

How to Perform a Statistical **Hypothesis Test**

pertain to **means**

Instructions on the left | Instructions on the right pertain to **proportions**

1. POPULATION

a. Identify the parameter of interest:

$$\mu: Mean$$
 $\pi: proportion$ Numerical (Measurement) Categorical (success-failure)

b. Describe the variable in context of the problem:

 μ = mean of the amount of drying time of a particular paint.

 π = proportion of people in the community who prefer

c. Define the NULL and ALTERNATIVE Hypotheses:

The Null hypothesis is usually in the form of:

$$H_{0}$$
 : μ = hypothesized value H_{0} : π = hypothesized value

NOTE: The alternative hypothesis (H_a) :

- is the research hypothesis
- is what the problem is asking you to show
- uses the \neq , <, or > inequalities

2. STATISTICAL METHOD

a. Determine the level of significance (α) :

NOTE: If it is not given in the problem, set it to the default value of **0.05**.

b. Determine the appropriate test statistic:

Population mean

When σ known:

$$z = \frac{\left(\bar{x} - hypothesized \quad value\right)}{\left(\sigma/\sqrt{n}\right)}$$

$$t = \frac{\left(\bar{x} - hypothesized \quad value\right)}{\left(s/\sqrt{n}\right)}$$

Population Proportion

$$z = \frac{\left(p - hypothesized \quad value\right)}{\sqrt{\frac{\left(hyp.value\right)\left(1 - hyp.value\right)}{n}}}$$

3. SAMPLE

a. Calculate or identify the descriptive statistics:

Descriptive statistics needed:

- the sample mean
- standard deviation
- sample size

Descriptive statistics needed:

- the sample proportion
- sample size

b. Check the conditions for normality:

$$n(hyp \ value) \ge 10$$

AND
 $n(1-hyp \ value) \ge 10$

4. STATISTICAL RESULTS

a. Compute the test statistic using the formula from step 2.

b. Determine the p-value based on the computed value of the test statistic:

If H_a : $\mu > hyp.value$, then it is the area under curve to the right of calculated *test statistic*.

If H_a : μ < hyp.value, then it is the area under curve to the left of calculated $test\ statistic$.

If $H_a: \mu \neq hyp.value$, then it is

2 times the area to right of *test statistic* (if *test statistic* is +) OR

2 times the area to the left of test statistic (if test statistic is -).

If $H_a: \pi > hyp.value$, then it is the area under z curve to the right of calculated z.

If $H_a: \pi < hyp.value$, then it is the area under z curve to the left of calculated z.

If $H_a: \pi \neq hyp.value$, then it is

2 times the area to right of z (if z is +)

OR

2 times the area to the left of z (if z is -).

NOTE: Calculator shortcuts for test stat

When σ known: Z-Test

When σ unknown:

1-ProportionZTest

5. CONCLUSION

a. Make a decision:

Check to see if the p-value is less than or equal to the level of significance, α .

In other words, is the p-value $\leq \alpha$? If it is, reject H₀. If it is NOT, then fail to reject H₀.

b. Write a concluding statement:

If you rejected H_0 ...The data is inconsistent with H_0 and it provides sufficient evidence to support H_a . If you failed to reject H_0 ...The data does NOT provide sufficient evidence to support H_a .

R.J.T www.rit.edu/ASC Page 2 of 2