MS Degree in Applied & Computational Mathematics

Contact:
Director: Michael Cromer mec2sma@rit.edu
Admissions: Lindsay Lewis lslges@rit.edu
rit.edu/study/applied-and-computational-mathematics-ms
What & Why

• What do you get out of MS degree
 • Advanced understanding of mathematics
 • In-depth knowledge of a particular branch
 • Advanced training and skills
What & Why

• What do you get out of MS degree
 • Advanced understanding of mathematics
 • In-depth knowledge of a particular branch
 • Advanced training and skills

• Why should you pursue MS degree
 • You love math, and want to learn more
 • You are not sure if you want to pursue a PhD, thus you want to see if graduate school is right for you
 • You want to gain additional skills for career
 • You gain experience
Careers

• Areas
 • Pursue PhD
 • Actuary
 • Investment/Quantitative analyst
 • Sports analysis
 • Teaching
 • Operations research analyst
 • Statistician
 • Data scientist/analyst
Careers

• Areas
 • Pursue PhD
 • Actuary
 • Investment/Quantitative analyst
 • Sports analysis
 • Teaching
 • Operations research analyst
 • Statistician
 • Data scientist/analyst

• Recent Alumni
 • Software Engineer – Microsoft
 • Data Science & Analytics – Daimler Trucks North America
 • Lecturer – University of Rhode Island
 • Basketball Operations Analyst – Sacramento Kings
 • Pursuing PhD in Math Modeling at RIT
Curriculum

• Thesis option
 • 30 credits
 • Grad Seminar I & II
 • 3 Core Courses
 • 4 Electives
 • 7 Research Credits
 • Thesis defense

• Project option
 • 30 credits
 • Grad Seminar I & II
 • 3 Core Courses
 • 5 Electives
 • 4 Research Credits
Core Courses

- MATH601 – Methods of Applied Math
- MATH602 – Numerical Analysis I
- MATH605 – Stochastic Processes
- MATH622 – Math Modeling I
- MATH645 – Graph Theory
- MATH722 – Math Modeling II
Math Electives

https://digitalarchive.rit.edu/xmlui/bitstream/handle/1850/21276/Graduate_Course_Descriptions2018.pdf?sequence=1

- MATH625 – Applied Inverse Problems
- MATH631 – Dynamical Systems
- MATH633 – Measure Theory & Elements of Functional Analysis
- MATH646 – Combinatorics
- MATH655 – Biostatistics
- MATH671 – Number theory
- MATH702 – Numerical Analysis II
- MATH712 – Numerical Methods for PDEs
- MATH731 – Advanced Dynamical Systems
- MATH735 – Mathematics of Finance I
- MATH736 – Mathematics of Finance II
- MATH741 – Partial Differential Equations I
- MATH742 – Partial Differential Equations II
- MATH761 – Mathematical Biology
- MATH771 – Mathematics of Cryptography
- MATH789 – Special Topics: e.g., high-performance computing, deep learning, complex systems
- MATH831 – Mathematical Fluid Dynamics
Non-Math Electives

https://digitalarchive.rit.edu/xmlui/bitstream/handle/1850/21276/Graduate_Course_Descriptions2018.pdf?sequence=1

- STAT611 – Statistical Software
- STAT631 – Foundations of Statistics
- DSCI633 – Foundations of Data Science
- CSCI662 – Foundations of Cryptography
- CSCI665 – Foundations of Algorithms
- CSCI762 – Advanced Cryptography
- ISEE601 – Systems Modeling & Optimization
- MECE605 – Finite Elements
- MECE725 – Fundamentals of CFD
Sample curricula

Financial Math:
- MATH 606 & 607
- MATH 605, 622, 722
- MATH 735, 736
- STAT 611, 631

Crypto:
- MATH 606 & 607
- MATH 622, 645, 722
- MATH 646, 671, 771
- CSCI 662, 665

Computational science:
- MATH 606 & 607
- MATH 602, 605, 645
- MATH 702, 712, 789 (HPC)
- CSCI 665

Industrial math:
- MATH 606 & 607
- MATH 602, 622, 722
- MATH 601, 631, 741
- STAT 611
- ISEE 601

PhD:
- MATH 606 & 607
- MATH 602, 605, 645
- MATH 631, 633, 646, 741
- Thesis
Research Areas

In Grad Seminar I, SMS faculty will give brief overviews of their research. Additionally, a literature review is conducted, usually under the guidance of a selected faculty member. In grad seminar II, a research proposal is created.

• **Discrete Math:**
 • Network science
 • Image analysis

• **Biomedical Math:**
 • Contact lens
 • Imaging

• **Fluid Dynamics:**
 • Polymeric flows
 • Coating

• **Earth Systems Science:**
 • Lake plastic
 • Climate modeling

• **CCRG:**
 • Relativity
 • Multi-messenger astrophysics

• **Statistics:**
 • Data analytics
 • Machine learning
Questions?

[link] rit.edu/study/applied-and-computational-mathematics-ms