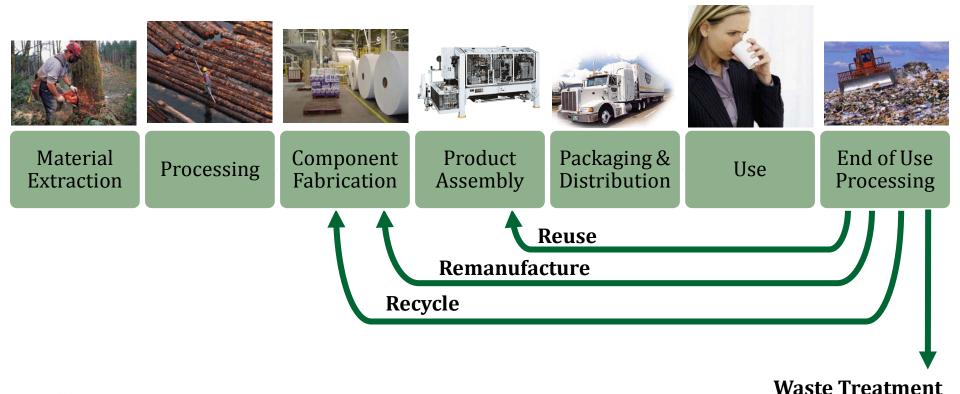
Life Cycle Assessment: Impact Assessment & Uncertainty Implications

March 16, 2012

Kate Winnebeck, LCACP, Senior EHS Specialist


Dr. Anahita Williamson, Director

New York State Pollution Prevention Institute at RIT

Life Cycle Assessment

Life Cycle Assessment (LCA) is a technique used to quantify the environmental impact of a product from raw material acquisition through end of life disposition (cradle-to-grave)

LCA Methodology

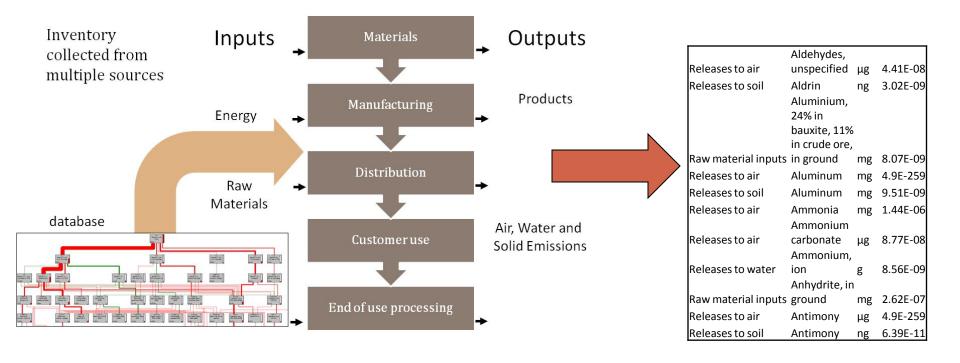
- A Life Cycle Assessment is carried out in four distinct phases: (ISO 14040, 14044)
 - Step 1: Goal definition and scoping. Identify the LCA's purpose, the products of the study, and determine the boundaries. (what is and is not included in the study)
 - Step 2: Life-cycle inventory. Quantify the energy and raw material inputs and environmental releases associated with each life cycle phase.
 - Step 3: Impact analysis. Assess the impacts on human health and the environment.
 - Step 4: Report results. Evaluate opportunities to reduce energy, material inputs, or environmental impacts at each stage of the product life-cycle.



Step 3: Impact Assessment

- Converts the inventory into impact categories or end points which explain the environmental effect
- Impact categories may include: carcinogens, respiratory organics and inorganics, climate change, radiation, ozone layer, ecotoxicity, acidification/eutrophication, land use, minerals, fossil fuels
- Can apply weights to impact categories

Impact Assessment



Conducting Impact Assessments

- 1. Select impact categories
- 2. Category indicators
- 3. Characterization models
- 4. Classification
- 5. Categorization
- 6. Optional aspects
 - Normalization
 - Grouping
 - Weighting

Life Cycle Inventory

Selecting impact categories, category indicators, & characterization models

- Impact categories: represents environmental issues of concern which life cycle inventory may be assigned
 - ie. fossil fuels, acidification, eutrophication, carcinogens, climate change
- Category indicators: quantifiable representation of an impact category
- Characterization models: mathematical models that convert life cycle inventory results to common units within each impact category

Term	Example
Impact category	Climate change
Category indicator	Infrared radiative forcing
Characterization model	Baseline model of 100 years of the Intergovernmental Panel on Climate Change

Example from ISO 14044 4.4.2.2.2

Classification

- Process where life cycle inventory results are assigned to impact categories
- Consider results that
 - Are exclusive to one impact category
 - ie. ozone may only contribute to ground level ozone formation
 - May relate to more than one impact category
 - ie. SOx may contribute to human health and acidification

Characterization

 Process that converts life cycle inventory results to common units so they can be aggregated

Impact categories & units						
Carcinogens	kg C2H3Cl eq					
Non carcinogens	kg C2H3Cl eq					
Respiratory inorganics	kg PM2.5 eq					
Ionizing radiation	Bq C-14 eq					
Ozone layer depletion	kg CFC-11 eq					
Respiratory organics	kg C2H4 eq					

Damage Category & Unit

Human Health
DALY (disability adjusted life years)

Example from Impact 2002+

Normalization

- Optional according to ISO
- Measure of the magnitude of the indicator results relative to a reference point
- Typical reference values:
 - Total inputs and outputs for a given area
 - Total inputs and outputs for a given area per capita
 - Total inputs and outputs in a baseline scenario
- ie. Impact 2002+ results are normalized by dividing the impact per unit of emission by the total impact of all substances of the specific category for which characterization factors exist, per person per year (for Europe).

Grouping

- Optional according to ISO
- Assigning impact categories to one or more sets
- May involve sorting or ranking
- Based on value choices
- May involve sorting impact categories by specific characteristics or ranking categories in a hierarchy

Weighting

- Optional according to ISO
- Converting indicator results of different impact categories by numerical factors based on value choices
- User or impact assessment method decides which impacts are more/less important
- Ie. Impact 2002+ weighs human health, ecosystem quality, climate change, and resources equally; EcoIndicator 99 weighs human health and ecosystem quality twice as important as resources

Impact Assessment Methods

- Mathematical models developed by researchers to calculate impact categories & category indicators
- May involve normalization and/or weighting
- Based on flow of emissions to environmental media and people

IPCC Global Warming Potential

- Used to calculate global warming potential
- Developed by International Panel on Climate Change
- Considers airborne emissions
- Expressed in kg CO2 equivalents
- Climate change factors with a timeframe of 20, 100 or 500 years
- Normalization and Weighting are not part of this method
- Climate Change 2007. IPCC Fourth Assessment Report. The Physical Science Basis. http://www.ipcc.ch/ipccreports/ar4-wg1.htm

TRACI 2

- Used to assess a substance at the impact category level only – does not include damage assessment
- Tool for the Reduction and Assessment of Chemical and other Environmental Impacts developed by US EPA
- Developed specifically for the US, using data from US locations for acidification, smog formation, eutrophication, human cancer, human non cancer, and human criteria effects
- More information: http://www.epa.gov/nrmrl/std/traci/traci.html

Impact Categories

Global warming

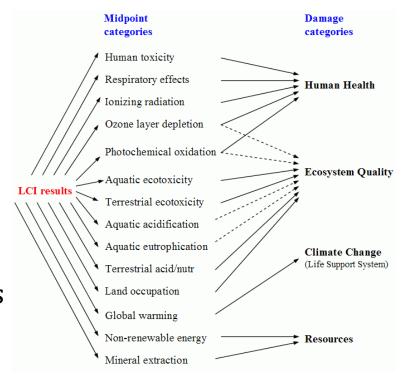
Acidification

Carcinogens

Non carcinogens

Respiratory effects

Eutrophication


Ozone depletion

Ecotoxicity

Smog

Impact 2002+

- Midpoint and end point method developed at the Swiss Federal Institute of Technology – Lausanne
- Includes characterization, damage assessment, normalization and evaluation
- Translates life cycle inventory to midpoint (impact categories) and combines those to form damage categories
- Some impact categories are mapped to more than one damage category as they contribute to both
 - ie. ozone layer depletion contributes to human health & ecosystem quality
- More information:
 http://www.sph.umich.edu/riskcenter/jolliet/imp
 act2002+.htm
 Image source: University of Michigan, http://www.sph.umich.edu/riskcenter/jolliet/impact2002+_chart.htm

ReCiPe

- Midpoint and endpoint method developed by the RIVM, CML, PRé Consultants, Radboud Universiteit Nijmegen and CE Delft
- Includes characterization and normalization
- 2008 is latest version; most recently updated midpoint & endpoint method available
- Incorporates three cultural perspectives
 - Individualist: short term, optimism that technology can avoid many problems in future
 - Hierarchist: consensus model, as often encountered in scientific models, considered to default model
 - Egalitarian: long term based on precautionary principle thinking
- More information: www.lcia-recipe.net

ReCiPe

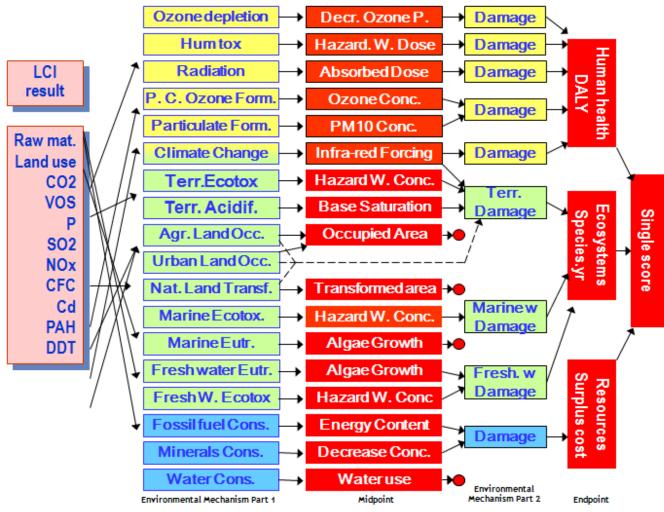


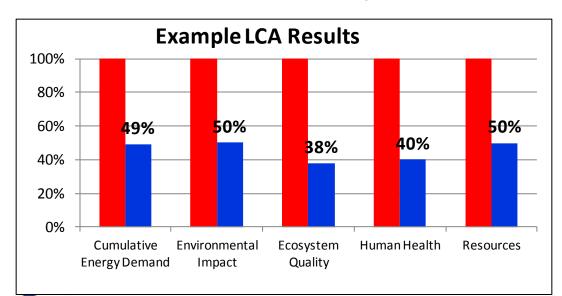
Image Source: http://www.lcia-recipe.net/

Uncertainty

- There are multiple types of uncertainty which may affect the LCA results
- Some types are controllable by the LCA practitioner to a degree
 - variability of collected data
 - life cycle model assumptions
- Other types are not
 - variability of database inventory data
 - uncertainty of impact assessment methods

Uncertainty according to ISO 14044

- Used to understand the significance, uncertainty, and sensitivity of the LCA results to
 - Help distinguish whether or not significant differences are present
 - Identify negligible results
 - Guide the life cycle impact assessment process
- Need & choice of techniques depends on accuracy & detail needed to fulfill the goal & scope of the LCA


Sensitivity Analysis

- Method to estimate the effects of the LC methodology and data choices made by the LCA practitioner on the LCA results
 - Variability in collected data
 - Modeling assumptions
- Examples of data that may be tested via sensitivity analysis
 - Energy use derived from calculations
 - Variability in part weights or material types
 - Assume transport distance from manufacturer to customer
 - Assume end of life of a product
 - Impact assessment results
- May require modeling multiple scenarios

Uncertainty Analysis

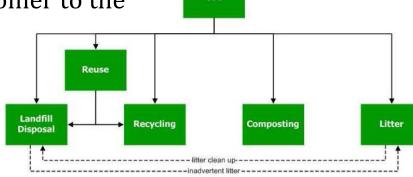
- Method to estimate how uncertainties in the impact assessment methods and life cycle inventory data available in databases may influence the results
- Estimates reliability of the results

Monte Carlo Analysis Results, 1,000 runs at 95% certainty						
Category	RED>=BLUE					
Cumulative Energy Demand	0%					
Environmental Impact	0.1%					
Ecosystem Quality	0%					
Human Health	4.8%					
Resources	0%					

Today's Example

Goal:

 Determine which grocery bag – single use paper, single use plastic, reusable plastic, or reusable cotton – has the lowest environmental impact


Assumptions:

All bags are manufactured 100km from the customer

 All bags travel 10km from the customer to the end of life

 Half of paper bags are recycled at end of life, half go to landfill

 Plastic & cotton bags go to landfill at end of life

Resource

Acquisition

Materials

Manufacture

Use

Sustainability Victoria, Comparison of existing life cycle analysis of shopping bag alternatives, Apr07.

Functional Unit

Bag Type	Single use plastic	Single use paper	Reusable plastic	Reusable cotton
Material	HDPE	Unbleached Kraft paper	Polypropylene	Cotton
Weight	7g	42.6g	95g	85g
Relative Capacity	1	0.9	1.1	1.1
Bags per Year	520	578	4.55	4.55
Mass bags per year	3640g	24622.8g	432.25g	386.75g

Sustainability Victoria, Comparison of existing life cycle analysis of shopping bag alternatives, Apr07.

funded by NYSDE(

Life Cycle Inventory

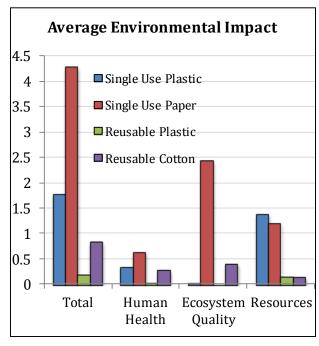
Single use plastic bag to landfill

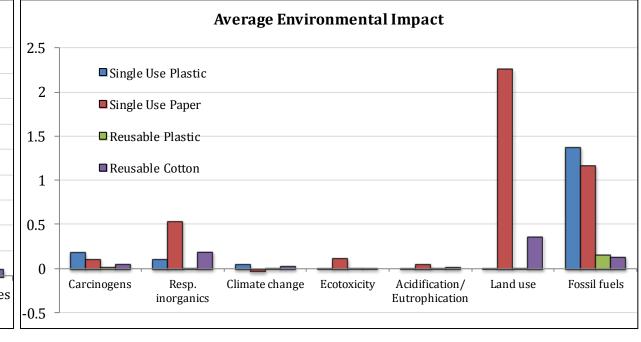
				Stretch			
				blow	Transport,	Transport, municipal	Disposal, to
Compartment	Unit	Total I	Polyethylene	molding	truck	waste collection	sanitary landfill
Raw	m3day	31.46405	0.020665954	30.931745	0.36990454	0.023000912	0.118734
Raw	Bales	439.461	0.32124675	433.52686	4.1032967	0.2596362	1.249917
Raw	gal	827.9753	702.60535	122.39733	1.9104373	0.2860682	0.776144
Raw	dm3	663.6833	105.3299	557.20832	0.80446372	0.099533999	0.241084
Raw	dm3	35.94773	3.5586888	32.034812	0.23725728	0.022698411	0.094278
Raw	dm3	22.00356	8.0104364	12.590744	0.4414842	0.044198903	0.916697
Raw	cu.in	604.2726	1.7235821	596.79262	4.4576884	0.2767618	1.021933
Raw	cu.in	484.8047	21.550353	456.08452	5.172212	0.27703142	1.720542
Raw	cu.in	337.3617	29.203984	305.09966	2.1971916	0.27405056	0.586829
Raw	cm3	432.315	0.94287529	430.75016	0.45522437	7 0.033231701	0.133477
	Raw Raw Raw Raw Raw Raw Raw Raw	Raw gal Raw dm3 Raw dm3 Raw dm3 Raw cu.in Raw cu.in Raw cu.in	Raw Bales 439.461 Raw gal 827.9753 Raw dm3 663.6833 Raw dm3 35.94773 Raw dm3 22.00356 Raw cu.in 604.2726 Raw cu.in 484.8047 Raw cu.in 337.3617	Compartment Unit Total Polyethylene Raw m3day 31.46405 0.020665954 Raw Bales 439.461 0.32124675 Raw gal 827.9753 702.60535 Raw dm3 663.6833 105.3299 Raw dm3 35.94773 3.5586888 Raw dm3 22.00356 8.0104364 Raw cu.in 604.2726 1.7235821 Raw cu.in 484.8047 21.550353 Raw cu.in 337.3617 29.203984	Compartment Unit Total Polyethylene molding Raw m3day 31.46405 0.020665954 30.931745 Raw Bales 439.461 0.32124675 433.52686 Raw gal 827.9753 702.60535 122.39733 Raw dm3 663.6833 105.3299 557.20832 Raw dm3 35.94773 3.5586888 32.034812 Raw dm3 22.00356 8.0104364 12.590744 Raw cu.in 604.2726 1.7235821 596.79262 Raw cu.in 484.8047 21.550353 456.08452 Raw cu.in 337.3617 29.203984 305.09966	Compartment Unit Total Polyethylene molding Transport, truck Raw m3day 31.46405 0.020665954 30.931745 0.36990454 Raw Bales 439.461 0.32124675 433.52686 4.1032967 Raw gal 827.9753 702.60535 122.39733 1.9104373 Raw dm3 663.6833 105.3299 557.20832 0.80446372 Raw dm3 35.94773 3.5586888 32.034812 0.23725728 Raw dm3 22.00356 8.0104364 12.590744 0.4414842 Raw cu.in 604.2726 1.7235821 596.79262 4.4576884 Raw cu.in 484.8047 21.550353 456.08452 5.172212 Raw cu.in 337.3617 29.203984 305.09966 2.1971916	Compartment Unit Total Polyethylene molding Transport, truck Transport, municipal waste collection Raw m3day 31.46405 0.020665954 30.931745 0.36990454 0.023000912 Raw Bales 439.461 0.32124675 433.52686 4.1032967 0.2596362 Raw gal 827.9753 702.60535 122.39733 1.9104373 0.2860682 Raw dm3 663.6833 105.3299 557.20832 0.80446372 0.099533999 Raw dm3 35.94773 3.5586888 32.034812 0.23725728 0.022698411 Raw dm3 22.00356 8.0104364 12.590744 0.4414842 0.044198903 Raw cu.in 604.2726 1.7235821 596.79262 4.4576884 0.2767618 Raw cu.in 484.8047 21.550353 456.08452 5.172212 0.27703142 Raw cu.in 337.3617 29.203984 305.09966 2.1971916 0.27405056

Impact Assessment - Classification

Impact category	Unit	Paper bags to Landfill & Recycling		•	Single use plastic l bags to recycling i	•	Single use plastic bags to landfill
Carcinogens	kg C2H3Cl eq	0.417994	0.129259	0.153302	1.231264	1.177576	1.127107
Non-carcinogens Respiratory	kg C2H3Cl eq	0.740271	0.463388	0.004723	0.117981	0.350686	0.067419
inorganics	kg PM2.5 eq	0.037581	0.013779	0.000555	0.00514	0.007426	0.007284
Ionizing radiation	Bq C-14 eq	1035.931	116.8382	13.49738	417.1185	418.0241	417.9823
Ozone layer depletion	kg CFC-11 eq	3.08E-06	2.01E-07	1.92E-08	-1.3E-06	3.08E-07	3.14E-07
Respiratory organics	kg C2H4 eq	0.015228	0.000859	0.001044	-0.01999	0.010705	0.010603
Aquatic ecotoxicity	kg TEG water	-584.219	510.5823	16.15509	7983.769	342.6306	305.4632
Terrestrial ecotoxicity	kg TEG soil	743.9329	249.3385	3.348683	59.85814	56.73934	56.83179
Terrestrial acid/nutri	kg SO2 eq	0.730762	0.326098	0.013255	0.042056	0.162103	0.15584
Land occupation	m2org.arable	25.89123	4.233037	0.009774	0.114647	0.115059	0.120109
Aquatic acidification	kg SO2 eq	0.16954	0.094797	0.00373	0.041507	0.048866	0.048261
Aquatic eutrophication	kg PO4 P-lim	0.004834	0.003622	6.61E-05	0.000225	0.000172	0.000181
Global warming	kg CO2 eq	22.34385			10.45722	22.57957	11.87871
Non-renewable energy	MJ primary	331.84			278.1647	391.6313	391.9828
= -	MJ surplus	0.429864	0.049432	0.003704	0.038234	0.040382	0.039691

Impact Assessment - Characterization

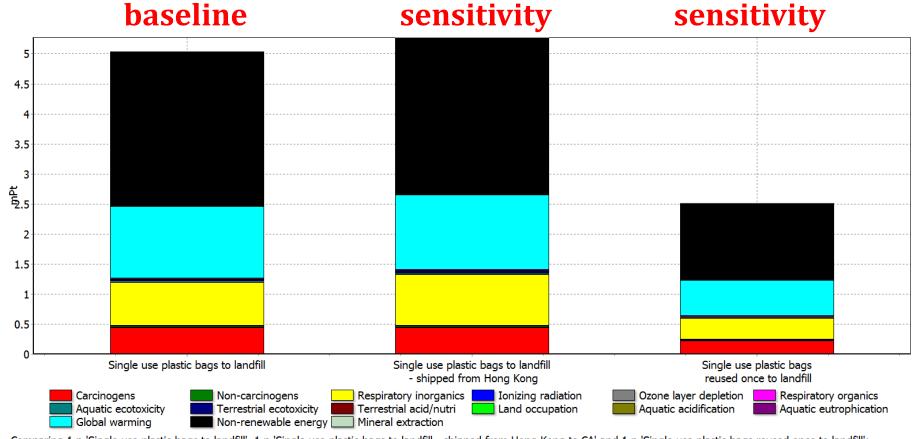

Impact category	Unit	Paper bags to Landfill & Recycling	Reusable cotton bags to landfill	Reusable plastic bags to landfill	plastic bags to	plastic bags to	Single use plastic bags to landfill
Carcinogens	DALY	1.17E-06	3.62E-07	4.29E-07	3.45E-06	3.3E-06	3.16E-06
Non-carcinogens Respiratory	DALY	2.07E-06	1.3E-06	3 1.32E-08	3.3E-07	9.82E-07	1.89E-07
inorganics	DALY	2.63E-05	9.65E-06	3.88E-07	3.6E-06	5.2E-06	5.1E-06
Ionizing radiation	DALY	2.18E-07	2.45E-08	3 2.83E-09	8.76E-08	8.78E-08	8.78E-08
Ozone layer depletion Respiratory	DALY	3.24E-09	2.11E-10) 2.02E-11	-1.4E-09	3.24E-10	3.29E-10
organics	DALY	3.24E-08	1.83E-09	2.22E-09	-4.3E-08	2.28E-08	2.26E-08
Aquatic ecotoxicity Terrestrial	PDF*m2*yr	-0.02933					
ecotoxicity Terrestrial	PDF*m2*yr	5.884509	1.972268	0.026488	0.473478	0.448808	0.449539
acid/nutri	PDF*m2*yr	0.759993	0.339142	0.013786	0.043739	0.168587	0.162074
Land occupation Aquatic acidification	PDF*m2*yr	28.22144	4.61401	0.010654	0.124965	0.125415	0.130919
Aquatic eutrophication		-	-	-	-	-	-
Global warming	kg CO2 eq	22.34385	9.056268	1.034412	10.45722	22.57957	11.87871
Non-renewable energy	MJ primary	331.84	106.9904	37.45004	278.1647	391.6313	391.9828
Mineral extraction	MJ primary	0.429864	0.049432	0.003704	0.038234	0.040382	0.039691



Impact Assessment – Normalized & Weighted

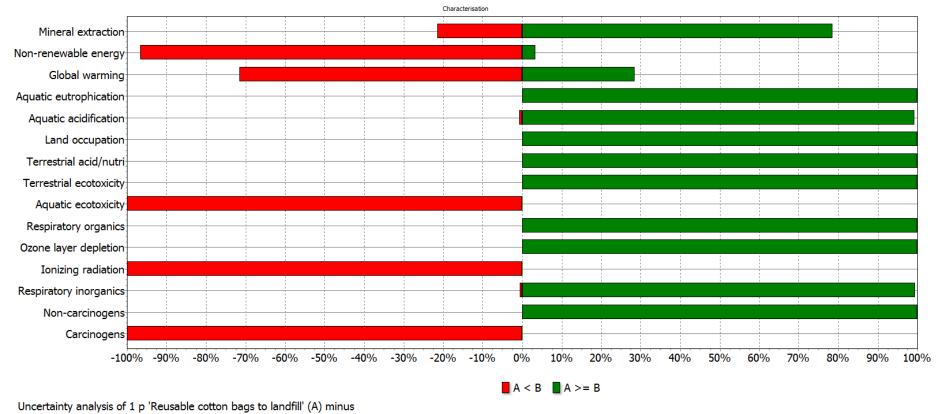
	Paper ba	gs to				Single use plastic	
Impact category	Landfill 8 Unit Recycling		Reusable cotton bags to landfill	Reusable plastic bags to landfill	Single use plastic bags to recycling	bags to incineration	Single use plastic bags to landfill
Total	Pt	0.011188	3 0.003724	0.000473	0.004009	0.006265	0.005041
Carcinogens	Pt	0.000165	5 5.1E-05	6.05E-05	0.000486	0.000465	0.000445
Non-carcinogens Respiratory	Pt	0.000292	0.000183	3 1.86E-06	4.66E-05	0.000138	3 2.66E-05
inorganics	Pt	0.003709	0.00136	5.47E-05	0.000507	0.000733	0.000719
Ionizing radiation Ozone layer	Pt	3.07E-05	3.46E-06	6 4E-07	1.24E-05	5 1.24E-05	5 1.24E-05
depletion Respiratory	Pt	4.56E-07	2.98E-08	3 2.84E-09	-2E-07	4.56E-08	3 4.64E-08
organics	Pt	4.57E-06	3 2.58E-07	7 3.14E-07	-6E-06	3.21E-06	3.18E-06
Aquatic ecotoxicity Terrestrial	Pt	-2.1E-06	3 1.87E-06	5.92E-08	2.93E-05	1.26E-06	5 1.12E-06
ecotoxicity	Pt	0.00043	0.000144	1.93E-06	3.46E-05	3.28E-05	3.28E-05
Terrestrial acid/nutr		5.55E-05					
Land occupation	Pt	0.00206	0.000337	7.78E-07	9.12E-06	9.16E-06	9.56E-06
Aquatic acidification Aquatic			-	-	-	-	-
eutrophication	Pt -		-	-	-	-	-
Global warming Non-renewable	Pt	0.002257					
energy	Pt	0.002184					
Mineral extraction	Pt	2.83E-06	3.25E-07	7 2.44E-08	2.52E-07	2.66E-07	2.61E-07

LCA Results - Product Comparison



funded by NYSDEC

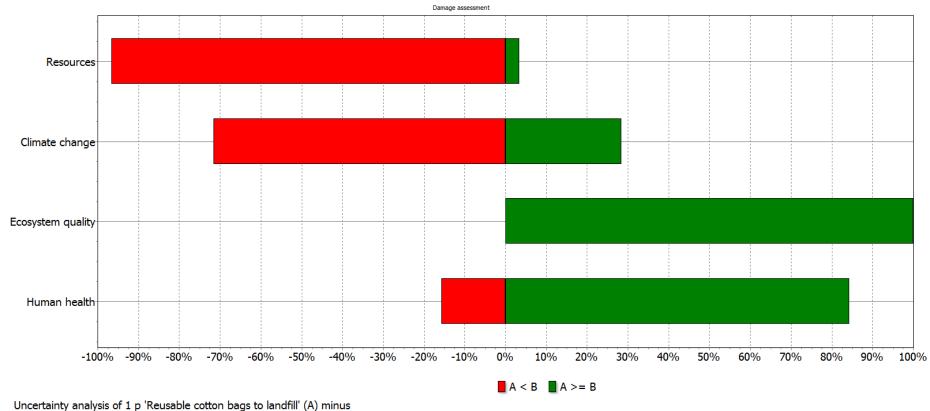
Sensitivity Analysis



Comparing 1 p 'Single use plastic bags to landfill', 1 p 'Single use plastic bags to landfill - shipped from Hong Kong to CA' and 1 p 'Single use plastic bags reused once to landfill'; Method: IMPACT 2002+ V2.05 / IMPACT 2002+ / Single score

funded by NYSDEC

Monte Carlo Analysis


1 p 'Single use plastic bags to recycling' (B),

method: IMPACT 2002+ V2.05 / IMPACT 2002+ , confidence interval: 95 %

funded by NYSDEC

Monte Carlo Analysis

1 p 'Single use plastic bags to recycling' (B),

method: IMPACT 2002+ V2.05 / IMPACT 2002+ , confidence interval: 95 %

Summary

- Scoping is Critical: Well-defined LCA goals and boundary selection is very important
 - Will affect the Impact categories, category indicators, characterization models, use of normalization and weighting
- Critical to consider variability of input data: sensitivity analyses are necessary for testing
- Use Monte Carlo analysis to improve confidence in the LCA results

Questions & Discussion

Kate Winnebeck, LCACP

Sr. Environmental Health & Safety Specialist

Email: kate.winnebeck@rit.edu

Phone: 585-475-5390

Anahita Williamson, PhD

Director

Email: anahita.williamson@rit.edu

Phone: 585-475-4561

New York State Pollution Prevention Institute

http://www.rit.edu/affiliate/nysp2i/

