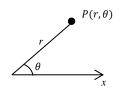
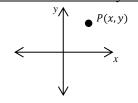
asc

Polar Coordinates

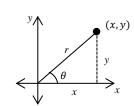
Definitions

Polar Coordinate System





Converting between Cartesian and Polar



$$cos\theta = \frac{x}{r} \rightarrow x = rcos\theta$$

$$sin\theta = \frac{y}{r} \rightarrow y = rsin\theta$$

$$y \qquad r^2 = x^2 + y^2 \quad (Pythagorean)$$

$$tan\theta = \frac{y}{x}$$

Polar to Cartesian

Conversion

$$x = rcos\theta$$

$$y = rsin\theta$$

Cartesian to Polar

<u>Conversion</u>

$$r^2 = x^2 + y^2$$
$$tan\theta = \frac{y}{x}$$

Tangents to Polar Curves

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dy}{d\theta}} = \frac{\frac{dr}{d\theta}sin\theta + rcos\theta}{\frac{dr}{d\theta}cos\theta - rsin\theta}$$

Found using $x = rcos\theta$ and $y = rsin\theta$

Problems

I. Write the Cartesian equations from the given Polar equations

a)
$$r = 3\sin\theta$$

$$r^2 = 3r\sin\theta$$
$$r^2 + v^2 = 3r\sin\theta$$

$$x^2 + y^2 = 3y$$
$$x^2 + y^2 - 3y = 0$$

$$x^2 + \left(y - \frac{3}{2}\right)^2 = \frac{9}{4}$$

b)
$$r^2 = \sin 2\theta$$

$$r^2 = 2sin\theta cos\theta$$

$$r^4 = 2rsin\theta rcos\theta$$

$$(x^2+y^2)^2=2yx$$

c)
$$r^2 = \theta$$

$$\tan(r^2) = \tan\theta$$

$$\tan(x^2 + y^2) = \frac{y}{x}$$

II. Write the Polar equations from the given Cartesian equations

a)
$$x^2 = 4y$$

$$r^2\cos^2\theta = 4r\sin\theta$$

$$r\cos^2\theta = 4\sin\theta$$
$$r = \frac{4\sin\theta}{2\pi}$$

$$r = 4tan\theta sec\theta$$

$$b) x^2 - y^2 = 1$$

$$r^{2}(\cos^{2}\theta - \sin^{2}\theta) = 1$$
$$r^{2}(\cos 2\theta) = 1$$

$$r^2 = \sec 2\theta$$

$$c) y = 2x - 1$$

$$rsin\theta = 2rcos\theta - 1$$

$$r(2cos\theta - sin\theta) = 1$$

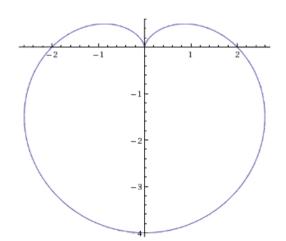
$$r = \frac{1}{(2\cos\theta - \sin\theta)}$$

Problems (continued)

III. Sketch the Curve by first converting to Cartesian

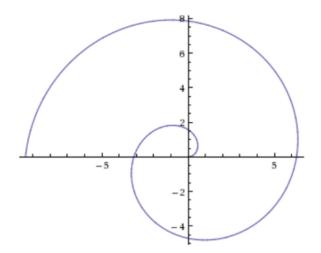
a)
$$r = 2(1 - \sin\theta)$$
 (Cardioid)

θ	sinθ	$2(1-\sin\theta)$
0	0	2
$\frac{\pi}{2}$	1	0
π	0	2
$\frac{3\pi}{2}$ 2π	-1	4
2π	0	2



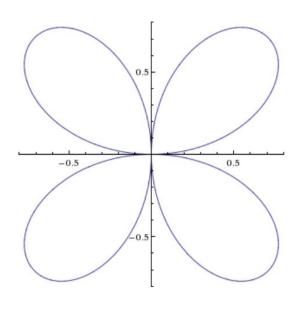
b)
$$r = \theta$$

θ	r
0	0
$\frac{\pi}{2}$	$\frac{\pi}{2}$
π	π
$\frac{3\pi}{2}$ 2π	$\frac{3\pi}{2}$ 2π



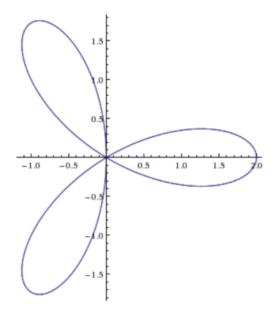
c)
$$r = \sin(2\theta)$$

θ	2θ	sin2θ
0	0	0
$\frac{\pi}{4}$	$\frac{\pi}{2}$	1
$\frac{\pi}{2}$	π	0
$\frac{3\pi}{4}$	$\frac{3\pi}{2}$	-1
π	2π	0
$\frac{5\pi}{4}$	$\frac{5\pi}{2}$	1
$\frac{3\pi}{2}$	3π	0
$\frac{7\pi}{4}$	$\frac{7\pi}{4}$	-1
2π	4π	0



c) $r = 2\cos(3\theta)$

θ	3θ	$2\cos(3\theta)$
0	0	1
$\frac{\pi}{6}$	$\frac{\pi}{2}$	0
$\frac{\pi}{3}$	π	-1
$\frac{\pi}{2}$	$\frac{3\pi}{2}$	0
$\frac{2\pi}{3}$	2π	1
$\frac{5\pi}{6}$	$\frac{5\pi}{2}$	0
π	3π	-1



Problems (continued)

IV. Find the slope of the tangent line to the following polar curve

$$r = 3\cos\theta \ \left(at \ \theta = \frac{\pi}{3}\right)$$

Given:

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

$$\frac{dy}{dx} = \frac{-3sin\theta sin\theta + 3cos\theta cos\theta}{-3sin\theta cos\theta - 3cos\theta sin\theta} = \frac{3(\cos^2\theta - \sin^2\theta)}{-3(2sin\theta cos\theta)} = \frac{-cos2\theta}{sin2\theta} = -cot2\theta$$

$$\frac{dy}{dx}\left(at\ \theta = \frac{\pi}{3}\right) = -\cot\left(\frac{2\pi}{3}\right) = \frac{1}{\sqrt{3}}$$

Alternate Approach:

$$r = 3\cos\theta \ \left(at \ \theta = \frac{\pi}{3}\right)$$

Then:
$$x = rcos\theta = (3cos\theta)cos\theta = 3cos^2 \theta$$

 $y = rsin\theta = (3cos\theta)sin\theta$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dy}{d\theta}} = \frac{(3\cos^2\theta - 3\sin^2\theta)}{-(6\sin\theta\cos\theta)} = \frac{-\cos 2\theta}{\sin 2\theta} = -\cot 2\theta$$

$$\frac{dy}{dx}\left(at\ \theta = \frac{\pi}{3}\right) = -\cot\left(\frac{2\pi}{3}\right) = \frac{1}{\sqrt{3}}$$