

Important Continuous Random Variables

1016-351 Prob & Stat I

D Mathiason

Permission is freely given to copy and distribute.

variable	pdf	mean	variance
Normal	Use table, $Z = \frac{X - \mu}{\sigma}$	μ	σ^2
Exponential	$f(x) = \lambda e^{-\lambda x}, x > 0$	$\mu = \frac{1}{\lambda}$	$\sigma^2 = \frac{1}{\lambda^2}$
Gamma • If $\alpha > 1$, then $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$	$f(x) = \frac{1}{\beta^{\alpha}\Gamma(\alpha)} x^{\alpha-1} e^{-x/\beta}, x>0$ where	μ = αβ	$\sigma^2 = \alpha \beta^2$
 For positive integers, Γ(n) = (n-1)! 	$\Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha - 1} e^{-x} dx$		
• $\Gamma(\frac{1}{2}) = \sqrt{\pi}$	and $F(x;\alpha) = \int_{0}^{x} y^{\alpha-1} e^{-y} dy, x > 0$		
Weibull	$f(x) = \frac{\alpha}{\beta^{\alpha}} x^{\alpha - 1} e^{-(x/\beta)^{\alpha}}, x > 0$	$\mu = \beta \Gamma \left(1 + \frac{1}{\alpha} \right)$	$\sigma^2 = \beta^2 \left\{ \Gamma(1 + \frac{2}{\alpha}) - \left[\Gamma(1 + \frac{1}{\alpha}) \right]^2 \right\}$
Lognormal	$Y = ln(X)$ were $X \sim N(\mu, \sigma^2)$	$\mu = e^{\mu + \sigma^2/2}$	$\sigma^2 = e^{2\mu + \sigma^2} (e^{\sigma^2} - 1)$
Beta	f(x) =	μ=	$\sigma^2 =$
Chi-squared	f(x) =	u=	$\sigma^2 =$