Quantum Caustics and Chaos in Continuously Measured Quantum Systems
Andrew Jordan

University of Rochester

Measured quantum systems exhibit their own form of dynamics that is stochastic and nonunitary. Of particular interest are the most likely paths in quantum space between two boundary conditions in a certain time. I will show how caustic structures can arise in these paths, and predict the occurrence of chaos. In the former case, comparison with experiments on superconducting quantum circuits will be given.