Site-wide links

About The Studio

Promulgating Scientific Imaging Practices Within Cultural Heritage Institutions

Computer graphics rendering of Trees based on diffuse and surface normal data
collected using the four-light imaging system.

The purpose of the Studio is to lead by example and prove that an imaging studio using commercial equipment can provide both images for science and scholarly communication. This approach will clarify the two imaging stages of analysis and synthesis. The archival images can be used directly by both conservators and conservation scientists. Following rendering (synthesis), images are used for printing and web display..

Four imaging systems are envisioned.

The first is easel based, using a high-resolution medium-format commercial camera and Xenon strobes, typically found in museum imaging services. Our particular camera is a new Sinar Photography AG system, consisting of a 86H 48MP color sensor, rePro camera body, eShutter with HR100 lens, and the CTM attachment. “CTM” stands for “color to match” the product name for a filter slider housing a pair of filters designed by the Roy Berns. When combined with software written at RIT, this system is capable of significantly higher color accuracy without a loss in spatial image quality. This is a commercialization of our Dual-RGB approach to scientific imaging. This approach was tested in our first Mellon-funded project. One feature of this camera is that by using only one of the filters, it produces images that are equivalent to a typical high-quality commercial camera. This system will have the greatest leverage towards demonstrating the advantages of scientific imaging within an imaging services studio. This system will image flat artwork and produce images appropriate for scientists, conservators, and photographers working in imaging services.

The second system will use the same easel and camera stand as the first system. A Canon commercial DSLR camera will be used. The system will be initiated using a Canon 5D Mark I and upgraded during the project to a higher-resolution DSLR. This will facilitate capturing data for computer graphics rendering of artwork using four-light polarization enhanced photometric stereo imaging, abbreviated as four-light imaging. This technique was developed during our last two Mellon-funded projects. This system will be used primarily for research since one of the proposed research themes will improve this system.

The third imaging system will be a “rapid system” using a Canon 5D Mark II DSLR modified for use as a Dual-RGB or standard DSLR. Rapid systems are gaining popularity for artwork that does not require the highest resolution and spatial image quality. The camera will be mounted on a motorized copy stand. A pair of Xenon linear strobes and controlling power pack will complete the system. This system will be used for imaging drawings, watercolors, photographic prints, and similar media for both research and imaging services. The first and third systems will be used for the imaging services. As such, we will not be imaging sculpture and other three-dimensional works.

The fourth system will be a spectral system, which consists of a 1.4MP Lumenera LW165m monochrome sensor (1392x1040 pixels) coupled with a CRI liquid crystal tunable filter. This system will be attached to the camera stand used in the first and second systems. The spectral system will be used primarily for research. Specifically, it will provide “ground truth” for our proposed research in improving pigment mapping. The output of this system will be a complete spectral reflectance curve for each pixel.

Our Sponsor

Our grant falls under the domain of:
Scholarly Communications and Information Technology