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1.0 Forward 
 
 
Where to begin? This has been a challenging year for the DIRS Lab. After several years of 
growth the research volume leveled out this year. This in itself would not present any issue, 
however, our funding was particularly weak in the measurements area and as a result we lost 
some personnel in that area. Thankfully, all appear to have bright futures, but it is always hard to 
disrupt the lives of friends and colleagues. The shortages in the measurements area were 
balanced by modest growth in the modeling and algorithms areas. The net result was another 
year of significant contribution by the Lab both in terms of students released on the world and 
research results passed on to our sponsors and the scientific community at large.  
 
Each year I try to provide a theme to these opening remarks to provide either focus or a context 
for our collective activities. This year the context that is most vivid in my mind has been well 
expressed (albeit at some length) by the joint committee of the National Academies of Science, 
Engineering and the Institute of Medicine in their report entitled Rising Above the Gathering 
Storm: Energizing and Employing America for a Brighter Future. The compelling report points 
out that the recent decades of economic geopolitical and military success the Untied States has 
enjoyed is largely the result of the scientific and technological lead we held trough these years. 
Indeed, Science and Engineering are behind the conception, design and fabrication of nearly 
everything that enables and even much of what enriches our way of life. However, the report 
makes the case that the US is not producing the levels of well prepared scientists and engineers 
to sustain this competitive advantage. Indeed not only are we not meeting this need with US 
citizens but the influx of science and engineering talent we have traditionally imported through 
our research universities is also under assault for a variety of reasons. Collectively the findings in 
the report represent a call to action to respond to this “gathering storm”.  
 
For us in the DIRS Lab this emphasizes the critical importance of our joint role of producing 
science and scientists to support our government and industrial sponsors. However, to meet this 
need, we need to move aggressively and creatively to recruit and motivate talented staff and 
students. In addition, we recognize that this is a fundamental national issue and must be 
addressed from grammar school on, to compel and then adequately train the next generations of 
scientists and engineers. In the coming year we plan to reinvigorate our local efforts at outreach 
to the K-12 community by sharing with them our excitement about the remote sensing enterprise. 
In addition, we will be looking to work with our sponsors to identify creative means to ensure 
that we will be able to provide long term support to our collective missions. 
 
In the context of the National Academies report, I want to acknowledge once again the support 
that is provided by the Frederick and Anna B. Wiedman Endowed Professorship. This 
Professorship was endowed by Frederick Wiedman Jr. in the name of his parents. This support 
provides me with some flexibility to support some of the proposed public outreach and to 
support the occasional student to explore research topics in areas where we don’t have external 
support.  
 
In closing, I encourage all who read this to review the National Academies report 
(http://www.nap.edu/catalog/11463.html) and if so motivated to help in raising the level of 
personal and national debate on this issue.    
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2.0 DIRS Group 
 

2.1 DIRS Background 
 

The Digital Imaging and Remote Sensing (DIRS) Laboratory is a research group within the 
Chester F. Carlson Center for Imaging Science.  Our work focuses on the development of 
hardware and software tools to facilitate the extraction of information from remotely sensed 
data of the earth and the education of students who will continue this work for government 
agencies and private industry. 
 
The DIRS group is made up of faculty and research staff working with over 30 students 
ranging from the Baccalaureate through Doctoral level.  Most students are degree candidates 
in Imaging Science, but students from other departments, such as Engineering and Physics, 
are often part of the student population supporting our research initiatives.  This year also 
saw the inclusion of several high school interns who were provided the opportunity to 
participate in research projects and learn more about imaging science. 
 
2.2 DIRS Lab Organization 
 
The DIRS Lab is managed using a matrix approach where faculty and senior research staff 
manage programs to generate research results, student thesis and meet sponsor requirements. 
The research staff, organized into three overlapping groups managed by group leaders, 
supports the needs of the research programs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

The Laboratory of Imaging Algorithms and Systems (LIAS) is a parallel laboratory within 
the Center for Imaging Science which also conducts remote sensing research typically with a 
more user oriented engineering scope.  DIRS and LIAS have several joint endeavors.  The 
DIRS component of these activities is included in Section 3. 

 

Lab Head 
Dr. John R. Schott 

Program Management 
and Development 

Mr. Michael Richardson 

Remote Sensing 
Faculty of the Center 
for Imaging Science 

Modeling and 
Simulation Group 
Mr. Scott Brown 

Phenomenology and 
Algorithms Group 

Dr. David Messinger 

Measurements and 
Experiments Group 

Mr. Michael Richardson 
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2.3 DIRS Personnel 

 
The DIRS group is comprised of an impressive technical team that drives the educational 
experience of our students and the research agenda for our research sponsors.   

 
The Faculty Team 

     
Dr. John R. Schott 
Professor and DIRS Laboratory 
Head 
 
Research Interests: 
- Hyperspectral data analysis and 

algorithm development 
- Multi and hyperspectral 

instrument development 
- Synthetic scene generation 
 
Contact Information: 
585-475-5508  
schott@cis.rit.edu 

Dr. Anthony Vodacek 
Associate Professor 
 
Research Interests: 

- Environmental applications of 
remote sensing 

- Forest fire detection and monitoring 
- Active and passive sensing of water 

quality 
 
Contact Information: 
585-475-7816 
vodacek@cis.rit.edu 

 
Dr. Carl Salvaggio 
Associate Professor 
 
Research Interests: 
- Novel techniques and devices for 

optical property measurement 
- Applied image processing and 

algorithm development 
- Image simulation and modeling 
Contact Information: 
585-475-6380  
salvaggio@cis.rit.edu 

Dr. John Kerekes 
Associate Professor 
 
Research Interests: 
- Image processing and algorithm 

research 
- Image chain modeling and parametric 

analysis 
 
Contact Information : 
585-475-6996  
kerekes@cis.rit.edu 
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The Research Staff 
 

 
MODELING AND SIMULATION 
Scott Brown - Scientist 
Group Lead, Modeling and Simulation 
(585) 475-7194 brown@cis.rit.edu 
Paul Lee - Assistant Software Dev. 
Software Tool Development 
(585) 475-4388 lee@cis.rit.edu 
David Pogorzala - Assistant Scientist 
Modeling and Phenomenology Research 
(585) 475-5388   pogo@cis.rit.edu 
Niek Sanders - Junior Software Dev. 
Simulation Software Development 
sanders@cis.rit.edu 

 
 
ALGORITHMS AND PHENOMENOLOGY 
Dr. David Messinger - Scientist 
Group Lead, Algorithms and 
Phenomenology 
(585) 475-4538   messinger@cis.rit.edu 
Dr. Rolando Raqueño - Scientist 
Water Analysis and Modeling 
(585) 475-6907  rolando@cis.rit.edu 
Dr. Emmett Ientilucci - Associate 
Scientist 
Advanced Algorithm Development 
(585) 475-7778   ientilucci@cis.rit.edu 

 
 
MEASUREMENTS AND EXPERIMENTS 
Michael Richardson - Distinguished 
Researcher  
Project Management and Program 
Development 
(585) 475-5294  richardson@cis.rit.edu 
Nina Raqueño - Assistant Scientist 
GIS, Data Processing, and Database 
Development 
(585) 475-7676    nina@cis.rit.edu 
Timothy Gallagher - Technical 
Associate 
Instrument Development and Calibration 
(585) 475-2781  gallagher@cis.rit.edu 
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ADMINISTRATIVE SUPPORT 
Cindy Schultz - Staff Assistant 
Staff Support 
(585) 475-5508   schultz@cis.rit.edu 

 
 

The Student Team 

 
 

Andy Adams 
James Albano 
May Arsenovic 
Brent Bartlett 
Dan Blevins   
Marvin Boonmee 
Jason Casey 
Pierre Chouinard 
Adam Cisz  
Jake Clements  
Brian Daniel  
Chabitha Devaraj 
 

Manny Ferdinandus 
Kyle Foster 
Mike Foster 
Adam Goodenough 
Jason Hamel 
Josh Huber 
Marek Jakubowski 
Scott Klempner  
Steve Lach 
Yan Li 
Ying Li 
Domenic Luisi  

 Sharah Naas  
 Jim Shell 
 Danielle Simmons 
 Natalie Sinisgalli 
 Alvin Spivey 
 Kristen Strackerjan 
 Don Taylor 
 Zhen Wang 
 Jason Ward  
 Seth Weith-Glushko 
 Yushan Zhu 
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United States Air Force Officers in our graduate program (2006) 

Jake Ward, Steve Lach, Marcus Stefanou, Andy Adams, Manny Ferdinandus, Mike Foster, Scott Klempner 

 
Canadian Forces Officers (2006) 

Pierre Chouinard, Kristin Strackerjan 

 
    Ph.D graduates (May 2006) 
        Dr. Daniel Blevins, Dr. James Shell, Dr. Emmett Ientilucci 
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3.0 Research Project Summaries 
 

3.1 ONR Multi-disciplinary University Research Initiative (MURI) – Model-based 
Hyperspectral Exploitation Algorithm Development  

 
Sponsor(s): Office of Naval Research (ONR) 
 
Project Description:  Hyperspectral data is becoming a critical tool for military planners.  
The capture of fine spectral information enables the generation of information products 
which could not be produced using traditional imaging means.  The challenge facing 
hyperspectral technology, as an operational capability, is with conversion of the raw 
sensor data into a useful information product that is accurate and reliable. Traditional 
approaches for processing hyperspectral data have largely focused on the use of statistical 
tools to process a hypercube, with little regard for other data that may describe the 
physical phenomena under which the data was collected.  The long-term goal of this 
project is to develop a new generation of hyperspectral processing algorithms that take 
advantage of underlying physics of a scene while utilizing statistical processing 
techniques to generate valuable information products. 
 
Project Status:  The RIT MURI team (RIT, University of California Irvine, Cornell 
University) iniated research under this MURI in May 2001 and over this period, there has 
been substantial research progress in validating the utility of physics-based algorithmic 
approach.  This MURI has been a catalyst for the research team to be awarded additional 
research support from other sponsors.  The research results generated by this MURI have 
been shared to the hyperspectral community through the generation of over 50 peer 
reviewed journal acticles, presentations at technical conferences, and the publishing of 
Masters and PhD theses.  This project has supported over 15 graduate students, many of 
whom have graduated or are about to graduate, and will be taking positions in direct 
support of the defense and intelligence community.  The MURI project will be ending on 
June 30, 2007. 

 
3.1.1 Longwave Temperature/Emissivity Separation and Atmospheric Compensation  
 
Research Team: Marvin Boonmee (Ph.D. student), David Messinger, John Schott 

 
 Task Scope: This task seeks to develop a methodology to perform both atmospheric 
 compensation and temperature / emissivity separation in longwave infrared (8-12 μm) 
 hyperspectral imagery.  The method uses both in-scene quantities as well as 
 physics-based models to achieve these goals. 
 

Task Status: The “Optimized Land Surface Temperature and Emissivity Retrieval” 
algorithm (OLSTER) has been developed to iteratively solve the nonlinear retrieval 
problem of atmospheric compensation and temperature / emissivity separation in 
longwave infrared hyperspectral imagery.  The method uses an in-scene approach to 
identify near black body pixels to derive initial estimates for the atmospheric 
contributions to the measured signal.  An iterative optimization method is then used to 
achieve the final solution.  
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Figure 3.1.1-1: Errors in (left) retrieved surface temperature and (right) surface material emissivity 
for the synthetic data test set. 
 

The algorithm has been applied to a test set of synthetic data and results are shown in 
Figure 3.1.1-1.  Most naturally occurring materials have emissivities greater than 0.8 and 
for these pixels; the algorithm retrieves the surface temperature to within ~ 1K.  Even for 
materials with emissivities less than 0.7, the algorithm retrieves the surface temperature 
to within ~ 2K on average.  This is a very good result given that these materials are 
particularly challenging for temperature estimation.  Also shown in Figure 3.1.1-1 is the 
mean retrieved spectral emissivity.  Notice that the mean result is biased negative 
slightly, but is generally spectrally flat. This result is also particularly encouraging, as the 
retrieved emissivity will typically be used for material identification where the spectral 
shape of the curve is of more importance than the mean level.  Future work on this 
project will involve developing a more robust set of stopping criteria for the iterative 
process and testing against real imagery. 

 
3.1.2 In-water Radiative Transfer Modeling using Photon Mapping and Model-based 

In-water Target Detection 
 
Research Team:  Adam Goodenough (Ph.D. student), Rolando Raqueño, Michael 
Bellandi (B.S. student), Scott Brown, John Schott 

 
Task Scope:  The objective of this task is to create synthetic scenes of multiple scattering 
dominant waters such as those found in littoral zones.  A general, efficient solution for 
complex radiative transfer is being developed based on Monte Carlo ray tracing.  This 
task incorporates significant changes and improvements to the DIRSIG tool. 

 
Task Status:  A two pass, Monte Carlo method called Photon Mapping was adapted for 
simulating light transfer in littoral waters in the context of hyperspectral remote sensing.  
Significant advances have been made on an in-scattered radiance estimation technique 
that can be orders of magnitude faster than the original method while maintaining 
radiometric accuracy.  These advancements allow for efficiently modeling multiple 
scattering in natural waters under arbitrary spectral illumination conditions and make 
rigorous Monte Carlo simulations possible.  Integration of these techniques into DIRSIG 
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allows for the exploitation of proven sensor, atmospheric, and other models.  Concurrent 
development of a wave spectrum based surface model and relevant geometry provide 
spatial constraints and additional simulation variables.  A DIRSIG rendering of a scene 
that demonstrates water related phenomenology is shown in Figure 3.1.2-1 and the 
successful modeling of multiple scattering is shown in Figure 3.1.2-2.  Ongoing 
validation and refinement of the model components will lead to a well developed and 
documented tool for spectral image modeling in the littoral zone.  This tool can be used 
in future radiometric instrument design, sensor modeling, and data generation.  Parallel 
effort under the MURI funding is directly applicable to this tool, either through providing 
inherent optical properties (for phytoplankton and suspended sediments) or methods by 
which simulated data can be exploited (invariant algorithm approaches). 

 

Figure 3.1.2-1: a) a colorized height field generated by the wave spectrum model; b) DIRSIG 
rendered image of submerged vegetation in a section of clear water; c) a spectral curve 
demonstrating the absorption of spectrally/spatially uniform background illumination through the 
volume; d) a spectral curve of the transmitted radiance reflected off the submerged vegetation. 
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Figure 3.1.2-2: a) Setup showing an opaque optical baffle back-illuminated by a unidirectional 
extended source.  Only multiply scattered light rays can be imaged by the detector (bottom). b) 
Rendering of the given setup in a scattering medium with a uniform scattering phase function. 
 

3.1.3 Suspended Sediment Modeling  
 
Research Team: Jason Hamel (M.S. student), Donald Taylor (M.S. student), Minsu Kim 
(Cornell University), Rolando Raqueño 

 
Task Scope: Quantitative hyperspectral remote sensing of coastal and inland water 
resources has been hindered by inadequate performance of atmospheric compensation 
methods. The techniques used for oceanic conditions operate on the premise that there is 
negligible water leaving radiance in the near infrared region (NIR 750-950 [nm]) and any 
sensor reaching radiance is mainly due to the atmosphere. The problem stems from the 
abundance of suspended materials from anthropogenic and benthic sources in Case II 
waters not usually observed in the deep ocean. The scattering effects of suspended 
sediments greatly affect the water leaving radiance in the visible to the NIR region 
resulting in overestimation of the atmospheric contribution to the radiance reaching the 
sensor.  In order to adapt current atmospheric compensation methodologies, a means of 
estimating the water leaving radiance in the NIR region needs to be devised. This work 
describes a set of numerical modeling tools that have been integrated to predict optical 
properties of suspended minerals and their effects on the water volume spectral 
reflectance.  

 
Task Status: The most recent development in this area is the extension of the suspended 
modeling efforts to actual atmospheric compensation.  The area of research involving 
Suspended Sediment IOP Modeling process is graphically summarized in Figure 3.1.3-1 
{http://wiki.cis.rit.edu/bin/view/DIRS/MuriWaterAnnualReport2006#Suspended_ 
Sediment Modeling). 
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Figure 3.1.3-1: Process flow of Suspended Sediment IOP Modeling. 

 
 

The atmospheric compensation work is dependent on suspended IOP modeling (utilizing 
Minsu Kim’s OOPS model) results to address the quandary of  estimating upwelling 
radiance in the NIR region due to significant suspended  concentrations in Case II waters. 

The Ocean Optical Phytoplankton Simulator (OOPS) is a suite of scattering codes 
tailored for hydrologic use. Given particle characteristics and size distributions, OOPS 
computes the associated IOP (scattering coefficients and scattering phase functions and 
absorption cross sections). Originally developed to predict phytoplankton optical 
properties based on taxa-specific internal cellular morphology, pigment composition and 
distribution, it uses T-matrix and Mie scattering codes to compute the IOPs for different 
descriptions of phytoplankton species in the 400-700 [nm] regime. This wavelength 
region matches the operating limits of field instrumentation where the effects of coloring 
agents dominate. OOPS generates these IOP descriptions in a format compatible with the 
HYDROLIGHT radiative transfer code. This allows material and optical property 
descriptions to be readily propagated into an estimate of volume spectral reflectance. In 
order to predict the effects of suspended sediments modifications were made to OOPS in 
order to extend the spectral range beyond 700 [nm] into the NIR in order to couple 
HYDOLIGHT predictions with atmospheric propagation codes such as MODTRAN.  

Five different mineral compositions resulting in 7 different refractive indices were used 
as input into OOPS along with ~21 different particle size distributions to generate a data 
set of varying total suspended solids (TSS) inherent optical properties. These were used 
as input into Hydrolight along with 5 different concentrations to generate over 700 
reflectance spectra of water leaving radiance (c.f. Figures 3.1.3-2a, b, c). 
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Figure 3.1.3-2a: Reflectance spectra of TSS only concentration. 
 
 

                            
 

Figure 3.1.3-2b: Reflectance spectra of Lake Ontario, a low concentration water body. 
 
 
 

                                
 

Figure 3.1.3-2c: Reflectance spectra of Long Pond, a high concentration water body. 
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The variability inherent in these data sets made typical statistical analysis of the results difficult. 
Instead, the spectra were arranged into a typical image cube (Figure 3.1.3-3) and ENVI's            
n-Dimensional Visualizer was used to analyze the spectral shape of these spectra (example in 
Figure 3.1.3-4). Spectral trends of the simulations are being analyzed using this visualization 
method. 

      

Figure 3.1.3-3: Spectral data set built into a typical image cube for spectral analysis. 

 
 

Figure 3.1.3-4: n-Dimensional Visualizer of 3 concentration sets; Lake Ontario (green), Conesus 
Lake (fuchsia), and Long Pond (blue).  This is a visualization of 3 spectral bands illustrating the 

common spectral character of the individual water bodies.  
 

3.1.4 Case II Atmospheric Compensation: Simultaneous Aerosol and Water Constituent 
Retrieval  

 
Research Team: Donald Taylor (M.S. student), Jason Hamel (M.S. student), Rolando 
Raqueño  

 
Task Scope: In many algorithms designed to retrieve water constituent concentrations, an 
assumption of negligible water-leaving radiance is made in the NIR. This allows fairly 
accurate atmospheric correction to be applied to the oceanic imagery. Given this 
assumption, it is possible to derive model estimates of aerosol type and density and 
compensate for its effects in other regions of the spectrum. Unfortunately this assumption 
is only valid in areas of very low total suspended sediment (TSS) concentrations. This 
increased TSS load causes larger back-scattering within the water, increasing the 
reflectance in the NIR region, which confounds the correction algorithm and incorrectly 
attributes all the effects entirely to aerosols. A solution to this problem is to model the 
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atmosphere using a proven radiative transfer system such as MODTRAN and the water 
reflectance due to the increased TSS using HYDROLIGHT, combine them for a given 
sensor altitude, and match the resulting spectra with that from an actual image taken at 
that altitude. This is done in the NIR (700-950nm) where we can constrain the algorithm 
by assuming that the contribution to reflectance of other water constituents is zero. Look-
up tables (LUTs) of radiance values from modeled atmospheres and reflectance values 
from modeled water allow us to make this an iterative process which can be optimized to 
give us the best match for the pixels in question. The products of this algorithm are the 
TSS concentration and the atmosphere (including aerosols). The atmospheric parameters 
and sediment concentration can then be used to constrain the algorithm in the visible 
region (400-700nm) for use in extracting further constituent information. 

 
Task Status: A successful integration of two research studies has produced preliminary 
maps of in-water constituents in the littoral zone.  These two areas of research involved 
the Suspended Sediment IOP Modeling process and the Case II Atmospheric 
Compensation: Simultaneous Aerosol and Water Constituent Retrieval process 
(http://wiki.cis.rit.edu/bin/view/DIRS/MuriWaterAnnualReport2006#Case_II 
Atmospheric Compensation).  The overall spectral matching process between 
hyperspectral imagery and model-simulated spectra is graphically summarized in Figure 
3.1.4-1.   

 

 

Figure 3.1.4-1: Process flow chart for simultaneous extraction algorithm. 

The atmospheric compensation work builds on the suspended solids IOP modeling results 
to estimate upwelling radiances in the NIR region due to significant suspended solids 
concentrations.  A preliminary database (Figure 3.1.4-2) of these NIR reflectance 
estimates has been used to test the overall atmospheric compensation process.  These 
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preliminary results yielded maps (Figure 3.1.4-3. 3.1.4-4, 3.1.4-5) with reasonable values 
and sample spectral matches based on conjectured model inputs.  The current plan calls 
for continued testing with data from a multi-day collect (Figure 3.1.4-6) from the 
COMPASS sensor. This not only tests the model but also examines the performance of 
the algorithm for other hyperspectral sensor platforms.  The atmospheric conditions are 
different, but the water constituent concentrations are expected to be similar for a 
(roughly) 24-hour temporal shift.  This case will test the ability of the method to separate 
atmospheric effects from the effects of water constituents. 

.  

Figure 3.1.4-2:  Sample database of OOPS predicted spectral reflectance including NIR 
wavelengths. 

 
 

 
Figure 3.1.4-3.  Input image of Rochester Embayment shown next to image constructed of modeled 

radiance based on the retrieved constituent concentrations. 

INPUT image 

Lake 
Long Pond 

Cranberry 
Pond 

Braddock’s 
Bay 

OUTPUT image 
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Figure 3.1.4-4a.  Results maps generated by the simultaneous aerosol and water constituent 
retrieval process showing the atmospheric visibility and IHAZE type. 

 
 
 
 
 

Figure 3.1.4-4b.  Results maps generated by the simultaneous aerosol and water constituent 
retrieval process showing the retrieved constituent concentrations.   

 

 

 

CHL map 

0.1 68.0 mg/m^3 

CDOM map

0.1 14.0 1/m 0.1 24 g/m^3 

TSS map 

Aerosol map 

20 km 40 km 

Grey: IHAZE=1                    Red: IHAZE=3 

IHAZE map 
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Figure 3.1.4-5: Observed and derived spectral radiance for a pixel in Cranberry Pond. 

 
Figure 3.1.4-6: Co-registered COMPASS images from multi-day collect over Long Pond. 
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3.1.5 Hybrid Statistical Geometric Algorithm for Target Detection  
 
Research Team: Emmett Ientilucci, John Schott, Peter Bajorski 

 
Task Scope: Traditional approaches to hyperspectral target detection involve the 
application of detection algorithms to atmospherically compensated imagery. Rather than 
compensate the imagery, a more recent approach uses physical models to generate target 
sub-spaces. These radiance sub-spaces can then be used in an appropriate detection 
scheme to identify potential targets.  
 
The generation of these sub-spaces involves some a priori knowledge of data acquisition 
parameters, scene and atmospheric conditions, and possible calibration errors. Variation 
is allowed in the model since some parameters are difficult to know accurately. Each 
vector in the subspace is the result of a MODTRAN simulation coupled with a physical 
model. Generation of large target spaces can be computationally burdensome. Research 
has demonstrated that statistical methods can be used to describe such target spaces. The 
statistically modeled spaces can be used to generate arbitrary radiance vectors to form a 
sub-space. Statistically modeled target sub-spaces, using limited training samples, were 
found to accurately reproduce MODTRAN derived radiance vectors. 
 
Task Status: A large target space (34,650 vectors), encompassing a very wide range of 
conditions, was created based on a typical high altitude collection campaign utilizing 
MODTRAN and a physics-based model. This target space was then used as training to a 
third order polynomial in order to predict sensor reaching radiance vectors, Lp, as a 
function of band, p.  That is 

 
Lp = F1(log(V ), T,W) + IL * F2(log(V ), T,W) + SF * F3(log(V ), T,W) + ε 

 
where F1(log(V ), T,W), F2(log(V ), T,W), and F3(log(V ), T,W) are polynomials of the 
third degree with respect to the predictors log(V ), T, and W.  The predictors varied in this 
study were perceived horizontal visibility (V), ground topography (E), atmospheric water 
vapor scale factor (W), direct solar illumination amount (IL), and surrounding 
obscuration factor (SF).  Epsilon, ε, is an error term to account for model lack of fit.  
Model coefficients were derived in a least squares sense. The model was then used to “re-
create” the original target space where comparisons were made based on residuals 
between the two spaces. The bulk of the residuals were less than 10 micro-flicks (W/cm2 
sr um), which corresponds to an error on the order of one percent. 

 

 
   a)     b) 
Figure 3.5.1-1: a) Approximation (residuals), in radiance units [micro-flicks] and b) relative 
approximation errors [in %] for the statistical model fitted to a large target space. 
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A sparse set of samples (123 vectors) from the large 34,650 vector space, were also used 
as training. Again, the model was used to re-create the original large target space. The 
residuals here were on the order of those seen when using all 34,650 vectors for training. 
However, it was found that using a set of training samples less than 123 vectors increased 
the overall residuals associated with comparing the statistically modeled target space to 
the actual MODTRAN derived target space. Additionally, it was found that there was no 
significant added value to training with more than 123 vectors. This was determined 
through analysis of residuals, which did not vary much when 123 vectors versus 34,650 
vectors were used for training.  These results facilitate more rapid generation of target 
subspaces which are needed for practical operational implementation of this hybrid 
physics based algorithmic approach. 
 

3.2 ARO Multi-disciplinary University Research Initiative (MURI) – Concealed Target 
Simulation 

 
Sponsor(s): Army Research Office (ARO) 

 
Research Team: Marek Jakubowski (B.S. Student), David Pogorzala, Emmett Ientilucci, David 
Messinger 

  
Project Scope: This project is lead by Georgia Institute of Technology and is a collaboration 
with University of Maryland, University of Florida, University of Hawaii, and Clark Atlanta 
University.  The goal of the project is to study the phenomenology and exploitation of spectral 
signatures of land targets.  RIT’s role in the program is to provide high-fidelity synthetic scene 
data to the algorithm development team for testing purposes.  Previous work under this project 
involved construction of a thermal infrared hyperspectral scene consisting of a desert area 
containing land mines.  In the final phase of this program, RIT is providing a synthetic scene of 
a forested area containing targets under various levels of concealment. 

 
Project Status: A site near Rochester, NY was chosen for the concealed target scene for several 
reasons.  The site was accessible, provided several types of forest and levels of forestation, and 
was an area for which we had obtained large amounts of hyperspectral imagery.  The layout of 
the scene was carefully determined through accurate GPS measurements of the vegetation 
location and detailed measurements of the tree height, width, etc.  This information was used to 
create the geometric (i.e., CAD) representation of the vegetation (including shrubbery) in the 
area. 
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Figure 3.2-1: (left) Oblique rendering of the concealed target scene showing vehicles under various 
levels of concealment.  (right) Zoom of two vehicles in the scene (circles). 
 

A measurements campaign was conducted to characterize the spectral signatures of the 
materials in the scene.  All of the information was collected into the larger DIRSIG databases 
and the scene was rendered for comparison to airborne hyperspectral imagery.  Targets of 
interest (trucks and tanks) were embedded in the scene for final renderings, as shown in Figure 
3.2-1.  Several versions of the scene are now being developed (various look angles, times of 
day, etc.) for distribution to the MURI team. 

 
3.3 NGA University Research Initiative (NURI) – Hyperspectral Algorithm Development 
 
Sponsor(s): National Geospatial-Intelligence Agency (NGA)  
  
Research Team:  David Messinger, Natalie Sinisgalli (B.S. student), Harvey Rhody, Bill 
Hoagland, Rolando Raqueño, Paul Lee 
 
Project Scope: This program, being conducted in conjunction with the Laboratory for Imaging 
Algorithms and Systems (LIAS) within the Center for Imaging Science, focuses on the 
development and implementation of physics-based target detection algorithms for use with 
hyperspectral imagery.  The algorithms are implemented into prototype-level software within 
the IDL/ENVI environment for delivery back to NGA.  Three tools were identified for 
development: subpixel target detection, detection of concealed and contaminated targets, and 
detection of gaseous effluents. 

 
Project Status: This program will be finalized during 2006, with final software delivery to 
NGA during the fall / winter.  Focus during the past year has been on completing the 
implementation as well as on testing of the third tool of the set.  The algorithm for detection of 
gaseous effluents in longwave infrared hyperspectral imagery is based on a forward-modeling 
approach to characterize the spectral signatures of target gas species thought to be in the scene.  
This approach models the signatures in both emission and absorption and over a wide range of 
concentrations providing a more robust detection scheme.  Atmospheric information is 
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included in the forward modeling process removing the need to accurately compensate the 
imagery for these effects. 

 
The gaseous effluent tool was tested against airborne longwave hyperspectral imagery 
collected by the Advanced Hyperspectral Imager (AHI) built and operated by the University of 
Hawaii.  The scene is of an industrial complex and the experiment was conducted by the 
Environmental Protection Agency.  Figure 3.3-1 shows a color IR image of part of the facility, 
a single thermal band image of the same area, and detection results from the physics-based 
detection scheme.  The vertical “stripes” in the detection images are a result of a calibration 
error in the sensor for those pixels.  Detection results are shown for both ethane and methane – 
known to be released in this region of the facility.  As can be seen in the figure, three small 
plumes are detected with very high confidence at various positions in the facility. 
 
Final delivery of the software, including a unique approach to look up table generation and 
storage, will be accomplished in the winter of 2006. 

 

                 a)               b)                 c)             d)                   e)                    f) 
 
Figure 3.3-1: a) Color Infrared image of the area of interest for testing of the gaseous effluent 
detection tool.  b) Thermal infrared image of same area of facility.  c) Full scene detection results 
for ethane gas.  d) Zoom showing a small ethane plume detection.  e) Full scene detection results for 
methane gas.  f) Zooms showing two small methane plume detections. 
 

3.4 NGA University Research Initiative (NURI) - Automated Scene Modeling From Multi-
Sensor Modality Inputs  

 
Sponsor: National Geospatial-Intelligence Agency (NGA) 

  
Project Scope: This NGA University Research Initiative (NURI) project is aimed at 
speeding up the construction of DIRSIG scenes by automating aspects of the process.  In 
particular, algorithms are being developed to extract the necessary geometry and material 
characteristics of a scene from multiple modality remote sensing data including 3D 
LIDAR, stereo, video, and hyperspectral imagery.  

 
Project Status: This is a three-year project initiated in the summer of 2005; this report 
covers activity during its first year. Three teams consisting of a Ph.D. student and their 
faculty advisor are performing research under this grant with overall leadership provided 
by the Principal Investigator Harvey Rhody (LIAS).  The activity is summarized under 
the following three tasks. 
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3.4.1 Multi-modality Image Registration  
  
 Research Team: Xiaofeng Fan (Ph.D. student) and Harvey Rhody (LIAS) 
 

Task Scope: This research task is to find an effective and efficient technique for multi-
modal image registration for the Wildfire Airborne Sensor Platform (WASP) camera 
system. The WASP system includes three IR cameras and a high-resolution visible 
camera. Specifications of the system are shown in Table 3.4.1-1 and sample imagery in 
Figure 3.4.1-1.  
 

 
 Short wave band Middle wave band Long wave band Visible camera 

Bandwidth 0.9-1.7 μm 3−5 μm 8−9.2 μm 0.4−0.9 μm RGB
Resolution 640 x 510 640 x 510 640 x 510 2048 x 2048 

Table 3.4.1-1:  WASP system specification. 
 
 

 
 
 
 

 
                                                      

                           a)                                b)                                 c)                                 d) 
Figure 3.4.1-1:   WASP Infrared Imagery (a, b, and c) and Registration Example (d). 

 
Task Status: Traditional image registration techniques such as correlation have difficulty 
with images where intensity is not correlated as is the case of the WASP imagery.  This 
research is exploring use of the Maximization of Mutual Information (MMI) based image 
registration technique. The original MMI registration method was introduced in 1997 and 
has been applied extensively in medical imaging. MMI uses statistical information by 
searching for the spatial transformation that minimizes the joint entropy between pairs of 
images. This is the key reason that MMI-based registration can handle multi-modal 
images effectively. The MMI image registration technique has been successfully 
implemented and tested on WASP imagery. 

 
One disadvantage of MMI registration method is computational-intensity. To accelerate 
the computations, the wavelet transform has been used to build an image pyramid. The 
registration is then performed on the “coarse” pair of images and refined as the wavelet 
pyramid is navigated from the “coarse” to the “fine” layer. Each registration 
transformation in a higher layer provides the initial search point for the next layer. The 
wavelet pyramid algorithm can save 90% of the calculations necessary to reach the 
solution. 
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                              a)                                          b)                                       c) 
  
       
 
 
 
 
                        e) 

 
 

                                                       d)                                                                                        e) 
Figure 3.4.1-2: Exhaustive and Gradient Search: a) and b) represent two sequential frames, c) 
gradient search curve, d) exhaustive searching space on different rotation, e) overlaid registered 
images. 
 

The performance of two parameter search algorithms was also explored: exhaustive 
search and gradient search. For the exhaustive search, a small bin size is necessary to 
obtain accurate resolution while the tradeoff is more computation because it has to cover 
the entire parameter space. Gradient search is an alternative method which estimates the 
probability density function by the Parzen Window method and calculates the derivatives 
of the mutual information. The gradient algorithm requires more operations at each step, 
but is faster because far fewer steps are needed. Gradient search can also be more 
accurate because it can resolve parameter values at a finer resolution than the fixed step 
size used in exhaustive search. 

 
A disadvantage of conventional MMI registration is that it only takes statistical intensity 
information into account and does not employ spatial information that would be available 
in the form of image features. Pixel-matching statistics are not sufficient to provide a 
successful parameter search for some images. This can be overcome by combining 
feature information with traditional MMI.  
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To take advantage of these spatial features a method based on the Harris Corner Label 
(HCL) has been developed. The MMI calculation is based on the HCL map of the 
original images instead of their intensity values.  The Harris corner label improves 
robustness as demonstrated with various synthetic and real images. Because the Harris 
corner detector is invariant to translation, rotation and scaling, the HCL-MMI algorithm 
can register images with shift, rotation and scale differences. The Harris corner detector 
broadens the attraction range and reduces the risk of being trapped in a local minimum. 
Experimental results have shown the algorithm is successful in registering IR images 
with visual images. The use of a multi-resolution technique increases robustness by 
enabling computation at an appropriate scale. 

 
3.4.2 Stereo Mosaic Extraction from Airborne Video Imagery  

  
 Research Team: Prudhvi Krishna Gurram (Ph.D. student) and Eli Saber (EE). 
 

Task Scope: The primary goal of this research is to automate the extraction of three-
dimensional structure of a scene from airborne video captured using the RIT WASP Lite 
sensor. Existing algorithms require interaction between a human analyst and the data and 
thus are time-consuming.  This research is aimed at automating this task by automatically 
building stereo mosaics from the video imagery. 

 
Task Status: The most widely used method to extract three-dimensional structure from 
visual imagery is stereo vision. For this at least two images with disparity in perspective 
are needed which then allows the extraction of the 3-D geometry. This research seeks to 
extract two stereo images from airborne video imagery. The process of stitching video 
frames together to build the two stereo images creates stereo mosaics. Ideally, stereo 
mosaics are built using a parallel-perspective projection of world points as collected by a 
linear pushbroom sensor. A linear pushbroom camera collects a parallel-perspective 
projection of real world points on to the focal plane - parallel projection along the 
dominant motion direction of the sensor and perspective projection in the perpendicular 
direction to the motion of the sensor. However, a normal video camera does a 
perspective-perspective projection of the world points on to the focal plane. In this 
research an algorithm called Parallel Ray Interpolation for building Stereo Mosaics 
(PRISM) [1] is used to convert the perspective-perspective projection to parallel-
perspective projection. The basic purpose of this conversion is to use the apparent motion 
parallax of the objects to extract 3-D structure. Figure 3.4.2-1 shows these two 
geometrical configurations. 
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a) Parallel-Perspective Projection    b) Perspective-Perspective Projection 

Figure 3.4.2-1:  Geometry of a linear pushbroom camera and a pin-hole camera. 

 
“Left” and “Right” stereo mosaics are built from the different perspectives as the plane 
first images objects upon approach (Left) and then again upon departure (Right). The left 
and right stereo mosaics constructed have a constant disparity for all the points on the 
ground. Other points with different heights have a motion displacement in addition to the 
disparity, which provides the 3-D coordinates of the points. Figure 3.4.2-2 shows the 
stereo mosaics overlaid for 3-D vision. These stereo mosaics were built from a video 
captured by WASP Lite over RIT at an average height of 1000 ft from the scene and at a 
frequency of three frames per second. 

 
Figure 3.4.2-2:  Stereo mosaics for a scene over RIT. 

 
Future work will improve the PRISM algorithm by introducing a modified triangulation 
algorithm [2]. The 3-D structure will then be extracted from the stereo mosaics. 

 
References: 
1. Z. Zhu, A. Hanson and E. Riseman, “Generalized Parallel-Perspective Stereo Mosaics from Airborne 

Video,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, pp. 226 – 237, 
2004. 

2. P. Gurram, E. Saber and H. Rhody, “A Novel Triangulation Method for building Parallel-Perspective 
Stereo Mosaics,” to be published in Proc. SPIE Electronic Imaging 2007, Jan-Feb 2007. 
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3.4.3 Semi-Automated DIRSIG Scene Modeling from 3D LIDAR and Passive Imaging 
Sources  

  
 Research Team: Steve Lach (Ph.D. student) and John Kerekes. 
 

Task Scope: This research is developing techniques for the fusion of 3D LIDAR data 
with passive imagery to semi-automate several of the required tasks in the DIRSIG scene 
creation process.   

 
Task Status: This first year has focused on the extraction of the geometric terrain and 
surface objects necessary to describe the scene. In creating the terrain model, the 
irregularly-sampled LIDAR point cloud may be processed directly, or the data may first 
be interpolated onto a regular grid to form a range image.  In either case, the fundamental 
concept is to separate the ground points from the non-ground points, then to remove the 
non-ground points.  Recent literature describes several complex techniques that may be 
applied directly to the 3D point data, but it was found that satisfactory results could often 
be obtained easily by applying image processing techniques to the range image alone.  A 
simple approach that has been found to be effective in many cases is to use a variation of 
the spatial sliding window median filter in order to identify points that are significantly 
higher than their neighbors.  Care must be taken to ensure that the kernel is large enough 
to span the roof structures of the largest buildings in the scene. If it is not, the central 
points of large objects may not be flagged as being non-ground.  However, when the 
kernel is large, this technique may fail in regions where there is a low ratio of ground to 
non-ground points.  These issues are avoided by computing the median value for a small 
region (typically 10m x 10m), and then identifying points in a larger region that are 
significantly higher than this median value.  This modified median filter also has the 
advantage of being much more computationally efficient, and a similar technique may be 
employed directly on the point cloud, if desired.  Figure 3.4.3-1 illustrates this filtering 
concept for a single location of the sliding windows while Figure 3.4.3-2 depicts the 
progression of the entire process. 
 

 

 
 
Figure 3.4.3-1:  Depiction of the Modified Median Filter.  The median value of data in the smaller 
square region is computed.  Data points in the larger square region more than a given threshold 
above this median value are then flagged as “non-ground”. 
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Figure 3.4.3-2: Original scene (upper left), points identified for removal (upper right), points 
identified for scene after removal of points (bottom left), interpolated and smoothed Digital Terrain 
Model - DTM (bottom right). 

 
Through the use of the modified median filter, a set of points were extracted that were 
significantly higher than their neighbors (the initial set of “non-ground” points).  In many 
cases, it may be assumed that these points represent buildings and trees, and the next 
logical task is to identify to which class each of these points belongs.  The spectral 
reflectance of plants has a distinct signature, and therefore multispectral and 
hyperspectral classification techniques excel at differentiating vegetation from most man-
made objects.  In general, use of spectral information is the most robust method that we 
considered for separating building and tree regions, although in many images the required 
spectral information may not be available. 
 
In the event that spectral information is not available, spatial-based approaches may also 
be used. A range-image based morphological technique has been successfully 
implemented in which each region was “opened” by a specific amount.  By sizing the 
structuring element to preserve just a few pixels from the smallest building in the scene, 
tree regions were effectively removed.  This held true even for large areas containing 
many trees, as several ground pixels are present in almost all tree canopy regions.  
Objects that contained pixels in common with the “opened” image were specified as 
being buildings, and the remaining objects were classified as trees. 
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Once the building and tree points have been categorized it is necessary to determine the 
geometrical properties of each object and represent them as a set of facetized models.  
For the autonomous geometric reconstruction of trees, high resolution aerial imagery is 
blurred in order to emphasize the lower-frequency features of the trees in the image.  By 
then performing correlations with different sized circle functions, regions with high radial 
symmetry were identified.  This process is augmented by also using the height 
information provided by the LIDAR data.  Once tree sizes and locations are determined, a 
specific tree model is selected from a library of objects previously created with the Tree 
Professional software. 
 
For buildings, a different process is pursued.  It is assumed that buildings are composed 
of many smaller geometric entities, and by modeling the structure of these entities, the 
overall building form may be achieved.  Each building is first separated into multiple 
layers based on height, and each layer is then further grouped into spatial clusters.  The 
outer wall of each cluster is found using a technique known as alpha shapes, while 
interior ridgelines are found as intersections of the dominant planes in each cluster.  
 
These techniques have been applied to a portion of the RIT campus in order to produce a 
small scale scene consisting of varied terrain, trees, roads, buildings, and other common 
features.  Using the algorithms described above, the terrain was successfully modeled, 
and all buildings and most of the individual trees were found.  Additionally, two building 
were geometrically reconstructed with an accuracy that is satisfactory for many DIRSIG 
applications.  Figure 3.4.3-3 provides an example result for one of the buildings. 

 
 

Figure 3.4.3-3: CAD model of building successfully extracted from semi-automated 
processing of the 3D LIDAR imagery. 
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3.5 Integrated Sensor System Initiative (ISSI) 
 
 Sponsor: NASA 
 

Project Scope: Rochester Institute of Technology (RIT) has initiated a facility for the 
rapid prototyping of a new generation of remote sensing architectures, sensors, and data 
fusion capabilities.  This program is called the Integrated Sensing Systems Initiative 
(ISSI) and is focused on the fusion of overhead sensor data with application specific 
ground sensors into an integrated information product that will provide users with a more 
complete view of an event providing greatly enhanced situational awareness.   
 
Project Status:  This is primarily a LIAS initiative with four tasks being performed by 
DIRS. 

 
3.5.1 Atmospheric Compensation and Reflectance Retrieval  
 
Research Team: Brent Bartlett (Ph.D. student), John Schott 
 
Task Scope: This task explores the incorporation of ground-based measurements into 
existing atmospheric inversion algorithms. These measurements are then used to account 
for the variability produced by partial cloud cover. 
 
Task Status: Many algorithms exist to convert imagery from units of either radiance or 
sensor specific digital counts to units of reflectance. This conversion removes unwanted 
atmospheric variability allowing objects on the ground to be analyzed. These algorithms 
perform with relatively low error levels in homogenous atmospheric conditions. In many 
cases however, clouds are present in the atmosphere, which introduce errors into 
reflectance retrieval. For example the relationship that is defined between sensor reaching 
radiance and ground reflectance in direct sun will not be the same as in a cloud shadow. 
The location of each cloud is therefore found using a fisheye lens and a radiometric 
model is created of the hemisphere. Creation of this model is accomplished by looking 
from the ground into space using the radiative transfer code MODTRAN. The model is 
then used to simulate the radiance at different locations on the ground. Figure 3.5.1-1 
shows both a two and three-dimensional visualization of a hemispherical model which 
has partial cloudy conditions.  
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            a)               b)        c) 

 
Figure 3.5.1-1: Grey scale model showing the hemisphere broken into 1224 discrete parts, 
or ‘quads’. a) Two-dimensional projection. b) Three-dimensional view. c) Plot showing total 
radiance obtained by numerical integration of all quads. 
 
By predicting the spatial variation in downwelled radiance from the sky dome we expect 
to improve the inversion of image forming radiance to reflectance for scenes with 
scattered clouds. This is part of a long term effort to develop improved remote sensing 
analysis tools suitable for use over a wider range of operating conditions (i.e. to move 
beyond the severe clear only situation that is common today). 

 
3.5.2 Use of Error Propagation Models to Identify Ways to Improve Analysis of 

Remote Sensing Data 
 
Research Team: Scott Klempner (Ph.D. student), Brent Bartlett (Ph.D. student),  
John Schott 
 
Task Scope: This task is aimed at identifying measurements that could improve the 
anaylsis of spectral remote sensing data.  The concept behind this is that if one looks at 
the end-to-end anaylsis problem from phenomenology to output product one might be 
able to identify measurments that would significantly improve the quality of the product.  
 
Task Status: An error propagation model has been developed with a strong emphasis on 
the atmospheric propagation/atmospheric compensation part of the problem. The goal is 
to understand all of the terms that contribute to both a radiative transfer based or an 
emperical line method (ELM) based on inversion of radiance to reflectance. By assessing 
error sources in this process we can identify a small number of terms that we might 
choose to measure to signifcantly improve the overall accuracy of the reflectance 
measurement. The error propagation model has been developed by Scott Klempner as 
part of his Ph.D. research and is currently being excerised.   

 
 3.5.3   Multi-modal Fire Demonstration  
 

Research Team: Michael Richardson, Don McKeown, Jason Faulring, Robert Kremens, 
Sherry McNamara (M.S. student) 
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Task Scope: Predicting the speed and direction of the migration of a wildland fire is 
critical information for the wildland fire manager.  Accurate predictive information 
enables better deployment of assets, leading to more efficient suppression, and can save 
lives.  Fire crews and private citizens have been killed because of unexpected fire 
behavior.  Today, there exist several predictive fire behavior models that are only as good 
as the input data provided.  Driving parameters include local weather conditions (wind 
speed, wind direction, and humidity), fuel load (amount), fuel type, fuel condition 
(moisture content), terrain (slope), etc.  The dynamic parameters are often difficult to 
obtain in a timely manner and are changeable when fire induced weather is considered.  
These challenges have led to the concept of placing low cost meteorological stations in 
the path of a wildland fire to capture key environmental data.  The captured data is 
transmitted to an aircraft over-flying a wildland fire that is simultaneously capturing 
remotely sensed data.  The collected environmental data is combined with the remotely 
sensed data and becomes an input to the prediction model.  
 
Task Status: An experiment was conducted on July 31, 2006 that incorporates ISSI 
technology in a wildland fire experiment.  The objectives of the ISSI experiment were to: 
• Demonstrate the ability to collect ground-based information (in this case, fire 

generated weather data) and transmit the data up to an airplane that is simultaneously 
collecting multispectral image data. 

• Evaluate the performance of key hardware components including the WASP-Lite 
camera, the data link, and ground sensors. 

• Integrate collected data from the airborne and ground sensors into an integrated 
information product. 

• Generate a temporally varying data set related to a simulated wildland fire that can be 
used on other research projects. 

 
The key hardware components consisted of WASP-Lite (WASP-Lite is derived from a 
sophisticated digital mapping camera called the Wildfire Airborne Sensor Platform or 
WASP.  WASP-Lite is a less capable version of WASP, hence the name) and 
Autonomous Environmental Sensors (AES).  A more detailed description of each sensor 
is provided as follows. 
• WASP-Lite: WASP-Lite is a multispectral mapping camera (Figure 3.5.3-1) 

consisting of five NTSC, progressive scan, monochrome, video cameras, one medium 
resolution, progressive scan, monochrome, video camera, and one low resolution, 
microbolometer LWIR video camera.  Interchangeable interference filters provide the 
user the ability to vary the spectral collection window of the five monochrome 
cameras.  A C-MIGITS III attached to the aft end of the camera enclosures provides 
camera pointing and position information during data collection via a ring laser gyro 
and a precision GPS receiver. The filters used on this experiment are provided in 
Table 3.5.3-1. 
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Camera Resolution Filter Type 
Cam 1 640 x 480 NIR 
Cam 2 640 x 480 Green 
Cam 3 640 x 480 Blue 
Cam 4 640 x 480 On K-line 
Cam 5 640 x 480 Off K-line 
HiRes Cam  1600 x 1200 None 
LWIR Cam  320 x 240 None 

 
• Autonomous Environmental Sensor (AES): The AES is a battery powered field 

collection device (Figure 3.5.3-2).  The configuration used for this experiment 
included a weather station, a data logger, and a 900 MHz digital transmitter.  The 
parameters measured during this experiment were temperature, humidity, wind speed, 
wind direction and GPS location. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

An area in Spencerport, New York was used as the test site due to its proximity to RIT 
and Rochester International Airport.  Three AES ground sensors were located 
approximately 100 feet apart (Figure 3.5.3-3), with a small pile of wood located up-wind 
of each sensor.  A fourth wood pile, without an AES nearby, was used to create an 
additional thermal target for WASP-lite to detect.  Each AES included a 900 MHz 
transmitter to enable continuous broadcasting of the local weather data during the 
experiment.  WASP-Lite was mounted in a Cessna 172 aircraft with a 900 MHz antenna 
attached to WASP-Lite to receive data from the AES ground sensors. 
 
 
 
 
 
 
 
 
 

Figure 3.5.3-2: 
An AES field 

deployed for an 
experiment. 

Figure 3.5.3-1: 
WASP-Lite in 

aircraft with 
filters attached 

and control 
electronics. 

Table 3.5.3-1: WASP-Lite filter 
types used in the experiment. 
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 Figure 3.5.3-3: Test configuration at Spencerport, NY burn site on July 31, 2006. Note: 
 picture was captured facing southwest. 
 
 Data Collection Results 
 

The wood pile next to AES#1 was ignited approximately 15 minutes before the first 
airborne collection.  Three additional wood piles were ignited at varying time intervals 
after the airborne collections initiated.  The airborne collects continued over the test site 
with data collections occurring approximately every two minutes, driven by the time it 
took the plane to turn and return to the test site, for a total of 35 minutes. 

 
• WASP-Lite Airborne Data 
The airborne data for this experiment was collected from an altitude of 3,000 ft. AGL 
over the Spencerport, NY test site.  Sample imagery is shown in Figure 3.5.3-4a thru g. 

 
Figure 3.5.3-4a: 
High resolution panchromatic imagery over the 
Spencerport burn site from 3,000 ft. AGL. 
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Figure 3.5.3-4b: 
LWIR imagery over the Spencerport burn site.   
 

  
Figure 3.5.3-4c: 
Camera 1 with a NIR filter. 
 
The CIR filter is notched to allow spectral data 
above 714 nm to be captured and is used for 
monitoring chlorophyll bearing plants. 

  
Figure 3.5.3-4d: 
Camera 2 with a standard red filter. 
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Figure 3.5.3-4e:  
Camera 3 with a standard blue filter. 

  
Figure 3.5.3-4f:  
Camera 4 with a potassium (K) line filter. 
 
The filter has a 10 nm pass band centered on 
the 766.5nm K emission line. 

  
Figure 3.5.3-4g:  
Camera 5 with an “Off Potassium” (K) Line 
Filter. 
 
The filter has a 10 nm pass band centered on 
779.5nm, which is off the K emission line. 

 
• Autonomous Environmental Sensors (AESs) Data 
Three AESs were placed in fixed locations at the test site and monitored the following 
environmental data: fire temperature, wind speed, wind direction, and relative humidity.  
Each AES location was recorded via a GPS receiver.  The AESs constantly collected and 
transmitted the environmental data to the aircraft that included WASP-Lite.  This 
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experiment was conducted for a total of 35 minutes, with 19 airborne passes over the test 
site. 

 
We are currently in the process of generating a completed information product from this 
collected data (Figure 3.5.3-5).  The two core information products to be generated are a 
topographic map with the fire front indicated and an image map with the fire front 
indicated.  The topographic map provides a guide for establishing ingress and egress 
routes for fire crews and equipment.  The image map is an orthorectified image and 
provides contextual information about the land cover and the fire intensity.  In both cases, 
the fire front is the active burning wildland fire. 

 

 
Figure 3.5.3-5: Information Product Generation Flow. 

 
3.5.4 WASP Situational Awareness  
 
Research Team: Don McKeown, Jason Faulring, Scott Lawrence, Robert Krzaczek, 
Robert Kremens, Harvey Rhody, Michael Richardson 
 
Task Scope: The scope of the ISSI Phase 2 project is to investigate and develop methods 
of integrating sensor data from multiple sources and using that data to provide decision 
support products with a specific emphasis on disaster response. The baseline architecture 
includes airborne imaging instruments combined with ground based sensors of various 
types. These sensors are networked through wireless RF data links as shown 
schematically in Figure 3.5.4-1. 
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Figure 3.5.4-1: Basic ISSI architecture. 
 

This effort also includes system engineering and scientific investigations into which 
measurement parameters add the most value to an information product processing 
workflow.  

 
Task Status:  RIT has made substantial progress in the areas of compact sensor 
development, integration of ground based and airborne sensors, and real time remote 
sensing support to incident management.  We have successfully tested the WASP-Lite 
multi-spectral camera system in support of wildfire monitoring research and 
environmental monitoring research. Figure 3.5.4-2 shows the WASP-Lite camera system. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Figure 3.5.4-2: WASP-Lite multi-spectral camera system. 
 

In the case of wildfire research, we successfully collected ground based sensor data via 
an RF data link onboard an aircraft simultaneous with imaging the scene from the same 
aircraft. Figure 3.5.4-2 shows the WASP-Lite experimental setup with 4 Automated 
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Environmental sensors deployed as the WASP-Lite system flew over the test site (as 
discussed in Section 3.5.3).  
 
We also successfully collected narrowband spectral imagery of Lake Champlain in 
upstate NY. The objective there is to be able to detect the presence of toxic blue-green 
algae in the lake water. Figure 3.5.4-3 shows an example frame from the collect taken at 
one of the spectral bands on WASP-Lite selected for this particular experiment. 

 
 

 
 
 
 
 
 

 
 
 
 
 

Figure 3.5.4-3: WASP-Lite image at spectral band located on algae spectral feature. 
 

Our development of a real time mapping system for incident response is going extremely 
well. We have successfully demonstrated the airborne collection and real time downlink 
of orthorectified imagery over urban areas. The architecture includes the WASP 
multispectral mapping camera mounted on a twin engine Piper Aztec aircraft. The 
collected imagery is orthorectified on board the aircraft using RIT’s Airborne Data 
Processor (ADP) system. It is then transmitted to the ground over a wireless digital data 
link to a ground station housed in a trailer. There, within seconds, the imagery is 
integrated with GIS data bases for display. Figure 3.5.4-4 illustrates the delivery process 
for orthorectified imagery in support of incident response.  

 

         
 

Figure 3.5.4-4: Real time incident surveillance using RIT’s ISSI technology. 
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3.6 NSF Fire Modeling  
 

Research Team: Anthony Vodacek, Ambrose Ononye, Robert Kremens (LIAS), Ying Li 
(Ph.D. student), Zhen Wang (Ph.D. student)  

 
Sponsor(s): National Science Foundation (NSF).  RIT is on a team being led by the 
University of Colorado-Denver with collaborators at the National Center for Atmospheric 
Research (NCAR), the University of Kentucky, and Texas A&M University. 

 
Project Scope: The goal of this project is to develop a dynamic data driven system for 
modeling the propagation of wild land fires.  The end product will give wild land fire 
managers a tool for predicting the propagation of wild land fire with steering of the 
modeling results by data from ground sensors and remotely sensed data.  RIT is 
developing the interface to use thermal imagers such as WASP or WASP-lite as airborne 
data sources of fire location.  Dr. Kremens is also continuing to develop ground sensor 
measurement capabilities and experimental data on the optical and thermal radiation 
emitted by fires.  RIT is creating synthetic images from the model output to facilitate 
comparison to the ground sensor and airborne remote sensing data to provide steering of 
the model results. We are also using DIRSIG as a visualization tool for generating 
synthetic 3D fire scenes including the 3D structure of flames. 

 
Project Status: This 4-year project will be ending in August 2007. Ph.D. student Ying Li 
finished her dissertation this year. Her work consisted of algorithm development for fire 
detection and mapping. Her work on contextual fire detection methods produced a 
statistically based method for detecting fire in multispectral images. Her approach is 
flexible in that it is not sensor specific and can be applied to a wide variety of satellite 
and airborne sensors with different spectral bands and spatial resolutions.  An example of 
wildland fire detection in a Moderate Resolution Imaging Spectrometer (MODIS) image 
is shown in Figure 3.6-1. Research Scientist Dr. Ambrose Ononye worked specifically 
with high resolution multispectral images of fire and developed an algorithm for 
extracting fire line parameters that are useful for fire management. His approach used a 
variety of image processing tools combined with spectral processing tools to outline the 
fire perimeter, isolate the actively burning areas of the fire, and determine the direction of 
the fire propagation automatically. An example of his approach is shown in Figure 3.6-2. 
Ambrose is now employed at Lickenbrock Engineering in Troy, NY.  Ph.D. student Zhen 
Wang has been able to use the output of fire propagation models combined with 
DIRSIG’s atmospheric plume capabilities to generate 3D synthetic movies of wildland 
fire behavior (see Figure 3.6-3).  This capability is a key component of the feedback 
process in which the fire propagation model output is steered according to the available 
remotely sensed images of a fire. In this case the fire propagation model output is used to 
generate a synthetic image that can then be directly compared to a real image. 
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 Figure 3.6-1:  An image of the 2003 Southern California fires obtained with the NASA 
 MODIS sensor.  Pixels with active fire found using the statistical fire detection algorithm 
 are marked in red. 
 

 
 

 Figure 3.6-2: An image of a fire obtained with the NASA AVIRIS sensor with overlays of the 
 fire perimeter and the fire direction automatically drawn by Dr. Ononye’s algorithm.  
 

 
 

 Figure 3.6-3: A simple DIRSIG scene containing a grass fire. The output of a fire 
 propagation model was used as input to describe the 3D shape of the flames. 
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3.7 Landsat 5 and Landsat 7 Thermal Calibration 
 

Research Team: John Schott, Nina Raqueño, Tim Gallagher 
 
Sponsor: NASA 
 
Project Scope: DIRS has had a long history of supporting the thermal calibration of NASA's 
suite of Landsat satellites.  During this year DIRS continued to monitor the thermal 
performance of both Landsat 5 TM and Landsat 7 ETM+ band 6 sensors.  
 
The sensor performance is compared to ground truth temperatures collected from Lake Ontario 
and Lake Erie.  Surface measurements are augmented with simultaneous thermal imagery with 
RIT’s MISI airborne sensor (cf. Figure 3.7-1).  The specific atmospheric conditions are taken 
into account by implementing an interpolated atmospheric profile within MODTRAN.  Final 
calibration results are reported as a comparison of sensor reaching radiances and known 
surface radiances propagated to sensor altitude (cf. Figure 3.7-2). 
 
Project Status: Landsat calibration has been a multi-year monitoring project since 
1995.  Results and recommendations were presented to the Landsat Science Team in December 
2005 and May 2006.  DIRS results were comparable to an independent team’s results.  At this 
time, Landsat ETM+ remains stable and no changes to the calibration coefficients are 
necessary. Both teams show a slight bias in Landsat TM and a change to calibration 
coefficients was recommended. The calibration of the Landsat TM and ETM+ sensors is 
essential for long-term global change studies. 

 
 

                         
 
Figure 3.7-1 Example of Landsat 7 thermal imagery (left) of Lake Ontario with ground 
collection sites indicated in green and buoy locations indicated in red. Higher resolution 
thermal MISI imagery of the Rochester shoreline is shown on the right.  
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Figure 3.7-2   Results are reported as a comparison of sensor predicted radiances to 
ground based observations. Early Spring 2006 results for Landsat 7 are shown here. 

 
3.8 IC Postdoctoral Research Fellowship Program – Physics-based Algorithms  
 

Sponsor: National Intelligence Community 
 
Research Team: Emmett Ientilucci (Post Doc), John Schott  
 
Project Scope:  This is a two year post doctoral grant focused on the development of 
improved physics based algorithms for target detection. 
 
Project Status: In this portion of the post-doc, we are looking at alternative methods for 
describing background / foreground spaces.  One such method is the design of a 
probabilistic target space used in conjunction with an unstructured pre-clustered 
background.  Together, these background / foreground descriptions can be used as input 
to the powerful quadratic detector.  To date, the approach to such a probabilistic target 
space has been derived.  The approach involves the use of weighted moments.  Let us 
assume we observe n realizations of a p-dimensional vector, which are stored as a p n×  
matrix X . These realizations are drawn from a normal probability distribution with 
density ( )N ,μ σ .  From this we calculate the probability density (the likelihood-per-unit-
x) of the parameter, f(x).  For multiple parameters (e.g., visibility, water vapor, elevation, 
etc.) we then compute the product of the marginal normal densities.  That is, the joint 
density (assuming independence) is computed as 

, ( )
N

i
i

likelihood f x= ∏A  

where we have N parameters.  The case of dependant parameters can also be dealt with.  
Since we have M combinations we let 1 2( , , )j Nz X X X= … for j=1, 2, …M.   We then 
turn each likelihood into a weight.  Each j weight is computed as a fraction of the “total 
weight”. That is 

1

( )

( )
j

j M
kk

z
w

z
=

=
∑
A

A
 

such that 1jw =∑ .   We now have a vector of j = 1, 2, … M scalars to weight each 
combination of visibility, water vapor, elevation, etc.  Let w  be the n-dimensional vector 
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of those weights.  The weighted mean is calculated as w =x Xw  and the weighted 
variance-covariance matrix as 

 T
w c c=S X WX  

where W is a diagonal n n×  matrix with the vector w  on the diagonal, and 
T

c w= −X X x 1  is the matrix of centered data, while T1  is an n-dimensional row vector of 

1’s. We can also write ( )T
c I= −X X w1 . 

 
Since W and ( )TI − w1  are n n×  matrices and n  is usually large, the following 
procedure maybe more computationally efficient: 

1. Calculate  T
c w= −X X x 1  

2. Calculate  c=A X W  by multiplying the i-th column of cX  by iw  for all 
1,...,i n=  

3. Calculate  T
w c=S AX  

 
The usage of a weighted mean and covariance allows one to describe the target spaces in 
a probabilistic manor.  This provides a mechanism related to “importance” of the most 
likely target-space vector, which does not exist in the traditional geometric descriptions 
of the target spaces.  The implementation of this scheme on data is forth coming.  On-
going work will explore the incorporation of the probabilistic target spaces into the 
quadratic detector along with an alternative pre-clustering unstructured approach to 
background characterization (work that has already begun). 

 
This implementation will then be compared to previous, geometric, descriptions of 
background and foreground subspaces along with potential schemes incorporating 
feedback for overall semi-autonomous algorithm behavior.  It is believed that this 
approach will be far more forgiving when it comes to sensor calibration errors than 
structured approaches.  The net result will allow us to take advantage of all the previous 
work on physics based hyperspectral target detection using, what is expected to be, a 
more robust target detection algorithm.   

 
3.9 Revolutionary Automatic Target Recognition and Sensor Research (RASER)  
 

Sponsor: Air Force Research Laboratory Sensors Directorate (AFRL/SNAT) 
  

Research Team: John Kerekes, Michael Muldowney (M.S. student), Kristin Strackerjan 
(M.S. student), Lon Smith and Brian Leahy (B.S. student) 

  
Project Scope: The goal of this effort is to investigate the feasibility of using high 
resolution hyperspectral imagery to aid detection and tracking of vehicles of interest in an 
urban environment.  The project is investigating whether adequate spectral reflectance 
features of a vehicle can be measured by an airborne hyperspectral imager to uniquely 
associate measurements made at one time and location with those a short time later and 
distance away. 
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Project Status: In the summer of 2005, a vehicle tracking experiment was conducted at 
RIT’s campus using volunteer drivers, field spectrometers and RIT’s airborne MISI 
instrument. Locations of the experimental vehicles were noted before one data collection 
pass by MISI, the vehicles were then moved to new locations, which were noted, and 
then MISI performed a second collection pass.  Figure 3.9-1 shows RGB composites of 
the MISI imagery from two sample passes. 

 

                      
 
 Figure 3.9-1: MISI imagery of the RIT campus at 12:09 pm (left) and 12:24 pm (right). 
 

Analysis of the data shown in Figure 3.9-1 confirmed that a vehicle spectrum taken in the 
initial image can be used in a target detection algorithm to successfully detect the same 
vehicle in the subsequent image when false alarm reduction (corresponding to fixed man-
made structures) is applied. However this was only successful for vehicles with 
significant contrast (bright blue) compared to the background. 
 
To explore the sensitivities of this detection/tracking problem, the Forecasting and 
Analysis of Spectroradiometric System Performance (FASSP) model was used to 
analytically predict detection/false alarm rates for various scenarios.  A hypothetical 
scene was modeled and detection performance predicted as shown in Figure 3.9-2.  The 
plot on the left shows an example sensitivity to paint type.  The target spectra used here 
were measurements of two types of blue paint.  As can be seen, the type “2” paint 
requires the hyperspectral image resolution be such that the vehicle completely fills a 
pixel in order to be even modestly detectable, while the type “1” paint allows the vehicle 
to be detected when the resolution is such that the vehicle may only occupy one-half of a 
pixel. 
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 Figure 3.9-2: Model-predicted detection sensitivity to vehicle paint type (left) and spectral 
 coverage/SNR (right) corresponding to typical performance of the MISI sensor and full or 
 limited use of the spectral channels available in the HYDICE sensor. 
 

Additional vehicle tracking experiments were conducted both at RIT and in an alpine 
region of Montana. Future work will explore achievable performance in those data sets. 

 
 

3.10 Radiometric Modeling of Complex Cavernous Targets in Localized Microclimatic         
Conditions with Emphasis on Mechanical Draft Cooling Towers 

 
Research Team: Matthew Montanaro (Ph.D. student), David Messinger, Scott Brown, 

and Carl Salvaggio 
 

Sponsor: Department of Energy, Savannah River National Laboratory 
 

Project Scope:  RIT is providing support to the Department of Energy at the Savannah 
River National Laboratory (SRNL) to gain insight into the phenomenology that 
influences the radiance field leaving the interior of a mechanical-draft cooling tower 
(MDCT). In order to accomplish this, existing DIRSIG modeling capabilities will be 
enhanced such that the simulations produced reflect, as accurately as possible, the actual 
data gathered with real airborne infrared imaging systems. These modeling efforts are 
focusing on the phenomenology associated with “cavern-like” targets composed of 
numerous internal material types. A cyclical approach is being followed where modeling 
approaches are continually modified based on newly discovered phenomenology 
observed in real image data. The desired outcome of the modeling will be accurate 
internal-element emissivities and temperatures for the components that comprise the 
cooling tower for use with an external process model developed by SRNL. 

 
Project Status:  These targets are complex in structure (see Figure 3.10-1) and are further 
complicated by the possible coating of water on some surfaces and the water laden 
localize atmosphere located immediately above the target area.  Initial geometrical 
models have been assembled and initial image simulations carried out (see Figure 3.10-2) 
at this time.  Much more work will be continuing on this step in the project during the 
coming year as further image collection experiments are carried out and material samples 
and optical properties are measured.  
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 Figure 3.10-1: Schematic of the interior Figure 3.10-2: DIRSIG radiance image. 

layout of a counter-flow tower.  
 
 

                       
 

 

     
Figure 3.10-4:  Apparent temperature profiles across the tower throat for the SRS image (left) 
and DIRSIG image (right). 

 

 Figure 3.10-3: SRS image (left) and DIRSIG image (right). Profiles indicated by solid white line. 
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Figure 3.10-3 and Figure 3.10-4 illustrate the current brightness temperature predictions 
from this effort for imagery actually gathered with a longwave infrared imager and the 
DIRSIG simulation.  While the magnitudes for these predicted temperatures are different, 
the general shape of the profile across the opening of the tower is quite closely matched.   
 
Magnitude differences currently are believed to originate from several sources of error.  
The most significant is believed to originate form the lack of bidirectional reflectance 
distribution data for the material surface resulting in an inaccurate contribution of sky 
radiance to the exiting radiance field.  This affects both the reflected downwelling as well 
as the self-emitted energy.  Currently, models for this bidirectional optical property are 
being investigated and implemented to determine if a close enough match of the 
temperature can be obtained by using a surrogate scattering description for these surfaces, 
as true measurements of the actual materials present will seldom be available.  Additional 
errors are believed to be coming from the microclimate immediately above the tower due 
to increased water vapor column in this localized area.  Further field experiments are 
being conducted in 2007 to ascertain the actual existence and extent of this source of 
error. 
 

3.11 Laboratory for Advanced Spectral Sensing (LASS) 
 
 Sponsors:  Boeing, ITT, LANL, Lockheed-Martin, NRO 
 
 Project Scope: The LASS was established to conduct research aimed at improving 
 multidimensional remote sensing. The goal is to study the end-to-end process with an 
 emphasis on looking at fundamental phenomenology and new sensing techniques. 
 Because of the fundamental nature of this work the participants share in the funding and 
 the results are shared with all sponsors. 
 
 Project Status: This year saw the continuation of several multiyear efforts including many 
 which seek to improve the DIRSIG modeling environment and the initiation of some new 
 thrusts in areas such as the role of spectral analysis in persistent surveillance and spectral 
 quality metrics. The extensive range of LASS research tasks are summarized below.   

 
3.11.1  MegaScene 2  
 
Research Team:  Tim Hattenberger, David Pogorzala, Scott Brown, Paul Lee, Niek 
Sanders, Joshua Huber (M.S. student), Jason Ward (Ph.D. student) 
 
Task Scope:  The MegaScene Projects are intended to showcase and demonstrate the 
scene simulation capabilities of DIRSIG by building large-scale scenes for the user 
community. The scenes are typically several square kilometers in size and allow for the 
simulation of long flight lines.  Furthermore, these scenes attempt to capture the 
geometric, spatial and spectral complexity of the real world.   
 
The latest scene is MegaScene 2, which is based off of the town of Trona, CA.  This is a 
small town in the foothills of the mountains near Death Valley.  The town is built around 
as industrial complex which can be used as a surrogate chemical plant with factory stack 
plumes projecting over varying background, or a nuclear power plant.  The region is an 
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arid, desert-type region with nearby mountains, so the vegetation, atmosphere and 
mountainous terrain will be in accordance with that type of region.  The spatial resolution 
will be on par with MegaScene 1 (~1m) with the exception of an industrial complex that 
will be on the order of ~0.5m. The mountainous terrain also allows us to demonstrate the 
new inhomogeneous atmosphere capabilities in the DIRSIG model, where the 
atmosphere can be varied both vertically and horizontally.   
 
Task Status:  Geometric modeling of the structures in the town is almost complete, and 
was primarily accomplished through the use of imagery and software provided by 
Pictometry, Inc.  Measurements of the structures were made with this software, and in 
turn, used to model the objects in a CAD environment.  During the last year, ground truth 
campaigns have been performed on-site to collect material optical property measurements 
and to further explore the geometry of the region. 
 
The most significant accomplishment was the overflight of the site by the RIT WASP 
sensor this fall. The VIS, SWIR, MWIR and LWIR imagery collected during these flights 
will allow us to start creating the various inputs to the DIRSIG mapping tools to drive the 
spatial variability of the backgrounds (Figure 3.11.1-1).     
 

 
Figure 3.11.1-1: An image of the Trona, CA industrial facility acquired with the WASP 
TerraPix camera from the Fall 2006 airborne data collection. 
 
3.11.2  Polarimetric Imaging 
 
Research Team: Chabitha Devaraj (Ph.D. student), Mike Richardson, Scott Brown, David 
Messinger, David Pogorzala, John Schott 

 
 Task Scope:  This research program seeks to understand the phenomenology of 
 polarimetric imaging for remote sensing applications, the utility of such imaging 
 techniques, and the requirements for simulating scenes observed with a polarizing sensor. 
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 Task Status:  A previous Ph.D. student, Jim Shell, developed a methodology to make 
 polarized BRDF measurements for characterization of materials.  This methodology and 
 his results are used to simulate simple scenes within the DIRSIG simulation.  However, 
 several points in the simulation chain are as yet not verified as to their accuracy, and 
 system-level trade studies as to the quality, reproducibility, and utility of such imaging 
 systems have not been made.  To this end, under this task several activities are underway.  
 Several experiments have been planned to assess the accuracy of the simulation tool.  
 Polarimetric images will be collected using the RIT developed WASP-Lite sensor fitted 
 with polarizing filters.  The measurements include imaging the sky and imaging simple 
 materials under a variety of geometric conditions in the laboratory.  The former 
 experiments are planned to investigate the implementation of the polarized version of 
 MODTRAN, an atmospheric radiative transfer model.  The latter experiments are 
 designed to investigate the implementation of the coordinate transformations within 
 DIRSIG necessary for simulation of polarized reflection off a surface.  A simple scene is 
 being developed to verify the ability to simulate small-scale scenes with multiple 
 materials.  The scene will be near the Center for Imaging Science building on the  RIT 
 campus and will be imaged from the roof with the WASP-Lite sensor.  A synthetic  
 version of the scene will be created and used for end-to-end studies of the quality and 
 utility of synthetic polarized images including the impact of various phenomena on final 
 image derived products. 
 

3.11.3  LIDAR Modeling and Application  
 
Research Team: Scott Brown, Daniel Blevins, (Ph.D. student),  
Michael Foster (Ph.D. student) 
 
Task Scope: RIT has worked with the ITT Industries Space Systems Division (SSD) for 
the past few years on improving the ability to perform end-to-end, topographic LIDAR 
system simulations. Most of this effort has been focused on improving the capabilities of 
the DIRSIG active laser sensing capabilities so that it can integrate better with the sensor 
and platform modeling capabilities developed by the ITT team.  In addition, we have had 
the cooperation of the MIT Lincoln Laboratories (MIT/LL) which has been sharing 
specifics of its own internally developed topographic LIDAR system, name ALIRT.  
Access to the data from this system has given the RIT and ITT crew valuable insight into 
the issues associated with modeling real-world topographic LIDAR systems. 
 
Task Status: During the past year, the RIT and ITT team was able to perform analytical 
verifications and experimental validation of the DIRSIG LIDAR model.  Both of these 
tasks were accomplished in response to the availability of some data collected under 
controlled conditions with the ALIRT sensor. The MIT/LL team setup the sensor inside 
an aircraft hanger with a fold mirror under the aircraft to point the sensor and laser across 
the hanger at a target.  Time-gated returns for this target were collected under a variety of 
power and timing conditions.  This data allowed the RIT and ITT team to perform a 
radiometric verification and validation of the DIRSIG LIDAR model.  The numerical 
verification of the model was performed with an external radiometric calculation that was 
then compared to the DIRSIG numerical calculation.  The validation utilized the hanger 
data to estimate the radiometric flux onto the actual ALIRT sensor, which was then 
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compared to the numerical calculation produced by the DIRSIG model.  The results of 
the numerical verification and validation were found to be satisfactory. 
 
The second focus over the last year was the incorporation of more instrument and 
platform noise sources that are present in topographic LIDAR systems. Errors in the 
platform relative pointing and the platform location and orientation arise from the limited 
precision of the electro-mechanical devices used to measure these values. Since the 
precision of these pieces of supporting data has an impact on the ability to geo-locate 
LIDAR returns, the effective horizontal and vertical resolution of the overall system is 
driven in large part by the knowledge of these values.  The major update to the DIRSIG 
model included the ability to incorporate noise or uncertainty into the platform relative 
pointing of the instrument and into the platform location and orientation.  The 3D point 
clouds in Figure 3.11.3-1 illustrate the impact of errors in platform relative pointing 
angles (from limited pointing resolution) on the horizontal resolution of the final data 
products.  
 

  
 
 
Figure 3.11.3-1:  3D point clouds of a simulated resolution target using ideal (noise free) pointing 
and location data (left) and using noisy platform relative pointing data (right) illustrates the impact 
of pointing and location knowledge on final data products. 
 

3.11.4 Persistence Surveillance  
 
Research Team:  Andrew Adams (Ph.D. Student), John Schott 
 
Task Scope:  The thrust of this research is to identify and improve motion detection and 
tracking performance in a persistent surveillance system by adding spectral information 
to the equation.  In order to tackle this problem, it is helpful to break it into a workable 
subset of challenges.  First of all, consider a large geographic area of responsibility 
(AOR) for which a commander has the task of monitoring activity, as depicted in Figure 
3.11.4-1a. 
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a)Area of Responsibility (AOR)                      b)Rotating Mirror System 

 
Figure 3.11.4-1a: Airborne Surveillance System. 

  
Assuming a stationary airborne platform, consider that the AOR is too large to cover with 
a single sensor—say a video camera running at a typical 30 frames per second (fps)—due 
to the field of view of the camera.  There are several approaches to achieve persistent 
surveillance, one of which would be to simply employ more sensors of the same type and 
divide the area into pieces.  Another approach would be to use a rotating or scanning 
mirror system at the front end of a single sensor and spend less time (or fps) monitoring 
each sub-area, as shown in Figure 3.11.4-1b.  The challenge then becomes one of 
achieving the same detection and tracking performance at a reduced frame rate (in this 
example, about 7 fps over four separate areas).  Based on the simple premise that adding 
spectral information to the data collection should enhance detection and tracking 
performance, a multispectral sensor might be able to achieve the required performance at 
a reduced frame rate.   
 
The project will investigate the potential for improvement in detecting and tracking 
moving objects using multispectral sensors, with specific emphasis on low frame rate 
acquisition.  We are operating under the assumption that a reduction in frame-rate allows 
a sensor to cover more areas; not necessarily to reduce data-rates.  Several simplifying 
assumptions have been made: 1) Stationary platform (No Parallax); 2) Unlimited 
processing power; 3) Data storage/transmission not limited; 4) Images are registered to 
<1 pixel. 
 
The primary objective of this research is to detect and track moving targets by integrating 
multi-band techniques with current algorithms.  The thrust of the research is to evaluate 
the trade-space between spatial, spectral, and temporal resolution.  To do this, the study 
will require convincing and consistent performance metrics.  As our initial work in the 
area of multispectral video tracking, we will develop the “way ahead” for eventually 
evaluating hyperspectral video surveillance. 
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Task Status:  The methodology is currently being mapped out, with the focus of work on 
the top level tasks of motion detection, object segmentation, and object association (seen 
in green in Figure 3.11.4-2).   

 
 

 
 

Figure 3.11.4-2: Surveillance system model. 
 

The premise of adding spectral information to current single-band detection and tracking 
techniques has merit, making improved performance at reduced frame rates seem 
plausible.  In each of the three tasks identified (detection, segmentation, and association), 
additional spectral content provides useful information for improvement.   
 
In the case of moving object detection, typical single-band systems rely on a single 
grayscale value per pixel to decide if something has changed from one frame to the next.  
By adding additional bands of information to each pixel, change detection becomes more 
sensitive to subtle changes and more discriminating to non-important changes.   
 
Likewise, object association in a single-band system becomes a task of spatial 
comparison of brightness value distributions and object characteristics such as velocity.  
Even the simplest spectral techniques such as spectral angle mapping (SAM) could 
provide a significant advantage over single-band techniques in object discrimination.  In 
this case, instead of modifying existing single-band techniques to include spectral data, 
we can apply a second filtering step such that we can compare objects both spatially and 
spectrally.   
 
To illustrate the idea of adding spectral information to a low frame rate collection, 
consider the simplistic example in Figure 3.11.4-3, where a single-band sensor fails to 
track at a low frame rate due to an ambiguity between objects in the next frame.   
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 a) Single-band at 30fps 

 

 
b)Single-band at low fps 

 
Figure 3.11.4-3: Moving object ambiguity (b/w). 

 
Using typical video rate data at 30 fps (as illustrated in Figure 3.11.4-3a) moving objects 
tend to overlap the previous location, making object association easier.  However, at a 
reduced frame rate—say one frame every few seconds—the objects cannot be uniquely 
identified, as seen in Figure 3.11.4-3b.  Because a significant amount of time has passed 
between frames, the two moving objects are now overlapping and cannot be 
distinguished from one another.  Furthermore, changes since the last observation may 
have occurred such that prior trajectories and grayscale appearance are not sufficient to 
resolve the objects.  However, by adding spectral detail to each object (color in this 
simple example), as seen in Figure 3.11.4-4, the ambiguity is resolved and the two 
objects can be distinguished. 

 

 
 

Figure 3.11.4-4: Moving objects not ambiguous at low fps (color). 
 

Ongoing work on this task is aimed at developing algorithms and test metrics that will 
allow us to evaluate the extent to which we can trade temporal sampling resolution 
against the number of spectral bands. 
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3.11.5 Spectral Target Detection Algorithm Comparison  
 
Research Team: Adam Cisz (M.S. student), John Schott, John Kerekes, David Messinger, 
Emmett Ientilucci 

 
 Task Scope:  This research project seeks to comparatively evaluate several target 
 detection schemes against a common set of targets to gain understanding of the strengths 
 and weaknesses of various approaches, as well as understand the applicability of various 
 methodologies to a particular image and/or target signature. 
 
 Task Status: This research program will be completed in the fall of 2006 with the thesis 
 defense of Adam Cisz.  A Visible / NIR / SWIR hyperspectral image containing several 
 targets of various sizes and spectral characteristics was analyzed using a number of target 
 detection methodologies.  These can generally be divided into three categories: those that 
 use a statistical model of the background, those that use a geometrical model of the 
 background, and a technique using a physics-based model of the target signature, 
 combined with a geometrical model of the image background.  Aside from the last 
 technique, all other methods were applied to research-grade atmospherically compensated 
 imagery, as well as an image atmospherically compensated with a state-of-the-art method 
 (called FLAASH).  Results for all methods as applied to four targets are shown in Figure 
 3.11.5-1. 
      

 
Figure 3.11.5-1: Target detection results for 4 targets considered.  Results show the Rate of 
Detection at a False Alarm Rate of 0.001 for six detection methodologies.  SAM is a simplistic 
spectral similarity measure; ACE and CEM use a statistical data model; ASD and OSP use a 
geometric data model; the “Invmeanall” method uses physics-based signatures without knowledge 
of absolute atmospheric compensation. 
 

Results are presented as the “Detection Rate”, or the percentage of target pixels detected, 
for a fixed “False Alarm Rate”, the number of pixels mistakenly determined to be targets.  
The most striking result is the range of detection rates across targets demonstrating how 
different targets present different levels of difficulty for all methods.  In general, for this 
dataset the statistical methods outperform the geometric methods.  However, it should be 
noted that the physics-based approach, which does not require that the image be 
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atmospherically compensated, performs almost as well as the best statistical approaches.  
This provides an indication that the physics-based approach may be more applicable 
when atmospheric compensation of a scene is difficult, or produces unreliable results. 

 
3.11.6 Environmental Effects Research 
 
Research Team: Kristin Strackerjan (M.S. student), Lon Smith, David Pogorzala, Scott 

Brown and John Kerekes   
 

Task Scope: The objectives behind this task were: 1) to identify environmental effects 
and assess their suitability for inclusion within DIRSIG; 2) perform field and laboratory 
measurements to obtain spectral data for selected environment effects; 3) implement an 
initial approach for the modeling of selected effects in DIRSIG.  The identification of 
environmental effects and initial field measurements were performed in previous years 
while this year’s activities focused on the laboratory measurements and model 
implementation. 

 
Task Status: This task made significant progress by performing extensive laboratory 
measurements and deriving empirical models to produce spectra of a limited number of 
surfaces contaminated by the selected environmental effects: dust (sand) and rain (water). 
Figure 3.11.6-1 shows the laboratory measurement techniques. As can be seen in the left 
image, a spinning potter’s wheel was used to allow time averaging of the heterogeneous 
mixtures of the environmental effect and the substrate since the spectrometer used 
separate optical fibers in the aperture to feed detectors corresponding to different parts of 
the spectrum.  The right image shows the artificial cold sky created by oven roasting pans 
filled with ice and kept cool by insulation slabs.  The cold sky was necessary to provide 
thermal contrast with the sample and enable accurate emissivity measurements.  

 

                       
 
Figure 3.11.6-1: Laboratory set-ups for measuring spectral reflectance (left) and emissivity (right).   
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Measurements were performed on combinations of sand and water on four substrate 
materials: asphalt, concrete, painted metal and roofing shingles.  Figure 3.11.6-2 provides 
an example of the results of these measurements.  The curves in the reflectance plot (left 
side) show the anticipated darkening and increasing liquid water absorption features with 
more water.  However, the emissivity plots (right side) show a decreasing emissivity in 
the 11 to 14 micron range with increasing water.  This non-intuitive result was repeatedly 
confirmed by many measurements but could not be explained. 
 

 
Figure 3.11.6-2: Spectral reflectance (left) and emissivity (right) measurements for increasing 
amounts (direction of arrow) of water on concrete.   
 
 

Empirical second-order relationships were found (as a function of wavelength) between 
the amount of contaminant on a substrate and the resulting reflectance or emissivity.  
These were used to create spectra corresponding to varying amounts of water and sand on 
asphalt.  These library spectra were then used with the DIRSIG model to produce patches 
of the contaminant on asphalt for an area of the RIT campus (see Figure 3.11.6-3).  The 
DIRSIG simulated scene was then compared to measurements of similar patches 
observed with MISI.  Excellent agreement between the MISI data and the DIRSIG 
simulation was found by computing the ratio of the spectral measurements of the 
contaminated vs. non-contaminated asphalt. 

 

  
 
Figure 3.11.6-3: Airborne MISI image of sandy asphalt (left) and DIRSIG simulated image with 
varying amounts of sand and water on asphalt (right).   
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3.11.7 Background Texture Research (visible and thermal)  
 

Research Team: David Pogorzala, Jason Ward (Ph.D. student), Scott Brown 
 
Task Scope: This research intends to improve our ability to model spatial and spectral 
variability (texture) of backgrounds in synthetic imagery across the visible and thermal 
infrared regions. Real imagery contains a high degree of spatial and spectral variability 
that cannot be characterized by most lower order statistics. The complexity of this 
variability is the primary challenge to most multi- and hyper-spectral algorithms, which 
attempt to separate targets and backgrounds by fitting statistical or geometrical models to 
the backgrounds. For these reasons it is important that modeled data contain a sufficient 
level of variability within any given background material. 
 
Our focus in this research is twofold. First, we seek to improve upon existing texture 
methods in the VIS/NIR regions where the variability is driven primarily by geometric 
and optical property inhomogeneities. However, in the thermal infrared (mid- and long-
wave IR) the variation in the emissivity of surfaces is very small and, therefore, this 
approach does not introduce sufficient variation in these wavelength regions. This leads 
to the second aspect of this research, where we are investigating how to improve upon 
existing texture generation for the thermal infrared where the variability is driven 
primarily by geometric and thermodynamic inhomogeneities. These thermodynamic 
inhomogeneities include spatially varying radiational and convective loading effects and 
sub-surface variations in material density, water content, etc. In addition, it is unknown 
when or if temporal variability becomes dominant over spatial variability (i.e. at what 
timescale do effects due to temporal variation dominate what is being seen spatially). 
Because of these additional sources of variability, it is possible that a fundamentally 
different approach is necessary to model realistic texture in the thermal infrared.  

 
Task Status: In the area of VIS/NIR texture modeling, two new techniques have been 
implemented in MegaScene 1. The first method increases the number of texture maps 
used by DIRSIG from one panchromatic map to three broadband maps across the visible 
portion of the spectrum. By adding more wavelength bands to drive the existing texture 
algorithm, the spectral complexity of all the background materials can be improved. All 
regions of the MegaScene 1 project were updated with three band texture maps. 
 
The second approach was to implement material mixture maps (sometimes referred to as 
“fraction maps”). Mixture maps allow DIRSIG to model a spatially varying, linear 
combination of materials at each location within the scene.  Rather than introducing the 
spatial/spectral variation by modifying the spectral reflectance of a given class as a 
function of location (as the classic texture algorithm does), mixture maps introduce the 
spatial variation by spatially varying the proportions of materials.  This approach is better 
for the thermal infrared since it allows the apparent thermodynamic properties of a pixel 
to vary, whereas the classic texture algorithm can only vary the optical properties. For 
this effort, the mixture maps were created by unmixing a real hyperspectral 
VIS/NIR/SWIR image of the Camp Eastman area of MegaScene 1 collected by the 
COMPASS sensor. These maps were then applied in DIRSIG, where a synthetic pixel is  
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rendered by re-mixing end members according to the values in the mixture map. 
 

Figure 3.11.7-1: DIRSIG renderings of a portion of MegaScene 1 using (a) a single texture map, (b) 
three texture maps and (c) mixture maps. 
  

The results of these two improvements are shown in Figure 3.11.7-1. All three images are 
DIRSIG renderings of a portion of MegaScene 1. The image on the left was rendered 
using a single pan-chromatic texture map, the middle image using three maps, and the 
right using mixture maps. The mixture maps method is seen as providing a larger 
improvement over the baseline single band texture map method than the three band 
texture map method. One of the drawbacks of the mixture method, the periodic striping 
seen in the right-hand image, is an artifact of noise in the real imagery used to create the 
mixture maps. Minimizing this effect is the focus of further research. 

  
In the area of thermal infrared texture, a 24-hour data collect was devised to capture both 
spatial and temporal variability in the LWIR. The goal of this collect was to determine 
which dimension has a greater impact on texture. This collect was staged on April 20-21, 
2006 on the RIT campus. A test scene was imaged by the WASP sensor system at a 
distance of approximately 1000’ at specific time intervals. A set of images were acquired 
at specific time intervals designed to capture changes in texture on the order of days, 
hours, minutes, seconds, and split-seconds. Two example images from this collect are 
shown in Figure 3.11.7-2, one in RGB, and the other in the LWIR. 
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Figure 3.11.7-2: Thermal texture test scene imaged a) in the VIS with a handheld camera and b) in 
the LWIR by one of the cameras in the WASP sensor. 

 
Statistical analysis was performed over the 3x3 pixel region depicted in Figure 3.11.7.2b 
for each image acquired during the collect. The results of this analysis showed that the 
magnitude of any changes in apparent temperature within any 10-minute time interval 
were within the noise levels of the sensor. This leads to the conclusion that we do not 
need to model temporal variability on a minute or second time scale. 
 
The results of this first LWIR texture experiment helped to plan a second data collection 
over Trona, CA (MegaScene 2), due to take place in the fall of 2006. We are planning to 
collect multi-temporal, high-resolution (GSD≈1’), texture data using the WASP sensor 
system. This data collection will help us validate our simulated synthesis of realistically 
textured scenes out into the LWIR. 

 
3.11.8 DIRSIG Plume/Sensor Integration (QUIC and PIMS)  
 
Research Team: Niek Sanders, Scott Brown 
 
Task Scope:  Los Alamos National Laboratory (LANL) has developed QUIC, a powerful 
tool for simulating wind fields and gas plumes in urban environments.  This task is 
focused on integrating LANL's QUIC model with the DIRSIG radiometric propagation 
model.  The final product will allow users to easily generate DIRSIG hyperspectral 
imagery containing QUIC plumes. 
 
There are several distinct features needed for tight integration.  First, a tool must 
automatically convert the geometry (buildings and trees) of a DIRSIG scene into their 
QUIC equivalent.  The QUIC model must then be applied to the converted geometry to 
compute the wind field and plume dispersion.  Finally, the resulting plume must be 
rendered in DIRSIG. 
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Task Status:  Preliminary integration work has been completed.  Though the process is 
still largely manual, it is now possible to efficiently render a QUIC plume in a DIRSIG 
scene.  The remainder of the task, scheduled for completion in December 2006, will fully 
automate this rendering process. 

 
3.11.9 NetDIRSIG 

 
Research Team: Paul Lee, Scott Brown 

 
 Task Scope: Primary goal is to create a user interface for DIRSIG that allows non-
 traditional (non-expert) users to generate data with the model.  This software client tool is 
 designed to be lightweight – easy to acquire and easy to use.  The tool is also network 
 enabled.  The user doesn’t install a traditional full copy of DIRSIG on their machine; 
 rather the client tool interacts with a network accessible repository of the DIRSIG inputs 
 on a remote server.  This client/server model simplifies and centralizes the maintenance 
 of the model inputs within an organization or within an inter-organization work space.  
 The client/server approach allows the “heavy computational lifting” of DIRSIG 
 simulations to be offloaded to the remote server which frees up the client machine.  The 
 completed simulation products (imagery) are made available on the server for remote 
 download (via FTP). 

 
 
One of the primary applications for this tool is for algorithm developers who want to 
generate sets of data for algorithm testing.  It is not intended for sensor designers, so most 
sensor-related concepts will be high-level (spatial resolution, spectral resolution, etc.).  
The primary variables of interest include scene description – the subject area or site that 
will be imaged by the model.  It is comprised of the geometric elements (CAD models), 
the supporting material thermodynamic and optical properties, additional scene elements 
(texture maps, etc.) and geographic location.  The scenario description is the atmospheric 
and weather conditions for the given scene.  The sensor description is the imaging 
instrument that will collect data of the scene.  It is comprised of the optical geometry, 
spatial and spectral responses and noise characteristics.  The platform, or tasking, 
description defines the static or moving position and orientation of the sensor within the 
scene and includes the time and date information about the data acquisition. 

 
All resources for the model are on the remote server including model inputs and the 
computational horsepower required to run the model.  A clear advantage of this approach 
would be to provide high-level “sanity checks” on the model inputs.  The core DIRSIG 
engine currently lacks the ability to validate a user’s simulation input.  This network-
based approach provides the user with “prepackaged” choices that have been developed 
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and checked by expert users.  However, a drawback to this strategy would be the 
restriction placed on user control of the model’s input in order to insure a valid 
simulation is created. 
 
The lightweight client tool is designed and implemented with Qt, a commercial C++ GUI 
application framework for cross-platform development.  Qt also includes robust support 
for network-based communications.  Currently, support for UNIX and Mac platforms 
exists, however extensions to Windows is an incremental effort. 

 
 Task Status: The client interface is designed to walk the user through configuring the 
 components of a complete DIRSIG simulation package.  Initially, the user chooses one of 
 the prepackaged scene modules: 
 

                         
 
Next, the user chooses one of the prepackaged weather scenarios, which will drive the 
atmospheric calculations: 
 

                        
 
The next phase involves the user selecting a prepackaged sensor model: 
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The final step involves the setup of the flight-line for the data collect.  The altitude data is driven 
by preset values in each sensor description: 
 

                            
 
 

3.11.10  Modeling and assessment of Phase Diversity approach to characterize position 
misalignments in a Sparse or Segmented Aperture System 

 
Research Team: Brian Daniel (Ph.D. student), Jason Smith (Ph.D. student), John Schott 
 
Task Scope: With a focused image from a Sparse or Segmented Aperture system and at 
least one image that is defocused by a known amount, the literature indicates it is possible 
to find the piston, tip and tilt misalignments (and other aberrations) of each sub-aperture 
while at the same time finding an estimate of the object image.  Phase diversity can 
therefore be used to estimate both the aberration information of an optical system and the 
object of the scene.  The utility of this approach in terms of retrieved error in the 
telescope optimal prescription and resulting image quality for high fidelity models 
incorporating full spectral fidelity is the long term goal of this effort. 
 
Task Status: The foundation of phase diversity is dependent upon the calculation of an 
error metric based upon image data.  For example, Figure 3.11.10-1 shows what a raw 
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image may look like when imaged through a sparse aperture system both in-focus and 
out-of-focus. 

  

a) In-focus b) Out-of-focus 
Figure 3.11.10-1: Simulated image data for the calculation of the error metric in the phase 
diversity algorithm to find object estimation and the positioning and aberration errors in the 
telescope. 
 

The metric is based on a best-estimate of the position errors and aberrations of the 
system. The error metric will have a minimum for the set of aberration and position 
misalignment parameters that is closest to being correct.  In essence this is a classic 
calculus minimization problem in a high number of dimensions.   
 
A simple triarm 9 sparse system with all the sub apertures pointing away from center was 
modeled so we could have a look at the metric space in two dimensions.  Figure 3.11.10-
2 is the triarm 9 sparse array with 3 sub apertures on each of the 3 arms.  By varying the 
tilt parameters on the left and right arms independently while leaving the bottom arm’s 
tilt parameters to be constant at the correct value, the contour plot of Figure 3.11.10-3 
was made. Our algorithm will find our position and aberration parameters at the 
minimum of the contour plot.  As you can see, it is well defined and matches within 
acceptable error with the modeled tilt aberrations. 
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Figure 3.11.10-2: The triarm 9 sparse aperture system with tilt errors facing away from the 
center of the telescope.  This overly simplistic model is used to visualize the error metric of 
the phase diversity algorithm. 
 

 
Figure 3.11.10-3: A 2D contour plot of the scaled error metric in the simplified triarm 9 
case.  The minimum is at [-0.1875, -0.1875], which matches the tilt added in the 
simulation. 
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This look into the metric space is both encouraging and challenging.  The well-defined 
minimum at the correct answer indicates this is a viable solution to the problem.  Future 
work includes implementing an automated minimization function to find the minimum in 
27 (or higher) dimensional space. 
 
The most important aspect of phase diversity is its ability to estimate the object of the 
scene.  The object is a term to describe the real world that we’re trying to capture in an 
image.  In short, this is an image restoration process.  The estimated monochromatic 
object of the image from the simplified triarm 9 telescope is shown in Figure 3.12.10-4. 
The object estimation is a great improvement compared to the degraded image of Figure 
3.11.10-1a.  This will be considered a standard for further development of the algorithm. 
 

 

 
Figure 3.11.10-5: Object estimate based on the phase diversity algorithm of a triarm 9 
sparse system shown in Figure 3.12.10-2. 
 
 

3.11.11  Thermal Polarimetric Imaging BRDF Measurement  
 

Research Team: Michael Gartley (Ph.D. student), John Schott 
 

Task Scope: This task is aimed at identification and initial implementation of procedures 
for incorporation of the thermal emissive polarimetric behavior of  materials in the 
DIRSIG code. This includes measurement of a small sample set of material using a long 
wave infrared imager over a range of view angles. These data will be used to 
calibrate/validate a set of bidirectional reflectance distribution function (BRDF) models 
designed to estimate the polarimetric emission/reflectance properties as a function of 
view angle. These models will then be incorporated into DIRSIG and used to create a 
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simple scene. This scene will then be compared to actual polarimetric images to evaluate 
the utility of the polarimetric BRDF implementation. 

 
Task Status: A wire grid polarizer has been obtained and used with one of the Center’s 
long wave infrared cameras (LWIR) to generate polarimetric measurements of small 
sample sets (See Figure 3.11.11-1).  
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 Figure 3.11.11-1: Linearly polarized intensity bands  S0, S1, and S2 Stoke’s  
 bands  polarized emissivity 
  

These data have been  used to calibrate and model the emissive behavior of the samples 
over a range of view angles as seen in Figure 3.11.11-2. A conceptual approach for 
implementation of the models in DIRSIG has been identified and is under evaluation. In 
anticipation of the test and validation phase of the effort some initial polarimetric test 
scenes have been acquired with the LWIR sensor.   
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Freshly coated asphalt

Emissivity Model Constants

Dielectric constant: n = 3.2, k = 0.3
Diffuse reflectivity: rd= 0.0035
Roughness:        s = 0.5, B = 0.5
Shadowing:            t = 1, W = 1

 
 
Figure 3.11.11-2: Comparison of model and measurement results for freshly coated asphalt as a 
function of view angle. 
 

Figure  3.11.11-3 shows an example scene where the background has been varied  to 
demonstrate the varying impact of the diffuse and specular background on polarimetric 
signals. Scenes of this type are intended to be used to perform an evaluation of the 
thermal polarimetric BRDF models in DIRSIG.  
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• All targets visible in S1
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• All but 2 targets disappear from S1 image when 
there is cover behind targets
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Kiddie pool overhead of targets
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Figure 3.11.11-3: Potential test scenes for evaluation of the polarimetric BRDF models in DIRSIG. 
 
 

3.11.12   Spectral Quality Metrics 
 
Research Team: Marcus Stefanou (Ph.D. student) and John Kerekes 

 
Task Scope:  The purpose of this research is to determine a predictive spectral quality 
metric that creates a framework to assess the imaging process holistically.  Such a metric 
is motivated by the need to conduct trade studies and instrument comparisons, provide 
appropriate tasking of image collection activities and index archived images.   

 
Spectral image “quality” actually has two components.  The first is image fidelity which 
quantifies how representative an image is of a scene. The second is image utility which 
quantifies how useful the image is for a particular information exploitation task.  Image 
fidelity is task independent, whereas image utility is driven by the desired information 
product.  Figure 3.11.12-1 shows the differentiation of image fidelity and utility and 
illustrates the dependence of image quality on the characteristics of the scene, the 
collection geometry, the sensor, viewing conditions, and the desired outcome of the final 
application.   
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Figure 3.11.12-1:  Components of spectral image quality: fidelity and utility 

  
Task Status: In order to make the problem tractable, this research has focused on the 
utility aspect of image quality.  It makes an initial step towards predicting the utility of an 
image in a subpixel target detection application when using a specific detection 
algorithm.  Whereas previous spectral image quality research has focused on predicting 
utility by relating sensor parameters to a predictive quality metric, this research seeks to 
incorporate the character of the scene to assess the difficulty of detecting targets in 
different backgrounds, using the probability of detection at specified false alarm rates as 
the primary performance indicator.  Real hyperspectral images of varying spatial and 
spectral complexity are used as inputs to a spectral performance prediction algorithm in 
order to study the response of a given target detection algorithm to a range of image 
complexities.   
 
Figure 3.11.12-2 illustrates two approaches to predicting spectral image utility in addition 
to the empirical “ground truth” for utility.  The approach shown in the top block has been 
employed in previous spectral image quality studies using the Forecasting and Analysis 
of Spectroradiometric System Performance (FASSP) software.  This approach propagates 
a statistical parametric description of the spectral character of a scene through 
atmospheric, sensor, and processing models in order to produce a performance prediction.  
  

Desired  
InformationScene Sensor

Information
Extraction Atmosphere 

Image Fidelity – How faithfully does image represent 
scene truth? (Radiometric, Spectral, Spatial) 
 

Image Acquisition and Formation Information Exploitation 

Image Utility – Does the image yield an information product that answers information
requirements for a specific application (i.e. target detection)?  
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 Figure 3.11.12-2: Image-derived and alternative approaches to spectral utility prediction. 

 
The middle block illustrates the approach investigated in this research.  It estimates 
statistical parameters directly from the image and then predicts utility by applying the 
detection algorithm to these statistics.  This approach to utility prediction differs from the 
FASSP approach because it derives the statistical parameters directly from the image 
rather than rely on a built-in library.  Whereas FASSP models the entire image formation 
process, the image-derived utility approach uses the image, which has the scene, 
atmosphere, and sensor effects embedded in it, to form a prediction of utility.  The 
bottom block depicts the generation of actual empirical results obtained by applying the 
detection algorithm to the image.  It serves as the baseline against which to judge the 
efficacy of the predictions.   
 
Initial results have demonstrated the promise of an image-derived utility prediction 
metric. Future work will thoroughly explore the theoretical basis and robustness of the 
approach across a range of spectral image data sets. 

 
 

3.12 Spectral Quality Metric Comparison to Analyst Performance 
 
 Research Team: John Kerekes, David Messinger, Paul Lee, Emmett Ientilucci and Brian 
 Leahy (B.S. Student) 
  

Project Scope: This project explored the relationship between previously developed 
 spectral quality metrics (SQMs) and observed performance of spectral image analysts in a 
 target detection task.  SQMs considered included the General Spectral Utility Metric by 
 Simmons, et al, the Detection Probability metric by Shen, and the Spectral Quality Rating 
 Scale metric by Kerekes and Hsu. 
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 Project Status: In order to control and know the image characteristics precisely, DIRSIG 
 scenes were used into which target vehicles of varying style and paint were inserted.  
 Eleven of the vehicles were “white SUV’s” and were the targets of interest while the 
 other fifteen were confusers. 

 
The images were rendered under the various conditions and a spectral matched filter was 
applied to the spectral image.  Volunteer analysts were then provided a higher resolution 
panchromatic image and the matched filter output images.  An example is shown in 
Figure 3.12-1. 

 

   
 
Figure 3.12-1: Example panchromatic and matched filter output image provided to the analysts. 
 

The analysts were given the task of finding white SUV’s in the imagery. To report the 
results in a uniform manner, the analysts were given a summary sheet to complete for 
each image pair. On the sheet they were asked to list the pixel location (in the spectral 
image) and their level of confidence (1 = lowest, 5 = highest) for each suspected white 
SUV.  They were asked to list no more than twenty entries, and were not told how many 
vehicles were present, nor if there were any decoys in the imagery. The eighteen image 
pairs were analyzed by three volunteer analysts with six pairs assigned to each analyst. 

 
The analyst reports were compared to the known truth locations of the white SUV’s in 
the imagery. If the analyst reported a target within one pixel of the known location it was 
scored as a correct decision.  If there was no target within one pixel of the reported 
location it was scored as a false alarm only if the analyst assigned it a level of confidence 
higher than 1. Table 3.12-1 contains a summary of the results for each of the eighteen 
pairs of images. Note that the 2m spectral images contained 400x400=160,000 pixels, the 
4m images contained 200x200=40,000 pixels and the 8m images contained 
100x100=10,000 pixels. 
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GSD  
 (Pan/Spectral) 

Signal-to-Noise 
Ratio 

Spectral Image Type Number of Correct 
Decisions (out of 11) 

Number of  
False Alarms 

0.5m/2m 1000 Hyperspectral 9 2 
0.5m/2m 100 Hyperspectral 8 4 
0.5m/2m 10 Hyperspectral 10 3 
1m/4m 1000 Hyperspectral 3 3 
1m/4m 100 Hyperspectral 3 0 
1m/4m 10 Hyperspectral 3 0 
2m/8m 1000 Hyperspectral 1 4 
2m/8m 100 Hyperspectral 1 0 
2m/8m 10 Hyperspectral 0 6 

0.5m/2m 1000 Multispectral 6 1 
0.5m/2m 100 Multispectral 8 5 
0.5m/2m 10 Multispectral 9 2 
1m/4m 1000 Multispectral 2 1 
1m/4m 100 Multispectral 3 0 
1m/4m 10 Multispectral 3 2 
2m/8m 1000 Multispectral 0 7 
2m/8m 100 Multispectral 1 5 
2m/8m 10 Multispectral 0 6 

 
   Table 3.12-1: Volunteer analyst results for image pairs. 
 

The results confirmed the dominant influence of spatial resolution on the quality of 
spectral imagery.  While the trends were generally consistent between the analyst results 
and the metric predictions, there was only a loose correlation (R values between 0.51 and 
0.78) indicating the metrics are not capturing all of the necessary characteristics of the 
spectral imagery. 
 
While the significance of these results is limited by the small scale of this experiment, the 
study does illustrate an approach to use image simulation to study the driving parameters 
of spectral image quality.  In the future it would be desirable to repeat this type of 
experiment but with many different target configurations and a larger sensor parameter 
trade space. 

 
4.0 RIT Funded Core Research 
 

4.1  DIRSIG Infrastructure 
 

Project Scope: In addition to the sponsored research projects that address the enhancement of 
the DIRSIG model, RIT has been slowly increasing the amount of staff time that is spent 
working on infrastructural DIRSIG development.  This ranges from the purchasing and 
maintenance of the server used to distribute the model to the general maintenance of the 
software and supporting software development systems.  Historically, the creation of the new 
and improved DIRSIG4 model was largely funded internally. 
 
Project Status: One of the fundamental funding streams for DIRSIG core development has 
been various sources of RIT internal funding.  The primary source of this funding has 
become the DIRSIG Training Courses, which was offered on 3 different occasions during the 
2006 calendar.   
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The most important achievement for the past year was the establishment of the DIRSIG4 
code base as the primary model and the termination of work on the DIRSIG3 code base.  We 
also introduced the new DIRSIG website (http://www.dirsig.org) which, in addition to a 
much needed facelift, included the introduction of the new “myDIRSIG” self-help website 
(http://www.dirsig.org/mydirsig).  This is the new database driven portal for users to get the 
latest releases of the DIRSIG software and to interact with the rest of the user community. In 
addition to making the release of DIRSIG easier on the development team, this web portal 
will provide the user community with tools in the coming years to make the management of 
the DIRSIG software easier.  
 
In support of training courses and in the general interest of providing improved 
documentation to the user community, the “DIRSIG User’s Manual” grew by over 100+ 
pages in 2006.  The latest version of the manual can always be found to browse or download 
on the DIRSIG “Documentation” webpage (http://www.dirsig.org/doc). We also started to 
package and distribute “demos” of DIRSIG capabilities which are very small simulations that 
demonstrate how to use a specific feature in DIRSIG.  
 
This year marked the addition of support for the 64-bit AMD platform, which has become 
very popular for high-performance computing. DIRSIG 4.0.8 (November 2006) was also the 
first release that included support for the Apple Macintosh platform.  This UNIX-based 
platform is used internally at RIT by most of the development team and is a potential option 
for users that find adding or maintaining a UNIX or Linux based machine troublesome in 
their computing environment.  It is possible that DIRSIG 4.1 (early 2007) will be released for 
the Windows platform.   

 
Behind the scenes, work has been invested on creating a parallel version of the DIRSIG4 
model and introducing a “restart” feature into DIRSIG4 (both of these features were 
available in the DIRSIG3 model).  We hope that both of these features will be available to 
users in early 2007. 

 
4.2  Facility/Process Modeling 

 
Research Team: Jacob Clements (Ph.D. student), John Schott 
 
Task Scope: We plan to show on this project that, through the utilization of remote sensing 
tools in combination with other sources of information, one can infer specifics about the 
processes taking place within or around a facility with higher fidelity than current methods.  
We intend to use a local facility for this project, with the goal being to show that it is possible 
to integrate these multiple sources of information.  Once accomplished, this methodology 
could be applied to improve current methods of long-range surveillance. 

 
Task Status: The first step in this project is to determine which facility to use.  In exploring 
the options we have come to find that nuclear facilities, while most relevant to the problem, 
are not practical because being able to determine the difference between a facility that is 
producing just energy and one that is producing nuclear weapons conjures up security issues.  
We are currently looking into more reasonable alternatives that would have fewer obstacles. 
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Presently we are exploring the possibility of using a wastewater treatment facility for this 
project.  The processes within such a facility would prove to be appealing for our problem.  It 
is necessary to have careful monitoring of these facilities to ensure that the quality of water is 
safe for the environment.  Furthermore, water treatment is a complicated process with several 
variables. Developing algorithms to predict the causes of our observations should present us 
with various statistical and mathematical models that can be applied to other types of 
facilities.  

 

 
Figure 4.2-1: Wastewater as it travels through the Cazenovia, NY treatment facility.  It begins in 
the aeration tanks (left), goes into the settling tanks (middle), then after a few chemical processes is 
released into a small stream. 
 

Once a facility is chosen, it will have to be modeled.  But since what we are trying to do with 
this project is utilize information outside of the standard remote sensing tools, this model will 
have to be fused with several other sources of information, such as GIS data.  It will be 
important to have an understanding of the physical inflows and outflows of the facility, such 
as what are the shifts that people work, when deliveries are expected, and what is being 
delivered.  The model will need to know the procedural inflows and outflows as well, like 
what gases may be given off, where and how much water is pumped into the facility, and 
what areas get especially hot or cold.  We intend to take advantage of image and non-image 
signals (e.g. acoustics and radio frequency) from the facility to potentially determine 
information such as the types of machinery within the facility and their hours of operation. 
 
After the model is completed we will run several simulations with DIRSIG.  This may 
require us to take spectral measurements of the objects on and around the chosen facility so 
that we may accurately represent the structures present in the model. Using DIRSIG, we can 
generate imagery that can simulate several situations, such as night time images or images 
from different times of the year.  The synthetically generated imagery will be used for 
developing and testing the predictive model.  The final tests will be done on real imagery and 
we are hoping to use a facility on which we already have significant data. 

 
4.3  MISI Calibration 

 
 Research Team:  Tim Gallagher, Rolando Raqueño 
 
 Project Scope:  This project is designed to improve the radiometric calibration of RIT’s 
 airborne and field instrumentation with a focus on our Modular Imaging Spectrometer 
 Instrument (MISI). 
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Project Status:  An improved lab setup including new source standards, updated 
procedures and more rigid mounts to insure precision measurements has been acquired 
and assembled. The emphasis this year has been on development and demonstration of 
full aperture spectral radiance calibration of the MISI reflectance bands. Figure 4.3-1 
shows an illustration of the calibration configuration and Figure 4.3-2 shows a photo of 
the calibration facility. On going work is focused at defining the absolute calibration 
levels for the calibration facility. 

 
   

Figure 4.3-1 MISI Calibration Configuration 
 
 

 
 

Figure 4.3-2 MISI Calibration Laboratory Set-up 
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 Sensing” 
 John Klatt, 2001, “Error Characterization of Spectral Products using a Factorial Designed Experiment” 
 Canadian Forces 
 Andrew Fordham, 2002, “Band Selection and Algorithm Development for Remote Sensing of Wildfires” 
 Neil Scanlan, 2003, “Comparative Performance Analysis of Texture Characterization Models in DIRSIG” 
 Canadian Forces  
 Karl Walli, 2003, “Multisensor Image Registration Utilizing the LoG Filter and FWT”, US Air Force 
 Gabriel Dore, 2004, “Multiframe Super-Resolution of Color Image Sequences Using a Global Motion 
 Model”, Canadian Forces 
 Erin Peterson, 2004, “Synthetic Landmine Scene Development and Validation in DIRSIG”,  
 US Air Force 
 Kris Barcomb, 2004, “High Resolution, Slant Angle Scene Generation and Validation of Concealed 
 Targets in DIRSIG”, US Air Force 
 David Pogorzala, 2005, “Gas Plume Species Identification in LWIR Hyperspectral Imagery by Regression 
 Analyses” 
 Erin O’Donnell, 2005, “Detection and Identification of Effluent Gases Using Invariant Hyperspectral 
 Algorithms” 
 Gretchen Sprehe 2005 [M.S. Environmental Science, Remote Sensing Track] “Application of Phenology to 
 Assist in Hyperspectral Species Classification in a Northern Hardwood Forest” 
 Nancy Baccheschi, 2005, “Generation of a Combined Dataset of Simulated RADAR and Electro-Optical 
 Imagery”, US Air Force 
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 Jason West, 2005, “Matched Filter Stochastic Background Characterization for Hyperspectral Target 
 Detection”, US Air Force 
 David Grimm, 2005, “Comparison of Hyperspectral Imagery Target Detection Algorithm Chains”, US Air 
 Force 
 Noah Block, 2005, “A Sensitivity Study of a Polychromatic Sparse Aperture System”  
 Timothy Grabowski 2006 “Effects of pixel size on apparent emissivity signatures of materials with 
 longwave infrared spectral characteristics” 
 Kristin Strackerjan, 2006, “Modeling the Spectral Effects of Water and Soil as Surface Contaminants in a 
 High Resolution Optical Image Simulation”, Canadian Forces 
 Pierre Chouinard, 2006, “Decision Fusion of Hyperspectral and Synthetic Aperture Radar Imagery for 
 Trafficability Assessment”, Canadian Forces 
 Adam Cisz, 2006, “Performance Comparison of Hyperspectral Target Detection Algorithms” 
 Brian Dobbs, 2006, “The Incorporation of Atmospheric Variability into DIRSIG”  

 
6.3 B.S. Student 
 

 Jeffrey Sefl, 1983, "Determination of the transformation relationship of pseudo-invariant features of two 
 Landsat images"  
 Kirk Smedley, 1986, "Imaging land/water demarcation lines for coastal mapping"  
 David Sapone, 1988, "Verification of a thermal model through radiometric methods"  
 Joshua Colwell and Eric Higgins, 1988, "Determination of the modulation transfer function of a thermal 
 infrared line scanner"  
 Donald Marsh, 1989, "Photometric processing and interpretation of ratioed imagery by multispectral 
 discriminate analysis for separation of geologic types"  
 Fred Stellwagon, 1989, "Classification of mixed pixels"  
 Brian Jalet, 1991, "Evaluation of methods of cloud removal in multidate NOAA/AVHRR imaging and its 
 application to vegetational growth monitoring"  
 Mike Heath, 1991, "Perspective scene generation employing real imagery"  
 Stephen Ranck, 1991, "Establishment of a simple geographic information system utilizing digital data"  
 James Schryver, 1991, "Topographical analysis of a raster geographic information system"  
 Robert Rose, 1992, "Design of the information dissemination technique for a heat loss study"  
 Joseph Sirianni, 1992, "Production of realistic-looking sky radiance in the SIG process"  
 Andy Martelli, 1992, "Color calibration of an Agfa matrix QCR camera for Ektar 100 and 125 color print 
 films"  
 Mike Branciforte, 1993, "An automated video tracking unit based on a matched filter segmentation 
 algorithm"  
 Brian Heath, 1993, "Use of a quad cell in tracking a unit"  
 Debbie Wexler, 1993, "Texture generation using a stochastic model"  
 Michael Platt, 1994, "Evaluation of the feasibility of using digital terrain elevation models for the 
 generation of multispectral images at Landsat resolution"  
 Cory Mau, 1994, "Incorporation of wind effects in IR scene simulation"  
 Paul Barnes, 1995, "Introduction of vegetation canopy models into DIRSIG"  
 Jeff Ducharme, 1995, "Atmospheric downwelled radiance"  
 Chip Garnier, 1995, "Integrating sphere calibration"  
 Jeff Allen, 1996, "Comparison of modeled and real vegetation imagery"  
 Emmett Ientilucci, 1996, "Blackbody calibration of MISI"  
 Charles Farnung, 1997, "DIRSIG camouflage phenomenology"  
 Peter Arnold, 1997, "BRDF approximation using a mathematical cone function"  
 Julia Barsi, 1997, "The generation of a GIS database in support of Great Lakes Studies"  
 Jason Calus, 1997, "Modeling of focal plane geometry in DIRSIG"  
 Arnold Hunt, 1997, "Validation of BRDF model in DIRSIG"  
 Michael C. Baglivio, 1998, “Error Characterization of the Alpha Residuals Emissivity Extraction 
 Technique” 
 Brian Bleeze, 1998, “Modeling the MTF and Noise Characteristics of Complex Image Formation Systems” 
 Chia Chang, 1998, “Evaluation of Inversion Algorithms on DIRSIG Generated Plume Model Simulations” 
 Peter Kopacz, 1998, “Simulation of Geometric Distortions in Line Scanner Imagery” 
 Jason Hamel, 1999, “Simulation of Spectra Signatures of Chemical Leachates from Landfills” 
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 Daniel Newland, 1999, “Evaluation of Stepwise Spectral Unmixing with HYDICE Data” 
 J. Meghan Salmon, 2000, "Derivative Spectroscopy for Remote Sensing of Water Quality" 
 Janel Schubbuck, 2000, "Thermal Calibration of MISI" 
 Matt Banta, 2001, “Lunar Calibration Techniques”  
 Christy Burtner, 2001, “Texture Characterization in DIRSIG” 
 Adam Goodenough, 2001.”Evaluating Water Quality Monitoring with Hyperspectral Imagery”  
 Erin O'Donnell, 2001, “Historical Radiometric Calibration of Landsat 5”   
 Nikolaus Schad, 2001, “Hyperspectral Classification with Atmospheric Correction”  
 Cindy Scigaj, 2001, “Design and Implementation of a LIDAR Imaging System” 
 Eric Sztanko, 2001. “Imaging Fourier Transform Spectrometer: Design, Construction, and Evaluation”  
 Eric Webber, 2001, “Sensitivity Analysis of Atmospheric Compensation Algorithms for Multispectral 
 Systems Configuration” 
 Adam Cisz, 2002, “Multispectral Fire Detection:  Thermal/IR, Potassium, and Visual” 
 Rose of Sharon Daly, 2002, “Polarimetric Imaging” 
 Matthew D. Egan, 2002, “Detection and Analysis of Industrial Gas Plumes” 
 Carolyn S. Kennedy, 2002, “The Testing and Assessment of Texturing Tools Used to Build Scenes in 
 DIRSIG” 
 David Pogorzala, 2002, “Setting Fire to CIS, Small - Scale Combustion Chamber and Instrumentation” 
 Jonathan Antal, 2002, “Error Characterization of Hyperspectral Products with Emphasis on Atmospheric 
 Correction Techniques” 
 Kenneth R. Ewald, 2002, “Creation of ISO Target 16067-1”   
 Jared Clock, 2003, “Inexpensive Color Infrared Camera”  
 Gary Hoffmann, 2003, “Visual Enhancement of the Archimedes Palimpsest Using a Target Detection 
 Algorithm” 
 Jill Marcin, 2003, “Effects of Contamination on Spectral Signatures” 
  Brandon Migdal, 2004,  ““Watermark Extraction Methods for Linearly Distorted Images to Maximize 
 Signal-to-Noise Ratio”   
 Alvin Spivey, 2004, “An approach to synthetic scene completion and periodic noise removal by image 
 inpainting and resynthesis” 
 Seth Weith-Glushko, 2004, “Automatic Tie-Point Generation for Oblique Aerial Imagery: An Algorithm” 
 Rachael Gold, 2005, “Performance Analysis of the Invariant Algorithm for Target Detection in 
 Hyperspectral Imagery” 
 Michael Muldowney, 2005, “Time Series Analysis of Late Summer Microcystis Algae Blooms through 
 Remote Sensing” 
 Brian Staab, 2005, “Investigation of Noise and Dimensionality Reduction Transforms on  Hyperspectral 
 Data as Applied to Target Detection” 
 Christopher Bayer, 2005, “Development of algorithm for fusion of hyperspectral and multispectral imagery 
 with the objective of improving spatial resolution while retaining spectral data” 
 

 
7.0 Special Events 
 

7.1 DIRS Research Symposium 
 

The DIRS research symposium was held on Tuesday, June 6, 2006 in the Chester F. 
Carlson Center for Imaging Science.  In attendance were representatives from 
government and industry.  Organizations represented were: 
- ITT Industries 
- Lockheed Martin 
- Boeing 
- Los Alamos National Lab 
- National Reconnaissance Office 
- Air Force Research Labs 
- Pacific Northwest National Lab 
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- SAIC 
- LPA Systems 
- Aerospace Corporation 

 
The meeting is intended to provide our research partners with latest remote sensing 
research results being conducted here at RIT.  Presenters include faculty, staff, and 
especially students.  The meeting is also intended to be a forum for gaining feedback 
from our sponsors and the remote sensing community as a whole.  Topics that were 
presented are as follows: 
 

Modeling and Simulation 
LADAR Modeling in DIRSIG Scott Brown 
NURI 2 – Automated Data Extraction Steve Lach 
Synthetic Modeling using Photon Mapping Adam Goodenough 
Sparse Aperture Modeling John Schott 

 
Phenomenology and Algorithms 
Physics-based Algorithm Research Update Emmett Ientilucci 
Atmospheric In homogeneity John Schott  
Full Spectrum Background Texture Modeling Jake Ward 
Environmental Effects Phenomenology Research Kristin Strackerjan 
RASER Project Research Status John Kerekes 

 
Measurements and Experiments 
WASP, WASP-lite, and Calibration Capability   Don McKeown 


