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PT symmetry, induced mechanical lasing, and tunable force sensing in
a coupled-mode optically levitated nanoparticle
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We theoretically investigate PT symmetry, induced mechanical lasing, and force sensing in an optically
levitated nanoparticle with coupled oscillation modes. The coupling in the levitated system is created by the
modulation of an asymmetric optical potential in the plane transverse to the beam trapping the nanoparticle.
We show that such a coupling can lead to PT -symmetric mechanical behavior for experimentally realistic
parameters. Further, by examining the phonon dynamics and the second-order coherence of the nanoparticle
modes, we determine that induced mechanical lasing is also possible. Finally, we demonstrate that tunable
ultrasensitive force sensing (∼zN/

√
Hz) can be engineered in the system. Our studies represent an advance

in the fields of coherent manipulation of coupled degrees of freedom of levitated mechanical oscillators and their
application for sensing.
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I. INTRODUCTION

Coupled optomechanical systems have garnered a lot of
attention in recent years owing to their potential applications
in the fields of sensing [1–4], quantum information processing
[5–7], and entanglement [8,9]. In connection with these ap-
plications, a variety of phenomena such as PT (parity-time)
symmetry [10,11], quantum synchronization [12,13], photon
blockade [14], quantum state transfer [15,16], etc., have been
studied in the coupled systems. Most of these proposals in-
volved coupled cavities or coupled clamped nanomechanical
resonators, which may be less efficient in obtaining high-
fidelity entanglement, quantum state transfer, ultrasensitive
sensing, etc., owing to their high decoherence rates [17].

In contrast, realizing a coupled optomechanical configura-
tion using an optically levitated system can be advantageous
in overcoming this difficulty as these well-isolated systems are
known to have very low decoherence rates [18,19]. Indeed,
because they present such advantages, optically levitated sys-
tems have been used in applications such as force sensing
[20,21], magnetic sensing [22], and rotational sensing [23].
Apart from these uses, optically levitated systems have also
been used to study squeezing [24], bistability [25], superposi-
tion states [26,27], phonon lasing [28], etc. However, all these
studies are mainly focused on using a single mechanical mode
of the optically levitated system.

Recently, coherent dynamics of a two-mode-coupled lev-
itated system have been studied by Frimmer et al. [29]. In
their work, they have coupled the two transverse modes of
an optically levitated nanoparticle by modulating an asym-
metric trap potential in the transverse plane of the system.
By exploiting this coupling, they have implemented cooling
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of the transverse modes in this system. However, to the best
of our knowledge, apart from the abovementioned studies
on coherent dynamics, not much has been explored about
this coupled nanoparticle system. Hence, it is timely and
important to explore different quantum phenomena arising in
this coupled-mode system. Specifically, realization of a few
phenomena such as PT symmetry and simultaneous lasing
and sensing in this system can be advantageous because these
can be further used to study the resulting phenomena of
PT -symmetric phonon lasing [30], squeezing enhancement
[31], generation of nonclassical state [32], efficient quantum
state transfer [33], quantum synchronization [34], and ultra-
sensitive sensing [35], which has potential application towards
imaging [36] and quantum information processing [37]. Also,
due to low decoherence rates, levitated coupled-mode systems
can show higher efficiency in realizing the above phenomena
than the conventional optomechanical systems. Apart from
this, study of this simple coupled-mode system can be a ba-
sis for future exploration of the aforementioned phenomena
in more complicated systems such as two or more particle
coupled levitated systems, wherein multimode coupling can
arise [38].

Consequently, in this work we propose to use the coupled-
mode levitated nanoparticle as a tool box for studying the
aforementioned phenomena (see Fig. 1). The coupling is
introduced by manipulating the trap potential in the plane
transverse to the trapping beam, which propagates along the
z axis, as proposed by Frimmer et al. [29]. The modula-
tion of the asymmetric potential results in the coupling of
the two transverse oscillation modes x and y. By suitably
amplifying and cooling the mechanical motion in the two
modes, respectively, we find that the system can be driven
into the PT -symmetric regime. Numerical studies of phonon
dynamics and second-order coherence imply that the system
remains in a thermal state in this regime. However, we show
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FIG. 1. A schematic diagram for the levitated nanoparticle sys-
tem considered in this work. The lens Lf is used to trap the
nanoparticle at the focus of the trap laser and the information about
particle position is collected by the lens Lc to be processed. The inset
shows an asymmetric potential created in the transverse x-y plane at
the focus of the trap laser.

that when one of the modes is a lasing mode then the coupling
drives the other modes also towards lasing. We also show
that when a nonlinearly damped mode is coupled to a gain
mode both the modes achieve lasing. Finally, we exploit the
mode-mode coupling to achieve highly tunable ultrasensitive
force sensing. We find that in the strong-coupling regime,
weak forces can be measured with high sensitivity at different
frequencies due to their tunability using this system.

In our simulations we use realistic experimental param-
eters and take into account relevant sources of noise and
dissipation. Our work on analyzing various implications of
modal coupling in an optically levitated nanoparticle opens up
new possibilities for coherent manipulation and sensing using
these highly isolated systems. In the remainder of this paper,
we introduce our theoretical formulation in Sec. II, present the
results and discussion in Sec. III, and present our conclusions
in Sec. IV.

II. THEORETICAL FORMULATION

A. Model

We consider a single dielectric nanoparticle of mass m op-
tically trapped in the potential created by a focused Gaussian
beam under high vacuum, as shown in Fig. 1. The created op-
tical potential is harmonic to a good approximation around the
focus of the Gaussian beam. Hence, the trapped nanoparticle
can be considered as a harmonic oscillator, whose three modes
of oscillation are decoupled for small amplitudes, along the
three principal axes x, y, and z, respectively [39].

In this paper, we concentrate on the particle dynamics in
the x-y plane only, while freezing the particle motion along
the z direction using feedback cooling. Further, the cou-
pling of the motion along the x and y directions is achieved
by modulating the polarization of the trap laser beam us-
ing an electro-optic modulator [29]. This modulation varies
the asymmetric potential in the x-y plane, thereby coupling
the modes. In order to study the dynamics of the coupled-
mode system, we write the master equation for this system
[28,40] as

ρ̇m = −i
∑
j=x,y

{
ω j[a

†
j a j, ρm] +

(
γgj − γa j

2

)
[Qj, {Pj, ρm}]

}

−
∑
j=x,y

(
Dt j

2
D[Qj]ρm − Dj

2
D[Pj]ρm

)

−
∑
j=x,y

(
iγc j

[
Q3

j , {Pj, ρm}] − �c jD
[
Q3

j

]
ρm

)

+ i
κδ

m
√

ωxωy
cos(ωrt )[QxQy, ρm], (1)

where ρm is the density matrix for the two-dimensional cou-
pled system and the dimensionless position and momentum
operators for the nanoparticle are denoted as Qj and Pj , re-
spectively. Here, j ∈ {x, y} and symbolizes the two transverse
modes x and y, respectively. Further, the commutators and an-
ticommutators are represented by square [ ] and curly brackets
{ }, respectively. The mechanical modes are also represented
by phonon creation (a†

j ) and annihilation (a j ) operators
that obey the bosonic commutation relation [a, a†] = 1. The
Lindblad superoperator D[O] is defined as

D[O] = O†Oρ + ρO†O − 2O†ρO. (2)

The first term on the right-hand side of Eq. (1) corresponds
to the harmonic motion of the system with frequencies ωx and
ωy in the directions x and y, respectively. The second term
represents damping (antidamping) due to the surrounding gas
(linear feedback amplification) of the system with the rate
γgj (γa j) [28]. However, in our case, linear amplification of
only one of the modes is of interest, namely, the y mode of
the coupled system. The third term depicts the net momen-
tum diffusion with the rate Dt j (= At j + Dpj + 2�a j), due to
photon scattering (At j), gas scattering (Dpj), and linear feed-
back amplification back-action (�a j). Further, the back-action
rates �a j are small in comparision to the rates At j and Dpj

and, hence, can be neglected [28]. The fourth term represents
the position diffusion (due to gas scattering) with the rate Dj .
The fifth and sixth terms appear due to nonlinear feedback
and its concomitant back-action effect, respectively. The rates
of feedback cooling and cooling back-action are given by γc j

and �c j , respectively. The last term in Eq. (1) arises due to the
coupling of the two transverse modes, x and y. The coupling is
introduced by periodically rotating the asymmetric potential
around the z axis by a small angle δ at the frequency ωr

(≈ ωy − ωx). Further, κ � m(ω2
y − ω2

x )/2 denotes the change
in trap stiffness due to the asymmetry in the trapping potential.
Throughout this paper, we analyze the effect of this coupling
on the dynamics of the system and its relation to the realiza-
tion of various interesting and useful phenomena.

B. Quantum Langevin equations

In order to study the effect of coupling on the position
dynamics of both the modes of the coupled system, we use
the full quantum Langevin equations of motion including all
quantum fluctuations for the system, derived from Eq. (1).
The complete equations of motion for the coupled system are
given as

Q̇x = ωxPx, (3)

Ṗx = −ωxQx − 2
(
γgx + 3γcxQ2

x

)
Px + κδ

m
√

ωxωy
cos(ωrt )Qy,
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+
√

2KBT γgx

h̄ωx
ξT + √

DtxξFa + 12Q2
x

√
�2

cx

γcx
ξFc, (4)

Q̇y = ωyPy, (5)

Ṗy = −ωyQy − 2
(
γgy − γay + 3γcyQ2

y

)
Py

+ κδ

m
√

ωxωy
cos(ωrt )Qx

+
√

2KBT γgy

h̄ωy
ξT + √

DtyξFa + 12Q2
y

√
�2

cy

γcy
ξFc, (6)

where the correlations corresponding to the zero-mean noise
from the environment (ξT ), the feedback amplification (ξFa),
and the cooling (ξFc) are represented as 〈ξT (t )ξT (t ′)〉 = δ(t −
t ′), 〈ξFa(t )ξFa(t ′)〉 = δ(t − t ′), and 〈ξFc(t )ξFc(t ′)〉 = δ(t − t ′),
respectively.

Now, in order to further simplify the above equations of
motion, we use the following transformations:

Qx = Q0Re

{
ax(t ) exp

[
i

(
ω0 − ωr

2

)
t

]}
, (7)

Qy = Q0Re

{
ay(t ) exp

[
i

(
ω0 + ωr

2

)
t

]}
, (8)

where Q0 is the initial amplitude of the oscillation modes,

ω0 =
√

ω2
x + ω2

y/2 is the carrier frequency, and the complex

amplitudes for the oscillation modes along the x mode and the
y mode are represented as ax and ay, respectively.

In our present work we are interested in studying the dy-
namics of the mean position for both the modes in the classical
limit [41]. Hence, we neglect the quantum fluctuations and use
the slowly varying amplitude approximation and the rotating-
wave approximation to obtain the mean-value equations for
the oscillation amplitudes of the coupled system as

〈ȧx〉 = − i

2
(	 − i�x )〈ax〉 + iβx〈ay〉, (9)

〈ȧy〉 = iβy〈ax〉 + i

2
(	 + i�y)〈ay〉, (10)

where 	 = ω1 − ωr , ω1 = (ω2
y − ω2

x )/2ω0, �x = 2(γgx +
6γcx〈ax〉2), �y = 2(γgy − γay + 6γcy〈ay〉2), βx = ω3

√
ωx/ωy,

βy = ω3
√

ωy/ωx, and ω3 = [δ(ω2
y − ω2

x )]/2ω0. A detailed de-
scription of the analysis for deriving the above equation of
motion is provided in the Appendix. Further, we can study
the dynamics of phonon population in both modes via |ax(t )|2
and |ay(t )|2. In the classical limit, |ax(t )|2 and |ay(t )|2 give
the description of phonon dynamics of the system. The study
of phonon dynamics is very important as a saturationlike
behavior of the phonon number can indicate lasing action
in the system [28]. However, such behavior in the phonon
dynamics is necessary but not sufficient for validating lasing
action. Therefore, we also study the second-order coherence
for the coupled-mode system in the following section.

C. Second-order coherence

Study of the second-order coherence is useful in charac-
terizing various quantum states of a system. For example,

a system in a thermal state has a Lorentzian g(2)(τ ) with
1 � g(2)(τ ) � 2, and that in a coherent state has a constant
g(2)(τ ) = 1 indicating the presence of lasing [42]. Finally, 0 �
g(2)(τ ) < 1 represents a system in a nonclassical state [43].
Hence, to characterize the coupled-mode levitated system, we
also study the second-order correlation function for it. The
second-order correlation function can be expressed in terms
of the creation and annihilation operators as

g(2)
j (τ ) = 〈â†

j (t )â†
j (t + τ )â j (t + τ )â j (t )〉
〈a†

j (t )â j (t )〉2
, (11)

where â†
j = (Qj − iPj )/2 and â j = (Qj + iPj ), with j ∈

{x, y}. Further, 〈 〉 indicates an ensemble average and τ rep-
resents the time delay.

III. RESULTS AND DISCUSSION

A. PT symmetry

In this subsection, we theoretically realize PT symmetry
in a coupled-mode levitated nanoparticle. With this aim in
mind, we first rewrite the dynamical equations Eqs. (9) and
(10) into the following matrix form:

i

[〈ȧx〉
〈ȧy〉

]
= H

[〈ax〉
〈ay〉

]
, (12)

where H is the non-Hermitian Hamiltonian for the coupled-
mode system and is described as

H =
[

1
2 (	 − i�x ) −βx

−βy − 1
2 (	 + i�y)

]
. (13)

Next, we study the behavior of the eigenvalues of the
Hamiltonian H , which are given by

λ± = −(C2 − C1) ±
√

(C2 − C1)2 + 4(β2 + C1C2)

2
, (14)

where C1 = 1
2 (	 − i�x ), C2 = 1

2 (	 + i�y), and β = √
βxβy.

We first consider the resonant case where 	 = 0, with the x
mode acting as a linearly damped oscillator and the y mode
acting as an oscillator with linear gain. The variation of the
eigenvalues with coupling strength for this case is presented
in Fig. 2. It can be seen from Figs. 2(a) and 2(b) that, for
the parametric regime where β > γ /2 with γgx = γgy = γ ,
and γay = 2γ , the imaginary parts of both the eigenvalues
are zero, while the real parts are nonzero, depicting a PT -
symmetric behavior [44]. Further, for the nonresonant case
	 
= 0, the imaginary part of the eigenvalue is nonzero as
shown in Fig 2(c), depicting the system to be in a broken-
PT -symmetric regime. This is due to the fact that, in the
nonresonant case, the energy transfer between the x mode and
the y mode is unbalanced [29]. Next, in order to have a better
understanding of this PT -symmetric behavior, we study the
dynamics of the oscillator x and y modes using Eqs. (7)–(10).
The solution for the complex amplitude for both the modes is
given as

ax(t ) = a0

2�s
e− (�x+�y+i�s )t

4
[
�s

(
e

i�st
2 + 1

)
+ (i�x − i�y − 2	 − 4ω3)

(
e

i�st
2 + 1

)]
, (15)
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FIG. 2. PT symmetry in the coupled-mode levitated nanopar-
ticle system. Panels (a) and (b) respectively show the variation of
the imaginary and real parts of the eigenvalues λ+(blue dashed
line) and λ−(red solidline) [see Eqs. (14)] with coupling strength
β for 	 = 0 Hz. Panel (c) shows the variation for the imaginary
part of eigenvalues for 	 = 1.0 Hz. Parameters are ωx = 2π × 115
KHz, ωy = 2π × 141 KHz, γgx = γgy = γ = 2π × 10 mHz, γay =
4π × 10 mHz, and γcx = γcy = 0.0 Hz. Experimental values of the
parameters are taken from Ref. [39].

ay(t ) = a0

2�s
e− (�x+�y+i�s )t

4 [�s(e
i�st

2 + 1)

+ (−i�x + i�y + 2	 − 4ω3)(e
i�st

2 + 1)], (16)

where �s = √
[2	 − i(�x − �y)]2 + (4ω3)2 and a0 is the ini-

tial amplitude for the modes. At first, we probe the dynamics
of the oscillator modes in the uncoupled state considering
equal gain and loss values. The analytical solutions for this
case (γgx = γgy = γ and γay = 2γ ) for the x and y modes are
ax(t ) = a0e−γ t and ay(t ) = a0eγ t , respectively. It is evident
from these solutions that, in the uncoupled state, the amplitude
of oscillation for the x mode decreases, depicting a damped
oscillator, while for the y mode it increases, representing
an oscillator with gain. Figures 3(a) and 3(d) depict the be-
havior of oscillator displacements for the x mode and the y
mode, respectively.

Next, to observe PT symmetry in the coupled system, we
now couple the x and y modes having equal gain and loss
values, which can be arranged experimentally. We first con-
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FIG. 3. The evolution of oscillation amplitudes for a coupled-
mode levitated nanoparticle. Panels (a)–(c) show the dynamics of the
x mode and panels (d)–(f) show the dynamics for the y mode, respec-
tively. Parameters for panels (a) and (d) are δ = 0, for panels (b) and
(e) are δ = 10−4 and 	 = 0 Hz, and for panels (c) and (f) are δ =
10−4 and 	 = 1 Hz. The remaining parameters are ωx = 2π × 115
KHz, ωy = 2π × 141 KHz, γgx = γgy = γ = 2π × 10 mHz, γay =
4π × 10 mHz, γcx = γcy = 0.0 Hz, Q0 = √

4 × 105, and T = 1 K.
Experimental values of the parameters are taken from Ref.[39].

sider the resonant case with 	 = 0. In this case, the solutions
of the complex amplitude for both the modes are given as

ax(t ) = a0e− it
√

α

2

4
√

α
[(2iγ + 2

√
α − 4ω3)eit

√
α

+ (−2iγ + 2
√

α + 4ω3)], (17)

ay(t ) = a0e− it
√

α

2

4
√

α
[(−2iγ + 2

√
α − 4ω3)eit

√
α

+ (2iγ + 2
√

α + 4ω3)], (18)

where α = 4ω2
3 − γ 2. It is apparent from Eqs. (17) and (18)

that both the modes show sustained oscillation only when
α > 0 or else the oscillation increases exponentially. The con-
dition α > 0 is equivalent to the condition β > γ /2 which
is discussed above and represents the condition for observing
PT symmetry in the coupled system. Further, this parameter
regime ensures that the Hamiltonian of the system has real
eigenvalues [44]. Under these conditions, as expected, the
coupled system shows PT -symmetric behavior resulting in a
periodic (Rabi) oscillation of mean position for both the oscil-
lator modes with constant amplitude as depicted in Figs. 3(b)
and 3(e). However, when we consider the nonresonant case
with 	 
= 0, we see from Figs. 3(c) and 3(f) that the oscillation
in both the modes increases exponentially even in the para-
metric regime of β > γ /2. As explained earlier, this is due to
unbalanced energy transfer between the two transverse modes.
Hence, in order to observe PT symmetry in this coupled
system, it is necessary to work in the resonant regime with
	 = 0.

Recently, similar results on PT -symmetric dynamics in
clamped optomechanical system have been presented by
Xu et al. [45]. Comparing with the work by Xu et al.
[45], our result do have mathematical similarity between the
equation of motion in the linear regime and, hence, similar
PT -symmetric dynamics; however, there are several impor-
tant physical differences between our work and theirs. First,
we present a model based on cavityless levitated optomechan-
ics, which is fundamentally different from the model by Xu
et al. [45] which involves a passive cavity. Second, the cou-
pling in our work is initiated between two mechanical modes,
while in the work by Xu et al. [45], it is between an optical
mode and a mechanical mode. Although all modes involved
in both works are bosonic, there is a large difference between
the parameters (such as mode frequencies and phonon and
photon numbers) and physical behavior (e.g., massive versus
massless, localized versus traveling at the speed of light, and
damping mechanisms). Third, we not only study PT symme-
try in the linear regime but also use this phenomena to look
for the possibility of achieving lasing action in the coupled
system, which makes our analysis different from the work of
Xu et al. [45].

Moreover, we also demonstrate PT symmetry in the non-
linear regime. Nonlinear PT symmetry is an interesting
phenomena in which a system shows stable dynamics even
in the regime where the PT condition is not satisfied and has
been used to study bistability and bifurcations in nonlinear
coupled systems [46]. In addition to this, we also look for
the possible application towards utilizing the coupled levitated
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FIG. 4. Position dynamics of the x mode (a) and the y mode (b) in
the nonlinear PT -symmetric regime. The parameters are ωx = 2π ×
115 KHz, ωy = 2π × 141 KHz, γgx = γgy = γ = 2π × 10 mHz,
γay = 4π × 10 mHz, γcx = γcy = 10−5 Hz, 	 = 0 Hz, δ = 10−3,
Q0 = √

4 × 105, and T = 1 K.

system in a nonlinear PT -symmetric regime to achieve
phonon lasing. These additional analyses on nonlinear PT
symmetry and its applicability to phonon lasing distinguish
our work from that of Xu et al. [45].

In order to investigate PT symmetry in the nonlinear
regime, we consider the full dynamical equation for the am-
plitudes ax and ay as in Eqs. (9) and (10) which includes
the nonlinear feedback terms corresponding to γcx and γcy.
In the parameter regime γgx = γgy = γ , γay = 2γ , and γcx =
γcy = γn, the equations of motion for both the modes are then
expressed as

〈ȧx〉 = − i

2
	〈ax〉 − 1

2

[
γ + 3γn

〈
a2

x

〉]〈ax〉 + iβx〈ay〉, (19)

〈ȧy〉 = iβy〈ax〉 + i

2
	〈ay〉 − 1

2

[−γ + 3γn
〈
a2

y

〉]〈ay〉. (20)

The above equations closely resemble the equation for cou-
pled nonlinear Schrödinger dimers [46]. We now numerically
solve the above equations of motion to study the position
dynamics of both the modes; the results are shown in Fig. 4.
It is observed that the position dynamics of both modes attain
a steady value in the long interaction time limit. The values
for the amplitude of oscillation in this limit can be obtained
by solving Eqs. (19) and (20) in the steady state, i.e., by
considering 〈ȧx〉 = 〈ȧy〉 = 0. In the steady state, for 	 = 0
and γ 
= 0, the dimer equations, Eqs. (19) and (20), have
two solutions, notably symmetric (ax = ay = a) and antisym-
metric (ax = −ay = b). These two stationary solutions are
given as

a = [
√

4β2 − γ 2/(3γn)]1/2ei(θ1+ π
2 ), (21)

b = [
√

4β2 − γ 2/(3γn)]1/2eiθ2 , (22)

where sin(θ2 − θ1) = −γ /(2β ) [46]. From the above analy-
sis, it is evident that the system shows sustained oscillation in
the long interaction time limit and, hence, can be considered
to be in the nonlinear PT -symmetric regime [46] represented
by 	 = 0 and β > γ /2. A more detailed analysis on the
dynamics of the dimer equation can be found in Ref. [47].

Moreover, when the system is sufficiently cooled down,
the noise terms in Eqs. (3)–(6) play an important part and
should be taken into account [10]. Following our theoretical
demonstration of PT symmetry in both linear and nonlinear
regimes in this levitated system, this model can be realized
experimentally and be utilized to further explore phenomena
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FIG. 5. The time evolution of the phonon population for a
coupled-mode levitated nanoparticle. Panels (a) and (b) show the
phonon dynamics of the x mode in the linear PT -symmetric regime
for δ = 0 and δ = 10−4, respectively, with 	 = 0 Hz. Panels (d) and
(e) show the dynamics of the y mode also in the linear PT -symmetric
regime for δ = 0 and δ = 10−4, respectively, for 	 = 0 Hz. Panels
(c) and (f) show the phonon dynamics for the x mode and the
y mode, respectively, in the nonlinear PT -symmetric regime with
δ = 10−4, γcx = γcy = 10−5 Hz, and 	 = 0 Hz. Here N0 = 2 × 105,
while other parameters are the same as those in Fig. 3.

such as PT -symmetric phonon laser [30], squeezing enhance-
ment [31], generation of nonclassical states [32], and efficient
entanglement [48] and for studying nonlinear dynamics in
coupled many-body system [49].

In particular, we are interested in the possibility of real-
izing a PT -symmetric phonon laser in this system. Hence,
we now investigate if the sustained oscillation showed by the
system in the linear and nonlinear PT -symmetric regimes
can be linked to lasinglike behavior. For this, we first study
the phonon dynamics as well as the second-order coherence
for the coupled-mode system in the linear PT -symmetric
regime. In the classical limit, the phonon dynamics can be
well represented by |ax(t )|2 for x mode and |ay(t )|2 for y
mode, respectively. In the uncoupled state, with equal gain and
loss value, the evolution of phonon population in both x and y
modes is represented by the forms Nx(t ) = |ax(t )|2 = N0e−2γ t

and Ny(t ) = |ay(t )|2 = N0e2γ t , respectively. It is clear from
these analytical expressions that, in the absence of coupling,
the phonon population for the x mode decays exponentially,
while it rises for the y mode [see Figs. 5(a) and 5(d), respec-
tively]. This is simply due to the fact that, in the uncoupled
state, the x mode acts as a damped oscillator, while the y mode
acts as an amplified oscillator.

Further, when both the modes are coupled, the analytical
solutions for the phonon population in the two transverse
modes are given as

Nx(t ) = N0

2α

[
8ω2

3−(γ 2−iγ
√

α)eit
√

α−(γ 2 + iγ
√

α)e−it
√

α
]
,

(23)

Ny(t ) = N0

2α

[
8ω2

3−(γ 2 + iγ
√

α)eit
√

α−(γ 2−iγ
√

α)e−it
√

α
]
,

(24)

where N0 = |a0|2 is the initial phonon number. It is evident
from Eqs. (23) and (24) that for α > 0 (PT condition),
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FIG. 6. Variation of second-order coherence with scaled time
delay for the PT -symmetric system. Panels (a) and (b) show g(2)

x (τ )
for the x mode in the linear and the nonlinear PT -symmetric regime,
respectively. Panels (c) and (d) show g(2)

y (τ ) for the y mode in the
linear and the nonlinear PT -symmetric regime, respectively. Corre-
sponding parameters for each regime are the same as those in Figs. 3
and 4.

the phonon dynamics for both the modes shows oscillatory
behavior, which also can been seen in Figs. 5(b) and 5(e).
This sustained oscillation in the phonon dynamics is due
to the fact that the mean phonon number N is proportional
to the square of the mean position Q (〈N〉 ∝ 〈Q2〉). Now,
in the PT -symmetric regime, the position dynamics of both
the modes shows sustained oscillation. Hence, in this regime,
the phonon number dynamics for both the modes also have
sustained oscillation. From the above study, it is apparent
that the PT -symmetric system does not show a saturationlike
behavior in the phonon dynamics [28], which is one of the
criteria for validating lasing action. Hence, the self-sustained
oscillation of the PT -symmetric system in the linear regime
cannot be linked to lasinglike phenomena.

In order to further verify our conclusion, we also study
the second-order coherence for the PT -symmetric system
in the linear regime. In this regard, we solve Eqs. (7)–(10)
using the numerical method in Refs. [50,51]. In the numerical
evaluation process, at each time step, we find the position (Qj)
and momentum (Pj) values and then add the noise term as
in Eqs. (3)–(6) to the momentum (Pj) values. Next, from the
modified Qj and Pj , we find the modified complex amplitudes
ax and ay. We then use the new ax and ay as the initial
condition and solve Eqs. (9) and (10) for the next time step,
and we follow the same procedure to find the full solution
for ax and ay in the presence of noise. Later, we use these
complex amplitude values to find the second-order coherence
as in Eq. (11), the result of which is shown in Fig. 6. It is
evident from Figs. 6(a) and 6(c) that g(2)

x (τ ) and g(2)
y (τ ) for

both the modes show a Lorentzian-type feature indicating that
both modes are in the thermal state [52].

Next, we proceed to study the phonon dynamics and the
second order coherence for the coupled system in the nonlin-
ear PT -symmetric regime. In this regime, the system have

a steady value of population in both modes in the long in-
teraction time limit as shown in Figs. 5(c) and 5(f), and the
value of which can be evaluated either by |a|2 or by |b|2 from
Eqs. (21) and (22). However, though the system have stable
phonon population, the test of second-order coherence as de-
picted in Figs. 6(b) and 6(d) still shows both modes to be in
thermal state.

Hence, from the above studies of phonon dynamics as well
as the second-order coherence, it appears that lasinglike phe-
nomena in the system remain inaccessible when the system is
in either the linear or the nonlinear PT -symmetric regime.
However it may be possible to attain simultaneous lasing
action in such a gain-loss system by working in a nonlinear
regime considering the value of gain to be very much higher
than that of loss [53,54]. The presence of such high gain along
with nonlinearity in a mode drives the corresponding mode
towards lasing [28]. Coherent coupling of any nonlasing mode
to this lasing mode can then induce lasing in the former mode.
In the next section, we present a detailed discussion of this
induced lasing mechanism and also discuss how the presence
and the absence of the nonlinearity in the modes affect this
mechanism.

B. Lasing transfer and creation

In this subsection, we demonstrate coupling-induced lasing
transfer between the two transverse modes of the levitated
nanoparticle, prepared in various initial configurations. Apart
from this, we also show coupling-induced simultaneous lasing
of the transverse modes via nonlinear feedback, when neither
of them show lasing action initially. At first, we consider the
x mode as a nonlinearly damped oscillator, i.e., the x mode
is subjected to nonlinear feedback cooling [40], and the y
mode as a phonon laser which requires both amplification and
cooling [28]. The initial configuration for both the modes are
characterized by studying the position dynamics, the phonon
dynamics, and the second-order coherence. In this regard, we
first study the position dynamics for both the modes of the
coupled system using Eqs. (9) and (10). For the uncoupled
case, we can write the approximate analytical solutions for
both the modes as

ax(t ) = a0

√
γgx√

e2γgx (t+θ1 ) − 6a2
0γcx

, (25)

ay(t ) = a0

√
γgy − γay√

e2(γgy−γay )(t+θ2 ) − 6a2
0γcy

, (26)

where θ1 = ln[6a2
0γcx + γgx]/2γgx and θ2 = ln[6a2

0γcy +
γgy − γay]/[2(γgy − γay)].

It is clear from the above solutions, and as expected, that
the x mode simply damps, while the y mode initially shows
exponential rise and then saturates to a higher amplitude
(≈ √

γay/γcy) as shown in Figs. 7(a) and 7(d), respectively.
Further, Eqs. (26) reveals that the nonlinear cooling term γcy

plays an important role in attaining the saturation value in the
amplitude of the y mode. The competition between nonlinear
feedback cooling γcy and linear heating γay is the basic phe-
nomenon behind the attainment of such a saturation value and,
hence, the cause of lasing in the y mode.
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FIG. 7. Initial configuration of the coupled-mode levitated sys-
tem. Panels (a)–(c) show the position dynamics, the phonon
dynamics, and the second-order coherence for the x mode, re-
spectively. Panels (d)–(f) show the position dynamics, the phonon
dynamics, and the second-order coherence for the y mode, re-
spectively. The parameters are ωx = 2π × 115 KHz, ωy = 2π ×
141 KHz, γgx = γgy = γ = 2π × 10 mHz, γcx = 10−5 Hz, γcy =
10−5 Hz, �cx = 10−6 Hz, �cy = 10−6 Hz, γay = 100 Hz, δ = 0,
	 = 0 Hz, Q0 = √

4 × 105, N0 = 2 × 105, Atx = Aty = 1 KHz,
Dpx = Dpy = 24 KHz, Dx = Dy = 5 × 10−8 Hz, and T = 1 K. Ex-
perimental values of the parameters are taken from Refs. [28,39].

Further, the phonon dynamics for the modes can be studied
numerically by solving Eqs. (9) and (10). The evolution of
the phonon population for x and y modes is then evaluated
from Nx(t ) = |ax(t )|2 and Ny(t ) = |ay(t )|2, respectively, and
the result is shown in Fig. 7. It is evident from Figs. 7(b)
and 7(e), respectively, and also can be predicted from the
analytical expressions in Eqs. (25) and (26), that the phonon
population in the x mode decays, while for the y mode the
phonon population shows a saturation effect with a value
(≈ γay/γcy) (previously observed in Ref. [28]).

We also study the second-order coherence for both the
modes, which is evaluated using the same procedure as
discussed above in the PT symmetry section (Sec. III A).
Figures 7(c) and Fig. 7(f) show the behavior of second-order
coherence g(2)

x (τ ) for the x mode and g(2)
y (τ ) for the y mode, re-

spectively. It is seen in the figure that g(2)
x (τ ) has a Lorentzian

profile depicting the mode to be in a thermal state and g(2)
y (τ )

has a constant profile representing it to be in a coherent state
[42]. The above analysis confirms that the x mode acts as
a damped oscillator and the y mode acts as a phonon laser,
which is expected from the initial condition. Next, we use this
analysis to establish lasing transfer in the coupled case as well.

In this regard, we first study the position dynamics of the x
mode and the y mode, when both the modes are coupled, the
results of which are shown in Figs. 8(a) and 8(d), respectively.
Figure 8(a) shows that, when the modes are coupled, the y
mode induces a sustained oscillation in the x mode (which was
initially a nonlinearly damped oscillator). Further, to check
that the sustained oscillation of the x mode indeed leads to
lasing of the mode, we study the phonon dynamics for the
coupled system. Figure 9(a) shows the phonon dynamics for
the x mode in the presence of coupling. It is apparent from
the figure that the phonon population in the x mode attains
a saturation value, which points to a lasinglike phenomenon,
indicating lasing transfer to the x mode.
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FIG. 8. Induced lasing transfer and creation in a coupled-mode
levitated system. Panels (a)–(c) show the position dynamics of
the x mode and panels (d)–(f) show the position dynamics for
the y mode, for δ = 10−3. The parameters for panels (a) and (d)
are γcx = 10−5 Hz and γcy = 10−5 Hz. The parameters for panels
(b) and (e) are γcx = 0 Hz, γcy = 10−5 Hz. For panels (c) and (f), the
parameters are γcx = 10−5 Hz, γcy = 0 Hz, and γay = 70 Hz. Other
parameters are the same as those in Fig. 7.

Next, to fully establish this induced lasing transfer, we also
study the second-order coherence for the x mode, the results
of which are shown in Fig. 10. It can be seen from Fig. 10(a)
that, with the introduction of coupling in the system, g(2)

x (τ )
for the x mode shows a constant profile, which initially had a
Lorentzian profile, indicating that the mode has evolved to a
coherent state. Hence, our study of both the phonon dynamics
and the second-order coherence confirms the induced lasing
transfers between the modes in the coupled system. Now, as
for the y mode, it can be seen from Figs. 8(d) and 9(d) that the
amplitude of oscillation and the phonon population slightly
decrease while preserving the sustained oscillation and sat-
uration effect in the mode. This decrease in both oscillation
amplitude and phonon population is due to the coupling of
the y mode to the nonlinearly damped x mode, which induces
extra damping in the y mode. Further, g(2)

y (τ ) for the y mode
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FIG. 9. Saturation effect in phonon dynamics for the coupled-
mode levitated system. Panels (a)–(c) show the phonon dynamics of
the x mode and panels (d)–(f) show the phonon dynamics for the y
mode, for δ = 10−3. The parameters for panels (a) and (d) are γcx =
10−5 Hz and γcy = 10−5 Hz. The parameters for panels (b) and (e) are
γcx = 0 Hz and γcy = 10−5 Hz. For panels (c) and (f), the parameters
are γcx = 10−5 Hz, γcy = 0 Hz, and γay = 70 Hz. Other parameters
are the same as those in Fig. 7.
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FIG. 10. The second-order coherence as a function of scaled time
delay for the coupled-mode levitated system. Panels (a)–(c) show
g(2)

x (τ ) for the x mode and panels (d)–(f) show g(2)
y (τ ) for the y

mode, respectively. Parameters for panels (a) and (d) are γcx =
10−5 Hz and γcy = 10−5 Hz. Parameters for panels (b) and (e) are
γcx = 0 Hz and γcy = 10−5 Hz. Parameters for panels (c) and (f)
are γcx = 10−5 Hz, γcy = 0 Hz, and γay = 70 Hz. Other parameters
are the same as those in Fig 8.

as in Fig. 10(d) depicts that the state of the y mode remains
unchanged; i.e., it is still in the coherent state even after
coupling.

Next, we consider the case when no nonlinear feedback
cooling (γcx = 0) is applied to the x mode; i.e., the mode acts
as a linearly damped oscillator, while the y mode is considered
as a phonon laser. We then introduce the coupling and analyze
the possibility of attaining induced lasing in the x mode for
this case. In this regard, we study the position dynamics, the
phonon dynamics, and the second-order coherence for the
x mode. Now, when the coupling is in effect, it can be
seen from Fig. 8(b) that the linearly damped x mode shows
sustained oscillation. Further, the phonon population for the
x mode also attains a saturation value as shown in Fig. 9(b).
Both of these results indicate induced lasing transfer in
the x mode, which is further established from g(2)

x (τ ) as
in Fig. 10(b), showing the mode to be in a coherent state.
Moreover, in this case the state of the y mode remains
unchanged as can be seen from Figs. 9(e) and 10(e). Hence,
from the above analysis, we can affirm that both linear and
nonlinear damped oscillator modes achieve induced lasing
when coupled to a phonon laser.

At last, we discuss the case where initially the x mode acts
as a nonlinearly damped oscillator, while the y mode acts a lin-
ear gain oscillator (γcy = 0). We then couple both the modes
and discuss the possibility of achieving simultaneous lasing
in the modes. For this, we study the dynamics of position and
the phonon population along with the second-order coherence
for both the modes. When the modes are coupled, it can be
seen from Figs. 8(c) and 8(f) that the position dynamics show
sustained oscillation for both x and y modes, respectively. As
a result, the phonon dynamics for both x and y modes also
attain saturation as seen in Figs. 9(c) and 9(f), respectively.
These results represent that both the modes have attained
simultaneous lasing due to this coupling.

Further, we confirm the induced lasing action from g(2)
x (τ )

and g(2)
y (τ ), which shows both x and y modes to be in a

coherent state as seen in Figs. 10(c) and 10(f), respectively.

The induced lasing action in both the modes can be attributed
to the competition between linear amplification in the y mode
and nonlinear damping in the x mode [28]. All the above
analysis on lasing transfer and simultaneous lasing is done
for the resonant case 	 = 0, and we find that these results
remain unchanged even for the nonresonant case 	 
= 0. Si-
multaneous lasing in all directions is very much essential as
it might have applications in imaging using coherent phonons
[36]. Apart from this, the above presented results can stim-
ulate studies on outcoupling of phonon lasers and obtaining
high-fidelity quantum state transfer [33] as well as efficient
synchronization [34,55], which have potential applications in
quantum information processing [37].

C. Force sensing

In this section, we study force sensing using a coupled-
mode levitated nanoparticle. In order to calculate the force
sensitivity, we consider both the modes as a nonlinearly
damped oscillator and write the equations of motion for the
coupled-mode system as

q̈x = −ω2
x qx − κδ

m
cos(ωrt )qy

− 2[γgx + 3γcx(2〈Nx〉 + 1)]q̇x + Fx

m
, (27)

q̈y = −ω2
y qy − κδ

m
cos(ωrt )qx

− 2[γgy + 3γcy(2〈Ny〉 + 1)]q̇y + Fy

m
, (28)

where Fj = F j
T + F j

Fa + F j
Fc, F j

T = √
2KBT mγgjξT , F j

Fa =√
Dt j h̄ω jmξFa, and F j

Fc = 12q2
j

√
�2

c j m
3ω3

j

h̄γc j
ξFc, with j ∈ {x, y}.

Next, we solve the above equations in the Fourier domain and
express the solutions in the forms qx(ω) = χx(ω)Fx(ω) and
qy(ω) = χy(ω)Fy(ω), where χx(ω) and χy(ω) are the optome-
chanical susceptibilities for the x and y modes, respectively.
The susceptibilities for the modes are given as

χ j (ω) = 1 + Av (ω) + Bv (ω)

m[(ω2
j − ω2) + iω� j]

for j 
= v, (29)

Av (ω) = κδ

2m{[ω2
v − (ω − ωr )2] + i(ω − ωr )�v} , (30)

Bv (ω) = κδ

2m{[ω2
v − (ω + ωr )2] + i(ω + ωr )�v} , (31)

where both j and v ∈ {x, y}. A detailed analysis of the above
derivation is provided in the Appendix. We now include the
effect of the shot noise of the measured signal and write the
positional power spectral density (PSD) for both the modes as

〈|q j (ω)|2〉 = |χ j (ω)|2(ST j + SH j + SC j ) + l2
j

η2φ
, (32)

where η and φ are the optomechanical coupling coefficient
and the photon flux [40], respectively, and l j = √

h̄/2mω j

is the oscillator length, along with j ∈ {x, y}. Further, the
stochastic forces due to thermal heating, feedback heat-
ing, and feedback cooling are given as STi = 2mγgjKBT ,
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FIG. 11. Shot noise force PSD as a function of frequency. Panels
(a) and (d) respectively show ln[sx] with sx = Ssx (ω)/Ss0 of the x
mode and ln[sy] with sy = Ssy(ω)/Ss0 of the y mode, for δ = 10−5

(blue solid lines) and δ = 10−3 (red dashed lines). Panels (b) and
(d) respectively show the enlarged view of the second minimum
of Ssx (ω)/Ss0 and Ssy(ω)/Ss0 for δ = 10−4, γcx = 10−4 Hz, γcy =
10−4 Hz (blue solid lines); δ = 10−3, γcx = 10−4 Hz, γcy = 10−4 Hz
(red dot-dashed lines); and δ = 10−3, γcx = 10−5 Hz, γcy = 10−5 Hz
(green dashed lines). The parameters are ωx = 2π × 115 KHz, ωy =
2π × 141 KHz, γgx = γgy = γ = 2π × 10 mHz, γcx = 10−4 Hz,
γcy = 10−4 Hz, �cx = 10−5 Hz, �cy = 10−5 Hz, γay = 0 Hz, Atx =
10 KHz, Aty = 10 KHz, η = 2 × 10−7, φ = 5 × 1017 photons/s,
Dpx = Dpy = 24 KHz, Dx = Dy = 5 × 10−8 Hz, and T = 1 K. The
nanoparticle diameter D = 136 nm and the density ρ = 2200 kg/m3.
Experimental values of the parameters are taken from Refs. [39,40].
The values of stochastic forces for the parameters considered above
are ST x ≈ STy = 2 × 10−42 N2

Hz , SHx ≈ SHy = 2.7 × 10−42 N2

Hz , SCx ≈
SCy = 5 × 10−43 N2

Hz , and Ss0 = 1.8 × 10−38 N2

Hz .

SH j = h̄mω jDt j , and SC j = 36h̄mω j
�2

c j

γc j
[4〈Nj〉2 + 4〈Nj〉 + 1],

respectively.
Now from the PSD equation as in Eq. (32), we can write

the force PSD for each mode as

〈|Fj (ω)|2〉 = ST j + SH j + SC j + Ss j (ω), (33)

where Ss j (ω) = Ss0/|χ j (ω/ω j )|2, with Ss0 = m2l2
j ω

4
j/η

2φ

and j ∈ {x, y} [40].
To obtain a minimum force sensitivity, we consider the

case where the frequency-dependent term Ss j (ω) is minimum.
Hence, in this regard we numerically study Ss j (ω) and present
the results in Fig. 11. It can be seen from Figs. 11(a) and
11(c), which apply for low values of the coupling (blue solid
line), that the force PSD [Ss j (ω)] attains a minimum value
around the oscillation frequencies for each mode. Consider-
ing optimal parameters as in Fig. 11, we find a minimum
force sensitivity for the coupled system to be

√〈|Fj (ω)|2〉min

≈ 10−21N/
√

Hz, which is similar to the sensitivity observed
in other single-mode levitated systems [21,56].

However, it is interesting to notice that in the case of
higher values of coupling (red dashed line), the force noise
PSD for the x mode has an extra minimum at ωy + ωr apart

from the minimum at ωx, while the y mode has an extra
minimum at ωx − ωr along with the minimum at ωy, as shown
in Figs. 11(a) and 11(c), respectively. Further, the position
of the extra minimum can be tuned by changing ωr , i.e., by
changing the asymmetry of the potential in the transverse
plane. In principle, the asymmetry of the trapping potential
can be modulated by using either an elliptically [57] or a lin-
early polarized [29,58] trapping laser. The asymmetry in the
potential is maximum for a linearly polarized trapping laser,
which results in the maximum splitting between the eigen-
frequencies of the x and y modes. For our current work, we
considered a linearly polarized trapping laser as in Ref. [29]
and, hence, 2π × 26 KHz is the maximum value which can be
achieved for ωr in this coupled-mode levitated system.

Apart from this, we can see from Figs. 11(b) and 11(d)
that not only the position of the second minimum but also its
bandwidth can be controlled by tuning the coupling strength.
The bandwidths of the force noise PSD minimum for the x
mode at ωy + ωr and for the y mode at ωx − ωr are found
to be 	ω/ωx = 0.004 and 	ω/ωy = 0.007, respectively, for
δ = 10−4 (blue solid line). Also, with the increase in the
coupling strength, i.e., for δ = 10−3 (red dot-dashed line), the
bandwidths of the force noise PSD for both the x mode and
the y mode increases and are found to be 	ω/ωx = 0.014 and
	ω/ωy = 0.02, respectively.

We note that the parameter δ cannot be made arbitrarily
high and has to satisfy the condition δ � 1 for the linear
approximation of the coupling as in Eq. (1) to remain valid
[29]. From Figs. 11(b) and 11(d) we also see that the strength
of the feedback nonlinearity does not have much effect on the
bandwidths (green dashed line) of the minima for both the
modes. Moreover, the presence of these extra minima suggest
that the coupled-mode system can be sensitive to small forces
at these extra frequencies as well. We find the minimum
force sensitivity at the frequencies relevant to the secondary
minima of the force noise PSD also to be

√〈|Fj (ω)|2〉min ≈
10−21N/

√
Hz in the strong-coupling regime.

These features in the force PSD can be attributed to the
phenomenon of mode splitting which arises generally in a
coupled system and has recently been specifically experimen-
tally identified in a levitated nanoparticle [29]. Interestingly,
these results imply that one can measure weak forces at quite
different frequencies with high sensitivity by tuning the cou-
pling in the system. Hence, from the above study it is evident
that the coupled-mode levitated systems are more suitable
for designing tunable ultrasensitive sensors than single-mode
levitated systems due to their greater tunability [35,59]. Ex-
perimentally, feedback-based in-loop protocols can be used to
measure the sensitivity of such coupled systems, wherein the
error in the sensitivity measurement arising due to uncertainty
in position measurement and improper feedback coupling can
also be accounted for [21,56,60].

IV. CONCLUSION

In conclusion, we have theoretically demonstrated
PT symmetry, induced and simultaneous lasing, and tunable
ultrasensitive force sensing in a coupled-mode levitated
system. We have used quantum Langevin equations to
calculate phonon evolution and second-order phonon
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coherence and quantify the dynamics of the coupled system.
We found that, in the regime where oscillation frequencies
of both the mechanical modes as well as their strength
of their coupling are very much larger than their respective
damping rates, the position dynamics for both the modes show
sustained modulation of oscillation, indicating PT symmetry.

Although the system shows oscillation with constant am-
plitude, the dynamics of phonon population and tests of the
second-order coherence reveal both the modes to be in ther-
mal rather than coherent states. Further, we show that the
system enters a PT -symmetric broken phase in the presence
of nonresonant coupling. Next, we show that when one of
the modes is in a coherent state, i.e., in a lasing mode, the
other mode also attains a coherent state due to the coupling,
indicating induced lasing transfer. Moreover, we have also
shown coupling-induced simultaneous lasing of a nonlin-
early damped mode and a linearly amplified mode. We also
studied tunable force sensing in the coupled-mode levitated
system and found multifrequency sensitivity of the order of
zN/

√
Hz. Our theoretical work suggests new possibilities for

an optically levitated coupled-mode nanoparticle for coherent
manipulation and force sensing.
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APPENDIX

1. Equations of motion

In the Appendix, we provide a detailed derivation of the
equation of motion for the coupled modes in the mean-
field approximation limit [41]. In this limit, we neglect the
noise terms as in Eqs. (3)–(6) and write the equations of
motion as

Q̇x = ωxPx, (A1)

Ṗx = −ωxQx − 2
(
γgx + 3γcxQ2

x

)
Px

+ κδ

m
√

ωxωy
cos(ωrt )Qy, (A2)

Q̇y = ωyPy, (A3)

Ṗy = −ωyQy − 2
(
γgy − γay + 3γcyQ2

y

)
Py

+ κδ

m
√

ωxωy
cos(ωrt )Qx. (A4)

We now take the derivative of the position for the two modes
as in equations Eqs. (A1)–(A4) with respect to time and obtain
the following:

Q̈x = −ω2
x Qx − 2

(
γgx + 3γcxQ2

x

)
Q̇x

+ κδ

m

√
ωx

ωy
cos(ωrt )Qy, (A5)

Q̈y = −ω2
y Qy − 2

(
γgy − γay + 3γcyQ2

y

)
Q̇y

+ κδ

m

√
ωy

ωx
cos(ωrt )Qx. (A6)

Next, we express the oscillation modes Qx and Qy in terms of
their complex amplitudes as

Qx = Q0Re{a1(t )eiω0t }, (A7)

Qy = Q0Re{a2(t )eiω0t }. (A8)

Here Q0 = √
2N0 is the initial amplitude of the oscillation

modes, with N0 = kBT
h̄ω

as the initial phonon number at tem-
perature T . The complex amplitudes for the oscillation modes
along the x mode and the y mode are represented as a1

and a2, respectively. The carrier frequency of the oscillation

modes is represented as ω0 =
√

ω2
x + ω2

y/2. We then substi-

tute Eqs. (A7) and (A8) in Eqs. (A5) and (A6) and make
use of the slowly varying envelope approximation to neglect
the second-order derivatives of the complex amplitudes of the
modes with respect to time and write the equations of motion
for the modes as

ȧ1 = − i

2
(ω1 − i�x )a1 − iω3

√
ωx

ωy
cos(ωrt )a2, (A9)

a2 = −iω3

√
ωy

ωx
cos(ωrt )a1 + i

2
(ω1 + i�y)a1, (A10)

where ω1 = (ω2
y − ω2

x )/2ω0, �x = 2(γgx + 3γcxQ2
x ), �y =

2(γgy − γay + 3γcyQ2
y ), and ω3 = [δ(ω2

y − ω2
x )]/2ω0. Here,

we have also used the approximations 2iω0 + �x ≈ 2iω0 and
2iω0 + �y ≈ 2iω0 to arrive at the above equations. Further,
the parameters considered in this paper for various simula-
tions are such that this approximation is always valid. In order
to further simplify the above equations of motion, we make
use of following transformations:

a1 = ax(t )e−i ωr
2 t , (A11)

a2 = ay(t )ei ωr
2 t . (A12)

We then use the rotating-wave approximation, where we
neglect the counter-rotating terms and write the final
equations of motion for the mean position of the modes as

〈ȧx〉 = − i

2
(	 − i�x )〈ax〉 + iβx〈ay〉, (A13)

〈ȧy〉 = iβy〈ax〉 + i

2
(	 + i�y)〈ay〉, (A14)

where 	 = ω1 − ωr , βx = ω3
√

ωx/ωy, and βy = ω3
√

ωy/ωx.
Further, we also use the mean-field approximations Q2

x ≈
2〈a2

x〉 ≈ 2〈ax〉2 and Q2
y ≈ 2〈a2

y〉 ≈ 2〈ay〉2 to express the non-
linear damping terms �x and �y as �x = 2(γgx + 6γcx〈ax〉2)
and �y = 2(γgy − γay + 6γcy〈ay〉2), respectively.

2. Force sensing

We consider the equations of motion as depicted by
Eqs. (3)–(6) and take a derivative of the position with respect
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to time for the two modes, and then we write them in the
following forms:

Q̈x = −ω2
x Qx − 2

(
γgx + 3γcxQ2

x

)
Q̇x

+ κδ

m

√
ωx

ωy
cos(ωrt )Qy

+
√

2KBT γgx

h̄ωx
ξT + √

DtxξFa + 12Q2
x

√
�2

cx

γcx
ξFc, (A15)

Q̈y = −ω2
y Qy − 2

(
γgy − γay + 3γcyQ2

y

)
Q̇y

+ κδ

m

√
ωy

ωx
cos(ωrt )Qx

+
√

2KBT γgy

h̄ωy
ξT + √

DtyξFa + 12Q2
y

√
�2

cy

γcy
ξFc. (A16)

We now make use of the definitions Qx =
√

2mωx
h̄ qx and Qy =√

2mωy

h̄ qy to write the above equations of motion into their
dimensional forms as

q̈x = −ω2
x qx − κδ

m
cos(ωrt )qy

− 2[γgx + 3γcx(2〈Nx〉 + 1)]q̇x + Fx

m
, (A17)

q̈y = −ω2
y qy − κδ

m
cos(ωrt )qx

− 2[γgy + 3γcy(2〈Ny〉 + 1)]q̇y + Fy

m
, (A18)

where Fj = F j
T + F j

Fa + F j
Fc, is the net stochastic force due

to thermal heating (F j
T ), feedback amplification (F j

Fa), and
feedback cooling (F j

Fc). The stochastic forces are represented
as F j

T = √
2KBT mγgjξT , F j

Fa = √
Dt j h̄ω jmξFa, and F j

Fc =
12q2

j

√
�2

c j m
3ω3

j

h̄γc j
ξFc, with j ∈ {x, y}. Further, in the process of

achieving the above equations of motion, we considered no
heating in the y mode (γay = 0) and have used the approxima-
tions Q2

x ≈ (2〈Nx〉 + 1) and Q2
y ≈ (2〈Ny〉 + 1).

These approximations are valid for the case considered
here and their validity can be verified by analyzing the phonon
dynamics for both the modes in the absence and in the pres-
ence of coupling. The phonon dynamics for the modes both
in the absence and in the presence of coupling are shown in
Fig. 12. It is evident from the figure that the phonon dynamics
for both the modes in the uncoupled state is very similar to
their corresponding dynamics in the coupled case and attains
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FIG. 12. Panel (a) shows the phonon dynamics for the x mode
and panel (b) shows the phonon dynamics for the y mode in the
absence (blue solid line) and in the presence (red dashed line) of
coupling, respectively. Parameters are the same as those in Fig. 11.

a fixed value in the long time limit. Hence, in this long time
interaction limit, we can safely assume Q2

x ≈ (2〈Nx〉 + 1) and
Q2

y ≈ (2〈Ny〉 + 1) in our calculation [40]. We then take a
Fourier transform of the above equations and rewrite them in
the following forms:[(

ω2
x − ω2) + iω�x

]
qx(ω) + κδ

2m
qy(ω − ωr )

+ κδ

2m
qy(ω + ωr ) = Fx(ω)

m
, (A19)

[(
ω2

y − ω2) + iω�y
]
qy(ω) + κδ

2m
qx(ω − ωr )

+ κδ

2m
qx(ω + ωr ) = Fy(ω)

m
, (A20)

where �x = 2[γgx + 3γcx(2〈Nx〉 + 1)] and �y = 2[γgy +
3γcy(2〈Ny〉 + 1)].

Next, we solve Eqs. (A19) and (A20) and write the
solutions in the forms qx(ω) = χx(ω)Fx(ω) and qy(ω) =
χy(ω)Fy(ω), where χx(ω) and χy(ω) are the optomechanical
susceptibilities for the x and y modes, respectively. Here,
we consider both the modes to be under nearly identical
conditions, such as being subjected to the same gas damp-
ing, scattering rates, feedback rates, and temperature. Under
this assumption, the mean effective forces acting on both
modes can be considered to be nearly equal, i.e., 〈|Fx(ω)|〉 ≈
〈|Fy(ω)|〉. In this approximation the optomechanical suscepti-
bilities can be expressed as

χ j (ω) = 1 + Av (ω) + Bv (ω)

m[(ω2
j − ω2) + iω� j]

for j 
= v, (A21)

Av (ω) = κδ

2m{[ω2
v − (ω − ωr )2] + i(ω − ωr )�v} , (A22)

Bv (ω) = κδ

2m{[ω2
v − (ω + ωr )2] + i(ω + ωr )�v} , (A23)

where both j and v ∈ {x, y}.
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