RIT Business Analytics Spring 2023 Competition

Presenter | Team SimonMiracle

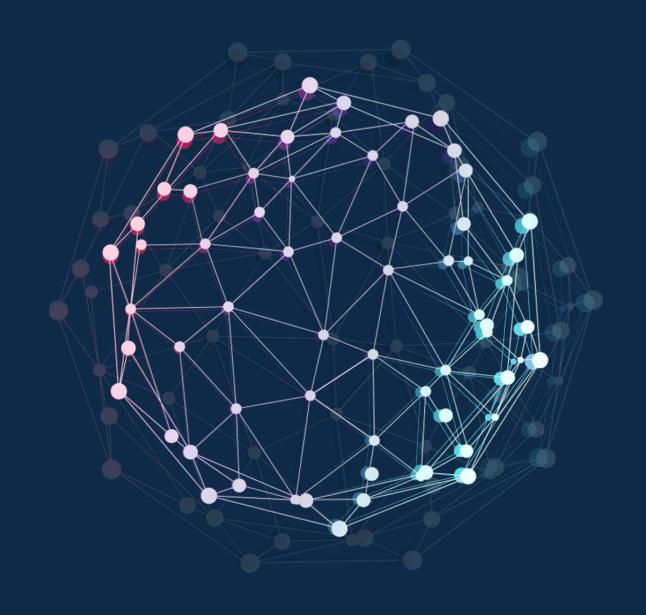
Zhiwei Liang

Yuxiao Liao

Yitong Li

Xinyu Su

Tingting Liu



Problem Description

Client:

RIT-Commerce

Task:

Address fake review problem and give advice

Scenario Description

Fake reviews:

- Around 4% of online reviews
- Influence \$152 billion transactions
- Generated by actual users

Detailed Task

Fake review detection

Overall impact

Practical implementations

Data Preparation

Dataset

Dataset 1 ← Build Model

- Reviews Collection (2000-2020)
- 392,426 rows * 11 columns

Dataset 2 ← Predict "fake review"

- Reviews without the target (2000-2021)
- 43, 640 rows * 10 columns

Data Cleaning

Row training dataset

392426 rows × 11 columns

551 rows removed

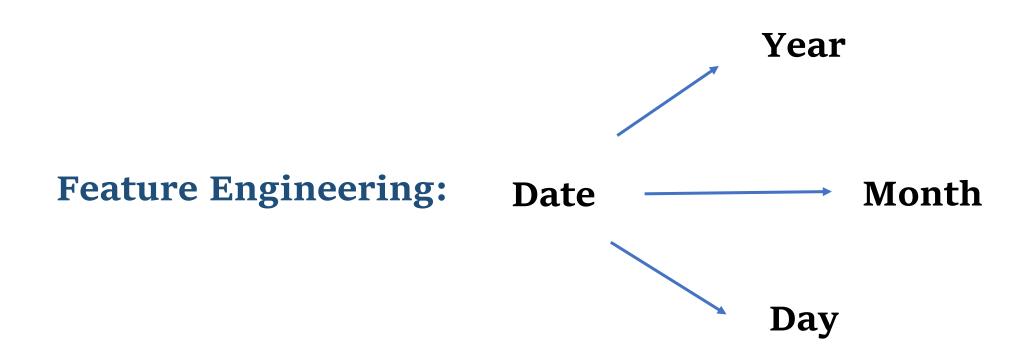
Cleaned training dataset 391875 rows × 11 columns

Data Cleaning

Row training dataset

```
391875 non-null datetime64[ns]
   review_date
0
   review_rating
                      391875 non-null
                                       int64
   number_of_photos
                     391875 non-nul1
                                       int64
   helpful_vote
                      391875 non-null int64
   reviewer_ID
                      391875 non-nul1
                                       object
5
                      391875 non-null
                                       int64
    fake_asin
    fake_review
6.
                      391875 non-null
                                       int64
                      391875 non-null int64
   product_ID
8
                      391875 non-nul1
   review ID
                                       int64
9
   review
                      391875 non-null
                                       object
```

Data Preprocessing (cont.)



Data Preprocessing (cont.)

Feature Engineering:

Gibberish & Punctuation Stop-word **Text** Variable **Word Stemming Senti-Analysis**

Data Preprocessing (cont.)

Fake_asin
 Fake_asin*_Product_id
 → Labeled_Product_idXXX
 Product_id
 (Product Feature)

labeled_product_id_82	labeled_product_id_427	labeled_product_id_428	labeled_product_id_429	labeled_product_id_436	<pre>labeled_product_id_438</pre>
0	0	0	0	0	0
0	0	0	0	0	0

Processed Training Dataset

[391875 rows x 52 columns]

Predictive model

Predictive Model Selection

Three models were constructed:

Support Vector Classifier (SVC)

Highly effective for common text classification problems

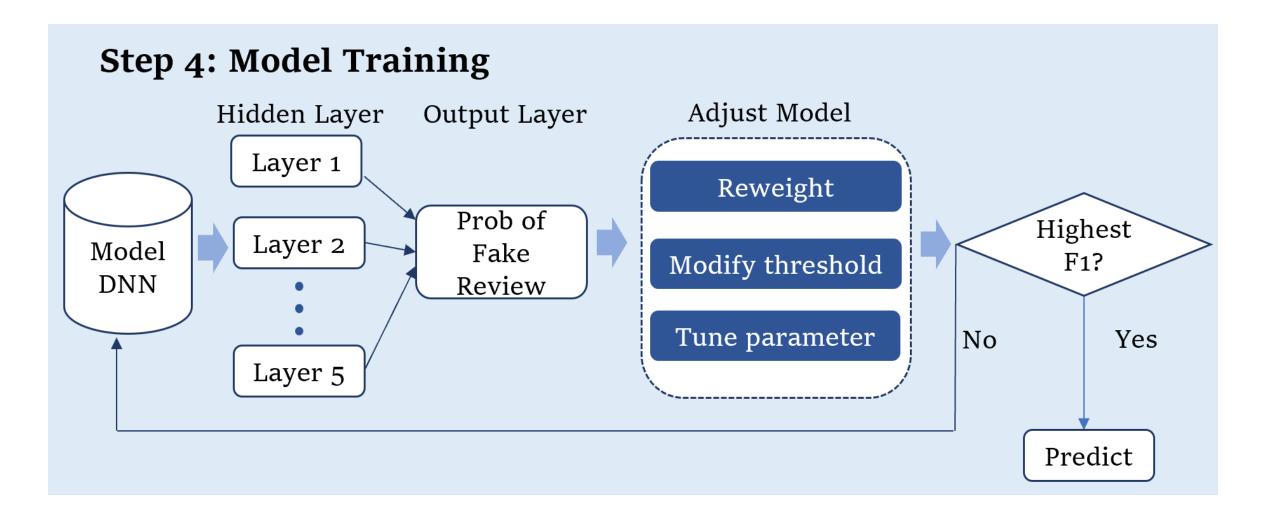
Recurrent Neural Network (RNN)

• Good at processing sequential data, especially natural language text

Deep Neural Network (DNN)

- Multiple layers
- Capable of modeling intricate relationships in large amounts of data

DNN Model Building Process



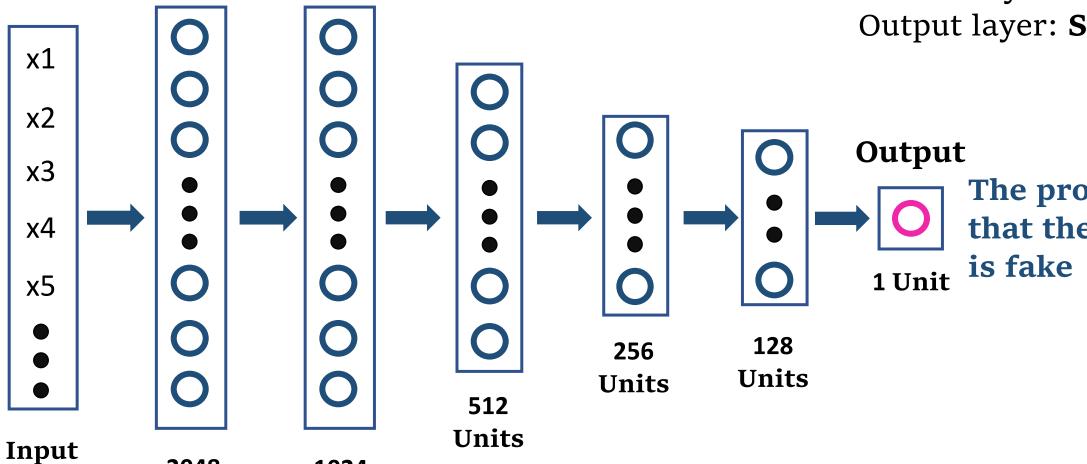
Layers and Units

2048

Units

1024

Units



Activation functions:

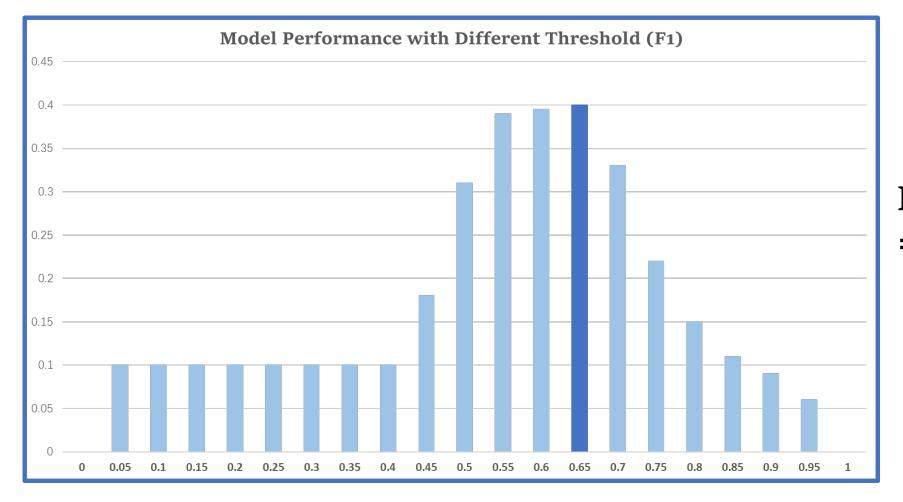
Hidden layers: ReLu

Output layer: Sigmoid

The probability that the review

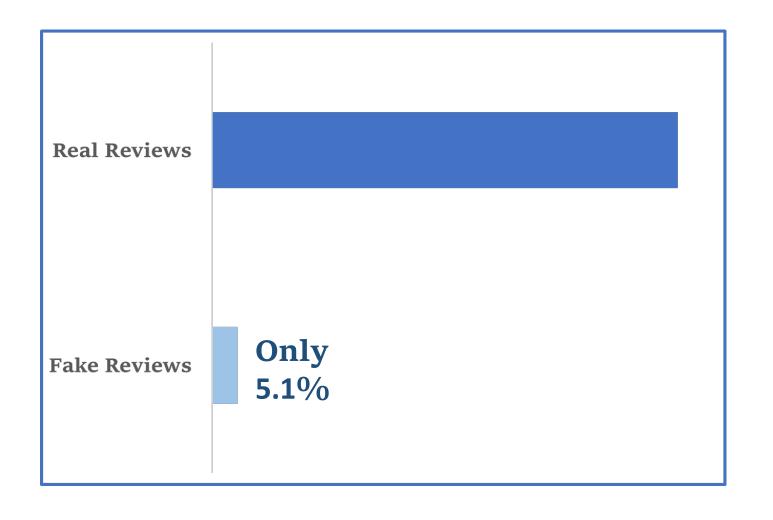
Adjusting Threshold

Output: the probability that the review is fake



Best Threshold = 0.65

Reweighting Unbalanced Dataset



Before Reweighting

Private Score (i) Public Score (i)

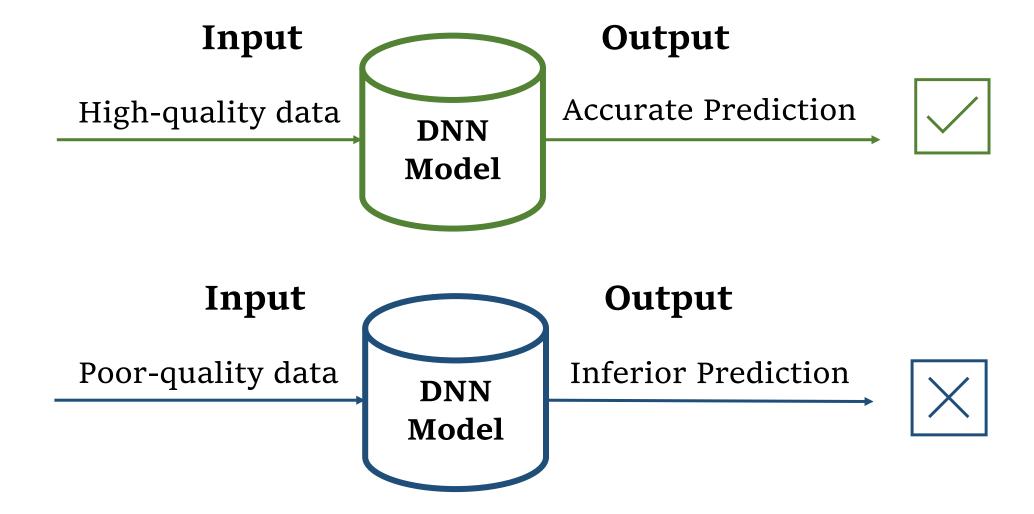
0.13103 0.13021

After Reweighting

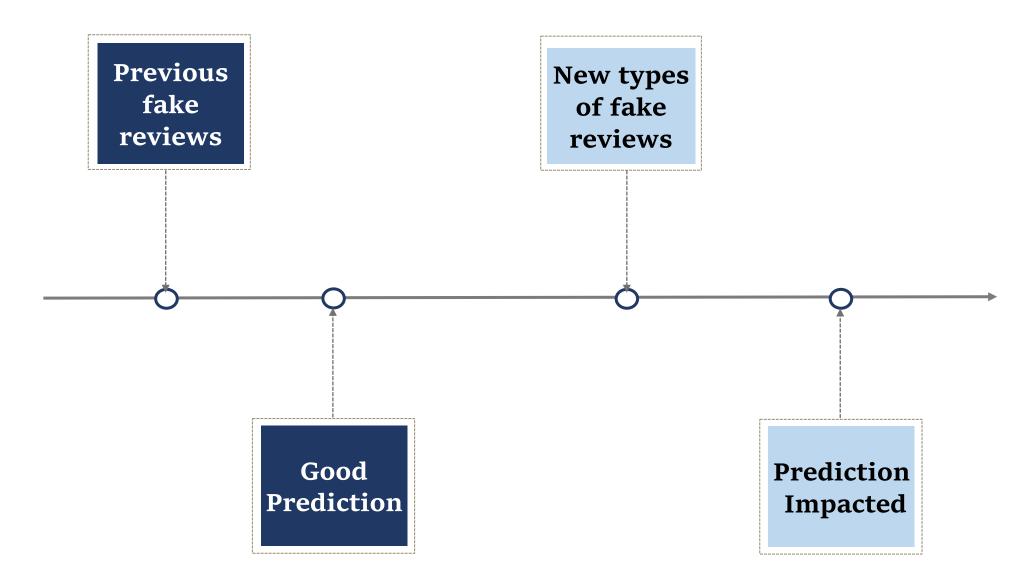
Private Score (i) Public Score (i)

0.40198 0.38391

Limitations: Training Data Quality



Limitations: Changes in Review Data Over Times



Improvements

- Incorporate more additional features:
- Metadata about the reviewer and product
- e.g., Age and gender about the reviewer
- e.g., Price and category of the product
- Monitor and adjust the model's parameters
- Explore more ML techniques

Business Analysis

Results

Outcomes

- Identified significant data imbalance
- Found critical features:
 review_rating,
 number_of_photos, year,
 month, polarity, and
 subjectivity

Performance

Best model: DNN

Best F1 Score: 0.4

0 × 0 0

Optimization Strategies

- Resampling
- Word Embeddings
- Reweighting
- Targeted Feature Engineering
- Parameter Fine-Tuning

Business Goals

Improve fake review detection

Boost model's effectiveness to identify and eliminate fake reviews

Authentic review section

Enhance the review section's authenticity

Assess impact of fake reviews

Discover impact of fake reviews on the platform's overall performance and profitability

Reasoning Behind Recommendations

Impacts on Sales

- Increase rapidly with fake reviews, but then fall back to original level
- Decrease with high percentage of fake reviews

Impacts on Ranking

- ❖ Fake reviews artificially inflate product rankings
- If depend more on fake reviews than quality,product costs will raise

Other Impacts

- ❖ Fake reviews lack factual info »» unhelpful
- Paying for fake positive reviews damages product quality and consumer loyalty

Implementations

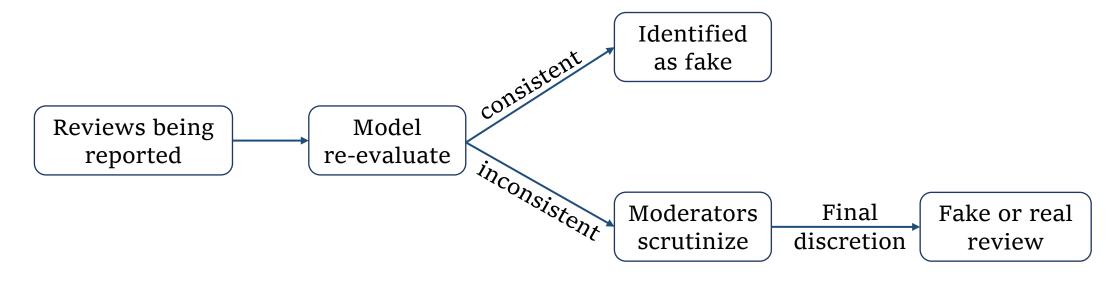
Implementations:

Fake review detected:

Remove

Fake review not detected:

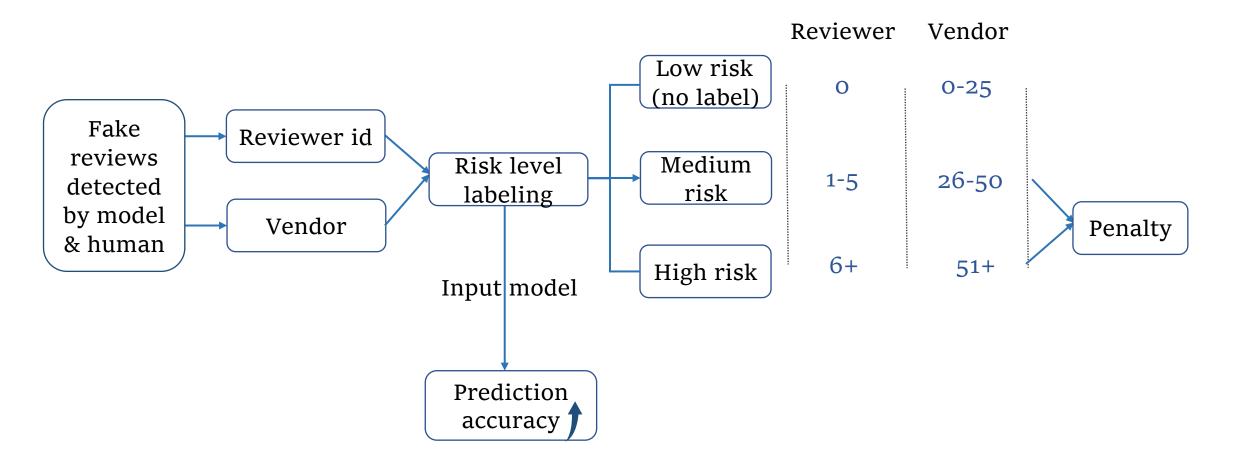
Introduce report system



Fake review report system

Implementations:

■ Penalty mechanism: risk labeling & penalty



Conclusion

Presenter | Team SimonMiracle
Zhiwei Liang | zliang19@simon.rochester.edu
Yuxiao Liao | yliao21@simon.rochester.edu
Yitong Li | yli295@simon.rochester.edu
Xinyu Su | xsu9_Simon@simon.rochester.edu
Tingting Liu | tliu44@simon.rochester.edu

