Non-Homogeneous Second Order Differential Equations
 Academic Success Center

Procedure for solving non-homogeneous second order differential equations: $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)$

1. Determine the general solution $y_{h}=C_{1} y(x)+C_{2} y(x)$ to a homogeneous second order differential equation: $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$
2. Find the particular solution y_{p} of the non-homogeneous equation, using one of the methods below.
3. The general solution of the non-homogeneous equation is: $y(x)=C_{1} y(x)+C_{2} y(x)+y_{p}$ where C_{1} and C_{2} are arbitrary constants.

METHODS FOR FINDING THE PARTICULAR SOLUTION (y_{p}) OF A NONHOMOGENOUS EQUATION

Undetermined Coefficients.

Restrictions:

1. D.E must have constant coefficients:
$a y^{\prime \prime}+b y^{\prime}+c=g(x)$
2. $\mathrm{g}(\mathrm{x})$ must be of a certain, "easy to guess" form.
3. Write down $\mathrm{g}(\mathrm{x})$. Start taking derivatives of $\mathrm{g}(\mathrm{x})$. List all the terms of $\mathrm{g}(\mathrm{x})$ and its derivatives while ignoring the coefficients. Keep taking the derivatives until no new terms are obtained.
4. Compare the listed terms to the terms of the homogeneous solution. If one or more terms are repeating, then the recurring expression needs to be modified by multiplying all the repeating terms by x .
5. Based on step 1 and 2 create an initial guess for y_{p}.
6. Take the $1^{\text {st }}$ and the $2^{\text {nd }}$ derivatives of y_{p}. Plug into the differential equation. Solve for the constants.
7. Plug the values of the constants into y_{p}.

Variation of Parameters.

$$
y_{p}(x)=-y_{1} \int \frac{y_{2}(x) g(x)}{W\left(y_{1}, y_{2}\right)(x)} d x+y_{2} \int \frac{y_{1}(x) g(x)}{W\left(y_{1}, y_{2}\right)(x)} d x
$$

where y_{1} and y_{2} are solutions to the homogeneous equation and

$$
W\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

The set of solutions is linearly independent in I if
$W\left(y_{1}, y_{2}\right)(x) \neq 0$ for every x in the interval.
Or equivalently:
$y_{p}(x)=v_{1} y_{1}+v_{2} y_{2}$
where y_{1} and y_{2} are solutions to the homogeneous equation and
v_{l} and v_{2} are unknown functions of x.
To determine v_{l} and v_{2}, solve the following system of equations
for $v^{\prime}{ }_{1}$ and $v^{\prime}{ }_{2}$.
$y_{1} v_{1}^{\prime}+y_{2} v_{2}^{\prime}=0$
$y_{1}^{\prime} v_{1}^{\prime}+y_{2}^{\prime} v_{2}^{\prime}=g(x)$
Integrate v_{1}^{\prime} and v_{2}^{\prime} to find v_{1} and v_{2}.
Substitute v_{1} and v_{2} into $y_{p}(x)=v_{1} y_{1}+v_{2} y_{2}$

Example \#1. Solve the differential equation: $y^{\prime \prime}-2 y^{\prime}=t+e^{t}$
Solution:

1. Homogeneous equation: $y^{\prime \prime}-2 y^{\prime}=0$

Characteristic equation: $\quad r^{2}-2 r=0$

$$
r(r-2)=0
$$

$$
r=0, r=2
$$

$$
\Rightarrow y_{h}=C_{1}+C_{2} e^{2 t}
$$

2. Particular solution:

$$
\begin{aligned}
& g(t)=t+e^{t} \\
& g^{\prime}(t)=1+e^{t} \\
& g^{\prime \prime}(t)=e^{t}
\end{aligned}
$$

$$
\Rightarrow \text { Terms: } \quad C, e^{t}
$$

$$
e^{t} \text { No new terms. }
$$

The constant is already in the homogeneous solution. Multiplying it by t will repeat the terms of $g(t)$. So we need to modify both the constant and the t .

Initial guess of $y_{p} \quad y_{p}=(A t+B)+C e^{t}$
Part of a homogeneous solution. Both terms need to be modified
Modify y_{p} : $\quad y_{p}=t(A t+B)+C \mathrm{e}^{\mathrm{t}}=A t^{2}+B t+C \mathrm{e}^{\mathrm{t}}$

$$
\begin{aligned}
& y_{p}^{\prime}=2 A t+B+C e^{t} \\
& y_{p}^{\prime \prime}=2 A+C e^{t}
\end{aligned}
$$

Plug the y_{p} and its derivatives into the original differential equation:

$$
\begin{aligned}
& y^{\prime \prime}-2 y^{\prime}=t+e^{t} \text { implies } 2 A+C e^{t}-2\left(2 A t+B+C e^{t}\right)=t+e^{t} \\
& 2 A-2 B-4 A t-C e^{t}=t+e^{t} \Rightarrow \\
&-C=1 \Rightarrow C=-1 \\
&-4 A=1 \Rightarrow A=-\frac{1}{4} \\
& 2 A-2 B=0 \Rightarrow B=-\frac{1}{4}
\end{aligned}
$$

So $y_{p}=-\frac{t^{2}}{4}-\frac{t}{4}-e^{t}=-\frac{t}{4}(t+1)-e^{t}$ and the general solution is:

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
& y=C_{1}+C_{2} e^{2 t}-\frac{t}{4}(t+1)-e^{t}
\end{aligned}
$$

Example \#2. Solve the differential equation: $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{t}$

1. Homogeneous equation: $y^{\prime \prime}-2 y^{\prime}+y=0$

$$
\begin{array}{cl}
\text { Characteristic equation: } & r^{2}-2 r+1=0 \\
& (r-1)^{2}=0 \\
& r=1, r=1 \\
\Rightarrow y_{h}=C_{1} e^{t}+C_{2} t e^{t} \\
y_{1}=e^{t} \text { and } y_{2}=t e^{t} \\
y_{1}^{\prime}=e^{t} \text { and } y_{2}^{\prime}=t e^{t}+e^{t}
\end{array}
$$

Not an "easy to guess" function. It is a quotient so the derivatives will get more complicated, making it impossible to list all terms.

2. Particular solution:

$$
W\left(y_{1}, y_{2}\right)(x)=\operatorname{det}\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\operatorname{det}\left|\begin{array}{cc}
e^{t} & t e^{t} \\
e^{t} & t e^{t}+e^{t}
\end{array}\right|=e^{t}\left(t e^{t}+e^{t}\right)-t e^{t} \cdot e^{t}=t e^{2 t}+e^{2 t}-t e^{2 t}=e^{2 t}
$$

So
$y_{p}(x)=-y_{1} \int \frac{y_{2}(x) g(x)}{W\left(y_{1}, y_{2}\right)(x)} d x+y_{2} \int \frac{y_{1}(x) g(x)}{W\left(y_{1}, y_{2}\right)(x)} d x=$
$=-e^{t} \int \frac{t e^{t} \cdot \frac{e^{t}}{t}}{e^{2 t}} d t+t e^{t} \int \frac{e^{t} \cdot \frac{e^{t}}{t}}{e^{2 t}} d t=-e^{t} \int 1 d t+t e^{t} \int \frac{1}{t} d t=-t e^{t}+t e^{t} \ln |t|$
$y_{p}(t)=-t e^{t}+t e^{t} \ln |t|$ and the general solution is:

$$
y=C_{1} e^{t}+C_{2} t e^{t}-t e^{t}+t e^{t} \ln |t|=C_{1} e^{t}+C_{3} t e^{t}+t e^{t} \ln |t|
$$

You try it:

1. $y^{\prime \prime}-y^{\prime}-2 y=\sin 2 x$
2. $y^{\prime \prime}-2 y^{\prime}+y=x e^{x}$
3. $y^{\prime \prime}+y=\sec x$

Solutions:

\#1: $y=C_{1} e^{-x}+C_{2} e^{2 x}-\frac{3}{20} \sin 2 x+\frac{1}{20} \cos 2 x$
\#2: $y=C_{1} e^{x}+C_{2} x e^{x}+\frac{1}{6} x^{3} e^{x}$
\#3: $y=C_{1} \cos x+C_{2} \sin x+(\cos x)(\ln |\cos x|)+x \sin x$

