Sorry, you need to enable JavaScript to visit this website.

The Center for Geographic Information Science & Technology facilitates a variety of educational offerings at the Rochester Institute of Technology (RIT). See the following program descriptions for more details and contact Dr. Brian Tomaszewski for more information on these programs.

Geographic Information Systems Minor

GIS-MN

The geographic information systems (GIS) minor provides students with experience in the concepts, technology, and applications related to computer-based mapping, spatial databases, and geographic analysis and problem solving. The minor features two tracks: a GIS development track for students interested in GIS software development, and a GIS analysis track for students interested in utilizing GIS as a strong methodological base within their major of study. Required courses provide core GIS foundations applicable to a variety of multidisciplinary elective courses students can choose from to match their research, post-graduate, or career interests.

Notes about this minor:

  • Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
Course
Required Courses
ISTE-382
Introduction to Geospatial Technologies
This course provides a survey of underlying concepts and technologies used to represent and understand the earth, collectively referred to as Geospatial Technologies (GTs). Students will gain hands-on experience with GTs, including Global Positioning Systems (GPSs), Geographic Information Systems (GISs), remote sensing, Virtual Globes, and Web mapping mashups. Students also will develop basic spatial thinking, reasoning, problem solving and literacy skills.
ISTE-384
Introduction to Geographic Information Systems
This course introduces students to Geographic Information Systems (GIS). Course lectures, reading assignments, and in-class activities cover a mix of conceptual, practical and technical GIS topics. Topics include GIS data models, basic cartography, geodatabases, spatial data acquisition and creation, and spatial analysis. Through applied research projects, students will learn how GIS is a support mechanism for spatially-oriented thinking, reasoning, literacy, and problem-solving at the global scale. Such global problems include international disaster management, digital humanities, climate change, and sustainable development. This general education course also examines GIS ethical issues such as privacy, information ownership, accuracy, and mapping and social power.
Electives
Students may choose to all three courses in one track, or they may choose any three electives to complete the minor.
GIS development track
ISTE-386
GIS Programming
This course is targeted to students with a serious interest in geographical problem solving via underlying spatial algorithms. Students will learn how to compare and contrast different specific spatial algorithms for solving specific geographic problems and develop proficiency with encoding and implementing spatial algorithms in computer programs. Students taking this course will gain a broad interdisciplinary skill set in how to think spatially and computationally through critical engagement of geographical problem solving.
ISTE-482
Geospatial Data Analysis
This course is an introduction to the theory and techniques used for spatial analysis of complex, geographically referenced data. Topics include spatial data analysis and statistical techniques for a variety of problem types that span a broad spectrum of disciplines. In-class and out-of-class assignments will develop students spatial data analysis skills.
ISTE-484
Thematic Cartography and Geovisualization
This course examines the use of maps for geographic problem solving and scientific inquiry. Students will learn theory, concepts and techniques associated with maps as geographic problem solving and scientific inquiry devices such as map comprehension, evaluation, construction, usage, and assessment. Students will also learn how to compare, contrast, and implement map-based geographic problem solving and scientific inquiry techniques such as thematic cartography, geographic information visualization, and animated and interactive maps. A geographic problem solving research project that incorporates thematic cartography and geographic visualization solutions is required.
GIS analysis track
ISTE-230
Introduction to Database and Data Modeling
A presentation of the fundamental concepts and theories used in organizing and structuring data. Coverage includes the data modeling process, basic relational model, normalization theory, relational algebra, and mapping a data model into a database schema. Structured Query Language is used to illustrate the translation of a data model to physical data organization. Modeling and programming assignments will be required. Note: students should have one course in object-oriented programming.
ISTE-422
Maps, Spaces and Places
In this course, students will gain experience with the processes, practices, and tools professional developers use to deliver robust and maintainable applications. Students will apply these practices and tools to build smaller-scale production-quality applications and systems. Topics include development life cycles, version control, test bed development and use, build utilities, error handling, deployment tools, and documentation.
ISTE-483
Information Science and Technology Research
This course is for students enrolled in the BS IT degree program and minors to demonstrate competence in concepts, techniques and applications via a semester-length research project developed in conjunction with a faculty member and based on the student’s degree concentration or minor. With instructor guidance, students will learn how to formulate a research question, choose relevant methods to answer the question, execute the project and present results in a public forum.

Geographic Information Systems Immersion

GIS-IM

As the world grows in complexity and interconnectedness, new challenges arise in visually representing, reasoning, and making sense of spatially-oriented problems and data. The geographic information systems immersion allows students to study geographic problem solving and scientific inquiry from an interdisciplinary perspective of interactive, digital mapping tools and related digital data problem solving technologies. Students are introduced to geographic mapping concepts and theory, digital cartography, geographic problem solving with geospatial and related computer tools, geospatial technology ethics and application of GIS to global problems such as natural disasters. This immersion is closed to students majoring in web and mobile computing, human centered computing, and computing and information technologies.

Course
Required Courses
ISTE-382
Introduction to Geospatial Technologies
This course provides a survey of underlying concepts and technologies used to represent and understand the earth, collectively referred to as Geospatial Technologies (GTs). Students will gain hands-on experience with GTs, including Global Positioning Systems (GPSs), Geographic Information Systems (GISs), remote sensing, Virtual Globes, and Web mapping mashups. Students also will develop basic spatial thinking, reasoning, problem solving and literacy skills.
ISTE-384
Introduction to Geographic Information Systems
This course introduces students to Geographic Information Systems (GIS). Course lectures, reading assignments, and in-class activities cover a mix of conceptual, practical and technical GIS topics. Topics include GIS data models, basic cartography, geodatabases, spatial data acquisition and creation, and spatial analysis. Through applied research projects, students will learn how GIS is a support mechanism for spatially-oriented thinking, reasoning, literacy, and problem-solving at the global scale. Such global problems include international disaster management, digital humanities, climate change, and sustainable development. This general education course also examines GIS ethical issues such as privacy, information ownership, accuracy, and mapping and social power.
Electives
Choose one of the following:
ENGL-422
Maps, Places and Spaces
This course takes as its premise that spatial thinking is critically important. Spatial thinking informs our ability to understand many areas of 21st century culture, as mobile interfaces and geospatial technologies enable us to engage with our surroundings in new ways. The study begins with the history maps and mapmaking, and explores how maps work. As students create representational, iconographic, satirical, image-based, informational, and other map forms, the course emphasizes the map as narrative. The course develops into an exploration of the ways, particularly in texts, that mapmaking creates cultural routes, mobile forms of ethnography, and ways of imagining travel and tourism in the era of globalization. The diverse writers represented in this course are rethinking space as a dynamic context for the making of history and for different organizations of social and communal life.
ISTE-120
Computational Problem Solving in the Information Domain I
A first course in using the object-oriented approach to solve problems in the information domain. Students will learn to design software solutions using the object-oriented approach, to visually model systems using UML, to implement software solutions using a contemporary programming language, and to test these software solutions. Additional topics include thinking in object-oriented terms, and problem definition. Programming projects will be required.
ISTE-230
Introduction to Database and Data Modeling
A presentation of the fundamental concepts and theories used in organizing and structuring data. Coverage includes the data modeling process, basic relational model, normalization theory, relational algebra, and mapping a data model into a database schema. Structured Query Language is used to illustrate the translation of a data model to physical data organization. Modeling and programming assignments will be required. Note: students should have one course in object-oriented programming.
ISTE-386
Spatial Problem Solving and Algorithms
This course is targeted to students with a serious interest in geographical problem solving via underlying spatial algorithms. Students will learn how to compare and contrast different specific spatial algorithms for solving specific geographic problems and develop proficiency with encoding and implementing spatial algorithms in computer programs. Students taking this course will gain a broad interdisciplinary skill set in how to think spatially and computationally through critical engagement of geographical problem solving.
ISTE-484
Thematic Cartography and Geovisualization
This course examines the use of maps for geographic problem solving and scientific inquiry. Students will learn theory, concepts and techniques associated with maps as geographic problem solving and scientific inquiry devices such as map comprehension, evaluation, construction, usage, and assessment. Students will also learn how to compare, contrast, and implement map-based geographic problem solving and scientific inquiry techniques such as thematic cartography, geographic information visualization, and animated and interactive maps. A geographic problem solving research project that incorporates thematic cartography and geographic visualization solutions is required.
STSO-550
Sustainable Communities
The concept of sustainability has driven many national and international policies. More recently, we have become aware that unless we physical build and rebuild our communities in ways that contribute to sustainability, making progress toward that goal is unlikely. It is equally important to recognize the social aspects of sustainability. In addition, it is at the local level that the goals of equity (a key consideration in community sustainability), most often achieved through citizen participation and collaborative processes are most easily realized. This course will broaden students understanding of the concept of sustainability, particularly the concept of social sustainability. This course focuses on sustainability as a way to bring light to the connections between natural and human communities, between nature and culture, and among environmental, economic, and social systems. Working closely with local organizations, students will explore the applicability of theoretical concepts.

ESRI EDC Logo

RIT is an Esri Development Center

If you are interested in GIS application and software development, please contact us for more information on how you can take advantage of resources available via our designation as an Esri Development Center.

Center for Geographic Information Science & Technology Educational Videos

Thumbnail for Basic Spatial Analysis Geographic Information Systems (GIS): A Technical Video Lecture

Basic Spatial Analysis Geographic Information Systems (GIS): A Technical Video Lecture

Subscribe to our YouTube channel for more videos or see a complete list of our educational videos.