation with angular velocity ω, density difference Δρ ≡ ρ1 −ρ2 (> 0) and surface
tension σ depends on the rotational Bond number λ ≡ Δρ ω2d3/σ , where d is some appropriate length
that depends on the geometry being considered. The studies cited above show that a critical value λc
exists such that, when λ → λc from below, the interface undergoes a critical transition, with an outcome
that depends on the configuration of the fluid body and the particular container. Figure 1 illustrates some
typical configurations.

More specifically, Seebold (1965) showed that the menisci having finite axial length and spanning
the entire cross-section of a cylinder with contact angle α at the cylinder wall (such as shown in Fig. 1(a))
exist in zero gravity under rigid body rotation for λ < 4f (α), where f (α) is derived later in eq. (2.9) and
satisfies f (0) = 1. When λ approaches 4f (α), the meniscus reorganizes with a divergent axial length into
the shape of a straight cylinder (Fig. 1(b)). Joseph & Preziosi (1987) showed that non-straight periodic
interfaces that develop in rigid body motions for λ < 4 become straight cylinders when λ = 4. This
result is entirely consistent with the analysis of Seebold (1965), who collected extensive experimental
evidence (and also intuited without proof) that shapes become straight cylinders when λ → λc. Ross
(1968) studied the shapes of rotating drops and bubbles (as shown in Fig. 1(c)), and obtained several
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1268 E. RAMÉ ET AL.

Fig. 2. Sine of the slope angle, θ (defined in Fig. 1(a)), vs. r for λ = 10, 15 and λc = 12
√

3. The contact angle α = π/2, i.e.
θ(1) = 0. When λ < λc, the maximum slope corresponds to an inflection point with slope angle 0 < θ < π/2.

important results and interpretations that coincide with those of Seebold (1965) and Joseph & Preziosi
(1987) in the case of bubbles and with those of Chandrasekhar (1965) in the case of drops.

In this work, we derive new features of the menisci in rigid body rotation. Specifically, our goal
is to develop analytical tools to describe the axial meniscus length, denoted as H, in configurations of
practical relevance as depicted in Fig. 1. We analyze two configurations: (1) a meniscus spanning the
cylinder cross-section, as in Fig. 1(a and b) and (2) a meniscus forming a bubble whose axis coincides
with the axis of rotation, as in Fig. 1(c). The latter geometry corresponds to that of the spinning bubble
tensiometer (Vonnegut, 1942). For each geometry, we examine the respective shapes and axial meniscus
lengths as a function of λ. In particular, we identify the asymptotic behaviors of the divergence in axial
meniscus length as λ → λc and find that the divergence law depends on the meniscus configuration.
We then develop exact solutions for these lengths as infinite series in powers of λ. Since these solutions
converge poorly near λc, we apply the method of asymptotic approximants (Barlow et al., 2017) to
describe axial meniscus length uniformly over the whole range 0 ≤ λ < λc for both configurations. We
end with a discussion of implications relevant to the measurement of surface tension using a spinning
bubble tensiometer.

2. Analysis

2.1 Formulation

Consider a liquid of density ρ in contact with a gas of negligible density in a cylindrical container of
radius R, rotating with angular velocity ω about its axis in rigid body rotation (Fig. 1). The gas–liquid
interface has surface tension σ , its location is z = h(r) and it obeys the normal component of the
dynamic boundary condition with a pressure whose gradient arises solely from centripetal acceleration.

Neglecting the dynamics of the gas and using d as a characteristic length scale, the dimensionless
governing equation is given as

1

r

d

dr

(
rh′

√
1 + h′2

)
= −P0 − λ

r2

2
, (2.1)
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ON THE SHAPE OF AIR–LIQUID INTERFACES 1269

where h′(r) = tan θ is the slope relative to the r-axis (θ is shown explicitly in Fig. 1(a)), P0 is the
pressure difference across the interface at r = 0 made dimensionless with σ/d and λ is the rotational
Bond number, defined as

λ ≡ ρω2d3

σ
. (2.2)

In general, the characteristic length d depends on the configuration considered, as sketched in Fig. 1. If
the interface spans the entire radius of the container, then d = R; for a bubble wholly surrounded by the
liquid, d is the maximum radius of the bubble, Rb.

Since h′(r) = tan θ , the left-hand side of eq. (2.1) may be written as d(r sin θ)/(r dr). This equation
may be integrated once to obtain an expression for sin θ as a function of r using two boundary conditions.
One boundary condition accounts for the axial symmetry and is imposed to all the cases studied here:

θ(0) = 0. (2.3)

The other boundary condition is applied at the radial end of the interface. In the case of a meniscus
spanning the container, the interface obeys a contact angle condition:

θ(1) = π

2
− α, (2.4)

where α is the contact angle, as depicted in Fig. 1(a). In the case of a bubble wholly surrounded by
liquid, the second boundary condition is

θ(1) = π

2
. (2.5)

Physically, this condition reflects the equatorial symmetry of the bubble; but mathematically, it can be
seen to be identical to the case of a meniscus with contact angle α = 0 expressed in eq. (2.4). The shape
for arbitrary contact angle α is therefore

h′
√

1 + h′2 = sin θ = r cos α + λ

8
r(1 − r2), (2.6)

where, from the preceding discussion, α must be set to zero to describe a bubble. One additional
integration determines h(r) after a constraint specific to each configuration is applied. The axial
meniscus length H(λ) for each interface configuration is computed by integrating h′(r) while taking
proper account of the limits of integration. As can be seen in Fig. 1, h(r) is single-valued in a meniscus
spanning the container radius, and multivalued in a spinning bubble; therefore,

H(λ) =
∫ 1

0
h′(r)dr : meniscus spanning container; (2.7a)

H(λ) = 2
∫ 1

0
h′(r)dr : bubble. (2.7b)
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1270 E. RAMÉ ET AL.

2.2 Properties of interface shapes satisfying eq. 6

Figure 2 shows sin θ vs. r as given by eq. (2.6) for various λ and contact angle α = π/2. Qualitatively
similar shapes and trends arise for shapes with arbitrary α. When λ < λc, θ attains a local maximum
smaller than π/2; hence, the maximum slope angle coincides with an inflection point. However, at λc,
the local maximum is θmax = π/2, and the axial meniscus length diverges with infinite slope and with a
straight cylindrical shape of radius equal to the location where θmax = π/2; this is in agreement with the
previous studies of e.g. Seebold (1965) and Joseph & Preziosi (1987). To find this location, we require

sin θ = 1,
d sin θ

dr
= 0, (2.8)

and obtain

λc = 4

r3
c

, rc = 1

2 cos
(

1
3 (π − α)

) . (2.9)

For α = π/2, eqs. (2.9) yield λc = 12
√

3 and rc = 1/
√

3 as in Fig. 2. Eqs. (2.9) provide exact
relations in support of the numerical results of Seebold (1965) for zero gravity. In particular, if one
views the vertical slope location, rc, as the radius of a straight circular cylinder, the rotational Bond
number can be written as λc ≡ r3

cλc = 4, providing a result that agrees with previous work (Joseph &
Preziosi, 1987; Seebold, 1965).

Having shown that eq. (2.6) may be used both for a meniscus spanning the container with arbitrary
contact angle α and for a wholly immersed bubble by setting α = 0, in the rest of this section, we
examine the case of α = π/2, i.e. normal contact at the container wall. No generality is lost by focusing
on this special case; on the contrary, it can be shown that, far from being special, critical shapes for
arbitrary α may be obtained from the shape at any other α by suitable scaling manipulations. We now
show how α = π/2 generates a master shape from which all other critical shapes with 0 ≤ α ≤ π

may be constructed. The method is as follows: starting with the critical shape for α = π/2, we set
λ = λc = 12

√
3 and, using eq. (2.6), determine rw such that θ = π/2 − α, i.e. rw is the location where

the critical master shape has the same θ as the wall contact slope angle of interest. Setting sin(π/2−α) =
cos α = (λc/8)(rw − r3

w), we find

rw = 2√
3

cos

(
1

3
(π − α)

)
. (2.10)

We then rescale r,

r∗ = r

rw
. (2.11)

Substituting for r in eq. (2.10) and manipulating to expose the binomial (r∗ − r∗3
), we obtain the critical

shape with θ = π/2 − α at r = 1:

sin θ = r∗ cos α + λ∗
c

8
(r∗ − r∗3

), (2.12)
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ON THE SHAPE OF AIR–LIQUID INTERFACES 1271

Fig. 3. Shapes with normal contact at r = 1 (contact angle α = π/2) for values of λ noted in legend. The shape nearest z = 0 is
for λ = 5. Consecutive values of λ apply to shapes further away from z = 0, showing the divergence of the meniscus axial length
as λ → λc = 12

√
3 ≈ 20.78459....

where λ∗
c satisfies eqs. (2.9). This is the same equation that is solved in eq. (2.6) with arbitrary α for

λ = λc and demonstrates the generality of the α = π/2 result for critical shapes. Even though full
meniscus shapes do not exist at λ = λc (since the axial meniscus length H is infinite there), it is possible
to use equation (2.12) to predict portions of the meniscus shape, for values of r not equal to rc.

2.3 Meniscus spanning the container radius

When the meniscus spans the cylinder radius R, we identify d = R in eq. (2.2). One integration of eq.
(2.6) with a volume constraint fixes the absolute height of the interface. In a reference frame where the
liquid volumes above and below z = 0 are equal, the volume condition implies:

∫ 1

0
h rdr = 0. (2.13)

The computation of h(r) is performed numerically by integrating h′(r) given by eq. (2.6). We focus
on the case of normal contact (α = π/2). This case is special only because the maximum slope location
is rc = 1/

√
3 for all λ. Apart from this distinction, interface shapes are qualitatively similar when

contact is not normal; and, as stated in Sec. 2.2, interface shapes at criticality are easily scaled across
different contact angles.

2.3.1 Meniscus asymptotics for λ → λc = 12
√

3. Figure 3 shows interface shapes z = h(r) when
α = π/2. It is clear that the axial meniscus length, H, defined in eq. (2.7), diverges as λ → λc.
Identifying the leading asymptotic behavior of this divergence is of considerable theoretical and practical
interest because it is relevant to control devices such as rotating reactors where two immiscible fluids
of differing densities are present. Since h′(rc) → ∞ as λ → λc, it follows that h′ develops a narrowing
peak around the maximum slope location, rc, and that the area under the peak—though divergent—
depends to leading order on the shape of this peak only, i.e. it is independent of the details away from
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1272 E. RAMÉ ET AL.

the peak. To begin, we identify the radial scale around the peak. Let

ε ≡ λc − λ, η ≡ r − rc

εp
, (2.14)

where ε 
 1, η is a stretched radial distance centered at the peak and p needs to be determined.
Approximating h′ from eq. (2.6) as h′ ∼ 1√

1−sin2 θ
near rc, and substituting r and λ from eq. (2.14), we

find that

1 − sin2 θ ∼ ε

√
3

18
+ ε2p 9 η2, ε → 0. (2.15)

This suggests that, for h′ to be integrable at η = 0, we must have p = 1/2 so that, to leading order as
ε → 0,

h′ ∼ h′
asy = 1

3
√

ε
√

1
54

√
3

+ η2
. (2.16)

Anticipating the presence of an O(1) constant following the leading divergent behavior as ε → 0,
we write

H =
∫ (1− 1√

3
) 1√

ε

− 1√
3ε

dη

3
√

1
54

√
3

+ η2
+

∫ 1

0
(h′ − h′

asy)dr, (2.17)

which is equivalent to the first eq. (2.7) and where in the second integral η has been written in terms
of r in the expression for h′

asy. The first integral may be evaluated in closed form and the second one is
evaluated numerically. In the limit as ε → 0, we obtain

∫ (1− 1√
3
) 1√

ε

− 1√
3ε

dη

3
√

1
54

√
3

+ η2
∼ −1

3
ln ε + 1

3
ln[72(−√

3 + 3)] + o(1), (2.18a)

∫ 1

0
(h′ − h′

asy) ∼ −0.2864 + o(1), ε → 0. (2.18b)

Combining these results,

H ∼ Hasy = −1

3
ln ε + H0, (2.19)

where H0 ≈ 1.218. Figure 4 shows the agreement between the numerical and asymptotic evaluations of
the meniscus axial length.
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ON THE SHAPE OF AIR–LIQUID INTERFACES 1273

Fig. 4. Comparison of numerical and asymptotic evaluations of axial meniscus length H. λc −λ = ε and λc = 12
√

3. Black dots:
numerical integration, eq. (2.7), with h′ from eq. (2.6). Dashed line: eq. (2.19).

2.3.2 Series solution for H(λ). In order to describe H(λ) over the rest of the λ-domain, we now seek
a series solution for H(λ) in powers of λ about λ = 0. Since h′(r, λ) = tan(θ), it follows that

h′(r, λ) = sin θ√
1 − sin2 θ

. (2.20)

For α = π/2, this expression may be expanded as a Taylor series about λ = 0 using eq. (2.6) as

h′(r, λ) =
∞∑

n=0

a2n+1(sin θ)2n+1 =
∞∑

n=0

a2n+1

(
r − r3

8

)2n+1

λ2n+1, (2.21)

where

a1 = 1, an = an−2

(
n − 2

n − 1

)
, n = 3, 5, 7, 9... (2.22a)

an = 0, n = 0, 2, 4, ... (2.22b)

As seen in Fig. 2, sin θ remains below 1 for λ < λc. Thus, the series in eq. (2.21) converges for
λ < λc and may be integrated term by term to obtain the meniscus length

H(λ) =
∞∑

n=0

a2n+1 b2n+1λ
2n+1, (2.23)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/86/6/1266/6364550 by guest on 09 N

ovem
ber 2021



1274 E. RAMÉ ET AL.

where

bn = 1

8n

∫ 1

0
(r − r3)ndr, n odd, (2.24a)

bn = 0, n even. (2.24b)

For n odd, it is easy to show that b1 = 1/32 and

bn+2 = 1

64

(n + 2)(n + 1)
(

n+1
2

)
(

3n+7
2

) (
3n+5

2

) (
3n+3

2

) bn. (2.25)

The ability to compute all the terms of the infinite series permits evaluation of the radius of
convergence of the series given in eq. (2.23). The ratio test guarantees convergence iff

lim
n→∞

a2n+1

a2n−1

b2n+1

b2n−1
λ2 < 1. (2.26)

Evaluation of this criterion using eqs. (2.22a) and (2.25) shows that the series does converge for
λ < 12

√
3 = λc as was stated above. Thus, eq. (2.23) is an exact solution. Unfortunately, though,

the convergence is poor and nonuniform with increasing λ beyond λ ≈ 15 due to the influence of
a logarithmic singularity at λ = λc, see Sec. 2.3.1. In Sec. 2.5, we use asymptotic approximants to
generate a rapidly converging and uniform representation of H(λ), defined in eq. (2.7), over the entire
range 0 ≤ λ < λc.

2.4 Spinning bubble

If the gas volume in a finite container is small enough, or the axial dimension of the container is long
enough, the bubble can become arbitrarily close to critical (i.e. it can adopt a nearly straight circular
cylindrical shape with locally curved ends) before the interface touches the end plates of the container.
This is the basis for the well-known spinning bubble method to determine surface tension (Hu & Joseph,
1994; Vonnegut, 1942). In this geometry (see Fig. 1(c)) and in zero gravity, bubbles exist for λ < λc = 4,
and the characteristic length, d, is the maximum bubble radius, Rb. For extensive detail on the challenges
of interpreting and operating the spinning drop tensiometer in a gravitational field, see Manning &
Scriven (1977) and the references therein.

Using the bubble maximum radius, Rb, as the characteristic length, the slope angle of the interface
relative to the r-axis is found by integrating eq. (2.6) subject to θ(0) = 0, θ(1) = π/2:

sin θ = r + λ

8
r(1 − r2). (2.27)

Since sin θ = h′/
√

1 + h′2, numerical integration of h′ subject to h(0) = 0 yields the interface shape,
z = h(r). The bubble has infinite slope (θmax = π/2) for all λ at r = 1. This contrasts the meniscus
analyzed in Sec. 2.3 where θmax < π/2 and coincides with an inflection point located in 0 < r < 1. In
this case, θmax → π/2 only as λ → λc. To probe the character of the spinning bubble shape, we note
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ON THE SHAPE OF AIR–LIQUID INTERFACES 1275

Fig. 5. Shapes of spinning bubbles at various λ = 1, 2, 3, 4. Only λ = 4 has d(sin θ)/dr = 0 at r = 1.

that, when λ < 4, a point located on the bubble’s equator, denoted by (r, z̄) = (1, 0), corresponds to a
local maximum of r. Therefore, dr/dz̄ = 0 and d2r/dz̄2 < 0 there. From geometrical considerations,
this implies that 1−r ∼ Az̄2, so that sin θ ∼ 1−2A(1−r) as r → 1 for some constant A > 0. In contrast,
when the shape is critical at λ = λc, the end-cap shape approaches a straight cylinder asymptotically at
a distance from the bubble tip that is large compared with the radius; therefore, in the critical condition,
1 − r ∼ exp(−Bz) for some constant B > 0, where (r, z) = (0, 0) is the tip location, z � 1 and the
bubble is in z > 0. This implies that sin θ ∼ 1 − (B2/2)(1 − r)2 as r → 1 for λ = λc. We conclude,
therefore, that the critical shape requires

d(sin θ)

dr
= 0 at r = 1, λ = λc = 4, (2.28)

whereas subcritical shapes satisfy

d(sin θ)

dr
> 0 at r = 1, λ < 4. (2.29)

Not surprisingly, the shapes of eq. (2.27), a few of which are shown in Fig. 5, display these properties.
In contrast to the meniscus spanning the cylinder radius, the distinct character of the spinning bubble
configuration is that sin θ = 1 always at r = 1, but d(sin θ)/dr 
= 0 at r = 1 unless λ = λc = 4.

In the rest of this section, we examine the bubble axial length, H(λ). We derive the asymptotic
behavior as λ → λc and develop an exact solution as a series in powers of λ. Both analyses can be used
to better inform the quality of the critical character of a bubble formed in an experiment.

2.4.1 Asymptotics for λ → λc = 4. We derive the asymptotic behavior of the shape as λ → λc = 4
by the same method of Sec. 2.3.1. Let ε ≡ 4 − λ and η ≡ (r − 1)/εp, where p > 0 is to be determined.
It may be shown from eq. 2.27 that, when ε is small,

sin2 θ ∼ 1 − 3ε2pη2 + ε1+p η

2
+ ... (2.30)
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1276 E. RAMÉ ET AL.

Fig. 6. Comparison of numerical and asymptotic evaluations of axial meniscus length, H, for the spinning bubble vs. λ. Black
dots: numerical integration, eq. (2.7). Dashed line: asymptotics, eq. (2.32).

Approximating h′ near the peak as 1/
√

1 − sin θ2, the only choice that ensures integrability of h′ at
η = 0 is p = 1, yielding

h′ ∼ h′
asy = 1

ε

1√
3η2 − η

2

. (2.31)

Using the same methodology as in Sec. 2.3.1, we obtain

Hasy =∼ − 2√
3

ln(4 − λ) + 3.2332, λ → 4. (2.32)

The (dimensionless) bubble volume depends on λ:

V(λ) ≡ Ṽ

R3
b

= 2

[
πh(1, λ) − 2π

∫ 1

0
h(r, λ)r dr

]
(2.33)

and provides a relation between the dimensional volume, Ṽ , and maximum radius Rb. The closer the
bubble is to the critical configuration, the closer its shape is to a straight cylinder of dimensionless radius
1; hence, the dimensionless volume grows progressively more linearly with πH as λ → λc = 4. The
limit of eq. (2.33) as λ → 4 is

V ∼ πH − 4.18, H � 1, (2.34)

which is in good agreement with the asymptotic behavior of Ross’ exact expression for the volume (eqn.
15 in Ross, 1968) as λ → λc = 4; refer to Figs. 7 and 8.
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ON THE SHAPE OF AIR–LIQUID INTERFACES 1277

Fig. 7. Schematic of a half-bubble spinning about the z-axis. The blue area represents the liquid and is equal to the volume deficit
of the actual bubble relative to a straight circular cylinder where the bubble is inscribed (see eq. (2.34)). The spinning container is
larger than the bubble size and is not shown.

2.4.2 Series solution for H(λ). In order to construct a Taylor series representation of the bubble axial

length, defined in eq. (2.7), we note that, as in Sec. 2.3, h′ = sin θ/
√

1 − sin2 θ . However, in contrast
to that analysis, here sin θ 
= O(λ), which complicates evaluation of a Taylor series in powers of λ for
H(λ). Let us first generate the series

h′(r, λ) =
∞∑

n=0

cn(r)λ
n. (2.35)

Starting from eq. (2.6), we write

sin θ = A(r) + λB(r), (2.36)

where A = r and B = r−r3

8 . It follows that the denominator in the expression for h′(= tan θ) is

√
1 − A2 − 2λAB − λ2B2 =

⎛
⎝ 2∑

j=0

ajλ
j

⎞
⎠

1/2

, (2.37)

where a0 = 1 − A2, a1 = −2AB and a2 = −B2. Using J.C.P. Miller’s formula for the series expansion
of a series raised to any power (Henrici, 1956), we evaluate the series for the inverse of (2.37):

⎛
⎝ 2∑

j=0

ajλ
j

⎞
⎠

−1/2

=
∞∑

j=0

bjλ
j, (2.38)
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to find the following recursion for the coefficients,

c0 = A b0

cn>0 = A bn + B bn−1, (2.39)

where

b0 = 1√
1 − A2

, b1 = AB√
1 − A2

;

bn>1 = − 1

n(1 − A2)

[(
1

2
− n

)
2A B bn−1 + (1 − n) B2bn−2

]
. (2.40)

Since cn’s are linear combinations of bn’s, convergence properties of the series in eq. (2.35) can
be determined from those of

∑
n bnλ

n. Dividing through by bn−1 in eq. (2.40) we form two ratios of
consecutive bn. Assuming that this ratio has a limit as n → ∞, denoted Q∞(r), the solution of a
quadratic equation yields Q∞(r) = (r2 + r)/8. Based on the ratio criterion, convergence is guaranteed
with 0 ≤ r ≤ 1 iff Maxr[Q∞(r)] λ < 1, i.e. λ < 4. As in the problem of Sec. 2.3, the series in eq.
(2.35) converges in the entire range of λ where shapes exist, i.e. 0 ≤ λ < 4, and is therefore an exact
solution. It can therefore be integrated term-by-term to produce another convergent exact solution for
H(λ), defined in eq. (2.7), e.g.

H(λ) = 2
∞∑

n=0

(∫ 1

0
cn(r)dr

)
λn =

∞∑
n=0

Cnλ
n. (2.41)

(In the appendix, we show an explicit evaluation of Cn.) Because convergence of the series in eq. (2.41)
is poor as λ increases beyond λ ≈ 3.5, in Sec. 2.5, we show how to implement the method of asymptotic
approximants to obtain an analytical expression for H(λ) that is uniform across the entire range
0 ≤ λ ≤ λc = 4.

2.5 Approximants

Asymptotic approximants provide uniformly convergent approximations to the axial lengths H(λ), as
given by eq. (2.23) for a rotating meniscus and eq. (2.41) for a spinning bubble, over the entire respective
intervals 0 ≤ λ ≤ λc. Interested readers may consult Barlow et al. (2017) and the references therein for
an extensive presentation of the method applied to a wide range of problems in mathematical physics.

Briefly, asymptotic approximants go beyond the well-known Padé approximants in that they
incorporate asymptotic behaviors that are often singular in ways other than just poles (Bender & Orszag,
1978), thus dramatically improving the approximant’s power to extend the region of convergence. Both
power series for H(λ) in the present work (eqs. (2.23) and (2.41)) have a logarithmic divergence at
their respective λc. Because we have the power series expanded about λ = 0, as well as the logarithmic
divergence behavior as λ approaches λc, an asymptotic approximant may be used to join these behaviors.
In the two problems considered here, we propose the following approximant for H(λ) defined in eqs.
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ON THE SHAPE OF AIR–LIQUID INTERFACES 1279

Fig. 8. Dimensionless volume, V , vs. bubble length H. Dashed line: equation (2.34).

(2.23) and (2.41):

HA(λ, N) =
N∑

n=0

An(λc − λ)n + AL + BLln(λc − λ), (2.42)

where AL and BL have been computed from the respective asymptotic analyses in eqs. (2.19) and (2.32).
The coefficients An are determined from the condition that the N-term Taylor series of HA(λ, N) about
λ = 0 is equal to the N-term Taylor series of H(λ) in eqs. (2.23) and (2.41). The form in eq. (2.42)
imposes the asymptotic logarithmic divergence as λ → λc.

The form of an asymptotic approximant to a given function is not uniquely determined but
experience allows one to pose forms that exhibit superior convergence. In this work, we have not
attempted to optimize the form of the approximant that minimizes the number of terms N required to
produce a given error. Figures 9 and 10 show H(λ) from the numerical integration of eq. (2.7) together
with HA(λ, N), for the rotating meniscus and the spinning bubble, respectively, and for various number
of terms, N, in the approximant.

We define the error of the N-term approximant, ΔN(λ), as the pointwise absolute error between
HA(λ, N) and the numerical values of H(λ). Both approximants seem to converge to the numerical
calculation as N increases, but, as shown in Figs. 11 and 12, the convergence has a small non-uniformity
near λc. This is a well-known phenomenon due to remaining singularities that approach zero as λ → λc
(Harkin et al., 2021). The largest errors of the most accurate approximants calculated are Δ20 ≈ 4×10−4

for the rotating meniscus and Δ15 ≈ 7.2 × 10−3 for the spinning bubble.

3. Discussion

In configurations with arbitrary wall contact angle, α, the shape is described by eq. (2.6), rewritten here,

sin θ = r cos α + λ

8
(r − r3). (3.1)
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Fig. 9. The axial length of the rotating meniscus versus λ. Dots: numerical evaluation of H, eq. (2.7). Line: 20-term HA from eq.
(2.42); AL = 1.218, BL = 1/3. At λ = 0 the interface is flat, therefore H(0) = 0.

Fig. 10. The length of the spinning bubble versus λ. Dots: numerical valuation of H, eq. (2.7). Two solid lines, the 5-term and
10-term HA, are indistinguishable; AL = 3.2332, BL = 2/

√
3. At λ = 0 and in zero gravity, the bubble is spherical, i.e. H(0) = 2.

Since, for the general cases of α 
= 0, critical shapes arise from the progressive steepening of an oblique
inflection point, it is instructive to find, for a given α, λ for which sin θ has a maximum at r = 1; this
value of λ is a lower bound for λc. By requiring that d(sin θ)/dr = 0 at r = 1 this value is found to be
λmin = 4 cos α. In order to achieve criticality in 0 < r < 1, λ must be greater than λmin. The location of
θmax for λ > λmin is

r0 =
[

1

3

(
1 + 8

λ
cos α

)]1/2

. (3.2)
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ON THE SHAPE OF AIR–LIQUID INTERFACES 1281

Fig. 11. Pointwise error, |H(λ) − HA(λ)|, at numerically calculated points for the rotating meniscus for approximants with
number of terms N = 5, 10, 20. Lines are indicative only and are used as a guide to the eye.

Fig. 12. Pointwise error, |H(λ) − HA(λ)|, at numerically calculated points for the spinning bubble for approximants with number
of terms N = 5, 10, 15. Lines are indicative only and are used as a guide to the eye.

Inserting this result into the expression for sin θ above, we find the maximum value of sin θ for a given
α as function of λ:

sin θ |r0
= 1

3
√

3

λ

8

(
1 + 8

λ
cos α

)3/2

. (3.3)

This expression becomes 1 when λ = λc as given in eq. (2.9). Figure 13 illustrates this argument for
α = π/3. Shapes do exist for λ < λmin but without an inflection point. As λ increases beyond λmin, the
inflection point moves from r = 1 toward smaller r and the slope at the inflection becomes increasingly
vertical as λ approaches λc. Figure 14 shows the location of the inflection (i.e. where sin θ is maximum)
versus λ.
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1282 E. RAMÉ ET AL.

Fig. 13. Shapes for α = π/3 (60-degree contact angle) for λ = 2, 5, 10 and 14.39. λmin = 2 and λc ≈ 14.39. The location of the
maximum at each λ is plotted below in Fig. 14.

Fig. 14. r0 vs. λ between λmin = 2 and λc ≈ 14.385, for α = π/3 (60-degree contact angle).

The axial length of the rotating meniscus has two qualitatively different configuration types. The first
type is associated to contact angles larger than zero. In these cases, the radial position of the maximum
slope, r0, corresponds to an inflection point, i.e. h′(r0) > 0, h′′(r0) = 0 (i.e. zero curvature) for all
λ < λc; and the coefficient of the logarithmic divergence is 1/3. In general, the location of the maximum
slope changes with λ for given contact angle α, as shown e.g. in Fig. 13. In the α = π/2 case analyzed
in Sec. 2.3.1, however, the maximum slope location is independent of λ. The second type of behavior
has a single element in the zero-contact angle case. This case always has infinite slope at r0 = 1, but
there is a non-zero curvature at the wall for all λ < λc, given by r′′(z), at the contact point r = 1, see
Fig. 1(a). The coefficient of the logarithmic divergence for the zero-contact angle case is 2/

√
3. Perhaps

more significantly, this case is mathematically identical to that of the spinning bubble.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/86/6/1266/6364550 by guest on 09 N

ovem
ber 2021



ON THE SHAPE OF AIR–LIQUID INTERFACES 1283

Our results for the spinning bubble have distinctly practical implications for the measurement of
surface tension by the spinning bubble tensiometer. In this method, the experimenter spins a container
holding the gas–liquid pair of interest at high enough angular velocity ω that the bubble shape is nearly
a straight cylinder. Then the radius, Rb, of the cylindrical bubble is measured and, assuming that λ = 4,
the corresponding surface tension, denoted σ4 to reflect the assumption just made, is obtained from

λc = 4 = ω2R3
bρ

σ4
. (3.4)

However, for this to be valid, the bubble must be close enough to its critical configuration, which obtains
when 4−λ 
 1. Assessing this condition is not immediately obvious. In practice, an experimenter may
perform several measurements at progressively higher angular velocities ω, and evaluate σ4 each time.
The measurement would be satisfactory when the value of σ4 attains the desired accuracy—e.g. by the
first n decimals remaining constant.

While the method outlined above can be used to measure the surface tension, it does not inform
about the value of λ in a particular measurement. This is why the method is based on the assumption
that λ = 4 and the experimenter must ensure that this condition is met with enough accuracy. The most
direct way to find λ is to evaluate H from the ratio of bubble length to maximum radius, both of which
can be measured. Using the theory, we may find λ from the function H(λ).

Knowing the dimensional bubble volume, Ṽ , from the difference of container volume and (incom-
pressible) liquid volume, eq. (2.34), rewritten here as

Ṽ ∼ R3
b(Hπ − 4.18) (3.5)

shows that, since H diverges when λ → λc = 4 (eq. (2.32)), the bubble radius Rb approaches zero
as λ → 4. This is why the spinning bubble can only operate arbitrarily close to but not at λ = 4. In
practical terms, when an instrument spins to produce a bubble with, say, H = 10 (i.e. the length is 10
times the maximum radius), the theory indicates that λ ≈ 4 − 2.8 × 10−3. Since H(λ) is a measure of
how close λ is to 4, let us now consider the error in surface tension that one makes by assuming λ = 4,
as a function of H. This percent error, Δ, is defined as

Δ ≡ 100

(
1 − σ4

σactual

)
= 100

(
1 − λ(H)

4

)
. (3.6)

The argument in Hu & Joseph (1994) that bubbles with H > 4 can be considered to be at λ = 4 is
therefore inaccurate, as the present calculation predicts that λ ≈ 3.48 when H = 4, yielding an error
of 13%. Thus, a bubble with H = 4 is not long enough to be considered ‘critical’. This is consistent
with the plot of Fig. 8 where H = 4 is close to but not yet in the limiting long-H regime where volume
increases linearly with H. However, if we make the same assumption, λ = 4, when the bubble length

is H = 10, the error drops to 0.07%. The error of using eq. (3.4) is given by Δ = 411.13 exp(−
√

3
2 H),

with accuracy increasing with H.
In principle, the experimenter need not assume λ = 4, however, since we now have H(λ) (i.e. the

ratio of dimensional bubble length to maximum radius, both of which can be measured), described with
a uniformly convergent asymptotic approximant (see Sec. 2.5) over the entire range 0 ≤ λ < 4. Thus,
the approximant for the bubble length allows one to extend surface tension measurement to arbitrary
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values of λ with just a simple evaluation of HA(λ) from measurements. In the absence of gravity, the
approximant allows measurements in the intermediate-λ region where the sensitivity to error in H is
still moderate. But working at a lower than critical λ has the drawback that it would require precise
measurements of both radius and length.

4. Summary and conclusion

We have examined the problem of interface shapes in fluid systems under rigid-body rotation with
a focus on finding exact solutions and the asymptotics of singular behaviors near λc. We studied
two configurations of practical importance, e.g. a meniscus spanning the rotating container radius
with arbitrary contact angle at the container wall and a spinning bubble where the meniscus does not
contact the container wall. Finding the asymptotic behavior of each meniscus configuration length as
the critical rotation is approached as well as the series solution about λ = 0 is important because
such meniscus configurations arise in applications such as a rotating reactor and a spinning bubble
tensiometer. Knowing the form of the asymptotic divergence, one may construct efficient asymptotic
approximants to evaluate each meniscus length at any rotation velocity uniformly and without solving a
differential equation numerically.

In conclusion, this work provides analyses that advance the interpretation of interface shapes of
fluids in rigid body rotation. The analyses are strictly valid in zero gravity, but their validity may be
extended to normal gravity as long as the gravitational Bond number, ρgR2/σ , is much smaller than
the rotational Bond number, λ. For two canonical configurations (meniscus spanning container radius
and spinning bubble), we have found exact solutions for the axial meniscus length, H, over the whole
range of λ and asymptotic behaviors near critical rotation. To remedy the poor convergence of the
infinite-sum exact solutions, we constructed convergent asymptotic approximants that greatly improve
the convergence efficiency of the exact solution. Our results provide proof of concept of useful analytical
calculation tools for applications ranging from controlling rotating reactors to measurement of surface
tension with the spinning bubble method.
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A. Explicit evaluation of Cn in eq. (41)

To complement the recursive evaluation of Cn of Sec. 2.4.2, in this appendix, we compute Cn explicitly.
Explicit expressions (as opposed to recursive relations) may be desirable for certain types of analysis.

Because f (r, λ) ≡ sin(θ) = r + λ
8 (r − r3) ≤ 1, we attempt expanding the denominator of h′ =

f /
√

1 − f 2 as a series in powers of f . This approach is analogous to that employed in Sec. 2.3.2 but now
λ is embedded in the square of the binomial f . Formally, this yields

h′ = f√
1 − f 2

=
∞∑

m=0

f 2m+1 Γ ( 1
2 + m)√

π Γ (m + 1)
. (A.1)
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ON THE SHAPE OF AIR–LIQUID INTERFACES 1285

Note that this is just the product of f times the series of even powers for the denominator. Now expand
the powers of f using the binomial theorem:

f 2m+1 =
2m+1∑
i=0

(2m + 1)!

i! (2m + 1 − i)!

(
λ

8

)2m+1−i

ri(r − r3)2m+1−i. (A.2)

A closed-form is available for the integration of the r-dependence in the above sum:

∫ 1

0
f 2m+1 dr =

2m+1∑
i=0

(2m + 1)!

i! (2m + 1 − i)!

(
λ

8

)2m+1−i
Γ (1 + m)Γ (2m + 2 − i)

2 Γ (3m + 3 − i)
. (A.3)

We now use this to write the r-integral of eq. (A.1) as

H(λ) = 2
∞∑

m=0

Γ ( 1
2 + m)Γ (2m + 2)√

π

2m+1∑
i=0

(
λ

8

)2m+1−i 1

2 Γ (i + 1)Γ (3m + 3 − i)

=
∞∑

p=0

Cpλ
p. (A.4)

It remains to extract the coefficient of λp, Cp. Let 2m + 1 − i = p. In the finite i-index sum, set
i = 2m + 1 − p for each m. It follows that the coefficient of λp is the result of an infinite sum:

Cp = 1√
π

1

8p

∞∑
m=m0

Γ ( 1
2 + m) Γ (2m + 2)

Γ (2m + 2 − p) Γ (2 + m + p)
. (A.5)

For a given p, the argument of Γ (2m + 2 − p) in the denominator cannot be less than 1, i.e. 2m + 1 ≥ p.
This sets the lowest m in the sum, as m ≥ m0 ≥ (p − 1)/2. When p is odd, this condition sets the lowest
m directly; when p is even, the lowest m is the smallest integer that is larger than (p − 1)/2.
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