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Direct Measurement of Atomic Entanglement via Cavity
Photon Statistics

Nilakantha Meher,* Mishkatul Bhattacharya, and Anand K. Jha

An experimental scheme for the measurement of entanglement between two
two-level atoms is proposed. This scheme requires one of the two entangled
atoms to interact with a cavity field dispersively, and it is shown that by
measuring the zero time-delay second-order coherence function of the cavity
field, one can measure the concurrence of an arbitrary Bell-like atomic
two-qubit state. As this scheme requires only one of the atoms to interact with
the measured cavity, the entanglement quantification becomes independent
of the location of the other atom. Therefore, this scheme can have important
implications for entanglement quantification in distributed quantum systems.

1. Introduction

One of the most intriguing features of quantum mechanics is
the quantum entanglement, which implies two or more quan-
tum systems being inseparable even when they are space-like
separated.[1,2] In the last several years, much effort has gone into
generating and quantifying entanglement because of its wide ap-
plications inmany quantum information protocols such as quan-
tum teleportation and[3] dense coding.[4] These protocols use two-
qubit entangled states as the main resource and the amount of
entanglement in these states decides the success probability of
the protocols. Although for two-qubit systems there are several
measures of entanglement, Wootter’s concurrence is the most
widely used one.[5] Experimental measurement of concurrence
of two-qubit states requires constructing the total density matrix
through joint probability measurements.[6] However, for certain
classes of two-qubit states, there are proposals for quantifying en-
tanglement without reconstructing the entire densitymatrix.[7–15]

Moreover, for pure two-qubit states, it has been shown that the
reduced density matrix of one of the subsystems contains in-
formation about entanglement,[16] implying that the two-qubit
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entanglement can be measured by
making measurements on only one of
the subsystems without requiring joint
measurements.[17–21] Implementing this
concept, several groups have measured
entanglement of such two-qubit states
experimentally by making measurement
on only one of the subsystems.[18–20]

This concept has also been used in the
context of verifying entanglement in
continuous-variable systems.[22–24] These
techniques have several advantages as
compared to the techniques that involve
joint measurements.[19,22]

In the atomic domain, there are several methods for experi-
mentally measuring the entanglement of pure two-qubit states
based on joint measurement.[10,15,25–27] There are also a few theo-
retical proposals that allow direct measurement of entanglement
without implementing joint measurement.[28,29] These methods
have their own advantages. However, the schemes for direct mea-
surement of entanglement require two pairs of atoms to interact
with four cavities, and one needs to control all the atoms simul-
taneously through individual quantum gate operations. In this
paper, we report a simpler scheme that allows direct quantifica-
tion of entanglement between two two-level atoms. Our scheme
requires one of the two entangled atoms to interact with a cav-
ity field dispersively and the measurement of the zero time-delay
second-order coherence function of the cavity field gives direct
quantification of the concurrence. Using our scheme, one can
measure the concurrence of arbitrary Bell-like atomic two-qubit
states. Furthermore, the measurement of entanglement between
two atoms becomes independent of the separation between the
atoms as the measurement involves only one of the atoms. This
type of measurement will have implications in quantifying en-
tanglement in distributed quantum systems.[30–39]

We have organized our article as follows: In Section 2, we have
introduced our proposed experimental setup for the direct mea-
surement of atomic entanglement. We present our methods for
quantifying entanglement through cavity photon statistics in Sec-
tion 3. We summarized our results in Section 4.

2. Proposed Experimental Setup

We consider a system of two entangled two-level atoms (Atom
1 and Atom 2) which are trapped in two separated cavities, as
shown in Figure 1. These two atoms are interacting dispersively
with their respective cavities. One of the cavities (Cavity 1)
is driven by a laser with central frequency 𝜔d and the other
cavity (Cavity 2) is in vacuum. As both the cavities are relatively
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Figure 1. Proposed experimental setup for quantifying entanglement between two two-level atoms through measurement of zero time-delay second-
order coherence function g(2)(0) of one of the cavities. The setup consists of two spatially separated cavities (Cavity 1 and Cavity 2), each containing a
two-level atom (Atom 1 and Atom 2). Cavity 1 is driven by a laser of resonance frequency 𝜔d whereas Cavity 2 is in vacuum. The field leaking out from
the driven cavity is directed toward the measurement system, which consists of a beam splitter and a detection system for the purpose of measuring
the zero time-delay second-order coherence function.

separated, we write their Hamiltonians to be[40]

H1 =
𝜔a1

2
𝜎z
1 + (Δr + 𝜒𝜎z

1)a
†
1a1 + 𝜖(a†1 + a1),

H2 =
𝜔a2

2
𝜎z
2 + 𝜔c2a

†
2a2 + 𝜒𝜎z

2a
†
2a2 (1)

The Hamiltonian H1 is written in the rotating frame of laser
field. Here,Δr = 𝜔c1 − 𝜔d is the detuning between the first cavity
and the driving field, and 𝜖 is the driving strength. 𝜔aj is the
atomic transition frequency of jth atom and 𝜔cj is the cavity reso-
nance frequency of jth cavity. The operator 𝜎z

j = |ej⟩⟨ej| − |gj⟩⟨gj|
is the atomic energy operator. We denote the excited state and
ground state of jth atom by |ej⟩ and |gj⟩, respectively. The operator
aj(a

†
j ) is the annihilation (creation) operator for jth cavity. The

dispersive coupling strength is 𝜒 = g2∕Δ,[41,42] where g is the
coupling strength between the first atom and first cavity, and the
detuning between them is Δ = (𝜔a1 − 𝜔c1) = (𝜔a2 − 𝜔c2).
The approximations considered in the Hamiltonians H1 and

H2 are valid when the transition frequencies of the atoms are
much larger than the resonance frequencies of the cavities, that
is,𝜔a1 ≫ 𝜔c1 and𝜔a2 ≫ 𝜔c2. In this limit, the atom interacts with
the cavity field dispersively and cannot exchange energy with the
cavity.[43,44] However, it changes the phase of the cavity field.[40,44]

The dispersive coupling has been used for realizing quantum
gates,[45] generating nonclassical states[46,47] and controlling pho-
ton transfer.[48] The setup shown in Figure 1 consists of a beam
splitter and a detection system for the purpose of measuring zero
time-delay second-order coherence function of the field leaking
out of the first cavity.
We further note that, as the second cavity is not driven, it re-

mains in vacuum. Thus, the coupling term 𝜒𝜎z
2a

†
2a2 does not

play any role in the dynamics. In experiment, one may not need
the second cavity in the setup and it is the experimental choice
to trap the second atom either in a cavity or in a trap.[49] How-
ever, we find that two separated cavities containing one atom
in each forms a basic building for performing many quantum

information tasks.[50–52] Therefore, with this motivation, we con-
sider such type of setup to present our analysis.

3. Measurement of Entanglement

In this section, we present the scheme for direct measurement of
entanglement between two atoms by measuring the zero time-
delay second-order coherence function g(2)(0) of the field leak-
ing out of the first cavity. Essentially, we connect the concur-
rence of atomic state to the g(2)(0) of the first cavity field. To
calculate g(2)(0), we follow a master equation approach. In the
presence of dissipation, under Born–Markov and rotating-wave-
approximations, the dynamics of the system is described by the
following master equation:[53]

�̇� = −i[H1 +H2, 𝜌] +
2∑
j=1

𝜅j

2
(2aj𝜌a

†
j − a†j aj𝜌 − 𝜌a†j aj)

+
2∑
j=1

𝛾j

2
(2𝜎−

j 𝜌𝜎
+
j − 𝜎+

j 𝜎
−
j 𝜌 − 𝜌𝜎+

j 𝜎
−
j ) (2)

where 𝜅j is the decay rate of jth cavity and 𝛾j is the atomic de-
cay rate of jth atom. We assume the cavity decay rates (𝜅1, 𝜅2)
are much larger than the atomic decay rates (𝛾1, 𝛾2), such that
the radiative life-time of atoms will be larger than the time re-
quired for the measurement of zero time-delay second-order co-
herence function of the cavity field. Our assumption is supported
by the experimental observations, that is, the life-time of a super-
conducting qubit is several hundred times larger than the pho-
ton life-time inside a microwave cavity of low-quality factor.[54–57]

Hence, to measure the entanglement from cavity spectrum be-
fore the atoms deteriorate, it is advantageous to choose the cavi-
ties having low-quality factor for our scheme. With this assump-
tion, we neglect the atomic dissipation by setting 𝛾1 = 𝛾2 = 0 in
Equation (2) for deriving the zero time-delay second-order coher-
ence function.[58] In the presence of cavity dissipation and driv-
ing, the cavity field reaches a steady state.
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The zero time-delay second-order coherence function for the
cavity field in steady state is defined as[59,60]

g(2)ss (0) =
⟨a†21 a21⟩ss
⟨a†1a1⟩2ss

(3)

where ⟨a†21 a21⟩ss = Tr(a†21 a
2
1𝜌ss) and ⟨a†1a1⟩ss = Tr(a†1a1𝜌ss) are the

steady state expectation values. Here, 𝜌ss is the steady state den-
sity matrix in which the subscript ‘‘ss’’ stands for steady state.
These expectation values are to be calculated from a closed set of
equations of motion by equating their time derivatives to zero.
Using master equation given in Equation (2), we find the closed
set of equations of motion to be

d⟨a†1a1⟩
dt

= −i𝜖(⟨a†1⟩ − ⟨a1⟩) − 𝜅1⟨a†1a1⟩ (4a)

d⟨a1⟩
dt

= −iΔr⟨a1⟩ − i𝜒⟨𝜎z
1a1⟩ − i𝜖 −

𝜅1

2
⟨a1⟩ (4b)

d⟨a†1⟩
dt

= iΔr⟨a†1⟩ + i𝜒⟨𝜎z
1a

†
1⟩ + i𝜖 −

𝜅1

2
⟨a†1⟩ (4c)

d⟨𝜎z
1a1⟩
dt

= −iΔr⟨𝜎z
1a1⟩ − i𝜖⟨𝜎z

1⟩ − i𝜒⟨a1⟩ − 𝜅1

2
⟨𝜎z

1a1⟩ (4d)

d⟨𝜎z
1a

†
1⟩

dt
= iΔr⟨𝜎z

1a
†
1⟩ + i𝜖⟨𝜎z

1⟩ + i𝜒⟨a†1⟩ − 𝜅1

2
⟨𝜎z

1a
†
1⟩ (4e)

d⟨𝜎z
1⟩

dt
= 0 (4f )

d⟨a†21 a21⟩
dt

= 2i𝜖⟨a†1a21⟩ − 2i𝜖⟨a†21 a1⟩ − 2𝜅1⟨a†21 a21⟩ (4g)

d⟨a†21 a1⟩
dt

= i𝜒⟨a†21 a1𝜎z
1⟩ + iΔr⟨a†21 a1⟩ + 2i𝜖⟨a†1a1⟩ − i𝜖⟨a†21 ⟩

−
3𝜅1
2

⟨a†21 a1⟩ (4h)

d⟨a†1a21⟩
dt

= −i𝜒⟨a†1a21𝜎z
1⟩ − iΔr⟨a†1a21⟩ − 2i𝜖⟨a†1a1⟩ + i𝜖⟨a21⟩

−
3𝜅1
2

⟨a†1a21⟩ (4i)

d⟨a†21 a1𝜎z
1⟩

dt
= i𝜒⟨a†21 a1⟩ + iΔr⟨a†21 a1𝜎z

1⟩ + 2i𝜖⟨a†1a1𝜎z
1⟩

− i𝜖⟨a†21 𝜎z
1⟩ − 3𝜅1

2
⟨a†21 a1𝜎z

1⟩ (4j)

d⟨a†1a1𝜎z
1⟩

dt
= −i𝜖(⟨a†1𝜎z

1⟩ − ⟨a1𝜎z
1⟩) − 𝜅1⟨a†1a1𝜎z

1⟩ (4k)

d⟨a†21 𝜎z
1⟩

dt
= 2iΔr⟨a†21 𝜎z

1⟩ + 2i𝜒⟨a†21 ⟩ + 2i𝜖⟨a†1𝜎z
1⟩ − 𝜅1⟨a†21 𝜎z

1⟩ (4l)

d⟨a†1a21𝜎z
1⟩

dt
= −i𝜒⟨a†1a21⟩ − iΔr⟨a†1a21𝜎z

1⟩ − 2i𝜖⟨a†1a1𝜎z
1⟩

+ i𝜖⟨a21𝜎z
1⟩ − 3𝜅1

2
⟨a†1a21𝜎z

1⟩ (4m)

d⟨a21𝜎z
1⟩

dt
= −2iΔr⟨a21𝜎z

1⟩ − 2i𝜒⟨a21⟩ − 2i𝜖⟨a1𝜎z
1⟩ − 𝜅1⟨a21𝜎z

1⟩ (4n)

d⟨a†21 ⟩
dt

= 2iΔr⟨a†21 ⟩ + 2i𝜒⟨a†21 𝜎z
1⟩ + 2i𝜖⟨a†1⟩ − 𝜅1⟨a†21 ⟩ (4o)

d⟨a21⟩
dt

= −2iΔr⟨a21⟩ − 2i𝜒⟨a21𝜎z
1⟩ − 2i𝜖⟨a1⟩ − 𝜅1⟨a21⟩ (4p)

Note that we have not derived the equations of motion for the
second atom–cavity system, because the above set of equations is
sufficient to obtain the zero time-delay second-order coherence
function for the first cavity. We solve these equations for steady
state, and we find the zero time-delay second-order coherence
function for the first cavity to be

g(2)ss (0) =
( 𝜅1
2
)4 + A( 𝜅1

2
)2 + 𝜒4 + B⟨𝜎z

1⟩ + 6𝜒2Δ2
r + Δ4

r(
2⟨𝜎z

1⟩𝜒Δr − ( 𝜅1
2
)2 − 𝜒2 − Δ2

r

)2 (5)

where A = 2𝜒2 − 4⟨𝜎z
1⟩𝜒Δr + 2Δ2

r and B = −4𝜒Δr(𝜒
2 + Δ2

r ). We
note that g(2)ss (0) depends on the state of the first atom via ⟨𝜎z

1⟩.
Here, ⟨𝜎z

1⟩ has to be calculated using the state of the first atom.
Hence, it is possible to control the photon statistics of the cavity
field by changing the state of the first atom.[58] When the atom is
not there in the cavity, that is, at 𝜒 = 0, we get g(2)ss (0) = 1 indicat-
ing that the photon statistics of the cavity field is Poissonian. This
is consistent with the fact that the cavity is driven by a laser and
hence, one would expect Poissonian photon statistics of the cav-
ity field. However, the presence of the atom changes the photon
statistics of the cavity field. We show g(2)ss (0) as a function ofΔr for
various values of ⟨𝜎z

1⟩ in Figure 2. As can be seen, g(2)ss (0) = 1 for
⟨𝜎z

1⟩ = ±1 (dashed line). However, if ⟨𝜎z
1⟩ ≠ ±1 then g(2)ss (0) > 1
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Figure 2. g(2)ss (0) as a function of Δr for the states with ⟨𝜎z1⟩ = 1 (dashed),
-0.5 (continuous), 0 (dot-dashed), and 0.4 (dotted). We use 𝜒 = 15 MHz
and 𝜅1 = 1 MHz.

indicating the cavity field is super-Poissonian. We observe that
g(2)ss (0) has two peaks at Δr = ±𝜒 in the large dispersive coupling
limit, that is, (1 − ⟨𝜎z

1⟩)𝜒∕𝜅1 ≫ 1.
These two peaks have the values

g(2)ss (0)|Δr=𝜒 ≈ 2
1 − ⟨𝜎z

1⟩ (6)

for Δr = 𝜒 and

g(2)ss (0)
|||Δr=−𝜒 ≈ 2

1 + ⟨𝜎z
1⟩ (7)

for Δr = −𝜒 .
Now, we will show how entanglement is connected to the zero

time-delay second-order coherence function g(2)ss (0) of the cavity
field. We consider the two atoms to be in Bell-like states, either
in

|Ψ⟩ = 𝛼|g1⟩|g2⟩ + 𝛽|e1⟩|e2⟩ (8a)

or |Φ⟩ = 𝛾|e1⟩|g2⟩ + 𝛿|g1⟩|e2⟩ (8b)

where 𝛼, 𝛽, 𝛾 and 𝛿 are complex numbers satisfying |𝛼|2 + |𝛽|2 =
1 and |𝛾|2 + |𝛿|2 = 1. Here |e1⟩|g2⟩ represents the state of two
atoms in which the first atom is in excited state and the sec-
ond atom is in ground state, and so on. Bell-like atomic states
have already been generated experimentally[25,61,62] and have sev-
eral important implications in various quantum information
applications.[63–65] First we will show how to measure the con-
currence of the state |Ψ⟩ from the zero time-delay second-
order coherence function of the cavity field. For the state |Ψ⟩,
the expectation value ⟨𝜎z

1⟩ = Tr(𝜌a1𝜎
z
1 ) = |𝛽|2 − |𝛼|2, where 𝜌a1 =

Tra2(|Ψ⟩⟨Ψ|) is the reduced density matrix of the first atom. Here,
Tra2 represents the partial trace over the state of the second atom.
Now, multiplying Equations (6) and (7), and putting the value of⟨𝜎z

1⟩ = |𝛽|2 − |𝛼|2, we get
g(2)ss (0)|Δr=𝜒 × g(2)ss (0)

|||Δr=−𝜒 ≈ 4

1 − (|𝛽|2 − |𝛼|2)2

= 4
4|𝛼|2|𝛽|2 (9)

−100 −50 0 50 100
1

1.5

2

2.5

3

Δ
r
 (MHz)

g
ss(2

) (0
)

Figure 3. g(2)ss (0) as a function of Δr for the state |Ψ⟩ = 1√
2
(|g1⟩|g2⟩ +

|e1⟩|e2⟩) (continuous line) and |Φ⟩ = √
2
3
|e1⟩|g2⟩ +

√
1
3
|g1⟩|e2⟩ (dashed

line). We use 𝜒 = 15 MHz and 𝜅1 = 1 MHz.

Weknow fromWooter’s concurrence formula,[5] the concurrence
for the state |Ψ⟩ is C = 2|𝛼𝛽|. Then, putting this value of C in
Equation (9), we get

C ≈ 2√
g(2)ss (0)|Δr=𝜒 × g(2)ss (0)

|||Δr=−𝜒

(10)

This is the central result of this article, which connects the zero
time-delay second-order coherence function at two different val-
ues for the detuningΔr = ±𝜒 with the concurrence of the atomic
state.Hence, bymeasuring g(2)ss (0) at two different values of detun-
ing Δr , one can directly quantify the entanglement between the
atoms. A similar relation can be found between the concurrence
and the zero time-delay second-order coherence function if the
atoms are in the state |Φ⟩. However, we note that Equation (10)
remains the same for the state |Φ⟩. This comes from the fact that
the Wooter’s concurrence for both |Ψ⟩ and |Φ⟩ are same if they
have equal superposition coefficients, that is, 𝛼 = 𝛾 and 𝛽 = 𝛿.
For the purpose of conceptual clarity, we consider two concrete

examples:

Example 1. Let the state of the two atoms is |Ψ⟩ = 1√
2
(|g1⟩|g2⟩ +

|e1⟩|e2⟩). For this state, ⟨𝜎z
1⟩ = 0. Using this value of ⟨𝜎z

1⟩, we plot
g(2)ss (0) given in Equation (5) as a function of Δr in Figure 3 for
the state |Ψ⟩ (continuous line) by taking the experimentally achiev-
able values 𝜅1 = 1 MHz and 𝜒 = 15 MHz.[66,67] From the figure,
we get g(2)ss (0)|Δr=𝜒 = g(2)ss (0)|Δr=−𝜒 = 2. Putting these values in Equa-
tion (10), we get C = 1, which is equal to the concurrence for the state|Ψ⟩ that we get if we use Wooter’s concurrence formula.

Example 2. Let the state of the two atoms be |Φ⟩ = √
2
3
|e1⟩|g2⟩ +√

1
3
|g1⟩|e2⟩. For this state, ⟨𝜎z

1⟩ = 1∕3. Using this value of ⟨𝜎z
1⟩, we

plot g(2)ss (0) given in Equation (5) as a function ofΔr in Figure 3 for the
state |Φ⟩ (dashed line). As can be seen in the figure, g(2)ss (0)|Δr=𝜒 = 3

and g(2)ss (0)|Δr=−𝜒 = 1.5. Putting these values in Equation (10), we get

the concurrence for the state |Φ⟩ to be C = 2
√
2∕3, as expected.

The expression of g(2)ss (0) given in Equation (5) is derived by con-
sidering ⟨𝜎z

1 (t)⟩ = ⟨𝜎z
1 (0)⟩ in the absence of atomic dissipation. If

we consider atomic dissipation, the evolution equation of ⟨𝜎z
1⟩
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can be found from master equation to be d⟨𝜎z
1⟩∕dt = −𝛾1(⟨𝜎z

1⟩ +
1). The solution of this equation is ⟨𝜎z

1 (t)⟩ = e−𝛾1t[⟨𝜎z
1 (0)⟩ + 1] − 1,

where t is the time taken for completing the measurement. By
choosing the atoms having long radiative life-time and cavities
with low quality factor, one can minimize 𝛾1t, such that e

−𝛾1t ≈ 1
and ⟨𝜎z

1 (t)⟩ ≈ ⟨𝜎z
1(0)⟩. Another factor that can minimize the 𝛾1t

is the measurement time t of g(2)(0). The measurement time t
should be much smaller than the radiative life-time of the atoms.
We note that the life-time of a superconducting qubit, which is
about 5 𝜇s (≈ 0.2MHz),[54] is much larger than the time required
for measuring g(2)(0), which is of the order of nanosecond, in
a superconducting cavity.[68–70] The measurement time of g(2)(0)
depends on the resolution time of the detector, which is usually
of the order of nanosecond.[68–72] The measurement time can be
reduced further by using a detector having a smaller resolution
time.However, recently, the second-order coherence function has
beenmeasured in the femtosecond range.[73] For a rough estima-
tion, if we take the measurement time of g(2)(0) to be t = 50 ns
and the atomic decay rate to be 𝛾 ≈ 0.2 MHz,[54] then the expo-
nential term will be e−𝛾1t ≈ 0.99, which is very close to unity and
hence, our assumption ⟨𝜎z

1 (t)⟩ = ⟨𝜎z
1 (0)⟩ is valid. Therefore, all

the results derived in the previous section are robust even when
the atomic decay is considered. We further note that our scheme
requires to measure g(2)(0) at two different values of detuning
(Δ = ±𝜒). After the measurement of g(2)(0) at a particular value
of detuning, the measurement process may destroy the state of
the atoms. Therefore, in experiment, one may need a few pairs
of atoms being in the same entangled state to evaluate the con-
currence from g(2)(0).

4. Conclusion and Discussion

In summary, we have proposed a scheme for quantifying entan-
glement between two two-level atoms based on themeasurement
of zero time-delay second-order coherence function of a cavity
field in which one of the atoms is dispersively interacting. Using
our scheme, one can measure the concurrence of arbitrary Bell-
like atomic two-qubit states. Our scheme requires only one of the
atoms to interact with the cavity field and the quantification does
not depend on the location of the other atom. Hence, the entan-
glement quantification becomes independent of the separation
between the atoms, and this type of measurement can have im-
plications in quantifying entanglement in distributed quantum
systems.[30–39] In addition, our scheme is based on detecting pho-
tons from the cavity which is less complicated than the measure-
ment of atomic qubits, and thus, it reduces the realization com-
plexity. We also note that our scheme can be extended to other
systems such as cavity-quantum dots[74,75] and cavity-nitrogen va-
cancy center[76,77] where the dispersive coupling is possible.
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