NYSP2I Assists with Molding Sand Recovery

CHALLENGE
A furnace refractories manufacturer in central New York has not evaluated recycling of their molding sand in over three decades, at which time they determined that it was not economically feasible to recycle the sand. The main problem was that there are two (2) different binders used in the sand for the refractory process: Sodium Silicate (binder most commonly used) and Catalyzed Furan.

The two binders have compatibility issues when mixed together. The Furan catalyst must be increased to counteract the residuals from the sodium silicate binder. The furnace refractories manufacturer wanted to investigate the latest information on technologies that may be both technically and economically feasible for sand recovery and reuse in their casting operations.

SOLUTION
The New York State Pollution Prevention Institute (NYSP2I) at the Rochester Institute of Technology (RIT) provided assistance in determining a cost-effective option in order to reduce annealing sand purchases and sand disposal cost, along with investigating whether Furan binder use could be reduced or eliminated.

NYSP2I assessed several technology options for recovering their molding sand for reuse. Two different potential approaches were identified; find a reduced cost outlet for the used sand (disposal cost reduction), or find a way to reuse a larger portion of the used sand besides use as annealing sand in their operation. NYSP2I also assessed the opportunity to eliminate Furan as a binder due to the health risks associated with uncured Furan compared to the other binder currently used, sodium silicate. However, it was discovered that Furan cannot be replaced by the silicate binder because the Furan has a higher hot strength than the silicate and certain mold forms require additional strength which the silicate binder cannot provide.

An outside lab analyzed the used sand with mixed binders. This lab determined that the sand was nonhazardous, suggesting that the sand could be used for any application where new sand is typically used such as gardens, beaches, landfill cover, etc.

Initial information from the furnace refractories manufacturer indicated that mixed binder sand (Furan and silicate) would have reuse issues due to slower curing that is caused by binder interference. Therefore, it was assumed that sand reuse would require manual separation of used Furan binder sand from silicate binder sand.

NYSP2I suggested that the furnace refractories manufacturer with perform 3 point bend tests on varying ratios of new sand and mixed binder recovered sand. The minimum bend strength specified was 225 pounds. First, it was assumed that the used Furan sand-used silicate sand mix would perform more poorly than a new silicate sand-used silicate sand mix. Instead, the 75% virgin sand - 25% used silicate sand performed very poorly. Data also showed that the mixed binder sand performed almost as well as the virgin sand. The testing also suggests that the opposite set of tests should be performed where mixed used sand is re-molded with Furan binder.
RESULTS
Since the 3 point bend testing looked very promising for sand reuse with mixed binder sand and silicate binder, sand reuse has high potential. More 3 point bend tests are needed for reuse with Furan binder and possibly reuse with lower quantities of mixed sand to determine if this would improve the average strength and variation in strength. The strength variation for all the tests was quite wide which suggests the need for a Design of Experiments (DOE) to determine what process variables are the big contributors to variation. Additional testing is needed to verify that multiple sand cycles do not have progressive strength degradation; the used sand virgin sand ratio may have to be adjusted accordingly to avoid using sand with less strength. The final step would be hot strength testing using the optimum mixture conditions for both Furan and silicate binders.

NYSP2I and the furnace refractories manufacturer determined that mold material bend testing with 50% mixed binder sand, 50% virgin sand, and silicate binder provided strengths almost as high as 100% virgin sand. Further testing would be needed to determine the impact on Furan strength using 50:50 sand mix and would include a Design of Experiments (DOE) to reduce the variation in strength results. A 50% sand reuse represents the potential savings of $335,000. Repeated sand reuse is expected to gradually reduce the mold strength so there may need to be a system in place to take into account the diminishing strength such as placing limits on re-blend ratios over time.

Equipment needed for sand reuse include a delumper, and either finer screens for the existing Rotex screening equipment or a new Rotex dedicated to screening for molding sand reuse. In-house storage and sand transportation are also required due to the expected reclaim quantities. It could not be determined whether a sand blending system would be needed to control the used-virgin sand mix.

A new Rotex would cost approximately $40,000; therefore, the payback at 50% sand reuse would be about 1.7 months using just sand purchase costs (50% of $630,000). Sand transporter and sand silo costs were estimated to be $223,000 based on a 2010 quote (Nol-Tec Systems). A delumper, new Rotex, transporter tubes, and silo costs combined would be approximately $337,000. Payback at 50% sand reuse would be 1 year.