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We consider the time-dependent response of a gravitationally-thinning inviscid liquid

sheet (a coating curtain) leaving a vertical slot to sinusoidal ambient pressure dis-

turbances. The theoretical investigation employs the hyperbolic partial differential

equation developed by27. The response of the curtain is characterized by the slot

Weber number, We0 = ρqV/2σ, where V is the speed of the curtain at the slot, q is

the volumetric flow rate per unit width, σ is the surface tension, and ρ is the fluid

density. Flow disturbances travel along characteristics with speeds relative to the

curtain of ±
√
uV/We0 , where u =

√
V 2 + 2gx is the curtain speed at a distance x

downstream from the slot. When the flow is subcritical (We0 < 1), upstream trav-

eling disturbances near the slot affect the curtain centerline, and the slope of the

curtain centerline at the slot oscillates with an amplitude that is a function of We0 .

In contrast, all disturbances travel downstream in supercritical curtains (We0 > 1)

and the slope of the curtain at the slot is vertical. Here, we specifically examine the

curtain response under supercritical and subcritical flow conditions near We0 = 1 to

deduce whether there is a substantial change in the overall shape and magnitude of

the curtain responses. Despite the local differences in the curtain solution near the

slot, we find that subcritical and supercritical curtains have similar responses for all

imposed sinusoidal frequencies.
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I. INTRODUCTION

Curtain coating is a common industrial process that uses wide, thin planar liquid sheets

(curtains) to deposit uniform thin films on moving substrates28. In one of its simplest

configurations, a curtain leaves an inverted slot die and thins under the influence of gravity as

it falls, see figure 1. Curtains are subjected to ambient disturbances that deflect them; these

deflections can cause nonuniform liquid coatings and imperfections in final dried products.

Flow disturbances are often examined using linear theory because coated product quality is

sensitive to even small thickness variations. Curtains have significant surface area in contact

with the surrounding air along their long and wide faces, so understanding how they respond

to pressure disturbances is of practical importance. In this study we focus on the effects of

sinusoidal time-varying pressure disturbances on the shapes and deflections of curtains.

The response of liquid curtains to pressure disturbances has been well-studied both exper-

imentally and theoretically. Much of that work has focused on the related problem of water

bells, i.e. radially-symmetric liquid sheets (among the many references, see14;16;20,4,19). In

aggregate, this work shows that agreement with experiment is obtained when models use the

approximation of inviscid flow with small variations in thickness about the curved centerline

of the water bell; that is, the curtain is gradually thinning in the direction of flow. These

studies also demonstrate that small pressure differences across the surface of a liquid sheet

can have a large impact on the shape of water bells.

Curtains have been similarly studied with respect to ambient pressure disturbances. In

previous work,27 justify a potential flow approximation to the flow in a curtain, and derive

an equation that governs deflections of a curtain’s centerline, y = F (x) shown in figure 1,

given as:

(
∂

∂t
+ g

∂

∂u

)2

F − 2σg2

ρq

∂

∂u

(
1

u

∂F

∂u

)
=

(MB −MA)u

ρq
(1)

where:

u =
√
V 2 + 2gx (2)

and the local thickness of the curtain, h, is expressed as:

h(x) =
q

u
. (3)

In (1) - (3), t is time, u is the curtain speed at position x, V is the curtain speed at the
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slot, g is the acceleration of gravity, q is the volumetric flow rate, σ is the surface tension

(which we take to be constant), ρ is the liquid density, and MA and MB are the respective

pressures on the front and back faces of the curtain as shown in figure 1.27 derive the equation

(1.1) as follows. The equation for the velocity field and thickness of the undisturbed time-

independent curtain (centerline y = 0 for all x) is determined via an asymptotic expansion

in the small parameter ε = gq/V 3. The limit ε → 0 corresponds physically to a gradually-

thinning liquid curtain. The resulting lowest-order flow in the curtain is plug at each location

x according to equation (1.2), where velocity variations across the curtain thickness (i.e. the

y-direction in figure 1) are of O(ε2). The time-dependent potential flow equations are then

linearized for small perturbations about the asymptotic steady-state equations (the base

flow). Since the base flow is approximate, terms to O(ε2) are required to preserve accuracy in

the linearization. The resulting time-dependent equation (1.1) is valid for curtain deflections

such that F << h. In the limit taken, pressure disturbances do not affect the local thickness

of the curtain to leading order, so the resulting curtain response is captured by the deflection

of its centerline27.

When examined under conditions of small deflection, the equation of10 is identical to (1.1)

at steady state. Equations (2) and (3) are valid regardless of the magnitude of deflection

provided that the curtain is long and thin.27 shows via dominant balance that the inviscid

result, equation (1.2), is consistent with Taylor’s equation (derived in the Appendix of3) for

large x, even when viscosity is included. Predictions of (1) and (1.2) agree well with experi-

ments under steady-state (10) and transient (5) conditions. In the latter study,5 demonstrate

that predictions agree with experiments when the initial velocity is adjusted to account for

the effect of an entrance region through extrapolation to the slot location at x = 0. This

result agrees with the empirical equation of3 for an undisturbed vertical curtain. Note that

equations (1.1) and (1.2) are strictly valid in a region displaced downstream from the slot

because the loss in viscous traction from the slot leads to a flow rearrangement not captured

in these equations (6,26;23;11). Other studies have used the slender curtain/inviscid approach

to examine the effect of nonlinear dynamics (22) and stationary wave formation (8).

Closely related to the current work is the nappe oscillation configuration, which is used

to model observed perturbations in liquid sheets formed as water flows over waterfalls,

dams, and weirs. In such a configuration, pressure disturbances are affected by the curtain

motion via an enclosure that includes the curtain as one of its long and wide sides; the
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other side of the curtain is maintained at atmospheric pressure. As a result, the motion

of the curtain affects the volume of the enclosed region, which affects the pressure in that

region and provides a restoring force. There have been many experimental studies of this

phenomena (see for example,2;24;18), and observed oscillation frequencies measured in the

curtain correlate with those measured in the enclosure itself. Theoretical analyses follow the

modeling approach used to obtain equations (1.1) to (1.3) and predict the natural frequencies

of the system in the absence of surface tension (25,9); these provide a more precise model

of the curtain dynamics than the simplified theory provided by2. The more recent analysis

of12 incorporates surface tension and predicts natural frequencies that agree favorably with

the cited experiments of2 and24.

The governing equation, (1.1), is a second-order hyperbolic partial differential equation

(PDE). The two sets of characteristics associated with the PDE carry information that

moves relative to the curtain at speeds of ±
√
uV/We0 . It is established in hyperbolic PDE

theory that the number of constraints specified along a boundary must be equal to the

number of characteristics that emanate from that boundary at each point17. The directions

of the characteristics, and therefore the associated boundary conditions, are determined by

the Weber number at the slot, given by We0 = ρqV/2σ. In supercritical curtains (We0 > 1),

both sets of characteristics leave the slot and are oriented downstream. Thus, two conditions

must be specified along this boundary. This constraint placement corresponds to the physics

of supercritical flows, in which the momentum flux is greater than the surface tension at

every location, so any disturbances are washed downstream.10 establish experimentally that

supercritical curtains leave the slot vertically under steady conditions, confirming that points

downstream do not influence upstream locations. In a subcritical curtain (We0 < 1), there is

a region in which one set of characteristics is oriented upstream and the other set is oriented

downstream. This region begins at the slot and ends at the critical point, the point in the

curtain at which the local Weber number, We = ρqu/2σ, equals 1. Downstream of the

critical point, both sets of characteristics are oriented downstream. Therefore, if We0 < 1,

only one set of characteristics leaves the slot, so only one condition is applied along this

boundary. Disturbances in this region of the curtain move upstream and downstream along

the characteristics.10 demonstrate experimentally that when a constant pressure drop is

applied across a curtain containing such a region, the curtain takes on an angle at the slot.

They show theoretically that this angle can be predicted by removing a singularity in the
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governing equation that arises at the location where We = 1, the precise location where

the direction of characteristics changes. As demonstrated in the appendix of10, a subcritical

water bell issuing from an annular slit and having an applied pressure difference takes on an

angle at the slit. Their analytical solution, obtained under conditions of negligible gravity,

accounts for the earlier qualitative experimental observations of1.21 confirms this conclusion

in a later examination of this problem.4 examine water bells with applied pressure differences

that undergo a subcritical-to-supercritical transition, both experimentally and theoretically.

They predict water bell shapes that agree well with experiment. As noted previously, the

water bell equations use the same thin-film-modeling assumptions that10 used to study the

planar configuration, so these water bell results also may be used to confirm the gradually-

thinning and inviscid assumptions used in the development of equations (1.1) to (1.3).

With this background, we now return to the nappe configuration analysis of12 cited above.

There, the equation governing the curtain motion caused by the applied pressure is the same

as that of equation (1.1) although the pressure disturbances MA−MB are expressed in terms

motion of the curtain shape itself through the enclosure volume. Despite this mathematical

difference, the characterization of subcritical and supercritical flows discussed above in terms

of We0 applies.12 examine curtain flows with slot Weber numbers near one. As we discussed

above, when the flow is subcritical (We0 < 1), there exists a location in the curtain at which

We = 1, below which the flow becomes supercritical. As in the steady problem of10, the

time-dependent equation is singular at the point at which We = 1. Because (1.1) is of second

order in the spatial dimension, the general solution of the initial-boundary value problem

has two degrees of freedom that allow us to satisfy spatial constraints. In supercritical cases

we use those degrees of freedom to specify two conditions: that the curtain centerline is not

displaced at the slot exit, and that the curtain leaves the slot with its centerline aligned

with that of the slot. In subcritical cases we still use one degree of freedom to enforce the

condition that the curtain centerline is not displaced at the slot exit, but we use the second

degree of freedom to enforce the condition that the solution be smooth at the singular point.

This switch in the application of the second degree of freedom corresponds to the physical

facts that subcritical curtains leave the slot at non-zero, and sometimes varying, angles,

and that the transition from subcritical to supercritical flow in such curtains is smooth.

In this paper we refer to subcritical curtains as those for which We0 < 1 and for which

there exists a location where the flow transitions from subcritical to supercritical. This
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FIG. 1. Side view schematic of a liquid exiting a slot of height h0 and falling under the influence of

gravity while subjected to ambient gas pressures MA and MB on its sides. The curtain is assumed

to be infinite and invariant in the z direction, oriented out of the figure. The centerline of the

curtain and its local thickness are denoted as y = F (x) and h(x), respectively. The governing

equations (1.1)-(1.3) are valid for curtain deflections F << h, so dimensions in the figure are

chosen for clarity and are not to drawn to scale.

definition is necessary, as10 show experimentally that it is possible for curtains to remain

subcritical over their entire lengths. This observation is also consistent with experimental

findings of7, who show that long subcritical curtains can persist without rupture. We define

supercritical curtains as those for which We0 > 1 and thus the flow is supercritical over the

entire domain. For supercritical curtains,12 and10 both find that the slope of the curtain at

the slot is vertical.

12 report a distinct increase in dominant oscillation frequency as the slot Weber number is

decreased from supercritical to subcritical. It is not clear from the investigation whether this
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effect is a result of an inherent susceptibility of the curtain to pressure disturbances because

of the oscillation of the curtain centerline slope at the slot exit, or is a result of the pressure

coupling present in a nappe configuration. In this paper we study the imposition of a pressure

drop across the curtain that is sinusoidal in time and is not coupled to the curtain motion.

This configuration is itself practically relevant to curtain coating processes. We specifically

examine the response of the curtain as the flow is reduced from supercritical to subcritical,

and we determine whether the corresponding change in the boundary conditions at the slot

exit leads to a substantial change in the overall shape and magnitude of the curtain response.

This provides a comparison of the capacities of subcritical and supercritical curtains to resist

pressure disturbances.

II. THEORY

The dimensionless form of (1) is

∂2F̄

∂t̄2
+ 2ū

∂2F̄

∂x̄∂t̄
+ ū

∂

∂x̄

[(
ū− 1

We0

)
∂F̄

∂x̄

]
= ū(P̄2 − P̄1). (4)

Here, P̄2 − P̄1 is the pressure difference across the curtain, whose displacement from its

centerline is F̄ (x̄, t̄)27. The dimensionless version of (1.2) is

ū =
√

1 + 2x̄, (5)

where dimensionless variables are defined as:

F̄ =
F

h0

ū =
u

V
x̄ =

xg

V 2
t̄ =

tg

V
(6a, b, c, d)

P̄2 − P̄1 =
MB −MA

ρε2V 2
ε =

gq

V 3
We0 =

ρqV

2σ
. (7a, b, c)

In (2.3a), h0 is the slot height, and other variables have been defined in section 1 and

shown schematically in figure 1. We then convert the coordinate system from Eulerian to

Lagrangian by making the following variable change:

ξ = ū− 1. (8)
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In order to study the response of a curtain, we consider an applied sinusoidal pressure

disturbance of the form P̄2 − P̄1 = βeiω̄t̄ such that (2.1) is written, using coordinate trans-

formation (2.5), as:

∂2F̄

∂t̄2
+ 2

∂2F̄

∂ξ∂t̄
+

∂

∂ξ

((
1− 1

(ξ + 1)We0

)
∂F̄

∂ξ

)
= (ξ + 1)βeiω̄t̄ (9)

where ω̄ and β are given by

ω̄ =
ωV

g
β =

αeiθR

ρε2V 2
. (10a, b)

Here, ω is the angular frequency and α and θR are the magnitude and reference phase

of the pressure disturbance, respectively. The reference phase, θR, is adjusted to provide

clarity in the presentation of results to follow (see discussion in Section 3). It is understood

that only the real part of F̄ is taken as the actual solution. The periodic solution for F̄ is

of the form

F̄ (ξ, t̄) = βH̄(ξ)eiω̄t̄ (11)

where H̄(ξ) is to be determined. We obtain a second-order ordinary differential equation

(ODE) by substituting (11) into (9):(
(ξ + 1)2 − (ξ + 1)

We0

)
d2H̄

dξ2
+

(
2i(ξ + 1)2ω̄ +

1

We0

)
dH̄

dξ
− (ξ + 1)2ω̄2H̄ = (ξ + 1)3. (12)

A second change of coordinates is implemented to simplify calculations, given by:

z = ξ − c c =
1

We0

− 1. (13a, b)

In these coordinates, the critical point is z = 0 and (12) becomes

z(z + c+ 1)
d2H̄

dz2
+ (2i(z + c+ 1)2ω̄ + c+ 1)

dH̄

dz
− (z + c+ 1)2ω̄2H̄ = (z + c+ 1)3. (14)

As discussed in section 1, there are two characteristics that are oriented downstream from

the slot in supercritical curtains (We0 > 1), and the appropriate constraints to apply here

are

H̄(−c) = 0 (15)
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dH̄

dz
(−c) = 0. (16)

Note that the subcritical case (We0 < 1) corresponds to c > 0. Condition (15) sets the

curtain centerline to be that of the slot, and (16) specifies that the curtain be vertical there.

We can see that for supercritical curtains, (14), along with the conditions stated in (15)

and (16), constitute a well-posed initial value problem15. Supercritical solutions for this

system may be obtained over the entire domain using a fourth-order accurate Runge-Kutta

marching scheme.

For subcritical curtains (We0 < 1), only one characteristic is oriented downstream from

the slot, so we only apply (15). Furthermore, the coefficient of the highest order term in

(14) goes to zero at the critical point (z = 0), and therefore the ODE is singular (13). An

implication of this singularity is that any marching scheme will become infinitely stiff as z

approaches 0. Thus, we use a power series centered at z = 0 to determine the solution from

the slot (z = −c) to a point downstream from the transition point (z = c). Then, taking the

first coefficients of the power series solution as initial conditions, we use the Runge-Kutta

scheme mentioned above to complete the solution from z = c to the end of the curtain

(z = zL); the flow is supercritical below the critical point, allowing us to apply a marching

scheme in this way. We present the derivation of the power series in appendix A 1. In the

power series, enough terms are used to achieve machine precision.

III. RESULTS AND DISCUSSION

Figures 2-9 provide results for subcritical and supercritical curtains corresponding to the

configuration shown in figure 1. Note that these figures have been rotated counter-clockwise

90 degrees, such that the gravitational force points right, along the x̄-axis. In all of the

figures, the location of the unperturbed curtain centerline, ȳ = 0, is shown as a dashed

line and the shapes that the curtains adopt at 1/4 increments of the periods of motion are

represented by the solid lines. For clarity in the presentation of results, the reference phase

of the pressure disturbance, θR in (2.7b), is chosen to be

θR = arctan

(
Im(H̄(x̄L))

Re(H̄(x̄L))

)
, (17)

where Im and Re denote the imaginary and real parts of the complex argument. Note
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that reference phase merely adjusts the time at which the curtain adopts a shape, but does

not affect the sequence of shapes predicted through its period of oscillation. Equation (3.1)

assures that the bottom of the curtain, located at x̄ = x̄L, sweeps through the same locations

as it moves forward and backward throughout an oscillation cycle–this makes it easier to

interpret the curtain response.

Figures 2 and 3 provide curtain responses for We0 = 1.1 (supercritical) and We0 = 0.9

(subcritical) conditions both with ω̄ = 0.1. The insets in these figures show the magnifica-

tions of the curtain shapes near the slot exit. As described earlier, the centerline slope of

supercritical curtains is always zero at the slot exit, while the slope of supercritical curtains

changes throughout the oscillation cycle. Despite this change in behavior, figures 2 and 3

show that the overall shape of the curtain is quite similar for subcritical and supercriti-

cal curtains, with the magnitude of the subcritical responses comparable. Figures 4 and 5

(ω̄ = 0.5) and figures 6 and 7 (ω̄ = 2) compare We0 = 1.1 and We0 = 0.9 curtain responses.

Again, the magnitude and shapes of the curtain responses are similar for supercritical and

subcritical flows. Figures 8 and 9 provide additional results for We0 = 1.3 and We0 = 0.7,

respectively, both with ω̄ = 2. Even though the range of Weber numbers has extended

further into the supercritical and subcritical regimes compared with figures 6 and 7, there

is no marked change in curtain shape or magnitude. Additionally, we have solved Equa-

tion 2.11 for a selection of subcritical and supercritical slot Weber numbers (We0) sweeping

over a wide range of frequencies. The trends shown in Figures 2-7 are maintained over all

frequencies and slot Weber numbers surveyed. That is, the number of spatial oscillations

within a given curtain length increases, and the maximum magnitude of curtain responses

decreases with increasing frequency.

The latter observation is relevant as it mathematically eliminates the possibility of forcing

the curtain via a pressure disturbance in such a way that natural curtain frequencies are

excited. If resonance were to arise, there would be a large amplification in the vicinity

of a given imposed frequency. At the precise resonant frequency, the assumed form of

the forced solution (2.8) would become invalid, necessitating a secular time dependence

(such as teω̄t). The monotonic decrease in curtain deflection with increasing frequency

(as seen in figures 2 through 9) demonstrates that such behavior does not occur. This

mathematical result has a physical basis. In supercritical curtains, disturbances are washed

downstream, so the reinforcement of repeated disturbances that characterizes resonance is
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not possible. In curtains that are subcritical near the slot but turn supercritical downstream,

one might expect that some reinforcement is possible, because disturbances in the subcritical

region propagate upstream to the slot. However these reflect at the slot and are washed

downstream.

Figure 10 provides the maximum curtain angle at the slot as a function of We0 for various

frequencies. Note that the curtain takes on a range of angles at the slot as it cycles through

its motion. The maximum angle of the response at the slot immediately drops to zero as the

slot Weber number increases past We0 = 1, in accordance with a subcritical to supercritical

transition.

Despite the marked difference in curtain motion at the slot quantified by figure 10, the

subcritical and supercritical curtain responses shown in figures 2-9 are not appreciably dif-

ferent at a given frequency. These results indicate that there is not a significant change in

a curtain’s sensitivity to pressure disturbances in the subcritical to supercritical transition.

The abrupt frequency shift observed by12 in this transition is thus attributed to the coupling

between the pressure disturbances and curtain motion that arises in the nappe configuration.

IV. CONCLUSION

We consider the time-dependent response of a gravitationally-thinning liquid curtain that

is subjected to sinusoidal ambient pressure disturbances under subcritical and supercritical

conditions. Consistent with previous studies under both steady state and transient condi-

tions, we find that the centerline slope of the curtain is not the same as that of the slot under

subcritical conditions. This is a direct consequence of the flow of information propagating

along characteristics in the governing hyperbolic PDE. We examine whether the increased

susceptibility of the curtain to pressure disturbances arises because of the oscillation in cur-

tain centerline slope at the slot exit for subcritical curtains. Our investigation shows there

are no abrupt differences in the responses of subcritical and supercritical curtains for Weber

numbers near 1 for all imposed sinusoidal frequencies. Experimental confirmation of these

results is needed in future studies.
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FIG. 2. The location of the curtain centerline, Re(F̄ ), as a function of distance down the curtain, x̄,

when it is subjected to a sinusoidal pressure disturbance. The inset is a magnification of the region

near the slot. Here, the flow is supercritical (We0 = 1.1) and ω̄ = 0.1, β = 1, and θR = −0.4048

radians (see (3.1)). The dashed line denotes the centerline of the unperturbed curtain.
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FIG. 3. The location of the curtain centerline, Re(F̄ ), as a function of distance down the curtain, x̄,

when it is subjected to a sinusoidal pressure disturbance. The inset is a magnification of the region

near the slot. Here, the flow is subcritical (We0 = 0.9) and ω̄ = 0.1, β = 1, and θR = −0.4366

radians (see (3.1)). The dashed line denotes the centerline of the unperturbed curtain.
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FIG. 4. The location of the curtain centerline, Re(F̄ ), as a function of distance down the curtain, x̄,

when it is subjected to a sinusoidal pressure disturbance. The inset is a magnification of the region

near the slot. Here, the flow is supercritical (We0 = 1.1) and ω̄ = 0.5, β = 1, and θR = −1.7794

radians (see (3.1)). The dashed line denotes the centerline of the unperturbed curtain.
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FIG. 5. The location of the curtain centerline, Re(F̄ ), as a function of distance down the curtain, x̄,

when it is subjected to a sinusoidal pressure disturbance. The inset is a magnification of the region

near the slot. Here, the flow is subcritical (We0 = 0.9) and ω̄ = 0.5, β = 1, and θR = −1.7924

radians (see (3.1)). The dashed line denotes the centerline of the unperturbed curtain.
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FIG. 6. The location of the curtain centerline, Re(F̄ ), as a function of distance down the curtain, x̄,

when it is subjected to a sinusoidal pressure disturbance. The inset is a magnification of the region

near the slot. Here, the flow is supercritical (We0 = 1.1) and ω̄ = 2, β = 1, and θR = −2.8491

radians (see (3.1)). The dashed line denotes the centerline of the unperturbed curtain.
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FIG. 7. The location of the curtain centerline, Re(F̄ ), as a function of distance down the curtain,

x̄, when it is subjected to a sinusoidal pressure disturbance. The inset is a magnification of the

region near the slot. Here, the flow is subcritical (We0 = 0.9) and ω̄ = 2, β = 1, and θR = −2.9888

radians (see (3.1)). The dashed line denotes the centerline of the unperturbed curtain.
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FIG. 8. The location of the curtain centerline, Re(F̄ ), as a function of distance down the curtain, x̄,

when it is subjected to a sinusoidal pressure disturbance. The inset is a magnification of the region

near the slot. Here, the flow is supercritical (We0 = 1.3) and ω̄ = 2, β = 1, and θR = −2.7377

radians (see (3.1)). The dashed line denotes the centerline of the unperturbed curtain.
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FIG. 9. The location of the curtain centerline, Re(F̄ ), as a function of distance down the curtain,

x̄, when it is subjected to a sinusoidal pressure disturbance. The inset is a magnification of the

region near the slot. Here, the flow is subcritical (We0 = 0.7) and ω̄ = 2, β = 1, and θR = 3.1252

radians (see (3.1)). The dashed line denotes the centerline of the unperturbed curtain.
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FIG. 10. The maximum angle at the slot, θ0,max =
∀t

max[arctan(Re(∂F̄/∂x))]x̄=0, as a function of

slot Weber number, We0 , for a range of dimensionless disturbance frequencies, ω̄, obtained from

the solution of (14) with β = 1. The maximum angle at the slot, θ0,max, is taken here to correspond

with the dimensionless curtains shown in figures 2-9 (as well as additional cases).
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Appendix A

1. Power Series

For subcritical cases (We0 < 1), the power series H̄(z) =
∞∑
j=0

(λj + iΓj)z
j, centered at

z = 0 (the critical point), is a solution of (14) on the interval −b < z < b, if the following

conditions are met, where b = c+ 1 and Qj = [λj,Γj]
T :

Q1 =

A1Q0 +

 b4

−2ω̄b5

 s1 (A1)

Q2 =

A2Q1 +B2Q0 +

 12b3

−12b4ω̄

 s2 (A2)

Q3 =

A3Q2 +B3Q1 + C3Q0 +

 27b2

−18b3ω̄

 s3 (A3)

Q4 =

A4Q3 +B4Q2 + C4Q1 +

 16b

−8b2ω̄

 s4 (A4)

And for all j > 3

Qj+1 = (Aj+1Qj +Bj+1Qj−1 + Cj+1Qj−2)sj+1 (A5)

where:

Aj =


A11j A12j

A21j A22j


(A6)

A11j = b(j + 1)2(b2ω̄2 − j(j − 1))− 8b3ω̄2j(j + 1) (A7)

A12j = 2ω̄b2(2j(j + 1)2 + (j + 1)(b2ω̄2 − j(j − 1)) (A8)

A21j = −2ω̄b2(2j(j + 1)2 + (j + 1)(b2ω̄2 − j(j − 1)) (A9)
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A22j = b(j + 1)2(b2ω̄2 − j(j − 1))− 8b3ω̄2j(j + 1) (A10)

Bj =


B11j B12j

B21j B22j


(A11)

B11j = 2b2ω̄2(j + 1)(3− j) (A12)

B12j = 2bω̄(j + 1)(2b2ω̄2 + (j + 1)(j − 1)) (A13)

B21j = −2bω̄(j + 1)(2b2ω̄2 + (j + 1)(j − 1)) (A14)

B22j = 2b2ω̄2(j + 1)(3− j) (A15)

Cj =


C11j C12j

C21j C22j

 (A16)

C11j = bω̄2(j + 1)2 (A17)

C12j = 2b2ω̄3(j + 1) (A18)

C21j = −2b2ω̄3(j + 1) (A19)

C22j = bω̄2(j + 1)2 (A20)

sj =
1

b2j4 + 4b4ω̄2j2
(A21)
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If λ0 and Γ0 are known, the rest of the parameters are determined. So we have a two-

parameter family of solutions. In particular cases the two parameters are determined by the

boundary condition, which is the Dirichlet condition given by Equation (2.13) for the cases

we consider in this paper.

2. Power Series Convergence Proof

Here we prove that the power series H̄(z) =
∞∑
j=0

(λj + iΓj)z
j converges for |z| < b . Let

Tj = ‖Qj‖. It follows from Equation A5 and the triangle inequality that

Tj+1 ≤ ‖Ajsj‖Tj + ‖Bjsj‖Tj−1 + ‖Cjsj‖Tj−2 (A22)

The diagonal elements of Aj are fourth-order polynomials in j with leading coefficient b,

the off-diagonal elements are third-order polynomials in j, and sj is a fourth-order polynomial

with leading coefficient b2. Thus the matrix Ajsj approaches 1
b
I, where I is the identity

matrix, as j goes to infinity. All of the elements in the matrices Bj and Cj are polynomials

of order less than four, so Bjsj and Cjsj approach the zero matrix as j approaches infinity.

Thus for every r > 0, there exists an integer K, such that for all j > K:

‖Ajsj‖ <
1

b
+ r (A23)

‖Bjsj‖ <
r

b
(A24)

‖Cjsj‖ <
r

b2
(A25)

If γ >
(

1
b

+ 3r
)
, then:

γ >
1

b
+ r +

r

γb
+

r

γ2b2
(A26)

Let q > 0 be such that Tj < qγj, for all j < K + 3.

Then,

qγj > qγj−1(
1

b
+ r) + qγj−2 r

b
+ qγj−3 r

b2
> (

1

b
+ r)Tj−1 +

r

b
Tj−2 +

r

b2
Tj−3 ≥ Tj (A27)

Therefore by induction, Tj < qγj for all j. So
∞∑
j=0

Tj|zj| is dominated by the geometric

series
∞∑
j=0

qγj|zj| and this converges for |z| < 1
γ
. Therefore,

∞∑
j=0

Qjz
j converges absolutely for
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|z| < 1
γ
. Because we have the derived bound for every r, where γ = r + 1

b
, we can take r as

small as we’d like to and establish that b is the radius of convergence.
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